WO2019037624A1 - 中子捕获治疗系统 - Google Patents
中子捕获治疗系统 Download PDFInfo
- Publication number
- WO2019037624A1 WO2019037624A1 PCT/CN2018/100572 CN2018100572W WO2019037624A1 WO 2019037624 A1 WO2019037624 A1 WO 2019037624A1 CN 2018100572 W CN2018100572 W CN 2018100572W WO 2019037624 A1 WO2019037624 A1 WO 2019037624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neutron
- core
- reflector
- treatment system
- bottom plate
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
- A61N5/1067—Beam adjustment in real time, i.e. during treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1071—Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
- G21G4/02—Neutron sources
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/025—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1001—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
- A61N5/1007—Arrangements or means for the introduction of sources into the body
- A61N2005/1012—Templates or grids for guiding the introduction of sources
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/109—Neutrons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1094—Shielding, protecting against radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1095—Elements inserted into the radiation path within the system, e.g. filters or wedges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1098—Enhancing the effect of the particle by an injected agent or implanted device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1078—Fixed beam systems
Definitions
- the present invention relates to a radioactive beam therapy system, and more particularly to a neutron capture therapy system.
- neutron capture therapy combines the above two concepts, such as boron neutron capture therapy, by the specific agglomeration of boron-containing drugs in tumor cells, combined with precise neutron beam regulation, providing better radiation than traditional radiation. Cancer treatment options.
- BNCT Boron Neutron Capture Therapy
- the total range of the two particles is about one cell size, so the radiation damage caused to the organism can be limited to the cell level, when boron is contained.
- the drug selectively accumulates in the tumor cells, and with the appropriate neutron source, it can achieve the purpose of locally killing the tumor cells without causing too much damage to the normal tissue.
- neutrons or other particles generated by the neutron production part such as gamma rays
- neutrons generated by the neutron production unit usually need to be adjusted by the beam shaping body.
- a reflector To improve the neutron yield, it is necessary to install a reflector to reduce the particle radiation leakage rate, adjust the energy spectrum and increase the neutron yield.
- Lead is a material traditionally used for reflection or shielding.
- the creep effect of lead is significant and does not provide structural rigidity and long life.
- the neutron beam quality is not only related to the beam shaping body, but also to the reflector and the shield.
- Lead is commonly used as a reflective material in the prior art, but the creeping effect of lead leads to insufficient structural precision, thereby affecting the safety of the entire boron neutron capture treatment.
- an aspect of the present invention provides a neutron capture treatment system capable of improving beam structure strength/accuracy without significantly affecting neutron beam quality.
- the neutron capture treatment system includes an accelerator for generating a charged particle beam, a neutron generating portion that generates a neutron beam after being irradiated by a charged particle beam, and a beam shaping body that shapes the neutron beam, the shot
- the beam shaping body includes a retarding body and a reflecting portion coated on the retarded outer circumference, and the neutron generating portion generates neutrons after being irradiated by the charged particle beam, and the retarding body generates neutrons generated from the neutron generating portion.
- the reflection portion including a reflector capable of guiding the deviated neutrons to increase the neutron intensity within the preset energy spectrum and a support capable of forming a support for the reflector.
- the reflecting portion includes a plurality of cells, each of the cells forming a core having an accommodating space, the plurality of cores are connected to form the support member, and the reflector is disposed on the core Set the space.
- the support member is an integrally formed structure, and the reflector material is cast in the accommodating space of the core.
- the reflecting portion is modularly designed. Specifically, a predetermined number of cores are connected to form the supporting member, and the outer side of the supporting member is provided with a correspondingly disposed top plate, a bottom plate, and a top plate and a bottom plate. a side plate disposed on an outer circumference of the core, the predetermined number of connected cores, a reflector disposed in the accommodating space of the core, the top plate, the bottom plate, and the side plates form a reflector module, and the reflector modules are stacked to form a package a reflecting portion that covers the outer surface of the retarding body. In view of the convenience of stacking between subsequent reflector modules, the number specified in the preferred embodiment is 20.
- the materials of the core, the top plate, the bottom plate and the side plates in the present application are low neutron absorption cross sections and low activation alloys.
- the material, the total volume of the alloy material is less than 10% by volume of the volume of the reflector material.
- the material of the reflector is lead
- the material of the core, the top plate, the bottom plate and the side plates is an aluminum alloy or a lead-bismuth alloy.
- the equivalent total cerium content in the lead-bismuth alloy material is less than 1%.
- the neutron capture treatment device includes an accelerator for generating a charged particle beam, a neutron generating portion that generates a neutron beam after being irradiated by a charged particle beam, and a beam shaping body that shapes the neutron beam, the shot
- the beam shaping body includes a retarding body and a reflecting portion coated on the retarded outer circumference, and the neutron generating portion generates neutrons after being irradiated by the charged particle beam, and the retarding body generates neutrons generated from the neutron generating portion.
- the reflecting portion guides the deviated neutrons to increase the neutron intensity in the preset energy spectrum, and the outer periphery of the reflecting portion is further covered with a shielding portion, the shielding portion includes a support member and A shield disposed in the support.
- the shield portion supports the reflection portion
- the reflection portion is made of a lead material without including a support member formed of a core portion.
- the shielding portion includes a plurality of cells, each of which forms a core having an accommodating space, the shielding body is disposed in the accommodating space of the core portion, and the plurality of core portions are connected to each other
- the support member is an integrally formed structure, and the shield material is cast in the accommodating space of the core.
- the core has a hexagonal cross section.
- the support member is an integrally formed structure, and the shield material is cast in the accommodating space of the core.
- the shield portion is modularly designed. Specifically, a predetermined number of cores are formed on the outer side of the support member, and a top plate, a bottom plate, and a top plate and a bottom plate are connected to the outer periphery of the core.
- the side plate, the predetermined number of connected cores, the shield provided in the core, the top plate, the bottom plate, and the side plates form a shield module, and the shield modules are stacked to form the shield.
- the number specified in the present application is 20.
- the shielding material is lead, and the materials of the core, the top plate, the bottom plate and the side plates are a low neutron absorption cross section and a low activation material, and the total material volume of the core, the top plate, the bottom plate and the side plates The proportion of the volume of material of the reflector is less than 10%.
- the support member is an integrally formed structure, and the reflector material is cast in the accommodating space of the core.
- a predetermined number of cores are connected to form the support member, and the outer side of the support member is provided with an oppositely disposed top plate, a bottom plate, and a side plate connected to the top plate and the bottom plate and surrounding the outer periphery of the core, the prescribed number of connections
- the core, the reflector disposed in the accommodating space of the core, the top plate, the bottom plate, and the side plate form a reflector module, and the reflector modules are stacked to form the reflecting portion.
- the materials of the core, the top plate, the bottom plate and the side plates are a low neutron absorption cross section and a low activation material, and the total volume of materials of the core, the top plate, the bottom plate and the side plates accounts for the volume of the reflector material.
- the ratio is less than 10%.
- both the reflecting portion and the shielding portion are arranged to have a structural design of the supporting member.
- the reflecting portion includes a reflector capable of guiding the deviated neutrons to increase the neutron intensity in the preset energy spectrum and a support capable of forming a support for the reflector.
- the material of the reflector is lead, and the material of the support is aluminum. Alloy or lead-bismuth alloy.
- the neutron capture treatment system of the present application supports the reflective material or/and the shielding material by providing the support of the reflecting portion or/and the support of the shielding portion, that is, through low neutron absorption and low activation.
- the alloy material supports the lead material to overcome the creep effect of the lead material, and improves the structural strength of the beam shaping body without affecting the neutron beam quality.
- Figure 1 is a schematic diagram of a boron neutron capture reaction of the present application
- FIG. 2 is a schematic view of a neutron capture treatment system installed in a shielding wall according to Embodiment 1 of the present application, which has a shielding portion, and only the shielding portion has a support member;
- FIG. 3 is a schematic view showing a core structure of the shield portion in the first embodiment of the present application.
- FIG. 4 is an exploded perspective view of the shield module in a state in which the shield material is not provided in the first embodiment of the present application;
- FIG. 5 is a schematic view of a neutron capture treatment system installed in a shielding wall according to a second embodiment of the present application, wherein the beam shaping body does not have a shielding portion, and only the reflecting portion has a supporting member;
- FIG. 6 is a schematic view showing a core structure of the reflecting portion in the second embodiment of the present application.
- FIG. 7 is an exploded perspective view of a reflector module in a state in which a reflector material is not provided in Embodiment 2 of the present application;
- FIG. 8 is a schematic diagram of a neutron capture treatment system installed in a shield wall according to Embodiment 3 of the present application, wherein the reflection portion and the shield portion each have a support member.
- Particles generated by the accelerator need to be equipped with reflectors to reduce the radiation leakage rate of the particles.
- a shield is required to provide radiation safety shielding.
- Lead or lead alloys are materials traditionally used for reflection or shielding. However, the creep effect of lead is significant and does not provide structural rigidity and long life cycles.
- the present application provides a neutron capture treatment system 100 that includes an accelerator 200 for generating a charged particle beam P, which is irradiated by a charged particle beam P to produce a neutron beam.
- the neutron generating unit 10 the beam shaping body 20 that shapes the neutron beam, and the collimator 30.
- the beam shaping body 20 includes a retarding body 21 and a reflecting portion 22 that is coated on the retarded outer circumference.
- the neutron generating unit 10 generates a neutron beam N after being irradiated by the charged particle beam, and the retarding body 21 decelerates the neutron beam N generated from the neutron generating portion 10 to a predetermined energy spectrum, and the reflecting portion 22 The deviated neutrons are guided back to increase the neutron intensity within the preset energy spectrum, and the collimator 30 concentrates the neutrons generated by the neutron generating portion 10.
- the neutron capture treatment system 100 further includes a shield 40.
- the shielding portion 40 includes a support member 41 and a shielding body 42 disposed in the support member 41 .
- the support member 41 includes a plurality of cells 43. Each of the cells 43 forms a core 45 having a receiving space 44.
- the shield 42 is disposed in the accommodating space 44, and the plurality of cores 45 are connected to each other.
- the support member 41 is described.
- the support member 41 is an integrally formed structure, and the shield material is cast into the accommodating space 44 of each core portion 45 of the support member 41.
- a support member 41 is formed by joining a defined number of cores 45 having a hexagonal cross-section that is easy to form and stack.
- a top plate 46, a bottom plate 47, and four side plates 48 connected to the top plate 46 and the bottom plate 47 and surrounding the outer periphery of the core portion 45 are provided on the outer side of the support member 41.
- the predetermined number of connected cores 45, the shield 42 provided in the core 45, the top plate 46, the bottom plate 47, and the side plates 48 form a shield module 49, and the shield modules 49 are stacked to form the shield portion 40.
- the prescribed number is 20.
- those skilled in the art can adjust the number of side panels according to design requirements, such as three, six, etc.; adjust the specified number of shield modules according to design requirements, such as 10, 30, and so on.
- the material of the shield 42 is lead, and the top plate 46, the bottom plate 47, and the alloy material of the top plate 46, the bottom plate 47, and the side plates 48 are activated by low neutron cross section and low neutron activation.
- the total volume of the alloy material is less than 10% of the volume of the material of the shield 42.
- the reflection portion 22 is a structure having a creep effect made of a lead material
- the shield portion 40 is coated on the outer circumference of the reflection portion 22, and the beam shaping body 20 is embedded in the irradiation chamber.
- the shielding portion 40 is directly supported by the shielding wall W, and the support member 41 inside the shielding portion 40 provides support for the shielding body 42 while also providing strength support to the reflecting portion 22. Thereby, the structural strength of the entire beam shaping body 20 is improved.
- the arrangement of the shield portion 40 in the first embodiment is directly applied to the reflection portion 22, and the reflection portion 22 is provided in a structure including the support member 221 without providing a shield portion. 40.
- the reflecting portion 22 includes a support member 221 and a reflector 222 disposed in the support member 221 .
- the support member 221 includes a plurality of cells 223, each of which forms a core 225 having an accommodating space 224.
- the reflector 222 is disposed in the accommodating space 224, and the plurality of cores 225 are connected to form a body.
- the support member 221 is described.
- the support member 221 is integrally formed, and the material of the reflector 222 is cast into the core portion 225 of the support member 221 .
- the reflective portion 22 is modularly designed, specifically, a support member 221 formed by connecting a predetermined number of core portions 225 , and the outer side of the support member 221 is provided with a top plate 226 and a bottom plate 227 disposed opposite to each other.
- Four side plates 228 are connected to the top plate 226 and the bottom plate 227 and are disposed around the outer circumference of the core 225.
- the predetermined number of connected core portions 225, the reflectors 222 disposed in the core portion 225, the top plate 226, the bottom plate 227, and the side plates 228 form a reflector module 229, and the reflector modules 229 are stacked to form the reflection portion 22.
- the top plate 226, the bottom plate 227, and the four side plates 228 connected to the top plate 226 and the bottom plate 227 and surrounding the outer periphery of the core portion 225 are alloy materials having low neutron cross-section absorption and low activation, and the total volume of the alloy material is shielded.
- the volume ratio of the body 42 material is less than 10%.
- FIG. 8 is a third embodiment of the present application, which is different from the above embodiment in that, in this embodiment, both the reflecting portion and the shielding portion are structurally designed with a supporting member, and in the embodiment, the reflecting portion is disposed.
- the arrangement of the shielding portion is the same as that of the shielding portion in the second embodiment, and the arrangement of the shielding portion is the same as that in the first embodiment, and will not be described in detail herein.
- the reflector 222 is provided by providing the support member 221 without affecting the quality of the neutron beam.
- the support member 41 is provided to support the shield 42 to overcome the structural accuracy problem caused by the creep effect of the reflector and the shield due to the use of the lead material.
- the reflecting portion 22 when the reflecting portion is configured to have the structure of the reflector module, the reflecting portion 22 is wrapped around the outer periphery of the retarding body 21, and the retarding body is The outer surface of the 21 is generally cylindrical or has at least one pyramid-like structure, so that when the reflecting portion formed by stacking the reflector modules 229 is coated on the outer surface of the retarding body 21, structural bonding problems should also be considered.
- the core formed by the cell in the present application may be any closed structure having a hole-shaped accommodating space, such as a square, triangular or hexagonal cross-section geometry, a tetrahedron having a hole-shaped accommodating space,
- the octahedron or the dodecahedron may also be a non-closed structure having a hole-like accommodating space, which will not be exemplified herein.
- the lead is disposed in the hole-shaped accommodating space by casting, and is tightly surrounded by the core material, so that the alloy material of the core forms a support for the lead material.
- the core of the reflecting portion and the core of the shielding portion are both hexagonal in cross section.
- the structure of the support of the reflecting portion may also be different from the structure of the support of the shielding portion.
- the core structure of the support portion of the shield portion is a hexagonal shape in cross section
- the core structure of the support portion of the reflection portion is a tetrahedron, as long as the alloy material of the support member can support the lead material, and The neutron beam quality has a small effect and will not be described in detail here.
- the core, the top plate, the bottom plate, and the materials of the side plates connected to the top plate and the bottom plate and surrounding the outer periphery of the core are selected for quality considerations for the weight of the entire beam shaping body.
- Light alloy materials, in combination with the consideration of the quality of the neutron beam, the materials of the core, the top plate, the bottom plate and the side plates should also use low neutron absorbing materials and low activation materials, and the top plate, the bottom plate and the side plates
- the total volume of material of the core is less than 10% of the reflector material or the volume of the shield material.
- the materials of the top plate, the bottom plate, the side plates and the core are preferably made of an aluminum alloy material.
- a lead-bismuth alloy instead of an aluminum alloy because although the neutron absorption cross section of the lead-bismuth alloy material is higher than that of the aluminum alloy material, the total volume of the material of the top plate, the bottom plate, the side plates, and the core occupies the reflector material or accounts for The volume ratio of the shielding material is less than 10%, and the equivalent total cerium content is less than 1%. Therefore, the bismuth in the lead-bismuth alloy material has no significant influence on the neutron beam quality.
- the reflector or/and the shield in the beam shaping body of the present application are made of a lead material having a creep effect
- the support is The reflector or/and the shield of the shield wall W can support the lead material having a creep effect by means of a support made of an alloy material, so that the structural precision of the entire beam shaping body is improved.
- the shielding portion supports the lead material by setting an alloy material on the one hand, and the top plate, the bottom plate and the side plate connected with the top plate and the bottom plate on the outer periphery of the lead material supported by the alloy material on the other hand, in the reinforcing shielding portion.
- the structural strength realizes the modular design of the shielding portion at the same time, and the structure is simple. Therefore, the shielding portion in the present application can also be applied to other shielding occasions.
- the beam shaping body for neutron capture treatment disclosed herein is not limited to the contents described in the above embodiments and the structures shown in the drawings. Obvious modifications, substitutions, or alterations of the materials, shapes, and positions of the components in the present application are within the scope of the present disclosure.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Radiation-Therapy Devices (AREA)
- Particle Accelerators (AREA)
Abstract
本申请提供一种中子捕获治疗系统,所述中子捕获治疗系统包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、对中子射束进行整形的射束整形体,所述射束整形体包括缓速体及包覆于缓速体外周的反射部,所述中子产生部经带电粒子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射部包括能够将偏离的中子导回以提高预设能谱内中子强度的反射体以及能够对反射体形成支撑的支撑件。通过使用铅锑合金作为反射体以改善单纯使用铅材料作为反射体带来的蠕变效应,提高了射束整形体的结构强度。
Description
本发明涉及一种放射性射线治疗系统,尤其涉及一种中子捕获治疗系统。
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT)是利用含硼(
10B)药物对热中子具有高捕获截面的特性,借由
10B(n,α)
7Li中子捕获及核分裂反应产生
4He和
7Li两个重荷电粒子。参照图1,其为硼中子捕获反应的示意图,两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α粒子的线性能量转移与射程分别为150keV/μm、8μm,而
7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,当含硼药物选择性地聚集在肿瘤细胞中,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
在加速器硼中子捕获治疗中,一方面中子产生部产生的中子或其他粒子,如γ射线具有放射性,另一方面中子产生部产生的中子通常需要经过射束整形体调整能谱、提高中子产率,因此需要安装反射体以降低粒子辐射泄露率、调整能谱和提高中子产率。铅是传统上用于反射或屏蔽的材料,然而,铅的蠕变效应显著,无法提供结构刚性与长久的使用周期。对于硼中子捕获治疗而言,中子射束品质不仅与射束整形体有关,也与反射体及屏蔽体有关。现有技术中通常使用铅作为反射材料,但是因为铅的蠕变效应会导致结构精度不足,从而影 响整个硼中子捕获治疗的安全性。
故,有必要提供一种新的中子捕获治疗系统,克服以上技术问题。
发明内容
为了解决上述的技术问题,本发明的一个方面提供一种中子捕获治疗系统,其在不显著影响中子射束品质的前提下能够提高射束整形体结构强度/精度。所述中子捕获治疗系统包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、对中子射束进行整形的射束整形体,所述射束整形体包括缓速体及包覆于缓速体外周的反射部,所述中子产生部经带电粒子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射部包括能够将偏离的中子导回以提高预设能谱内中子强度的反射体以及能够对反射体形成支撑的支撑件。
进一步地,所述反射部包括多个栅元,每个栅元形成一个具有容置空间的芯部,多个芯部连接形成所述支撑件,所述反射体设于所述芯部的容置空间内。
进一步地,所述支撑件为一体成型结构,所述反射体材料浇注设置于所述芯部的容置空间内。
作为一种优选地,对反射部进行模块化设计,具体为,规定数量的芯部连接形成所述支撑件,所述支撑件外侧设有相对设置的顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板,所述规定数量连接的芯部、设于芯部的容置空间内的反射体、顶板、底板以及侧板形成反射体模块,所述反射体模块堆叠形成包覆在缓速体的外表面的反射部。考虑到后续反射体模块之间堆叠的方便,本优选实施例中所述规定数量为20个。
为了尽量减少芯部、顶板、底板以及侧板的材料对中子射束品质的影响,本申请中所述芯部、顶板、底板以及侧板的材料为低中子吸收截面及低活化的合金材料,所述合金材料的总体积占所述反射体材料体积的比例小于10%。
作为一种优选地,所述反射体的材料为铅,所述芯部、顶板、底板以及侧板的材料为铝合金或铅锑合金。
进一步地,所述铅锑合金材料中等效的总体锑含量小于1%。
为了解决上述的技术问题,本发明的另一个方面提供一种中子捕获治疗系统,其在不显著影响中子射束品质的前提下能够提高射束整形体结构强度/精度。所述中子捕获治疗装置包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、对中子射束进行整形的射束整形体,所述射束整形体包括缓速体及包覆于缓速体外周的反射部,所述中子产生部经带电粒子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射部将偏离的中子导回以提高预设能谱内的中子强度,所述反射部外周还包覆有屏蔽部,所述屏蔽部包括支撑件及设置于支撑件中的屏蔽体。
进一步地,因为有屏蔽部对反射部进行支撑,所以作为一种实施方式,反射部由铅材料制成,而不包括由芯部形成的支撑件。
进一步地,所述屏蔽部包括多个栅元,每个栅元形成一个具有容置空间的芯部,所述屏蔽体设于所述芯部的容置空间内,多个芯部连接形成所述支撑件,所述支撑件为一体成型结构,所述屏蔽体材料浇注设置于所述芯部的容置空间内。
进一步地,为了易于芯部的成形和堆叠,所述芯部的横截面为六边形。
进一步地,所述支撑件为一体成型结构,所述屏蔽体材料浇注设置于所述芯部的容置空间内。
作为一种优选地,对屏蔽部进行模块化设计,具体为,规定数量的芯部连接形成的支撑件外侧设有相对设置的顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板,所述规定数量连接的芯部、设于芯部内的屏蔽体、顶板、底板以及侧板形成屏蔽体模块,所述屏蔽体模块堆叠形成所述屏蔽部。考虑到后续屏蔽体模块之间堆叠的方便,本申请中所述规定数量为20个。
进一步地,所述屏蔽体材料为铅,所述芯部、顶板、底板以及侧板的材料为低中子吸收截面及低活化材料,所述芯部、顶板、底板以及侧板的材料总体积占所述反射体的材料体积的比例小于10%。
进一步地,所述支撑件为一体成型结构,所述反射体材料浇注设置于所述芯部的容置空间内。
进一步地,规定数量的芯部连接形成所述支撑件,所述支撑件外侧设有相对设置的顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板,所述规定数量连接的芯部、设于芯部的容置空间内的反射体、顶板、底板以及侧板形成反射体模块,所述反射体模块堆叠形成所述反射部。
进一步地,所述芯部、顶板、底板以及侧板的材料为低中子吸收截面及低活化材料,所述芯部、顶板、底板以及侧板的材料总体积占所述反射体材料体积的比例小于10%。
为了进一步保证整个射束整形体的结构强度,将反射部与屏蔽部均设置为具有支撑件的结构设计。所述反射部包括能够将偏离的中子导回以提高预设能谱内中子强度的反射体以及能够对反射体形成支撑的支撑件,反射体的材料为铅,支撑体的材料为铝合金或铅锑合金。
与现有技术相比,本申请中子捕获治疗系统通过设置反射部的支撑件或/和屏蔽部的支撑件对反射材料或/和屏蔽材料进行支撑,即通过低中子吸收及低活化的合金材料对铅材料进行支撑以克服铅材料的蠕变效应,在不影响中子射束品质的情况下提高了射束整形体的结构强度。
图1是本申请硼中子捕获反应示意图;
图2是本申请实施例一中的安装于屏蔽墙的中子捕获治疗系统的示意图,其具有屏蔽部,且仅屏蔽部具有支撑件;
图3是本申请实施例一中的所述屏蔽部的芯部结构的示意图;
图4是本申请实施例一中未设置屏蔽体材料状态下,屏蔽体模块的分解示意图;
图5是本申请实施例二中的安装于屏蔽墙的中子捕获治疗系统的示意图,其中射束整形体不具有屏蔽部,仅反射部具有支撑件;
图6是本申请实施例二中的所述反射部的芯部结构的示意图;
图7是本申请实施例二中的未设置反射体材料的状态下,反射体模块的分解示意图;
图8是本申请实施例三中的安装于屏蔽墙的中子捕获治疗系统的示意图,其中反射部和屏蔽部均具有支撑件。
加速器产生的粒子(如中子)需要安装反射体以降低粒子辐射泄露率,需要安装屏蔽体来提供辐射安全屏蔽。铅或铅合金是传统上用于反射或屏蔽的材料,然而,铅的蠕变效应显著,无法提供结构刚性与长久的使用周期。
如图2所示,本申请提供一种中子捕获治疗系统100,所述中子捕获治疗系统100包括用于产生带电粒子束P的加速器200、经带电粒子束P照射后产生中子射束的中子产生部10、对中子射束进行整形的射束整形体20以及准直器30。所述射束整形体20包括缓速体21、包覆于缓速体外周的反射部22。所述中子产生部10经带电粒子束照射后产生中子束N,所述缓速体21将自中子产生部10产生的中子束N减速至预设能谱,所述反射部22将偏离的中子导回以提高预设能谱内的中子强度,所述准直器30将中子产生部10产生的中子进行集中。
作为实施例一,所述中子捕获治疗系统100还包括屏蔽部40。结合图3,所述屏蔽部40包括支撑件41及设置于支撑件41中的屏蔽体42。所述支撑件41包括多个栅元43,每个栅元43形成具有容置空间44的芯部45,所述屏蔽体42设于该容置空间44内,多个芯部45连接形成所述支撑件41。作为一种优选的实施方式,所述支撑件41为一体成型结构,所述屏蔽体材料浇注于所述支撑件41各芯部45的容置空间44内。
结合图4,采用规定数量的芯部45连接形成的支撑件41,支撑件41具有六边形的横截面,其易于成形和堆叠。在支撑件41的外侧设有相对设置的顶板46、底板47以及与顶板46、底板47连接并围设于芯部45外周的四个侧板48。所述规定数量连接的芯部45、设于芯部45内的屏蔽体42、顶板46、底板47以及侧板48形成屏蔽体模块49,所述屏蔽体模块49堆叠形成所述屏蔽部40。本申请中,考虑到后续屏蔽体模块49之间堆叠的方便,作为一种优选的实施例,所述规定数量为20个。当然,本领域技术人员可以根据设计需要调整侧板的个数,如3个,6个等等;根据设计需要调整屏蔽体模块的规定数量,如10个,30个等等。
所述屏蔽体42的材料为铅,所述顶板46、底板47以及与顶板46、底板47以及侧板48由低中子截面吸收及低中子活化的合金材料制成。为了尽量减少合金材料对中子射束品质的 影响,所述合金材料的总体积占屏蔽体42材料体积的比例小于10%。
在本实施方式中,反射部22是由铅材料制成的具有蠕变效应的结构,屏蔽部40包覆于所述反射部22的外周,射束整形体20埋设于用于对照射室内产生的辐射线进行屏蔽的屏蔽墙W中,所述屏蔽部40直接支撑于所述屏蔽墙W,屏蔽部40内部的支撑件41对屏蔽体42本身提供支撑的同时也对反射部22提供强度支撑,从而提高了整个射束整形体20的结构强度。
如图5所示,作为实施例二,直接将实施例一中的屏蔽部40的设置运用于反射部22中,将所述反射部22设置成包括支撑件221的结构,而不设置屏蔽部40。
结合图6,所述反射部22包括支撑件221及设置于支撑件221中的反射体222。所述支撑件221包括多个栅元223,每个栅元223形成具有容置空间224的芯部225,所述反射体222设于该容置空间224内,多个芯部225连接形成所述支撑件221。作为一种优选的实施方式,所述支撑件221为一体成型,所述反射体222的材料浇注于所述支撑件221的芯部225内。
如图7所示,对反射部22进行模块化设计,具体为,采用规定数量的芯部225连接形成的支撑件221,所述支撑件221的外侧设有相对设置的顶板226、底板227以及与顶板226、底板227连接并围设于芯部225外周的四个侧板228。所述规定数量连接的芯部225、设于芯部225内的反射体222、顶板226、底板227以及侧板228形成反射体模块229,所述反射体模块229堆叠形成所述反射部22。所述顶板226、底板227以及与顶板226、底板227连接并围设于芯部225外周的四个侧板228为低中子截面吸收及低活化的合金材料,所述合金材料总体积占屏蔽体42材料体积的比例小于10%。
图8所示为本申请的实施例三,与上述实施例不同之处在于,本实施例中,反射部与屏蔽部均为具有支撑件的结构设计,而本实施例中,反射部的设置与实施例二中反射部的设置相同,屏蔽部的设置与实施例一中屏蔽部的设置相同,文中就不再详细叙述。将射束整形体20埋设于屏蔽墙W中时,屏蔽部40直接支撑于屏蔽墙W,该实施方式,在不影响中子射束品质的情况下,通过设置支撑件221对反射体222进行支撑,设置支撑件41对屏蔽体42进行支撑,以克服反射体和屏蔽体因采用铅材料产生蠕变效应而导致结构精度问题。
需要指出的是,如实施例二及实施例三中所述,当反射部设置为具有反射体模块的结构时,由于反射部22包覆于所述缓速体21的外周,而缓速体21的外表面通常为圆柱形或者具有至少一个锥体状的结构,因此由反射体模块229堆叠形成的反射部包覆在缓速体21的外表面时,还应当考虑到结构上的结合问题,对直接与缓速体21表面结合处的反射体模块进行结 构调整,比如,将与缓速体21接触部分的反射体模块进行切割,以使反射部贴合于缓速体21的外表面,从而不影响反射部22内的反射体222对偏离的中子进行反射。
本申请中所述栅元形成的芯部可以是任何具有孔状容置空间的封闭式结构,比如横截面为正方形、三角形或者六边形的几何结构,具有孔状容置空间的四面体、八面体或者十二面体,也可以是具有孔状容置空间的非封闭式结构,此处就不再一一举例说明。所述铅通过浇注的方式设置于所述孔状的容置空间内,而被芯部材料紧密包围,从而使得芯部的合金材料对铅材料形成支撑。
本申请实施例二与实施例三中,为了反射体模块和/或屏蔽体模块的堆叠方便以及制造方便,反射部的芯部与屏蔽部的芯部均采用横截面为六边形的结构。当然,所述反射部的支撑件的结构也可以与所述屏蔽部的支撑件结构不同。比如屏蔽部的支撑件的芯部结构为横截面为六边形的几何形状,而反射部的支撑件的芯部结构为四面体,只要支撑件的合金材料能够对铅材料形成支撑,并且对中子射束品质产生较小的影响即可,此处就不再详细叙述。
无论上面哪一种实施例,出于对整个射束整形体重量的考量,所述芯部、顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板的材料均选用质量较轻的合金材料,结合对中子射束品质的考量,所述芯部、顶板、底板以及侧板的材料还应选用低中子吸收材料和低活化材料,且所述顶板、底板、侧板以及芯部的材料总体积占反射体材料或者占屏蔽体材料体积的比例小于10%。本申请中,所述顶板、底板、侧板以及芯部的材料优先选用铝合金材料。也可以使用铅锑合金替代铝合金,因为虽然铅锑合金材料的中子吸收截面高于铝合金材料,但是由于所述顶板、底板、侧板以及芯部的材料总体积占反射体材料或者占屏蔽体材料体积的比例小于10%,等效的总体锑含量小于1%,因此铅锑合金材料中的锑对中子射束品质也无显著影响。
虽然本申请所述射束整形体中的反射体或/和屏蔽体为具有蠕变效应的铅材料制成,但是当将射束整形体埋设于照射室的屏蔽墙W中时,因为支撑于屏蔽墙W的反射体或/和屏蔽体能够依靠合金材料制成的支撑件对具有蠕变效应的铅材料形成支撑,因此整个射束整形体的结构精度得到了提高。
本申请中所述屏蔽部一方面通过设置合金材料对铅材料进行支撑,另一方面在有合金材料支撑的铅材料外周设置顶板、底板以及与顶板、底板相互连接的侧板,在增强屏蔽部结构强度的同时实现对屏蔽部的模块化设计,结构简单,因此,也可将本申请中的屏蔽部应用于其他屏蔽场合。
本申请揭示的用于中子捕获治疗的射束整形体并不局限于以上实施例所述的内容以及附 图所表示的结构。在本申请的基础上对其中构件的材料、形状及位置所做的显而易见地改变、替代或者修改,都在本申请要求保护的范围之内。
Claims (15)
- 一种中子捕获治疗系统,其特征在于:所述中子捕获治疗系统包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、对中子射束进行整形的射束整形体,所述射束整形体包括缓速体及包覆于缓速体外周的反射部,所述中子产生部经带电粒子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射部包括能够将偏离的中子导回以提高预设能谱内中子强度的反射体以及能够对反射体形成支撑的支撑件。
- 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述反射部包括多个栅元,每个栅元形成一个具有容置空间的芯部,多个芯部连接形成所述支撑件,所述反射体设于所述芯部的容置空间内。
- 根据权利要求2所述的中子捕获治疗系统,其特征在于:所述支撑件为一体成型结构,所述反射体材料浇注设置于所述芯部的容置空间内。
- 根据权利要求2所述的中子捕获治疗系统,其特征在于:规定数量的芯部连接形成所述支撑件,所述支撑件外侧设有相对设置的顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板,所述规定数量连接的芯部、设于芯部的容置空间内的反射体、顶板、底板以及侧板形成反射体模块,所述反射体模块堆叠形成包覆在缓速体的外表面的反射部。
- 根据权利要求4所述的中子捕获治疗系统,其特征在于:所述芯部、顶板、底板以及侧板的材料为低中子吸收截面及低活化材料,所述芯部、顶板、底板以及侧板的材料总体积占所述反射体材料体积的比例小于10%。
- 根据权利要求5所述的中子捕获治疗系统,其特征在于:所述反射体的材料为铅,所述芯部、顶板、底板以及侧板的材料为铅锑合金。
- 根据权利要求6所述的中子捕获治疗系统,其特征在于:所述铅锑合金材料中等效的总体锑含量小于1%。
- 一种中子捕获治疗系统,其特征在于:所述中子捕获治疗装置包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、对中子射束进行整形的射束整形体,所述射束整形体包括缓速体及包覆于缓速体外周的反射部,所述中子产生部经带电粒子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射部将偏离的中子导回以提高预设能谱内的中子强度,所述反射部外周还包覆有屏蔽部,所述屏蔽部包括能够对反射体形成支撑的支撑件及设置于支撑件中的屏蔽体。
- 根据权利要求8所述的中子捕获治疗系统,其特征在于:所述反射部由铅材料制成。
- 根据权利要求8所述的中子捕获治疗系统,其特征在于:所述屏蔽部包括多个栅元,每个栅元形成一个具有容置空间的芯部,所述屏蔽体设于所述芯部的容置空间内,多个芯部连接形成所述支撑件。
- 根据权利要求10所述的中子捕获治疗系统,其特征在于:所述芯部的横截面为六边形。
- 根据权利要求10所述的中子捕获治疗系统,其特征在于:所述支撑件为一体成型结构,所述屏蔽体的材料浇注设置于所述芯部的容置空间内。
- 根据权利要求10所述的中子捕获治疗系统,其特征在于:规定数量的芯部连接形成的所述支撑件,所述支撑件的外侧设有相对设置的顶板、底板以及与顶板、底板连接并围设于芯部外周的侧板,所述规定数量连接的芯部、设于芯部内的屏蔽体、顶板、底板以及侧板形成屏蔽体模块,所述屏蔽体模块堆叠形成所述屏蔽部。
- 根据权利要求10所述的中子捕获治疗系统,其特征在于:所述屏蔽体的材料为铅,所述芯部、顶板、底板以及侧板的材料为低中子吸收截面及低活化材料,所述芯部、顶板、底板以及侧板的材料总体积占所述反射体的材料体积的比例小于10%。
- 根据权利要求8所述的中子捕获治疗系统,其特征在于:所述反射部包括能够将偏离的中子导回以提高预设能谱内中子强度的反射体以及能够对反射体形成支撑的支撑件,反射体的材料为铅,支撑体的材料为铝合金或铅锑合金。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020509150A JP7175964B2 (ja) | 2017-08-24 | 2018-08-15 | 中性子捕捉療法システム |
EP18847580.0A EP3666336B1 (en) | 2017-08-24 | 2018-08-15 | Neutron capture therapy system |
EP21177917.8A EP3895760B1 (en) | 2017-08-24 | 2018-08-15 | Neutron capture therapy system |
RU2020109214A RU2743972C1 (ru) | 2017-08-24 | 2018-08-15 | Система нейтрон-захватной терапии |
US16/798,644 US11458336B2 (en) | 2017-08-24 | 2020-02-24 | Neutron capture therapy system comprising a beam shaping assembly configured to shape a neutron beam |
US17/892,254 US11986680B2 (en) | 2017-08-24 | 2022-08-22 | Neutron capture therapy system comprising a beam shaping assembly configured to shape a neutron beam |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710733144.1 | 2017-08-24 | ||
CN201710733144.1A CN109420258B (zh) | 2017-08-24 | 2017-08-24 | 中子捕获治疗系统 |
CN201721063911.4U CN207856091U (zh) | 2017-08-24 | 2017-08-24 | 中子捕获治疗系统 |
CN201721063911.4 | 2017-08-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/798,644 Continuation US11458336B2 (en) | 2017-08-24 | 2020-02-24 | Neutron capture therapy system comprising a beam shaping assembly configured to shape a neutron beam |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019037624A1 true WO2019037624A1 (zh) | 2019-02-28 |
Family
ID=65438402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/100572 WO2019037624A1 (zh) | 2017-08-24 | 2018-08-15 | 中子捕获治疗系统 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11458336B2 (zh) |
EP (2) | EP3895760B1 (zh) |
JP (1) | JP7175964B2 (zh) |
RU (1) | RU2743972C1 (zh) |
WO (1) | WO2019037624A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111821585A (zh) * | 2019-04-17 | 2020-10-27 | 中硼(厦门)医疗器械有限公司 | 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体 |
EP3957362A4 (en) * | 2019-04-17 | 2023-01-18 | Neuboron Therapy System Ltd. | NEUTRON CAPTURE THERAPY SYSTEM |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2743972C1 (ru) * | 2017-08-24 | 2021-03-01 | Нойборон Медтех Лтд. | Система нейтрон-захватной терапии |
CN111821580A (zh) * | 2019-04-17 | 2020-10-27 | 中硼(厦门)医疗器械有限公司 | 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体 |
JP2022150626A (ja) * | 2021-03-26 | 2022-10-07 | 住友重機械工業株式会社 | 治療準備装置、及び治療設備 |
CN115120893B (zh) * | 2022-08-25 | 2022-11-25 | 兰州大学 | 一种硼中子俘获治疗束流整形装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105120952A (zh) * | 2013-03-29 | 2015-12-02 | 住友重机械工业株式会社 | 中子捕捉疗法装置 |
CN106552322A (zh) * | 2015-09-28 | 2017-04-05 | 南京中硼联康医疗科技有限公司 | 用于中子捕获治疗系统的射束诊断系统 |
CN106975162A (zh) * | 2016-01-15 | 2017-07-25 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
CN206835439U (zh) * | 2017-05-26 | 2018-01-02 | 南京中硼联康医疗科技有限公司 | 用于中子线产生装置的靶材及中子捕获治疗系统 |
CN207076026U (zh) * | 2016-01-15 | 2018-03-09 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5903622A (en) * | 1994-05-03 | 1999-05-11 | Lockheed Martin Idaho Technologies Company | Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method |
US5926516A (en) * | 1995-05-24 | 1999-07-20 | Siemens Aktiengesellschaft | Absorption structure for absorbing neutrons and method for producing an absorption structure |
US5976066A (en) * | 1996-08-30 | 1999-11-02 | Massachusetts Institute Of Technology | Neutron capture therapies |
US5870447A (en) * | 1996-12-30 | 1999-02-09 | Brookhaven Science Associates | Method and apparatus for generating low energy nuclear particles |
JP3710400B2 (ja) | 2001-07-27 | 2005-10-26 | 三協アルミニウム工業株式会社 | サッシ構造体 |
US7005623B2 (en) * | 2003-05-15 | 2006-02-28 | Ceramoptec Industries, Inc. | Autocalibrating medical diode laser system |
US7663119B2 (en) * | 2004-08-12 | 2010-02-16 | John Sved | Process for neutron interrogation of objects in relative motion or of large extent |
US7263170B2 (en) * | 2005-09-30 | 2007-08-28 | Pellegrino Anthony J | Radiation therapy system featuring rotatable filter assembly |
JP4596392B2 (ja) * | 2006-03-08 | 2010-12-08 | 三菱重工業株式会社 | 中性子発生装置及び中性子照射システム |
JP5054335B2 (ja) * | 2006-07-18 | 2012-10-24 | 株式会社日立製作所 | ホウ素中性子捕捉療法用の医療装置 |
RU2013147424A (ru) * | 2011-03-24 | 2015-04-27 | Конинклейке Филипс Н.В. | Устройство и способ для электронной брахитерапии |
US20120330084A1 (en) * | 2011-06-27 | 2012-12-27 | Richard Harris Pantell | Neutron Source for Neutron Capture Therapy |
US10737121B2 (en) * | 2011-06-27 | 2020-08-11 | Adelphi Technology, Inc. | Neutron source for neutron capture therapy |
JP2013024566A (ja) * | 2011-07-14 | 2013-02-04 | Toshiba Corp | 放射線遮蔽材および放射線遮蔽構造物 |
JP6113453B2 (ja) * | 2012-07-13 | 2017-04-12 | 株式会社八神製作所 | 中性子発生装置用のターゲットとその製造方法 |
CA2794226C (en) * | 2012-10-31 | 2020-10-20 | Queen's University At Kingston | Automated intraoperative ultrasound calibration |
JP6081182B2 (ja) * | 2012-12-19 | 2017-02-15 | イビデン株式会社 | 原子炉用部材 |
JP6318512B2 (ja) | 2013-02-12 | 2018-05-09 | 株式会社ニコン | 交換レンズおよびカメラボディ |
EP3133905B1 (en) * | 2014-12-08 | 2018-01-17 | Neuboron Medtech Ltd. | A beam shaping assembly for neutron capture therapy |
JP6843766B2 (ja) * | 2015-05-04 | 2021-03-17 | 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. | 中性子捕捉療法用ビーム整形アセンブリ |
NZ736841A (en) * | 2015-05-06 | 2022-07-29 | Neutron Therapeutics Inc | Neutron target for boron neutron capture therapy |
CN106552321A (zh) | 2015-09-28 | 2017-04-05 | 南京中硼联康医疗科技有限公司 | 用于中子捕获治疗系统的辐射线检测系统及辐射线检测方法 |
EP3342459B1 (en) | 2015-09-28 | 2020-02-05 | Neuboron Medtech Ltd. | Radiation detection system and radiation detection method for neutron capture therapy system |
US11740370B2 (en) * | 2015-09-28 | 2023-08-29 | Neuboron Medtech Ltd. | Radiation detection system and radiation detection method for neutron capture therapy system |
WO2017054557A1 (zh) * | 2015-09-28 | 2017-04-06 | 南京中硼联康医疗科技有限公司 | 用于中子捕获治疗系统的射束诊断系统 |
JP6722281B2 (ja) * | 2015-09-30 | 2020-07-15 | 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. | 中性子捕捉療法に用いられるビーム整形体 |
CN109771845B (zh) * | 2015-10-15 | 2021-07-16 | 南京中硼联康医疗科技有限公司 | 中子缓速材料 |
RU2717364C1 (ru) * | 2015-11-12 | 2020-03-23 | Нойборон Медтех Лтд. | Система нейтрон-захватной терапии |
CN108310683A (zh) * | 2015-11-17 | 2018-07-24 | 南京中硼联康医疗科技有限公司 | 基于医学影像数据的几何模型建立方法 |
EP3369457B1 (en) * | 2015-11-26 | 2019-11-27 | Neuboron Medtech Ltd. | Beam shaping body for neutron capture therapy |
JP6709284B2 (ja) * | 2015-12-30 | 2020-06-10 | 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. | βアミロイドタンパク質を除去するための中性子捕捉療法システム |
WO2017118291A1 (zh) * | 2016-01-08 | 2017-07-13 | 南京中硼联康医疗科技有限公司 | 用于中子捕获治疗的射束整形体 |
EP3632509B1 (en) * | 2016-01-15 | 2022-08-31 | Neuboron Medtech Ltd. | Neutron capture therapy system |
WO2018006551A1 (zh) * | 2016-07-04 | 2018-01-11 | 南京中硼联康医疗科技有限公司 | 中子治疗装置 |
WO2018006550A1 (zh) * | 2016-07-04 | 2018-01-11 | 南京中硼联康医疗科技有限公司 | 中子治疗装置 |
JP6782359B2 (ja) * | 2016-10-28 | 2020-11-11 | 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. | 中性子捕捉治療のためのビーム成形体 |
EP3517172B1 (en) * | 2016-10-31 | 2021-04-14 | Neuboron Medtech Ltd. | Neutron capture therapy system |
RU2721658C1 (ru) * | 2016-11-14 | 2020-05-21 | Нойборон Медтех Лтд. | Устройство и способ экранирования излучения на основе медицинских изображений |
TWI614042B (zh) * | 2016-12-02 | 2018-02-11 | 財團法人工業技術研究院 | 中子束源產生器及其濾屏 |
EP3777976A1 (en) | 2016-12-23 | 2021-02-17 | Neuboron Medtech Ltd. | Neutron capture therapy system and target for particle beam generating device |
CN108310677B (zh) * | 2017-01-11 | 2020-02-28 | 南京中硼联康医疗科技有限公司 | 基于医学影像数据的平滑几何模型建立方法 |
EP3527261B1 (en) * | 2017-03-29 | 2021-06-16 | Neuboron Medtech Ltd. | Radiation irradiation system and positioning component for radiation irradiation system |
WO2018205403A1 (zh) * | 2017-05-12 | 2018-11-15 | 南京中硼联康医疗科技有限公司 | 光子发射检测装置及具有其的硼中子捕获治疗系统 |
RU2734955C1 (ru) * | 2017-06-05 | 2020-10-26 | Нойборон Медтех Лтд. | Блок формирования пучка для нейтронно-захватной терапии |
US10462893B2 (en) * | 2017-06-05 | 2019-10-29 | Neutron Therapeutics, Inc. | Method and system for surface modification of substrate for ion beam target |
CN117130035A (zh) * | 2017-08-18 | 2023-11-28 | 南京中硼联康医疗科技有限公司 | 生物剂量计及具有其的中子捕获治疗系统 |
CN111494812B (zh) * | 2017-08-18 | 2022-03-22 | 南京中硼联康医疗科技有限公司 | 用于慢化中子的缓速体 |
RU2743972C1 (ru) * | 2017-08-24 | 2021-03-01 | Нойборон Медтех Лтд. | Система нейтрон-захватной терапии |
TWI687249B (zh) * | 2017-08-30 | 2020-03-11 | 中國商南京中硼聯康醫療科技有限公司 | 中子捕獲治療系統 |
WO2019047697A1 (zh) * | 2017-09-07 | 2019-03-14 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
WO2019114307A1 (zh) * | 2017-12-15 | 2019-06-20 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
RU2739171C1 (ru) * | 2017-12-15 | 2020-12-21 | Нойборон Медтех Лтд. | Система нейтронозахватной терапии |
-
2018
- 2018-08-15 RU RU2020109214A patent/RU2743972C1/ru active
- 2018-08-15 WO PCT/CN2018/100572 patent/WO2019037624A1/zh unknown
- 2018-08-15 EP EP21177917.8A patent/EP3895760B1/en active Active
- 2018-08-15 EP EP18847580.0A patent/EP3666336B1/en active Active
- 2018-08-15 JP JP2020509150A patent/JP7175964B2/ja active Active
-
2020
- 2020-02-24 US US16/798,644 patent/US11458336B2/en active Active
-
2022
- 2022-08-22 US US17/892,254 patent/US11986680B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105120952A (zh) * | 2013-03-29 | 2015-12-02 | 住友重机械工业株式会社 | 中子捕捉疗法装置 |
CN106552322A (zh) * | 2015-09-28 | 2017-04-05 | 南京中硼联康医疗科技有限公司 | 用于中子捕获治疗系统的射束诊断系统 |
CN106975162A (zh) * | 2016-01-15 | 2017-07-25 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
CN207076026U (zh) * | 2016-01-15 | 2018-03-09 | 南京中硼联康医疗科技有限公司 | 中子捕获治疗系统 |
CN206835439U (zh) * | 2017-05-26 | 2018-01-02 | 南京中硼联康医疗科技有限公司 | 用于中子线产生装置的靶材及中子捕获治疗系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3666336A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111821585A (zh) * | 2019-04-17 | 2020-10-27 | 中硼(厦门)医疗器械有限公司 | 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体 |
EP3957362A4 (en) * | 2019-04-17 | 2023-01-18 | Neuboron Therapy System Ltd. | NEUTRON CAPTURE THERAPY SYSTEM |
US12011615B2 (en) | 2019-04-17 | 2024-06-18 | Neuboron Therapy System Ltd. | Neutron capture therapy system |
Also Published As
Publication number | Publication date |
---|---|
EP3666336B1 (en) | 2021-06-16 |
JP7175964B2 (ja) | 2022-11-21 |
EP3895760A1 (en) | 2021-10-20 |
US11458336B2 (en) | 2022-10-04 |
EP3895760B1 (en) | 2024-02-28 |
EP3666336A1 (en) | 2020-06-17 |
EP3666336A4 (en) | 2020-06-17 |
US11986680B2 (en) | 2024-05-21 |
US20200206538A1 (en) | 2020-07-02 |
US20220409932A1 (en) | 2022-12-29 |
RU2743972C1 (ru) | 2021-03-01 |
JP2020520773A (ja) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019037624A1 (zh) | 中子捕获治疗系统 | |
TWI806394B (zh) | 中子捕獲治療系統及用於中子捕獲治療系統的射束整形體 | |
US20120330084A1 (en) | Neutron Source for Neutron Capture Therapy | |
JP2018161449A (ja) | 中性子減速照射装置及び延長コリメータ | |
JP2022091813A (ja) | 中性子捕捉治療システムおよび粒子線発生装置用のターゲット | |
JP2018535717A (ja) | 中性子捕捉療法に用いられるビーム整形体 | |
TWI711432B (zh) | 中子捕獲治療系統及載置台 | |
WO2017164408A1 (ja) | 中性子減速照射装置 | |
CN210728446U (zh) | 中子捕获治疗系统 | |
CN111420307A (zh) | 中子束流装置及中子照射装置 | |
CN209060381U (zh) | 中子捕获治疗系统 | |
TWI683683B (zh) | 中子捕獲治療系統 | |
CN109925607B (zh) | 中子捕获治疗系统 | |
JP6004559B2 (ja) | 中性子照射室 | |
CN110523007B (zh) | 中子捕获治疗系统 | |
CN207856091U (zh) | 中子捕获治疗系统 | |
CN109925610B (zh) | 中子捕获治疗系统 | |
JP6349574B2 (ja) | 中性子遮蔽構造 | |
WO2024093887A1 (zh) | 一种动物照射装置以及动物辐照系统 | |
CN219440457U (zh) | 动物照射装置以及动物辐照系统 | |
CN111821581A (zh) | 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体 | |
RU2781650C1 (ru) | Система нейтрон-захватной терапии | |
CN117942505A (zh) | 一种动物照射装置以及动物辐照系统 | |
CN215275470U (zh) | 一种可调节中子慢化体 | |
CN117942504A (zh) | 动物照射装置以及动物辐照系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18847580 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020509150 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018847580 Country of ref document: EP Effective date: 20200310 |