WO2024093887A1 - 一种动物照射装置以及动物辐照系统 - Google Patents

一种动物照射装置以及动物辐照系统 Download PDF

Info

Publication number
WO2024093887A1
WO2024093887A1 PCT/CN2023/127618 CN2023127618W WO2024093887A1 WO 2024093887 A1 WO2024093887 A1 WO 2024093887A1 CN 2023127618 W CN2023127618 W CN 2023127618W WO 2024093887 A1 WO2024093887 A1 WO 2024093887A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
shielding
animal
space
shell
Prior art date
Application number
PCT/CN2023/127618
Other languages
English (en)
French (fr)
Inventor
刘星言
刘渊豪
贡秋平
舒迪昀
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211401657.XA external-priority patent/CN117942504A/zh
Priority claimed from CN202211401661.6A external-priority patent/CN117942505A/zh
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Publication of WO2024093887A1 publication Critical patent/WO2024093887A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to the field of preclinical animal experiments, and in particular to an animal irradiation device and an animal irradiation system.
  • neutron capture therapy is a combination of the above two concepts, such as boron neutron capture therapy, which provides a better cancer treatment option than traditional radiation by specifically aggregating boron-containing drugs in tumor cells and coordinating precise neutron beam control.
  • BNCT Boron Neutron Capture Therapy
  • 10B boron
  • 10B boron
  • the average energy of the two charged particles is about 2.33MeV, with high linear energy transfer (LET) and short range characteristics.
  • the linear energy transfer and range of ⁇ particles are 150keV/ ⁇ m and 8 ⁇ m, respectively, while those of 7Li heavy-charged particles are 175keV/ ⁇ m and 5 ⁇ m.
  • the total range of the two particles is approximately equivalent to the size of a cell. Therefore, the radiation damage caused to the organism can be limited to the cellular level.
  • the boron-containing drugs selectively accumulate in tumor cells and are combined with an appropriate neutron source, the purpose of locally killing tumor cells can be achieved without causing too much damage to normal tissues.
  • the technical problem to be solved by the present invention is to provide an animal irradiation device and an animal irradiation system for adjusting the neutron beam and optimizing the dose distribution in the animal body in view of the deficiencies in the prior art.
  • an animal irradiation device comprising:
  • a shell extending along an axial direction, the shell forming a holding space for placing an animal, the holding space comprising an irradiation space and a protection space connected to each other; the shell having a first side and a second side opposite to each other along the axial direction;
  • a moderation mechanism the moderation mechanism being located at a first side of the shell;
  • the neutron reflection mechanism being located on the second side of the shell;
  • a photon shielding mechanism capable of shielding gamma rays is provided between the accommodating space and the moderating mechanism, or between the accommodating space and the neutron reflecting mechanism;
  • a first neutron shielding mechanism capable of shielding thermal neutrons is provided between the accommodating space and the moderating mechanism, or between the accommodating space and the neutron reflecting mechanism.
  • the photon shielding mechanism comprises a first photon shielding portion located between the accommodating space and the moderation mechanism along the axial direction, and a second photon shielding portion located between the accommodating space and the neutron reflection mechanism along the axial direction;
  • the first neutron shielding mechanism comprises a first neutron shielding portion located between the accommodation space and the moderation mechanism along the axial direction, and a second neutron shielding portion located between the accommodation space and the neutron reflection mechanism along the axial direction;
  • projections of the first photon shielding portion and the second photon shielding portion on a cross section perpendicular to the axis at least partially cover the irradiation space and the protection space;
  • Projections of the first neutron shielding portion and the second neutron shielding portion on a cross section perpendicular to the axis at least partially cover the protection space.
  • the photon shielding mechanism is made of lead or lead alloy.
  • the first neutron shielding mechanism is made of B 4 C or Li 2 CO 3 .
  • the neutron reflection mechanism is made of PMMA or graphite.
  • the photon shielding mechanism comprises a third photon shielding portion arranged on an inner side wall of the accommodating space.
  • the shell is made of a material that can reflect thermal neutrons.
  • the housing is made of PMMA material.
  • a second neutron shielding mechanism capable of reflecting neutrons is provided on the outer peripheral side of the moderation mechanism.
  • the second neutron shielding mechanism is made of Teflon or PTFE or graphite material.
  • the outer peripheries of the second neutron shielding mechanism, the shell and the neutron reflecting mechanism are perpendicular to the The projections of the cross sections of the axis coincide.
  • the moderator mechanism comprises a first moderator and a second moderator
  • the first moderator is provided with irradiation holes corresponding to the irradiation spaces respectively
  • the second moderator is arranged on a side of the first moderator away from the shell, and the second moderator can cover the irradiation holes.
  • the first moderator is provided with a positioning portion on a side thereof facing away from the second moderator, the first neutron shielding portion is connected to the first moderator via the positioning portion, and the first photon shielding portion is stacked on the first neutron shielding portion.
  • the accommodating space, the photon shielding mechanism and the first neutron shielding mechanism are respectively provided in plurality, the photon shielding mechanism and the first neutron shielding mechanism respectively correspond to the accommodating spaces one by one, the plurality of accommodating spaces are arranged at intervals in the circumferential direction, and the irradiation space of any one of the accommodating spaces is radially located on the inner side of the corresponding protection space; a connecting groove extending along the axial direction of the shell is provided at the center thereof, the connecting groove is connected with any one of the accommodating spaces, and a breathing hole connected with the connecting groove is provided on the neutron reflecting mechanism.
  • a gasket for fixing the animal is detachably provided in the accommodating space.
  • the neutron reflection mechanism comprises a plurality of neutron reflection units stacked along the axial direction, and the thickness of each of the neutron reflection mechanisms is not greater than 20 cm.
  • the second aspect of the present application discloses an animal irradiation device, comprising:
  • a first substrate wherein the first substrate comprises a neutron moderator and a first shielding device disposed on the neutron moderator;
  • a shell extending along the axial direction, wherein a receiving space for placing an animal is formed in the shell;
  • a second substrate comprising a neutron reflection mechanism and a second shielding device disposed on the neutron reflection mechanism;
  • the housing is disposed between the first substrate and the second substrate along the axial direction;
  • the projections of the first shielding device, the second shielding device and the neutron reflection mechanism on the cross section perpendicular to the axis at least partially cover the accommodating space.
  • the outer circumferences of the first substrate, the shell, and the second substrate overlap.
  • the third aspect of the present application discloses an animal irradiation device, comprising:
  • An animal accommodation mechanism the animal accommodation mechanism extending along an axial direction, the animal accommodation mechanism having a first end and a second end opposite to each other along the axial direction, and the animal accommodation mechanism having a cavity for accommodating an animal;
  • first shielding mechanism located at the second end of the animal holding mechanism, the first shielding mechanism comprising a first hole unit arranged opposite to the cavity along the axial direction;
  • the second shielding mechanism is located at a side of the first shielding mechanism away from the animal accommodation mechanism along the axis direction, and comprises a second hole unit arranged opposite to the first hole unit along the axis direction.
  • the animal holding structure is made of boron carbide or lithium carbonate; the first shielding structure is made of lead or lead alloy; and the second shielding structure is made of graphite.
  • the cavity is open toward the second end of the animal accommodation mechanism, a gasket for limiting the animal is arranged in the animal accommodation mechanism, and the gasket extends from the first end of the animal accommodation mechanism into the cavity, the first hole unit and the second hole unit in sequence.
  • the cavity of the animal holding structure is open toward the first end of the animal holding structure, and the gasket is detachably connected to the animal holding structure from the first end of the animal holding structure.
  • the animal accommodation mechanism has a plurality of members
  • the first shielding mechanism is provided with a plurality of first hole units corresponding one-to-one to the animal accommodation mechanisms
  • the second shielding mechanism is provided with a plurality of second hole units corresponding one-to-one to the first hole units.
  • a center line of the cavity of the animal holding facility, a center line of the first hole unit corresponding to the cavity of the animal holding facility, and a center line of the second hole unit corresponding to the first hole unit coincide with each other.
  • the bracket includes a first rod unit connected to the inner wall of the shell and a second rod unit connected to the first rod unit, the second rod unit includes a plurality of rods arranged at intervals in a direction perpendicular to the axis, and the plurality of animal holding mechanisms are respectively arranged on the corresponding rods.
  • the first rod unit comprises a main body and a fitting portion
  • the main body is made of metal material
  • the fitting portion is fitted to the inner wall of the shell and connected to the main body
  • the shell and the fitting portion are made of PMMA material.
  • the second shielding mechanism comprises at least two second shielding units arranged along the axial direction, and at least two of the second shielding units are formed with a second step portion for limiting the irradiated part of the animal.
  • the first shielding mechanism comprises at least two first shielding units arranged along the axial direction, and at least two of the first shielding units are formed with a first step portion for limiting the non-irradiated part of the animal.
  • the second shielding mechanism includes at least two second shielding units arranged along the axial direction, and at least two of the second shielding units are formed with a second step portion for limiting the head of the animal;
  • the first shielding mechanism includes at least two first shielding units arranged along the axial direction, and at least two of the first shielding units are formed with a first step portion for limiting the neck and/or shoulder of the animal.
  • it further comprises a third shielding mechanism capable of covering at least the first hole unit, wherein the third shielding mechanism is located at a side of the second shielding mechanism away from the first shielding mechanism along the axial direction.
  • the third shielding mechanism is made of lead or lead alloy material.
  • it also includes a moderator capable of covering at least the first hole unit, and the moderator is located on the third screen.
  • the shielding mechanism is located at a side of the second shielding mechanism that is away from the second shielding mechanism along the axial direction.
  • the moderation mechanism is made of PMMA material.
  • the fourth aspect of the present application discloses an animal irradiation system, comprising:
  • a radiation source for generating radiation comprising a beam hole with a preset aperture
  • the animal irradiation device as mentioned above is disposed in the beam hole, and the maximum outer diameter of the animal irradiation device is equal to or slightly smaller than the preset aperture of the beam hole.
  • the animal irradiation device disclosed in the first and second aspects of the present invention has the following advantages:
  • the neutron reflection mechanism can make the thermal neutrons passing through the irradiation space converge again into the irradiation space to increase the thermal neutron dose in the irradiation space; at the same time, the photon shielding mechanism can keep harmful particles such as gamma rays in the accommodation space at a low level, and the first neutron shielding mechanism can keep the neutron dose in the protection space at a low level. In this way, the dose distribution in the animal body can be optimized to meet the preset requirements.
  • the second neutron shielding mechanism can converge the thermal neutrons passing through the moderation mechanism so as to radiate them more concentratedly to the irradiation space.
  • the shell When the shell is made of a material that can reflect thermal neutrons, the shell can also reflect the thermal neutrons that enter it and converge them into the irradiation space.
  • the third photon shielding part can further reduce the radiation impact of gamma rays brought by the shell on the animals in the accommodation space.
  • the first shielding mechanism and the second shielding mechanism can adjust the neutron beam and optimize the dose distribution in the animal body
  • Animal containment structures can be made of materials that can absorb neutrons to protect the animal's organs, especially those in the abdomen of rats;
  • the shell and the bracket can serve the purpose of fixing and supporting the animal
  • the first step and/or the second step are both designed taking into account the actual size and structure of animals, especially rats, so as to be more suitable for actual working conditions;
  • the third shielding mechanism and the moderation mechanism can control the head dose of the animal.
  • FIG1 is a schematic diagram of a boron neutron capture reaction.
  • FIG. 2 is the 10 B(n, ⁇ ) 7 Li neutron capture nuclear reaction equation.
  • FIG3 is a schematic diagram of an animal irradiation system according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of an animal irradiation system according to another embodiment of the present application.
  • FIG5 shows a schematic structural diagram of an animal irradiation device in Embodiment 1 of the present application.
  • FIG. 6 shows a side view of FIG. 5 .
  • FIG. 7 shows a cross-sectional view of FIG. 5 .
  • FIG. 8 is a schematic diagram of the three-dimensional structure of FIG. 5 after the moderator (first substrate) is removed.
  • FIG. 9 is a schematic diagram showing the structural principle of the animal irradiation device in the first embodiment of the present application.
  • FIG. 10 is a schematic diagram showing the structure of the shell of the animal irradiation device in the first embodiment of the present application.
  • FIG11 shows a partial schematic diagram of the animal irradiation device in the first embodiment of the present application, which mainly shows the first moderator and the second neutron shielding mechanism.
  • FIG12 shows a schematic structural diagram of the animal irradiation device in the first embodiment of the present application, which mainly shows a first moderator, a first photon shielding unit and a first neutron shielding unit.
  • FIG. 13 shows a schematic structural diagram of the animal irradiation device in the first embodiment of the present application, which mainly shows the neutron reflection mechanism, the second photon shielding part and the second neutron shielding part.
  • FIG14 shows a schematic structural diagram of a neutron reflection unit in the first embodiment of the present application.
  • FIG. 15 is a schematic diagram showing the structural principle of the animal irradiation device in the second embodiment of the present application.
  • FIG. 16 is a schematic diagram of the structure of the animal irradiation device of the third embodiment of the present application.
  • FIG. 17 is a schematic diagram of the structure of the animal irradiation device in FIG. 16 without the animal accommodation mechanism.
  • FIG18 is a schematic diagram showing the structural principle of the animal irradiation device of the third embodiment of the present application.
  • FIG. 19 is a partial schematic diagram of the animal irradiation device in FIG. 16 , which mainly shows the first shielding mechanism, the second shielding mechanism, the first step portion, and the second step portion.
  • FIG. 20 mainly shows a schematic structural diagram of the first shielding unit.
  • FIG. 21 mainly shows a schematic structural diagram of the second shielding unit.
  • FIG. 22 is a schematic structural diagram of a portion of the animal irradiation device in FIG. 16 , which mainly shows the second shielding mechanism, the first Three shielding mechanisms and a moderation mechanism.
  • Figure 23 is a schematic diagram of the structure of an animal irradiation device according to Embodiment 4 of the present application, which includes a shell B.
  • FIG. 24 is a front view of FIG. 23 , which mainly shows the animal holding mechanism, the bracket and the housing B.
  • FIG. 24 is a front view of FIG. 23 , which mainly shows the animal holding mechanism, the bracket and the housing B.
  • FIG. 1 The figure numbers of the above drawings are: 100, animal irradiation system; 10, radiation source; 20, animal irradiation device; 11, neutron generator; 12, beam shaper; 13, collimator; 111, charged particle line generator; T, target; P, charged particle line; N, neutron beam; 200, animal; 21, shell A; Y, axis; Z, retarder; 210, accommodating space; 2101, irradiation space; 2102, protection space; 211, shell unit; 212, connecting groove; 22, moderation mechanism; 221, first moderator; 2210, irradiation hole; 222, second moderator; 223, positioning part; 23, neutron reflection mechanism; 231, neutron reflection unit; 2310, respiration Suction hole; 24, photon shielding mechanism; 241, first photon shielding part; 242, second photon shielding part; 243, third photon shielding part; 25, first neutron shielding mechanism; 251, first neutron shielding part; 252, second neutron shielding part; 26, second neutron shielding mechanism;
  • 201 animal holding mechanism; 2011, gasket; 2012, cavity; Y, axis; 202, first shielding mechanism; 2021, first shielding unit; 2022, first hole unit; 2023, first step portion; 203, second shielding mechanism; 2031, second shielding unit; 2032, second hole unit; 2033, second step portion; 204, slowing mechanism; 2041, protrusion; 2042, groove; 205, shell B; 206, bracket; 2061, first rod unit; 2062, second rod unit; 2063, main body; 2064, fitting portion; 207, third shielding mechanism.
  • the animal irradiation system 100 includes a radiation source 10 and an animal irradiation device 20.
  • the radiation source 10 is used to generate radiation and includes a beam outlet OUT, and the animal irradiation device 20 is used to accommodate an animal 200.
  • the animal 200 is first positioned in the animal irradiation device 20, and then the animal irradiation device 20 is fixed relative to the radiation source 10. Then, the radiation source 10 is controlled to generate radiation and irradiate the radiation from the beam outlet OUT to the animal 200 in the animal irradiation device 20.
  • the animal irradiation system 100 is a boron neutron capture therapy system
  • the radiation source 10 includes a neutron generator 11, a beam shaper 12, and a collimator 13.
  • the neutron generator 11 is used to generate a neutron beam N.
  • the neutron generator 11 includes a charged particle beam generator 111 and a target material T.
  • the charged particle beam generator 111 includes an accelerator, and the accelerator accelerates charged particles (such as protons, deuterons, etc.) to generate a charged particle beam P such as a proton beam.
  • the charged particle beam P irradiates the target material T and reacts with the target material T to generate neutrons, and the neutrons form a neutron beam N.
  • Suitable nuclear reactions can be selected based on the required neutron yield and energy, the energy and current of accelerated charged particles that can be provided, the physical and chemical properties of the target material T, and the specific structure of the accelerator 111 and the target material T is not described in detail here.
  • the beam shaper 12 is used to adjust the beam quality of the neutron beam N
  • the collimator 13 is used to converge the neutron beam N so that the neutron beam N has a higher targeting during the treatment process.
  • the collimator 13 forms a beam outlet OUT, and the neutron beam N exiting the beam outlet OUT defines a main axis around the central axis X.
  • the neutron beam N generated by the neutron generator 11 passes through the beam shaper 12 and the collimator 13 in turn to irradiate the animal 200 in the animal irradiation device 20.
  • the direction of the neutron beam N shown in the figure and described below does not represent the actual direction of neutron movement, but represents the direction of the overall movement trend of the neutron beam N.
  • the neutron generator 11 can also have other structures, such as not using the accelerator 111 neutron source; the structure of the beam shaper 12 and the collimator 13 is not described in detail here.
  • the radiation source 10 can be used for the treatment of tumor patients at the same time after the animal 200 irradiation test.
  • the radiation source 10 may also have other structures, such as including other radiation generating devices, or not having the beam shaper 12 or the collimator 13 .
  • FIG4 shows an animal irradiation system 100 according to another embodiment of the present application.
  • the animal irradiation system 100 irradiates the charged particle line P onto the target material T to form a neutron beam with a wide energy spectrum.
  • the retarder Z adjusts the neutron beam with a wide energy spectrum into a neutron beam N with a certain energy range, and then radiates to the animal irradiation device 20.
  • the beam shaping body 12 can be used to adjust the beam quality of the neutron beam N.
  • the animal irradiation system 100 is not provided with a collimator, and the beam outlet is provided on the beam shaping body 12.
  • Embodiment 1 of the present application discloses an animal irradiation device 20, including:
  • a housing 21 extending along an axis Y direction, the housing 21 forming a receiving space 210 for placing an animal 200, the receiving space 210 comprising an irradiation space 2101 and a protection space 2102 which are interconnected; the housing 21 has a first side and a second side opposite to each other along the axis Y direction;
  • a neutron reflection mechanism 23 wherein the neutron reflection mechanism 23 is located at the second side of the shell 21;
  • a photon shielding mechanism 24 capable of shielding gamma rays is provided between the accommodating space 210 and the moderation mechanism 22, or between the accommodating space 210 and the neutron reflection mechanism 23;
  • a first neutron shielding mechanism 25 capable of shielding thermal neutrons is provided between the accommodating space 210 and the moderating mechanism 22 , or between the accommodating space 210 and the neutron reflecting mechanism 23 .
  • the photon shielding mechanism 24 includes a first photon shielding portion 241 located between the accommodating space 210 and the moderation mechanism 22 along the axis Y direction, and a second photon shielding portion 242 located between the accommodating space 210 and the neutron reflection mechanism 23 along the axis Y direction.
  • the first neutron shielding mechanism 25 includes a first neutron shielding portion 251 located between the accommodating space 210 and the moderation mechanism 22 along the axis Y direction, and a second neutron shielding portion 252 located between the accommodating space 210 and the neutron reflection mechanism 23 along the axis Y direction.
  • the projections of the first photon shielding portion 241 and the second photon shielding portion 242 on the cross section perpendicular to the axis Y at least partially cover the irradiation space 2101 and the protection space 2102 .
  • the projections of the first neutron shielding portion 251 and the second neutron shielding portion 252 on a cross section perpendicular to the axis Y at least partially cover the protection space 2102 .
  • the specific structures of the photon shielding mechanism 24 and the first neutron shielding mechanism 25 can be arranged and combined in any way based on the above.
  • the photon shielding mechanism 24 can also be provided only between the accommodation space 210 and the moderation mechanism 22.
  • the photon shielding mechanism 24 can also be provided only between the accommodation space 210 and the neutron reflection mechanism 23.
  • the first neutron shielding mechanism 25 may also be disposed only between the accommodation space 210 and the moderation mechanism 22. Alternatively, the first neutron shielding mechanism 25 may also be disposed only between the accommodation space 210 and the neutron reflection mechanism 23.
  • the photon shielding mechanism 24 may also be disposed between the accommodating space 210 and the moderator 22, and between the accommodating space 210 and the neutron reflection mechanism 23.
  • the first neutron shielding mechanism 25 is disposed only between the accommodating space 210 and the moderator 22.
  • the first neutron shielding mechanism 25 is disposed only between the accommodating space 210 and the neutron reflection mechanism 23.
  • the first neutron shielding mechanism 25 can be provided between the accommodation space 210 and the moderation mechanism 22, and between the accommodation space 210 and the neutron reflection mechanism 23.
  • the photon shielding mechanism 24 is disposed between the accommodating space 210 and the neutron reflecting mechanism 23 .
  • the accommodation space 210 can accommodate the animal 200, the neutron beam N generated by the radiation source 10 irradiates from the direction of the moderation mechanism 22 toward the accommodation space 210, the photon shielding mechanism 24 can maintain the gamma ray amount in the irradiation space 2101 and the protection space 2102 at a low or very low level, the neutron reflection mechanism 23 can maintain the neutron dose in the irradiation space 2101 at a high value or a value that meets the experimental irradiation requirements, and the first neutron shielding mechanism 25 can maintain the neutron dose in the protection space 2102 at a low or very low level. In this way, the dose distribution in the animal 200 can be optimized to meet the preset requirements.
  • the animal irradiation device 20 can be used to perform a thermal neutron therapy test on the neck tumor of the mouse.
  • the irradiated part of the mouse can include the neck of the mouse.
  • the part of the mouse other than the neck is a non-irradiated part, which can include the trunk, organs in the abdomen, tail, etc. below the neck of the mouse.
  • this test hopes to reduce the harm of thermal neutrons and other rays to the non-irradiated parts as much as possible while allowing the neck of the mouse to obtain as many thermal neutrons as possible.
  • the animal irradiation device 20 can also be used to test other animals 200 (for example, rats, rabbits, etc.), and thermal neutron tests can also be performed on other irradiated parts (such as the tail, neck, etc.).
  • animals 200 for example, rats, rabbits, etc.
  • thermal neutron tests can also be performed on other irradiated parts (such as the tail, neck, etc.).
  • the purpose of the test may not only be limited to therapeutic tests, but may also include other test contents such as toxicity tests as needed.
  • Figures 5 and 6 show an animal irradiation device 20 in an embodiment of the present application, which includes a shell 21 extending along the axis Y direction, a moderation mechanism 22 located on a first side (upper side in Figure 5) of the shell 21, and a neutron reflection mechanism 23 located on a second side (lower side in Figure 5) of the shell 21.
  • the housing 21 is formed with a holding space 210 for placing the animal 200.
  • the animal 200 can be held in the holding space 210.
  • the holding space 210 includes an irradiation space 2101 and a protection space 2102 that are interconnected.
  • the irradiation space 2101 corresponds to the irradiation site of the mouse (e.g., a neck tumor) along the axis Y direction. That is, the irradiation site of the mouse is completely or mostly located in the irradiation space 2101.
  • the protection space 2102 corresponds to the non-irradiation site along the axis Y direction. That is, the non-irradiation site of the mouse (e.g., other trunks except the neck, organs in the abdomen, tail, etc.) is completely or mostly located in the protection space 2102.
  • the irradiation space 2101 is radially located inside the protection space 2102 (on the right side in FIG. 9 ). That is, the head of the mouse is close to the center of the shell 21, and the tail of the mouse is close to the periphery of the shell 21.
  • the arrangement of the irradiation space 2101 and the protection space 2102 can be set according to actual needs.
  • the head of the mouse can be toward the periphery of the shell 21, and the tail of the mouse can be toward the center.
  • the mice can also be arranged in a direction perpendicular to the diameter of the shell 21.
  • the shell 21 is cylindrical.
  • the shell 21 can also be designed as a cuboid, a cube, a polygon, etc. as needed, as long as it extends along the preset axis Y direction.
  • the accommodating space 210 is formed by a cavity formed on the shell 21 and passing through from the first side of the shell 21 to the second side.
  • the first side or the second side or both sides of the accommodating space 210 can be non-through. Accordingly, the shell 21 only needs to be provided with a channel that can insert the animal 200 into the accommodating space 210.
  • an opening connected to the accommodating space 210 is provided on the peripheral side wall of the shell 21. The animal 200 can be placed in the accommodating space 210 radially from the opening.
  • the moderator 22 is a cylindrical body extending along the axis Y.
  • the moderator 22 can be made of a material with a high neutron scattering cross section, such as PMMA material.
  • the moderator 22 can more fully moderate the neutrons, so that the energy of the neutron beam N emitted by the radiation source 10 is reduced to a level suitable for irradiating mice.
  • the material of the moderator 22 can also be selected according to actual needs, as long as it can achieve the moderation effect and meet the irradiation requirements of mice or other animals 200.
  • the projection of the moderator 22 on the cross section perpendicular to the axis Y covers most or all of the accommodating space 210.
  • the neutron reflection mechanism 23 may be a cylindrical body extending along the axis Y.
  • the neutron reflection mechanism 23 may be made of a material having a high neutron scattering cross section, such as a PMMA material with a high purity (for example, the purity of PMMA reaches 8N) or graphite.
  • a material having a high neutron scattering cross section such as a PMMA material with a high purity (for example, the purity of PMMA reaches 8N) or graphite.
  • the neutron reflection mechanism 23 When the neutron reflection mechanism 23 is made of a PMMA material with a higher purity (for example, the purity of PMMA reaches 8N), the neutron reflection mechanism 23 contains very little chlorine and bromine impurities, which can avoid the neutron beam N from being activated by these impurities to produce secondary gamma rays, thereby reducing the toxicity that may be caused to the animal 200.
  • the neutron reflection mechanism 23 may include a plurality of neutron reflection units 231 stacked along the axis Y direction.
  • the cross-sectional area of the neutron reflection mechanism 23 can be as large as possible.
  • the outer periphery of the neutron reflection mechanism 23 coincides with the outer periphery of the shell 21.
  • a first photon shielding portion 241 and a first neutron shielding portion 251 are stacked between the moderation mechanism 22 and the accommodating space 210.
  • the first photon shielding portion 241 covers most or all of the accommodating space 210, or only covers all of the irradiation space 2101 and the protection space 2102. That is, the projection of the first photon shielding portion 241 on the cross section perpendicular to the axis Y covers most or all of the irradiation space 2101 and the protection space 2102, or only covers all of the irradiation space 2101 and the protection space 2102.
  • the first neutron shielding portion 251 covers most or all of the protection space 2102, or only covers all of the protection space 2102. That is, the projection of the first neutron shielding portion 251 on the cross section perpendicular to the axis Y covers most or all of the protection space 2101. protection space 2102, or only covers the entire protection space 2102.
  • a second photon shielding part 242 and a second neutron shielding part 252 are stacked between the neutron reflection mechanism 23 and the accommodation space 210.
  • the second photon shielding part 242 covers most or all of the accommodation space 210, or only covers all of the irradiation space 2101 and the protection space 2102. That is, the projection of the second photon shielding part 242 on the cross section perpendicular to the axis Y covers most or all of the irradiation space 2101 and the protection space 2102, or only covers all of the irradiation space 2101 and the protection space 2102.
  • the second neutron shielding part 252 covers most or all of the protection space 2102, or only covers all of the protection space 2102. That is, the projection of the second neutron shielding part 252 on the cross section perpendicular to the axis Y covers most or all of the protection space 2102, or only covers all of the protection space 2102.
  • the photon shielding mechanism 24 (including the first photon shielding part 241 and the second photon shielding part 242) can be made of lead or lead alloy.
  • Lead or lead alloy has a good shielding effect on gamma rays. Therefore, the photon shielding mechanism 24 can shield gamma rays generated by processes such as target emission and neutron slowing down, thereby reducing the gamma dose toxicity caused by gamma rays to mice or other animals 200 to a greater extent.
  • the first neutron shielding mechanism 25 (including the first neutron shielding part 251 and the second neutron shielding part 252) can be made of boron carbide ( B4C ) or lithium carbonate ( Li2CO3 ). Boron carbide or lithium carbonate can absorb neutrons. Therefore, the first neutron shielding mechanism 25 can protect the parts and organs of the mouse located therein, especially reduce the neutron flux entering the abdominal organs of the mouse, and reduce the dose of the abdominal organs.
  • the material of the first neutron shielding mechanism 25 can also be selected according to actual needs, as long as it can shield neutrons or other rays or particles that are harmful to the non-irradiated parts of the mouse.
  • the moderation mechanism 22 After receiving the neutron beam N emitted by the radiation source 10, the moderation mechanism 22 moderates the epithermal neutrons into thermal neutrons. After being moderated, the neutron beam N carrying more thermal neutrons enters the irradiation space 2101 and passes through the irradiation part of the mouse after passing through the blocking effect of the first photon shielding part 241 on the gamma rays. Since the neutron reflection mechanism 23 has a higher neutron scattering cross section, some of the thermal neutrons that pass through the irradiation part of the mouse or the thermal neutrons in other directions can be scattered and reflected again to the irradiation space 2101 by the neutron reflection mechanism 23.
  • the dose rate in the irradiation space 2101 can be increased without increasing the energy of the radiation source 10, so that the irradiation space 2101 has a thermal neutron flux that meets the requirements.
  • the first neutron shielding part 251 and the first photon shielding part 241 can shield the protection space 2102 from the gamma rays and thermal neutrons brought by the neutron beam N.
  • the second neutron shielding unit 252 and the second photon shielding unit 242 can shield the protection space 2102 from the gamma rays and thermal neutrons brought by the neutron reflection mechanism 23, so that the gamma rays and thermal neutrons in the protection space 2102 are maintained at a lower flux, thereby protecting the non-irradiated parts of the mice in the protection space 2102.
  • the animal irradiation device 20 in the embodiment of the present application can increase the neutron dose rate of the irradiated part of the mouse as much as possible in the mouse treatment experiment, reduce the neutron dose rate of the non-irradiated part, and reduce the non-boron dose, especially gamma ray. toxicity.
  • the first neutron shielding part 251 is glued to the moderation mechanism 22, and the first photon shielding part 241 is glued to the side of the first neutron shielding part 251 away from the moderation mechanism 22.
  • the second neutron shielding part 252 is glued to the neutron reflection mechanism 23, and the second photon shielding part 242 is glued to the side of the second neutron shielding part 252 away from the neutron reflection mechanism 23.
  • the first photon shielding portion 241 is glued to the moderation mechanism 22, and the first neutron shielding portion 251 is glued to the side of the first photon shielding portion 241 away from the moderation mechanism 22.
  • the second photon shielding portion 242 is glued to the neutron reflection mechanism 23, and the second neutron shielding portion 252 is glued to the side of the second photon shielding portion 242 away from the neutron reflection mechanism 23.
  • the bonding between non-metal materials and non-metal materials is generally stronger.
  • the first neutron shielding part 251, the second neutron shielding part 252, the moderation mechanism 22 and the neutron reflection mechanism 23 are non-metal materials, and the first photon shielding part 241 and the second photon shielding part 242 are metal materials, the structure in the example of FIG. 9 is generally stronger than the latter embodiment.
  • connections can also be fixed by bolts, screws, rivets, clamping, plug-in and other fixed connection methods according to actual needs.
  • the shell 21 when the radiation source 10 emits a neutron beam N of equal energy, in order to gather more thermal neutron doses in the irradiation space 2101, the shell 21 can also be made of a material with a higher neutron scattering cross section, similar to the first neutron reflection mechanism 23.
  • the shell 21 can be made of a PMMA material with a higher purity (for example, a purity of 8N). At this time, the thermal neutrons passing through the shell 21 will be further reflected back to the irradiation space 2101 and shielded outside the protection space 2102 by the first neutron shielding mechanism 25.
  • the PMMA material with a higher purity contains very little chlorine and bromine impurities, which can avoid the neutron beam N from generating secondary gamma rays due to the activation of these impurities, thereby reducing the toxicity that may be caused to the animal 200.
  • the shell 21 can include a plurality of shell units 211 stacked along the axis Y direction. Each shell unit 211 is provided with a cavity, and all the cavities are connected along the axis Y direction to form the accommodation space 210 .
  • the photon shielding mechanism 24 includes a third photon shielding portion 243 disposed on the inner side wall of the accommodating space 210.
  • the interior of the shell A21 is formed with an inner side wall extending from its first side to the second side and used to form the accommodating space 210.
  • the shape of the third photon shielding portion 243 matches and fits the inner side wall.
  • the number of the inner side walls is two, and the two inner side walls are planes extending from the first side to the second side. Accordingly, each of the inner side walls is correspondingly provided with a third photon shielding portion 243, and any The third photon shielding portion 243 is in the shape of a plate.
  • the shape of the third photon shielding portion 243 is not the same as the inner side wall, and it is sufficient to completely cover the inner side wall.
  • the inner side wall used to form the accommodating space 210 may also be in other shapes such as arc, wave, etc., and accordingly, the third photon shielding portion 243 may also be in the shape of a plate.
  • the third photon shielding portion 243 may also be made of lead or lead alloy. As mentioned above, lead or lead alloy has a better shielding effect on gamma rays.
  • the third photon shielding portion 243 can shield gamma rays that may enter the accommodating space 210 from the inner side wall of the shell A21, thereby reducing the gamma dose toxicity caused by gamma rays to mice or other animals 200.
  • the outer peripheral side of the moderator 22 is sleeved with a second neutron shielding mechanism 26.
  • the second neutron shielding mechanism 26 can be made of Teflon material.
  • the second neutron shielding mechanism 26 can also be made of shielding materials such as PTFE or graphite that can shield thermal neutrons or other particles. While the moderator 22 slows down the epithermal neutrons into thermal neutrons, the second neutron shielding mechanism 26 can limit the generated thermal neutrons within the range of the moderator 22, minimizing the loss caused by the thermal neutrons flowing radially outward.
  • the projections of the outer peripheries of the second neutron shielding mechanism 26, the shell A21, and the neutron reflection mechanism 23 in the cross section perpendicular to the axis Y coincide.
  • the outer peripheries of the second neutron shielding mechanism 26, the shell A21, and the neutron reflection mechanism 23 are all circular, and the maximum outer diameters of the second neutron shielding mechanism 26, the shell A21, and the neutron reflection mechanism 23 are the same.
  • the outer peripheries of the second neutron shielding mechanism 26, the shell A21, and the neutron reflection mechanism 23 may also be in other shapes such as rectangle, square, ellipse, etc. according to actual needs.
  • the moderator mechanism 22 includes a first moderator 221 and a second moderator 222, the first moderator 221 is provided with irradiation holes 2210 corresponding to the irradiation spaces 2101, the second moderator 222 is arranged on a side of the first moderator 221 away from the shell A21, and the second moderator 222 can cover the irradiation holes 2210.
  • Thermal neutrons generated by the slowdown of the second moderator 222 tend to move more toward the portion with less flow resistance (i.e., the irradiation holes 2210 of the first moderator 221). Therefore, the irradiation holes 2210 can gather more thermal neutrons and radiate the thermal neutrons to the irradiation spaces 2101 corresponding thereto.
  • the second neutron shielding mechanism 26 is in the shape of a circular ring.
  • the first moderator 221 and the second moderator 222 are both in the shape of a disc and are embedded in the inner side of the second neutron shielding mechanism 26.
  • the first moderator 221 is provided with a positioning portion 223 on the side away from the second moderator 222.
  • the positioning portion 223 can position the first neutron shielding portion 251 so that the first neutron shielding portion 251 is connected to the first moderator 221.
  • the positioning portion 223 is correspondingly arranged at the junction between the protection space 2102 and the irradiation space 2101.
  • the positioning portion 223 is a protrusion protruding from the end surface of the first moderator 221 toward the direction of the shell A21, and the height of the protrusion is equal to or slightly smaller than the thickness of the first neutron shielding portion 251.
  • the first neutron shielding part 251 is attached to the end face of the first moderator 221 by glue under the positioning effect of the positioning part 223.
  • the positioning part 223 can also be a groove recessed from the end face of the first moderator 221 in a direction away from the shell A21, and the first neutron shielding part 251 is located in the groove in whole or in part.
  • a gasket 27 capable of fixing a mouse may be detachably provided in the accommodation space 210.
  • the gasket 27 may be fixed inside the accommodation space 210 by plugging.
  • the gasket 27 may also be fixed inside the accommodation space 210 by other detachable methods such as snap-on, bolt connection, bonding, riveting, etc.
  • the mouse may be fixed on the gasket 27 by methods such as bundling, bonding, tying, etc., and then the gasket 27 may be fixed inside the accommodation space 210, so that the mouse can be placed more stably in the accommodation space 210.
  • the gasket 27 may be provided with a column 271 for bundling or tying the animal 200 and extending along the axis Y direction.
  • mice it is often necessary to irradiate multiple animals 200 (e.g., mice) simultaneously for comparative reference studies.
  • the same dose may be applied to mice of different weights, or different doses may be applied to mice of the same weight, or similar doses may be applied to mice of different weights.
  • the number of the accommodating space 210, the photon shielding mechanism 24 and the first neutron shielding mechanism 25 is multiple, wherein at least 2. That is to say, the accommodating space 210 can be set to 2, 3, 6, etc. according to actual needs. Correspondingly, each accommodating space 210 must also be provided with the corresponding photon shielding mechanism 24 and the first neutron shielding mechanism 25. Among them, the multiple accommodating spaces 210 are arranged at intervals in the circumferential direction, and the irradiation space 2101 of any accommodating space 210 is radially located inside the corresponding protection space 2102.
  • the center of the shell A21 is provided with a connecting groove 212 extending in the direction of the axis Y, and the connecting groove 212 is radially connected to any of the accommodating spaces 210.
  • a breathing hole 2310 (as shown in conjunction with FIG. 14 ) is provided on the neutron reflection mechanism 23, and one end of the breathing hole 2310 is connected to the connecting groove 212. The other end of the breathing hole 2310 can be connected to the outside.
  • the head of the mouse can breathe oxygen inputted by the breathing hole 2310 and the connecting groove 212 during the treatment.
  • the plurality of the accommodating spaces 210 can be evenly arranged along the circumferential direction.
  • the first gamma ray amount in the irradiation space 2101 that is, the amount of gamma rays received by the irradiated part of the mouse
  • the second gamma ray amount in the protection space 2102 that is, the amount of gamma rays received by the non-irradiated part of the mouse
  • the first thermal neutron dose in the irradiation space 2101 (that is, the thermal neutron dose received by the irradiated part of the mouse) is much greater than the second thermal neutron dose in the protection space 2102 (that is, the amount of gamma rays received by the non-irradiated part of the mouse).
  • the first thermal neutron dose in the irradiation space 2101 is maintained at a relatively high level, meeting the requirements of experiments such as therapeutic experiments.
  • the second thermal neutron dose in the protection space 2102 is maintained at a relatively low or extremely low level, which can minimize the damage to the non-irradiated parts of the mouse or other animal 200.
  • the embodiment of the present application further discloses an animal irradiation device 20 , including: a first substrate 31 , wherein the first substrate 31 includes a neutron moderator 311 , and a first shielding device 312 disposed on the neutron moderator 311 ;
  • a housing A21 extending along the axis Y direction, wherein a receiving space 210 for placing an animal 200 is formed in the housing A21;
  • a second substrate 32 wherein the second substrate 32 comprises a neutron reflection mechanism 23 and a second shielding device 321 disposed on the neutron reflection mechanism 23;
  • the housing A21 is disposed between the first base 31 and the second base 32 along the axis Y direction;
  • the projections of the first shielding device 312 , the second shielding device 321 and the neutron reflection mechanism 23 on the cross section perpendicular to the axis Y at least partially cover the accommodating space 210 .
  • the neutron moderation device 311 may include a moderation mechanism 22 and a second neutron shielding mechanism 26 sleeved on the outer side of the moderation mechanism 22.
  • the moderation mechanism 22 may include a first moderator 221 and a second moderator 222 stacked along the axis Y direction, wherein the first moderator 221 is arranged closer to the shell A21 than the second moderator 222.
  • the first shielding device 312 may include a first neutron shielding portion 251 and a first photon shielding portion 241.
  • the first neutron shielding portion 251 is bonded to the moderation mechanism 22 by glue, and the first photon shielding portion 241 is bonded to the side of the first neutron shielding portion 251 away from the moderation mechanism 22 by glue.
  • the first neutron shielding portion 251 corresponds to the protected part of the animal 200, and the first photon shielding portion 241 corresponds to the irradiated part of the animal 200.
  • the first photon shielding portion 241 is glued to the moderation mechanism 22
  • the first neutron shielding portion 251 is glued to a side of the first photon shielding portion 241 away from the moderation mechanism 22 .
  • the bonding between non-metal materials and non-metal materials is generally stronger.
  • the first neutron shielding part 251 and the moderator 22 are non-metal materials, and the first photon shielding part 241 is a metal material, the structure in the example of FIG8 is generally stronger than the latter embodiment.
  • the shell A21 is cylindrical.
  • the shell A21 has a cavity that penetrates along the axis Y direction and is used to form the accommodating space 210.
  • the side of the shell A21 facing the neutron moderator 311 is in contact with the first substrate 31.
  • the outer periphery of the shell A21 coincides with the outer periphery of the second neutron shielding mechanism 26.
  • the neutron moderator 311 is not provided with a second reflection device but only with a moderator 22. In this case, the shell A21 and the moderator 22 can be in contact with each other.
  • the outer periphery of the shell A21 can coincide with the outer periphery of the moderator 22.
  • the second substrate 32 includes a neutron reflection mechanism 23 for constituting the main body of the second substrate 32 and a second shielding device 321 disposed on the side of the neutron reflection mechanism 23 facing the second substrate 32.
  • the second shielding device 321 includes a The second neutron shielding part 252 and the second photon shielding part 242.
  • the second neutron shielding part 252 is glued to the second neutron reflecting device, and the second photon shielding part 242 is glued to the side of the second neutron shielding part 252 away from the second neutron reflecting device.
  • the second neutron shielding part 252 corresponds to the protected part of the animal 200, and the second photon shielding part 242 corresponds to the irradiated part of the animal 200.
  • the second photon shielding portion 242 is glued to the neutron reflecting mechanism 23
  • the second neutron shielding portion 252 is glued to a side of the second photon shielding portion 242 away from the neutron reflecting mechanism 23 .
  • the bonding between non-metal materials and non-metal materials is generally stronger.
  • the second neutron shielding part 252 and the neutron reflection mechanism 23 are non-metal materials, and the second photon shielding part 242 is a metal material, the structure in the example of FIG8 is generally stronger than the latter embodiment.
  • the side of the shell A21 facing the neutron reflection mechanism 23 is in contact with the neutron reflection mechanism 23.
  • the outer periphery of the shell A21 may overlap with the outer periphery of the second substrate 32 (neutron reflection mechanism 23).
  • the shell A21 When in use, the shell A21 can be attached to the first substrate 31, and then the animal 200 can be placed in the accommodating space 210, and then the second substrate 32 and the first substrate 31 can be fixedly connected to achieve rapid positioning and installation of the animal 200.
  • the housing A21 may be disposed on the second base 32 , and then the animal 200 may be placed in the accommodating space 210 , and then the second base 32 may be fixedly connected, so that the animal 200 can be quickly positioned and installed.
  • a gasket 27 for fixing the animal 200 is detachably provided in the accommodation space 210.
  • the gasket 27 can be inserted into the accommodation space 210 along the axis Y direction, and then the second substrate 32 is connected to the housing A21, thereby achieving faster positioning and installation.
  • a fixing member (not shown in the figure) can also be provided in the center of the housing A21, so that when the gasket 27 is inserted into the preset position, the surroundings of the gasket 27 are all restricted.
  • a first positioning mechanism 34 may be provided between the first base 31, the shell A21, and the second base 32.
  • the first positioning mechanism 34 includes a through slot 341 provided on the outer edges of the first base 31, the shell A21, and the second base 32 along the axis Y direction, and a fastening portion provided in the through slot 341.
  • the fastening portion may include a first fastening unit 342 that penetrates the through slot 341 from one side of the animal irradiation device 20 and a second fastening unit 343 that penetrates the through slot 341 from the other side of the animal irradiation device 20, and the first fastening unit 342 and the second fastening unit 343 can be detachably connected in the through slot 341 by means of threads or the like.
  • the second neutron shielding mechanism 26 further includes a positioning space 344 communicating with the through slot 341.
  • the second moderator 222 is provided with a protrusion extending radially outward, and the protrusion can be embedded in the positioning space 344 of the second neutron shielding mechanism 26.
  • the second moderator 222 is provided with a protrusion that is relatively communicated with the through slot 341 and can be provided with the positioning space 344 of the second neutron shielding mechanism 26. A communicating hole through which the fastening portion passes.
  • the first positioning mechanism 34 can be other quick connection methods such as buckling, snapping, etc.
  • a second positioning mechanism 35 may be provided between the shell A21 and the second base 32.
  • the second positioning mechanism 35 includes a through hole 351 provided along the axis Y direction between the shell A21 and the second base 32 and a fixing portion 352 penetrating the through hole 351.
  • the fixing portion 352 may be a connecting member such as a bolt, a screw, a positioning pin, or the like.
  • a handle 33 may be further provided on the side of the second base body 32 or the neutron reflection mechanism 23 facing away from the shell A21.
  • an animal irradiation system 100 including:
  • a radiation source 10 for generating radiation wherein the radiation source 10 includes a beam hole with a preset aperture.
  • the radiation source 10 may include a neutron generating device 11, a beam shaper 12, and a collimator 13.
  • the beam hole is a beam outlet arranged on the collimator 13.
  • the collimator may not be arranged, and the beam hole is a beam outlet arranged on the beam shaper 12.
  • the animal irradiation device 20 is disposed in the beam hole, ie, the beam outlet, and the maximum outer diameter of the animal irradiation device 20 is equal to or slightly smaller than the preset aperture of the beam hole.
  • the diameter of the animal irradiation device 20 is consistent with the diameter of the BSA beam outlet, and can be just placed in the BSA beam outlet without the need for additional fixing devices, keeping the position unchanged.
  • the maximum outer diameter of the animal irradiation device is equal to or slightly smaller than the preset aperture of the beam hole. It can be understood that, under the premise of ensuring that the animal irradiation device can be placed in the beam hole, the maximum outer diameter of the animal irradiation device 20 is infinitely close to the preset aperture of the beam hole. In other words, a certain gap can be formed between the animal irradiation device 20 and the beam hole, but the gap formed by the two can be controlled within an extremely small or relatively small allowable range.
  • the animal irradiation device for mice disclosed in Embodiment 1 or Embodiment 2 of the present application has the following advantages:
  • the neutron reflection mechanism 23 can make the thermal neutrons passing through the irradiation space 2101 converge into the irradiation space 2101 again to increase the thermal neutron dose in the irradiation space 2101; at the same time, the photon shielding mechanism 24 can keep harmful particles such as gamma rays in the accommodation space 210 at a low level, and the first neutron shielding mechanism 25 can keep the neutron dose in the protection space 2102 at a low level. In this way, the dose distribution in the animal 200 can be optimized to meet the preset requirements.
  • the second neutron shielding mechanism 26 can converge the thermal neutrons generated by the moderation mechanism 22 so as to radiate them to the irradiation space 2101 in a more concentrated manner.
  • the shell A21 is made of a material that can reflect thermal neutrons
  • the shell 21 can also reflect the thermal neutrons that enter it and converge them into the irradiation space 2101.
  • the third photon shielding portion 243 can further reduce the radiation impact on the non-irradiated parts of the animal caused by the focusing of the shell 21.
  • an animal irradiation device 20 comprising:
  • An animal accommodation mechanism 201 the animal accommodation mechanism 201 extending along an axis Y direction, the animal accommodation mechanism 201 having a first end and a second end opposite to each other along the axis Y direction, the animal accommodation mechanism 201 having a cavity 2012 for accommodating an animal 200 and open at both ends;
  • a first shielding mechanism 202, the first shielding mechanism 202 is located at the second end of the animal holding mechanism 201, and the first shielding mechanism 202 includes a first hole unit 2022 arranged opposite to the cavity 2012 along the axis Y direction;
  • the second shielding mechanism 203 is located at a side of the first shielding mechanism 202 away from the animal accommodation mechanism 201 along the axis Y direction.
  • the second shielding mechanism 203 includes a second hole unit 2032 arranged opposite to the first hole unit 2022 along the axis Y direction.
  • the animal accommodation mechanism 201 can accommodate the animal 200 therein, and the neutron beam N generated by the radiation source 10 passes through the second shielding mechanism 203 and the first shielding mechanism 202 to be emitted to the animal accommodation mechanism 201.
  • the first shielding mechanism 202 and the second shielding mechanism 203 can partially shield the neutrons or gamma rays, and provide radiation shielding protection for the area that does not need to be irradiated.
  • the animal irradiation device 20 can be used to perform a neutron toxicity test on the head of the rat.
  • the experiment mainly studies the toxicity test of thermal neutrons, but there will also be fast neutrons and gamma rays.
  • the dose composition and proportion of the toxicity test are similar to the dose composition and proportion of normal brain tissue in the human brain treatment of non-tumor parts.
  • the irradiated part of the rat can include the head of the rat. In other words, this experiment hopes to ensure that the head of the rat can obtain as many thermal neutrons as possible while ensuring that the radiation source 10 remains unchanged.
  • the part of the rat except the head is a non-irradiated part, which can include the neck, trunk, organs in the abdomen, tail, etc. below the head of the rat.
  • this experiment hopes to minimize the harm of other rays and thermal neutrons to the non-irradiated parts while allowing the head of the rat to obtain as many thermal neutrons as possible.
  • the animal irradiation device 20 can also be used to test other animals 200 (for example, mice, rabbits, etc.), and thermal neutron irradiation tests can also be performed on other irradiation parts (such as the tail, neck, etc.).
  • animals 200 for example, mice, rabbits, etc.
  • thermal neutron irradiation tests can also be performed on other irradiation parts (such as the tail, neck, etc.).
  • the purpose of the test is not limited to toxicity tests, but can also be other test contents such as therapeutic tests as needed.
  • the animal holding mechanism 201 in the embodiment of the present application extends along an axis Y direction.
  • the animal holding mechanism 201 is a rectangular body. Of course, in other optional embodiments, the animal holding mechanism 201 may also be in a cylindrical, cube, hexagonal body, etc.
  • the animal holding mechanism 201 has a first end (the left end in FIG. 16 ) and a second end (the right end in FIG. 16 ) that are opposite to each other along the axis Y.
  • a cavity 2012 is formed inside the animal holding mechanism 201.
  • the cavity 2012 is used to accommodate an animal 200.
  • the cavity 2012 is open toward the second end of the animal holding mechanism 201,
  • the animal 200 contained therein can be partially extended from the second end of the animal containing mechanism 201.
  • the head of the rat, the trunk near the head and other parts are located outside the animal containing mechanism 201.
  • the remaining body parts (for example, the remaining trunk, the organs in the abdomen, the tail, etc.) are located inside the animal containing mechanism 201.
  • the animal accommodation mechanism 201 can be made of boron carbide (B 4 C) or lithium carbonate (Li 2 CO 3 ). Boron carbide or lithium carbonate can absorb neutrons. Therefore, the animal accommodation mechanism 201 can protect the parts and organs of the rats located therein, especially reducing the neutron flux entering the abdominal organs of the rats and reducing the dose of the abdominal organs.
  • the material used to make the animal accommodation mechanism 201 can also be selected according to actual needs, as long as it can shield neutrons or other rays or particles that are harmful to the non-irradiated parts of the rats.
  • a gasket 2011 capable of fixing a rat can be detachably provided in the animal accommodation mechanism 201.
  • the inner side wall of the animal accommodation mechanism 201 has a slot extending along the axis Y direction thereof, and the gasket 2011 can be fixed inside the animal accommodation mechanism 201 from the first end of the animal accommodation mechanism 201 by plugging.
  • the gasket 2011 can also be fixed to the animal accommodation mechanism 201 by other detachable methods such as clamping, bolting, bonding, riveting, etc.
  • the rat can be fixed on the gasket 2011 by methods such as bundling, bonding, tying, etc., and then the gasket 2011 is fixed inside the animal accommodation mechanism 201, so that the rat can be placed in the animal accommodation mechanism 201 more stably.
  • the gasket 2011 can also partially extend out of the animal accommodation mechanism 201 to extend into the first hole unit 2022 of the first shielding mechanism 202 and the second hole unit 2032 of the second shielding mechanism 203.
  • the part of the gasket 2011 extending out of the animal accommodation mechanism 201 can provide support for the part of the rat extending out of the animal accommodation mechanism 201, so as to ensure that the rat is irradiated in a preset form.
  • the gasket 2011 is in the shape of a plate made of PMMA material.
  • the shape and material of the gasket 2011 can also be selected according to actual conditions.
  • the animal accommodation mechanism 201, the first shielding mechanism 202 (described in detail below) located at one side of the second end of the animal accommodation mechanism 201, and the second shielding mechanism 203 (described in detail below) located at one side of the second end of the animal accommodation mechanism 201 can generally be in a relatively fixed and stable state.
  • the cavity 2012 passes through from the first end to the second end of the animal accommodation mechanism 201, and the gasket 2011 is detachably connected to the animal accommodation mechanism 201 from the first end of the animal accommodation mechanism 201.
  • the gasket 2011 provided with the rat can be placed in the animal accommodation mechanism 201 from the first end of the animal accommodation mechanism 201. After the irradiation operation is completed, the gasket 2011 can also be removed from the first end of the animal accommodation mechanism 201.
  • the first shielding mechanism 202 is located at the second end of the animal accommodation mechanism 201 , and the first shielding mechanism 202 is provided with a first hole unit 2022 that passes through the axis Y direction.
  • the first hole unit 2022 can be used to allow a part of the rat, such as the neck and part of the upper body connected to the neck, to pass through.
  • the first hole unit 2022 is opposite to the cavity 2012 of the animal accommodation mechanism 201 along the axis Y direction. In other words, the projection of the first hole unit 2022 formed in the direction perpendicular to the axis Y and the projection of the cavity 2012 of the animal accommodation mechanism 201 formed in the direction perpendicular to the axis Y at least partially overlap.
  • the projection of the first hole unit 2022 formed in the direction perpendicular to the axis Y is generally within the projection range of the cavity 2012 of the animal accommodation mechanism 201 formed in the direction perpendicular to the axis Y.
  • the first shielding mechanism 202 can be made of lead or lead alloy. Since lead or lead alloy has a good shielding function for gamma rays, the first shielding mechanism 202 can reduce the amount of gamma rays received by the part of the rat located in the animal accommodation mechanism 201, thereby reducing the gamma dose toxicity of organs such as abdominal organs.
  • the material of the first shielding mechanism 202 can also be selected according to actual needs, as long as it can shield gamma rays or other rays or particles that are harmful to the non-irradiated parts of the rat or other animals 200.
  • the first shielding mechanism 202 includes at least two first shielding units 2021 arranged along the axis Y direction, and at least two of the first shielding units 2021 are formed with a first step portion 2023 for limiting the non-irradiated part of the rat.
  • the cross-sectional area of the first hole unit 2022 of any two adjacent first shielding units 2021 gradually decreases from the first end to the second end, and the minimum cross-sectional area of the first hole unit 2022 of all the first shielding units 2021 should also be larger than the head of the rat to ensure that the rat can pass through the first shielding mechanism 202.
  • the first step portion 2023 can be formed by two adjacent first shielding units 2021 to form the wall surface of the first hole unit 2022 (section line in the figure). 2021 and the end surface of the first shielding unit 2021 that is closer to the animal accommodation mechanism 201.
  • the gap formed between the wall surface of any first shielding unit 2021 used to constitute the first hole unit 2022 and the maximum outer diameter of the rat's neck or trunk is kept within a small range, so that the leakage of rays or particles generated through the gap is maintained within a low or allowable range.
  • the number of the first shielding units 2021 is 2.
  • the number of the first shielding units 2021 can also be set to 3, 4 or other numbers as needed.
  • the cross-sectional area of the first hole unit 2022 of each first shielding unit 2021 can also be adjusted according to the actual situation of the rat.
  • the second shielding mechanism 203 is located at the second end of the first shielding mechanism 202, that is, the second shielding mechanism 203 is located at the side of the first shielding mechanism 202 away from the animal accommodation mechanism 201 along the axis Y direction.
  • the second shielding mechanism 203 is provided with a second hole unit 2032 that passes through along the axis Y direction.
  • the second hole unit 2032 can be used to place the head of the rat.
  • the second hole unit 2032 is formed along the axis Y direction.
  • the Y direction is opposite to the first hole unit 2022.
  • the projection of the second hole unit 2032 formed in the direction perpendicular to the axis Y and the projection of the first hole unit 2022 formed in the direction perpendicular to the axis Y at least partially overlap.
  • the projection of the second hole unit 2032 formed in the direction perpendicular to the axis Y is generally within the projection range of the first hole unit 2022 formed in the direction perpendicular to the axis Y.
  • the second shielding mechanism 203 can be made of graphite material. Since graphite has a high neutron scattering cross section for thermal neutrons. Therefore, the second shielding mechanism 203 can increase the thermal neutron dose received by the rat head (mainly the brain) as much as possible, and correspondingly, it can also reduce the thermal neutron dose irradiated to the non-irradiated parts of the rat.
  • the material of the first shielding mechanism 202 can also be selected according to actual needs, as long as it can reflect thermal neutrons well, so that the irradiated parts of the rat or other rats receive more neutrons, and the non-irradiated parts are shielded from thermal neutrons.
  • the second shielding mechanism 203 includes at least two second shielding units 2031 arranged along the axis Y direction, and at least two of the second shielding units 2031 are formed with a second step portion 2033 for limiting the non-irradiated part of the rat.
  • the cross-sectional area of the second hole unit 2032 of any two adjacent second shielding units 2031 gradually decreases from the first end to the second end.
  • the second step portion 2033 can be formed by two adjacent second shielding units 2031 to form the wall surface of the second hole unit 2032 (section line in the figure).
  • the second shielding unit 2031 is formed by the end surface of the second shielding unit 2031 which is closer to the animal accommodation mechanism 201.
  • the gap formed between the wall surface of any second shielding unit 2031 used to constitute the second hole unit 2032 and the head of the rat is kept within a small range to maximize the reflection effect of the second shielding mechanism 203 on thermal neutrons.
  • the number of the second shielding units 2031 is 2.
  • the number of the second shielding units 2031 can also be set to 3, 4 or other numbers as needed.
  • the cross-sectional area of the second hole unit 2032 of each second shielding unit 2031 can also be adjusted according to the actual situation of the rat.
  • the first gamma ray amount in the second shielding mechanism 203 that is, the gamma ray amount received by the irradiated part of the rat located in the second shielding mechanism 203
  • the second gamma ray amount in the animal accommodation mechanism 201 that is, the gamma ray amount received by the non-irradiated part of the rat located in the animal accommodation mechanism 201 are both within a relatively low range that meets the requirements.
  • the second gamma ray amount in the animal accommodation mechanism 201 is less than the first gamma ray amount in the second shielding mechanism 203.
  • the first thermal neutron dose in the second shielding mechanism 203 (that is, the thermal neutron dose received by the irradiated part of the rat located in the second shielding mechanism 203) is much greater than the second thermal neutron dose in the animal accommodation mechanism 201 (that is, the second thermal neutron dose received by the non-irradiated part of the rat located in the animal accommodation mechanism 201).
  • the first thermal neutron dose in the second shielding mechanism 203 is maintained at a relatively high level, meeting the test requirements such as toxicity tests.
  • the second thermal neutron dose in the animal accommodation mechanism 201 is maintained at a relatively low or extremely low level, which can minimize the damage to the non-irradiated parts of the rats or other animals 200.
  • a third shielding mechanism 207 may be provided at the second end of the second shielding mechanism 203.
  • the third shielding mechanism 207 is located on the side of the second shielding mechanism 203 away from the first shielding mechanism 202 along the axis Y direction.
  • the third shielding mechanism 207 can cover the first hole unit 2022.
  • the projection of the first hole unit 2022 formed in the direction perpendicular to the axis Y section is completely within the range of the third shielding mechanism 207.
  • the third shielding mechanism 207 may be made of lead or lead alloy material. As mentioned above, lead or lead alloy has a better shielding effect on gamma rays. Therefore, the third shielding mechanism 207 can shield gamma rays generated by the target emission and neutron slowing process, thereby reducing the gamma dose toxicity caused by gamma rays to rats or other animals 200.
  • a moderator mechanism 204 may be provided at the second end of the third shielding mechanism 207.
  • the moderator mechanism 204 is located on the side of the third shielding mechanism 207 away from the second shielding mechanism 203 along the axis Y direction.
  • the moderator mechanism can cover the first hole unit 2022.
  • the projection of the first hole unit 2022 formed in the direction perpendicular to the axis Y section is completely within the range of the moderator mechanism 204.
  • the moderator mechanism 204 may be made of a material with a high neutron scattering cross section, such as PMMA material.
  • the moderator mechanism 204 can more fully moderate the neutrons, so that the energy of the neutron beam N emitted by the radiation source 10 is reduced to a condition suitable for rat irradiation.
  • the material of the moderator mechanism 204 can also be selected according to actual needs, as long as it can achieve the moderation effect and meet the irradiation requirements of rats or other animals 200.
  • the same dose may be applied to rats of different weights, or different doses may be applied to rats of the same weight, or similar doses may be applied to rats of different weights.
  • the number of the animal accommodation mechanisms 201 can be multiple, at least 2. That is, the number of the animal accommodation mechanisms 201 can be set to 2, 3, 6, etc. according to actual needs. Accordingly, each animal accommodation mechanism 201 must also be provided with a corresponding first hole unit 2022 and a second hole unit 2032.
  • the animal irradiation device 20 may further include a housing B 205, wherein a bracket 206 is disposed in the housing B 205, wherein the bracket 206 includes a first rod unit 2061 connected to the inner side wall of the housing 205 and a second rod unit 2062 connected to the first rod unit 2061, wherein the second rod unit 2062 includes a plurality of rods arranged at intervals in a direction perpendicular to the axis Y, and the plurality of animal accommodation mechanisms 201 are respectively disposed on the corresponding rods.
  • the bracket 206 can integrate all the animal accommodation mechanisms 201 for easy placement.
  • the multiple animal accommodation mechanisms 201 can be arranged reasonably within a cross-sectional range perpendicular to the axis Y by bonding, bundling, or clamping with the second rod unit 2062. In order to allow each rat or animal to obtain substantially the same thermal neutron dose, the multiple animal accommodation mechanisms 201 can be evenly arranged along the circumferential direction.
  • the housing B205 is cylindrical.
  • the first rod unit 2061 forms an arc shape that fits the inner wall of the housing B205.
  • the rods of each of the second rod units 2062 are fixed to the first rod unit 2061 by a fixing device such as a screw or a bolt.
  • the number of the animal accommodation mechanisms 201 is 6.
  • the 6 animal accommodation mechanisms 201 are arranged at intervals in the circumferential direction.
  • the second rod unit 2062 includes three rows of rods. Two animal accommodation mechanisms 201 are arranged on each row of rods.
  • the number of animal accommodation mechanisms 201 and the number of rods can also be adjusted according to actual needs.
  • the number of the animal accommodation mechanisms 201 can be 4.
  • the second rod unit 2062 includes 2 rows of rods.
  • the number of the animal accommodation mechanisms 201 can be 8.
  • the second rod unit 2062 includes 4 rows of rods.
  • the arrangement of the multiple animal accommodation mechanisms 201 may also be selected according to actual needs, for example, in the form of a rectangular array, a linear array, or other arrays.
  • the second rod unit 2062 can be made of a metal material such as aluminum alloy.
  • the shell B205 can be made of PMMA material.
  • the first rod unit 2061 may include a main body 2063 made of a metal material and a fitting portion 2064 made of a PMMA material.
  • the fitting portion 2064 can be sleeved on the outside of the main body 2063.
  • the fitting portion 2064 can be firmly connected to the shell 205 by gluing.
  • each first shielding unit 2021 in the first shielding mechanism 202 is in the shape of a plate, and each first shielding unit 2021 is provided with a first hole unit 2022 corresponding to the animal accommodation mechanism 201.
  • Each second shielding unit 2031 in the second shielding mechanism 203 is in the shape of a plate, and each second shielding unit 2031 is provided with a second hole unit 2032 corresponding to the first hole unit 2022.
  • the third shielding mechanism 207 and the moderation mechanism 204 extend along the axis Y direction and can cover all the first hole units 2022.
  • connection between two adjacent first shielding units 2021, between the adjacent first shielding units 2021 and the adjacent second shielding units 2031, between two adjacent second shielding units 2031, between the second shielding unit 2031 and the third shielding mechanism 207, and between the third shielding mechanism 207 and the moderation mechanism 204 can be fastened by bonding, clamping, bolting, etc.
  • the outer edge of the moderator 204 is protruded 2041 toward one side of the shell B205 to form a groove 2042 for accommodating the third shielding mechanism 207.
  • the third shielding mechanism 207 can be disc-shaped and arranged in the groove 2042 of the moderator 204.
  • the second shielding mechanism 203 and the first shielding mechanism 202 can also be disc-shaped and embedded in the shell B205.
  • the shell B205 can be sealed and fitted with the moderator 204 through the outer edge of the moderator 204.
  • the second end of the shell B205 has a flange
  • the first shielding mechanism 202 can be bonded to the shell B205 through the flange.
  • the first shielding mechanism 202 and the second shielding mechanism 203 can also be connected by bonding or the like.
  • the third shielding mechanism 207 and the second shielding mechanism 203 can also be connected by bonding or the like.
  • the moderation mechanism 204 and the third shielding mechanism 207 can also be connected by bonding or the like.
  • the outer diameters of the moderation mechanism 204, the third shielding mechanism 207, the second shielding mechanism 203, the first shielding mechanism 202 and the shell B 205 are substantially the same or identical.
  • an animal irradiation system 100 including:
  • a radiation source 10 for generating radiation wherein the radiation source 10 includes a beam hole with a preset aperture; in this embodiment, the radiation source 10 may include a neutron generating device 11, a beam shaper 12, and a collimator 13, and the beam hole is a beam outlet arranged on the collimator 13; in another embodiment, the collimator may not be arranged, and the beam hole is a beam outlet arranged on the beam shaper 12.
  • the animal irradiation device 20 can be placed in the beam hole, ie, the beam outlet.
  • the diameter of the animal irradiation device 20 is consistent with the diameter of the BSA beam outlet, and can be just placed in the BSA beam outlet without the need for additional fixing devices, keeping the position unchanged.
  • the maximum outer diameter of the animal irradiation device 20 is the same as or close to the preset aperture of the beam hole. It can be understood that, under the premise of ensuring that the animal irradiation device can be placed in the beam hole, the maximum outer diameter of the animal irradiation device 20 is infinitely close to the preset aperture of the beam hole. In other words, a certain gap can be formed between the animal irradiation device 20 and the beam hole, but the gap formed by the two can be controlled within an extremely small or smaller allowable range.
  • the maximum outer diameter of the shell B205 and the moderation mechanism 204 can be considered as the maximum outer diameter of the animal irradiation device 20 .
  • the maximum outer diameter of these components can be identified as the maximum outer diameter of the animal irradiation device 20 .
  • the center line of the beam hole (the X-axis in FIG. 3 ) coincides with the center line of the moderation mechanism 204, the center line of the third shielding mechanism 207, the center line of the second shielding mechanism 203, the center line of the first shielding mechanism 202, and the center line of the housing B 205.
  • the coincidence here may also have a certain error within an allowable range.
  • the multiple animal accommodation mechanisms 201 may also be arranged in a circumferential direction centered on the center line of the beam hole (the X-axis in FIG. 3 ).
  • the animal irradiation device disclosed in the third embodiment of the present application has the following advantages:
  • the first shielding mechanism 202 and the second shielding mechanism 203 can adjust the neutron beam N flow to optimize the dose distribution in the animal 200;
  • the animal containment structure 201 may be made of a material capable of absorbing neutrons to protect the organs of the animal 200, especially the organs in the abdomen of the rat;
  • the housing 205 and the bracket 206 can serve to fix and support the animal holding mechanism 201;
  • the first step portion 2023 and/or the second step portion 2033 are both designed taking into account the actual body shape characteristics of the animal 200, especially the rat, so as to be more suitable for the actual working conditions;
  • the third shielding mechanism 207 and the moderation mechanism 204 can control and protect the dose to the head of the animal 200.
  • the moderation mechanism 204 can fully moderate neutrons, and the third shielding mechanism 207 can shield gamma rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本申请实施例公开一种动物照射装置以及动物辐照系统,其中动物照射装置包括沿一轴线方向延伸的壳体;慢化机构;中子反射机构;能屏蔽伽玛射线的光子屏蔽机构;能屏蔽热中子的第一中子屏蔽机构;其中,光子屏蔽机构在朝向垂直于轴线的截面上的投影至少部分地覆盖照射空间和保护空间;第一中子屏蔽机构在朝向垂直于轴线的截面上的投影至少部分地覆盖保护空间。中子反射机构可以使经过照射空间内热中子再次汇聚至照射空间内,以提高照射空间内的热中子剂量;光子屏蔽机构可以使容纳空间内的例如伽马射线等有害粒子维持在较低的水平,第一中子屏蔽机构可以使保护空间内的中子剂量维持在较低水平,从而优化动物体内剂量分布来达到预设要求。

Description

一种动物照射装置以及动物辐照系统 技术领域
本发明涉及一种临床前动物实验领域,尤其涉及一种动物照射装置以及动物辐照系统。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐照性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐照伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐照性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐照源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT)是利用含硼(10B)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂反应产生4He和7Li两个重荷电粒子。参照图1和图2,其分别示出了硼中子捕获反应的示意图和10B(n,α)7Li中子捕获核反应方程式,两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α粒子的线性能量转移与射程分别为150keV/μm、8μm,而7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐照伤害能局限在细胞层级,当含硼药物选择性地聚集在肿瘤细胞中,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
为了研究辐射生物学效应及验证放射线治疗的效果,临床治疗前需要进行动物辐照实验,实验中,通常需要将动物进行固定和照射,进行相关辐照研究。
例如,动物照射试验作为临床前动物试验的一部分,要求其结果真实、可靠、准确、科学和完整。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种动物照射装置以及动物辐照系统,其用于调整中子束流,优化动物体内剂量分布。
本申请一方面公开了一种动物照射装置,包括:
沿一轴线方向延伸的壳体,所述壳体形成供动物放置的容纳空间,所述容纳空间包括相互连通的照射空间和保护空间;所述壳体具有沿所述轴线方向相对的第一侧和第二侧;
慢化机构,所述慢化机构位于所述壳体的第一侧;
中子反射机构,所述中子反射机构位于所述壳体的第二侧;
沿所述轴线方向,所述容纳空间和所述慢化机构之间,或者,所述容纳空间和所述中子反射机构之间,设有能屏蔽伽马射线的光子屏蔽机构;
沿所述轴线方向,所述容纳空间和所述慢化机构之间,或者,所述容纳空间和所述中子反射机构之间,设有能屏蔽热中子的第一中子屏蔽机构。
优选地,所述光子屏蔽机构包括沿所述轴线方向位于所述容纳空间和所述慢化机构之间的第一光子屏蔽部,以及沿所述轴线方向位于所述容纳空间和所述中子反射机构之间的第二光子屏蔽部;
所述第一中子屏蔽机构包括沿所述轴线方向位于所述容纳空间和所述慢化机构之间的第一中子屏蔽部,以及沿所述轴线方向位于所述容纳空间和所述中子反射机构之间的第二中子屏蔽部;
其中,所述第一光子屏蔽部和所述第二光子屏蔽部在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述照射空间和所述保护空间;
所述第一中子屏蔽部和所述第二中子屏蔽部在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述保护空间。
优选地,所述光子屏蔽机构由铅或铅合金制成。
优选地,所述第一中子屏蔽机构由B4C或Li2CO3制成。
优选地,所述中子反射机构由PMMA或石墨制成。
优选地,所述光子屏蔽机构包括设置在所述容纳空间的内侧壁上的第三光子屏蔽部。
优选地,所述壳体由能反射热中子的材料制成。
优选地,所述壳体由PMMA材料制成。
优选地,所述慢化机构的外周侧套设有能反射中子的第二中子屏蔽机构。
优选地,所述第二中子屏蔽机构由Teflon或PTFE或者石墨材料制成。
优选地,所述第二中子屏蔽机构、所述壳体和所述中子反射机构的外周在朝向垂直所述 轴线的截面的投影重合。
优选地,所述慢化机构包括第一慢化件和第二慢化件,所述第一慢化件开设有分别与所述照射空间对应的照射孔,所述第二慢化件设置在所述第一慢化件背离所述壳体的一侧,所述第二慢化件能覆盖所述照射孔。
优选地,所述第一慢化件在其背离所述第二慢化件的一侧设置有定位部,所述第一中子屏蔽部通过所述定位部与所述第一慢化件连接,所述第一光子屏蔽部叠设在所述第一中子屏蔽部上。
优选地,所述容纳空间、所述光子屏蔽机构和所述第一中子屏蔽机构分别具有多个,所述光子屏蔽机构和所述第一中子屏蔽机构分别与所述容纳空间一一对应,多个所述容纳空间沿圆周方向间隔排列,任一个所述容纳空间的照射空间沿径向位于对应的所述保护空间的内侧;所述壳体的中心设置有沿其轴线方向延伸的连通槽,所述连通槽与任一个所述容纳空间相连通,所述中子反射机构上设置有与所述连通槽连通的呼吸孔。
优选地,所述容纳空间内能拆卸地设置有用于固定动物的垫片。
优选地,所述中子反射机构包括沿所述轴线方向层叠设置的多个中子反射单元,每个所述中子反射机构的厚度不大于20厘米。
本申请第二方面公开了一种动物照射装置,包括:
第一基体,所述第一基体包括中子慢化装置、设置在所述中子慢化装置上的第一屏蔽装置;
沿轴线方向延伸的壳体,所述壳体内形成有用于放置动物的容纳空间;
第二基体,所述第二基体包括中子反射机构、设置在所述中子反射机构上的第二屏蔽装置;
所述壳体沿所述轴线方向设置在所述第一基体和所述第二基体之间;
其中,所述第一屏蔽装置、所述第二屏蔽装置以及所述中子反射机构在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述容纳空间。
优选地,所述第一基体、所述壳体、所述第二基体的外周重合。
优选地,所述壳体沿其轴线方向相对的两侧分别与所述第一基体和所述第二基体贴合。
本申请第三方面公开了一种动物照射装置,包括:
动物容纳机构,所述动物容纳机构沿一轴线方向延伸,所述动物容纳机构具有沿所述轴线方向相对的第一端和第二端,所述动物容纳机构具有容纳动物的空腔;
第一屏蔽机构,所述第一屏蔽机构位于所述动物容纳机构的第二端,所述第一屏蔽机构包括沿所述轴线方向与所述空腔相对设置的第一孔单元;
第二屏蔽机构,所述第二屏蔽机构位于所述第一屏蔽机构沿所述轴线方向背离所述动物容纳机构的一侧,所述第二屏蔽机构包括沿所述轴线方向与所述第一孔单元相对设置的第二孔单元。
优选地,所述动物容纳机构由碳化硼或碳酸锂材料制成;所述第一屏蔽机构由铅或铅合金材料制成;所述第二屏蔽机构由石墨材料制成。
优选地,所述空腔朝所述动物容纳机构的第二端敞开,所述动物容纳机构内设置有用于对动物进行限位的垫片,所述垫片自所述动物容纳机构的第一端依次伸入所述空腔、所述第一孔单元和所述第二孔单元内。
优选地,所述动物容纳机构的空腔朝向所述动物容纳机构的第一端敞开,所述垫片自所述动物容纳机构的第一端与所述动物容纳机构能拆卸地连接。
优选地,所述动物容纳机构具有多个,所述第一屏蔽机构设有与动物容纳机构一一对应的多个第一孔单元,所述第二屏蔽机构设有与第一孔单元一一对应的多个第二孔单元。
优选地,所述动物容纳机构的空腔的中心线、与所述动物容纳机构的空腔相对应的所述第一孔单元的中心线、以及与所述第一孔单元相对应的第二孔单元的中心线重合。
优选地,还包括壳体、设置在所述壳体内的支架,所述支架包括与所述壳体内侧壁连接的第一杆单元和与所述第一杆单元连接的第二杆单元,所述第二杆单元包括沿垂直于所述轴线方向间隔排列的多个杆件,多个所述动物容纳机构分别设置在对应的所述杆件上。
优选地,所述第一杆单元包括主体部和贴合部,所述主体部由金属材料制成,所述贴合部与所述壳体的内侧壁贴合并与所述主体部连接,所述壳体和所述贴合部由PMMA材料制成。
优选地,所述第二屏蔽机构包括沿所述轴线方向排列的至少两个第二屏蔽单元,至少两个所述第二屏蔽单元形成有用于对动物的照射部位进行限位的第二台阶部。
优选地,所述第一屏蔽机构包括沿所述轴线方向排列的至少两个第一屏蔽单元,至少两个所述第一屏蔽单元形成有用于对动物的非照射部位进行限位的第一台阶部。
优选地,所述第二屏蔽机构包括沿所述轴线方向排列的至少两个第二屏蔽单元,至少两个所述第二屏蔽单元形成有用于对动物的头部进行限位的第二台阶部;所述第一屏蔽机构包括沿所述轴线方向排列的至少两个第一屏蔽单元,至少两个所述第一屏蔽单元形成有用于对动物的颈部和/或肩部进行限位的第一台阶部。
优选地,还包括能至少覆盖所述第一孔单元的第三屏蔽机构,所述第三屏蔽机构位于所述第二屏蔽机构沿所述轴线方向背离所述第一屏蔽机构的一侧。
优选地,所述第三屏蔽机构由铅或铅合金材料制成。
优选地,还包括能至少覆盖所述第一孔单元的慢化机构,所述慢化机构位于所述第三屏 蔽机构沿所述轴线方向背离所述第二屏蔽机构的一侧。
优选地,所述慢化机构由PMMA材料制成。
本申请第四方面公开了一种动物辐照系统,包括:
用于产生放射线的放射源,所述放射源包括具有预设孔径的束流孔洞,
如上述的动物照射装置穿设在所述束流孔洞内,所述动物照射装置的最大外径等于或略小于所述束流孔洞的预设孔径。
综上所述,本发明第一方面及第二方面公开的动物照射装置,具有以下优点:
1.1、中子反射机构可以使经过照射空间内热中子再次汇聚至照射空间内,以提高照射空间内的热中子剂量;与此同时,光子屏蔽机构可以使容纳空间内的例如伽马射线等有害粒子维持在较低的水平,第一中子屏蔽机构可以使保护空间内的中子剂量维持在较低水平。由此,可以优化动物体内剂量分布来达到预设要求。
1.2、第二中子屏蔽机构可以使通过慢化机构的热中子进行汇聚,以更集中地辐射至照射空间。
1.3、当壳体由能反射热中子的材料制成时,壳体也可以将进入其内的热中子进行反射并且汇聚至照射空间。
1.4、第三光子屏蔽部可以进一步减少由壳体汇聚带来的伽马射线对容纳空间内动物的辐射影响。
本发明第三方面公开的动物照射装置,具有以下优点:
2.1、第一屏蔽机构和第二屏蔽机构可以调整中子束流,优化动物体内剂量分布;
2.2、动物容纳机构可以由能够吸收中子的材料制成,来保护动物的器官,尤其是大鼠腹部内的器官;
2.3、壳体和支架可以起到固定支撑动物的目的;
2.4、第一台阶部和/或第二台阶部均考虑到了动物尤其是大鼠的实际体型和身体构造,从而使其更适配于实际作业情况;
2.5、第三屏蔽机构和慢化机构能够起到控制动物的头部剂量的效果。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与图式,然而所提供的图式仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书 中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是硼中子捕获反应示意图。
图2是10B(n,α)7Li中子捕获核反应方程式。
图3是本申请实施例一的动物辐照系统的示意图。
图4是本申请另一实施例的动物辐照系统的示意图。
图5示出了本申请实施例一中的动物照射装置的结构示意图。
图6示出了图5的侧视图。
图7示出了图5的剖视图。
图8示出了图5除去慢化机构(第一基体)后的立体结构示意图。
图9示出了本申请实施例一中的动物照射装置的结构原理示意图。
图10示出了本申请实施例一中的动物照射装置中壳体的结构示意图。
图11示出了本申请实施例一中的动物照射装置的局部示意图,其主要示出了第一慢化件和第二中子屏蔽机构。
图12示出了本申请实施例一中的动物照射装置的结构示意图,其主要示出了第一慢化件、第一光子屏蔽部和第一中子屏蔽部。
图13示出了本申请实施例一中的动物照射装置的结构示意图,其主要示出了中子反射机构、第二光子屏蔽部和第二中子屏蔽部。
图14示出了本申请实施例一中的中子反射单元的结构示意图。
图15示出了本申请实施例二中动物照射装置的结构原理示意图。
图16是本申请实施例三的动物照射装置的结构示意图。
图17是图16中的动物照射装置除去动物容纳机构的结构示意图。
图18示出了本申请实施例三的动物照射装置的结构原理示意图。
图19是图16中的动物照射装置的局部示意图,其主要示出了第一屏蔽机构、第二屏蔽机构、第一台阶部、第二台阶部。
图20主要示出了第一屏蔽单元的结构示意图。
图21主要示出了第二屏蔽单元的结构示意图。
图22是图16中的部分的动物照射装置的结构示意图,其主要示出了第二屏蔽机构、第 三屏蔽机构以及慢化机构。
图23是本申请实施例四的动物照射装置的结构示意图,该动物照射装置包括壳体B。
图24是图23的主视图,其主要示出了动物容纳机构、支架以及壳体B。
以上附图的附图标记:100、动物辐照系统;10、放射源;20、动物照射装置;11、中子产生装置;12、射束整形体;13、准直器;111、带电粒子线产生装置;T、靶材;P、带电粒子线;N、中子束;200、动物;21、壳体A;Y、轴线;Z、缓速体;210、容纳空间;2101、照射空间;2102、保护空间;211、壳单元;212、连通槽;22、慢化机构;221、第一慢化件;2210、照射孔;222、第二慢化件;223、定位部;23、中子反射机构;231、中子反射单元;2310、呼吸孔;24、光子屏蔽机构;241、第一光子屏蔽部;242、第二光子屏蔽部;243、第三光子屏蔽部;25、第一中子屏蔽机构;251、第一中子屏蔽部;252、第二中子屏蔽部;26、第二中子屏蔽机构;27、垫片;271、柱体;31、第一基体;311、中子慢化装置;312、第一屏蔽装置;32、第二基体;321、第二屏蔽装置;33、把手;34、第一定位机构;341、贯通槽;342、第一紧固单元;343、第二紧固单元;344、定位空间;35、第二定位机构;351、贯通孔;352、固定部。
201、动物容纳机构;2011、垫片;2012、空腔;Y、轴线;202、第一屏蔽机构;2021、第一屏蔽单元;2022、第一孔单元;2023、第一台阶部;203、第二屏蔽机构;2031、第二屏蔽单元;2032、第二孔单元;2033、第二台阶部;204、慢化机构;2041、凸起;2042、凹槽;205、壳体B;206、支架;2061、第一杆单元;2062、第二杆单元;2063、主体部;2064、贴合部;207、第三屏蔽机构。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
以下是通过特定的具体实施例来说明本发明实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的 保护范围。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
如图3,动物辐照系统100包括放射源10和动物照射装置20,放射源10用于产生放射线并包括射束出口OUT,动物照射装置20用于容纳动物200。照射时,先将动物200在动物照射装置20中进行定位,再将动物照射装置20相对于放射源10进行固定,然后控制放射源10产生放射线并从射束出口OUT出来照射向动物照射装置20中的动物200。
本实施例中,动物辐照系统100为硼中子捕获治疗系统,放射源10包括中子产生装置11、射束整形体12和准直器13。中子产生装置11用于产生中子束N,中子产生装置11包括带电粒子线产生装置111和靶材T,带电粒子线产生装置111包括加速器,通过加速器对带电粒子(如质子、氘核等)进行加速,产生如质子线的带电粒子线P,带电粒子线P照射到靶材T并与靶材T作用产生中子,中子形成中子束N。合适的核反应可依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、靶材T的物化性等特性来挑选,在此对加速器111、靶材T的具体构造不做详细描述。射束整形体12用于调整中子束N的射束品质,准直器13用以汇聚中子束N,使中子束N在进行治疗的过程中具有较高的靶向性,准直器13形成射束出口OUT,从射束出口OUT出来的中子束N围绕中心轴线X限定一根主轴。中子产生装置11产生的中子束N依次通过射束整形体12和准直器13照射向动物照射装置20中的动物200。图示及下文所述中子束N方向不代表实际的中子运动方向,而是代表中子束N整体运动趋势的方向。可以理解,中子产生装置11还可以有其他的构造,如不采用加速器111中子源;射束整形体12和准直器13的构造在此不做详细描述。可以理解,放射源10在动物200辐照试验后可同时用于肿瘤患者的治疗。放射源10还可以有其他的构造,如包括其他放射线产生装置,或者不具有射束整形体12或准直器13。
图4示出了本申请另一个实施例的动物辐照系统100,与上个实施例类似的,动物辐照系统100将带电粒子线P照射到靶材T上形成能谱较宽的中子射束,缓速体Z将能谱较宽的中子射束调整为具有一定能量范围的中子束N,再向动物照射装置20辐射。射束整形体12可以用于调整中子束N的射束品质。与上个实施例不同的,在本实施方式中,该动物辐照系统100没有设置准直器,射束出口设在射束整形体12上。
参照图5至图9所示,基于此,本申请实施例一公开了一种动物照射装置20,包括:
沿一轴线Y方向延伸的壳体21,所述壳体21形成供动物200放置的容纳空间210,所述容纳空间210包括相互连通的照射空间2101和保护空间2102;所述壳体21具有沿所述轴线Y方向相对的第一侧和第二侧;
慢化机构22,所述慢化机构22位于所述壳体21的第一侧;
中子反射机构23,所述中子反射机构23位于所述壳体21的第二侧;
沿所述轴线方向,所述容纳空间210和所述慢化机构22之间,或者,所述容纳空间210和所述中子反射机构23之间,设有能屏蔽伽马射线的光子屏蔽机构24;
沿所述轴线方向,所述容纳空间210和所述慢化机构22之间,或者,所述容纳空间210和所述中子反射机构23之间,设有能屏蔽热中子的第一中子屏蔽机构25。
在本实施方式中,所述光子屏蔽机构24包括沿所述轴线Y方向位于所述容纳空间210和所述慢化机构22之间的第一光子屏蔽部241,以及沿所述轴线Y方向位于所述容纳空间210和所述中子反射机构23之间的第二光子屏蔽部242。
所述第一中子屏蔽机构25包括沿所述轴线Y方向位于所述容纳空间210和所述慢化机构22之间的第一中子屏蔽部251,以及沿所述轴线Y方向位于所述容纳空间210和所述中子反射机构23之间的第二中子屏蔽部252。
其中,所述第一光子屏蔽部241和所述第二光子屏蔽部242在朝向垂直于所述轴线Y的截面上的投影至少部分地覆盖所述照射空间2101和所述保护空间2102。
所述第一中子屏蔽部251和所述第二中子屏蔽部252在朝向垂直于所述轴线Y的截面上的投影至少部分地覆盖所述保护空间2102。
在其他可选的实施方式中,可以理解的是,所述光子屏蔽机构24和所述第一中子屏蔽机构25的具体结构可以基于上文进行任意的排列组合。例如,所述光子屏蔽机构24也可以仅在所述容纳空间210和所述慢化机构22之间设置。或者,所述光子屏蔽机构24也可以仅在所述容纳空间210和所述中子反射机构23之间。
所述第一中子屏蔽机构25也可以仅在所述容纳空间210和所述慢化机构22之间。或者,所述第一中子屏蔽机构25也可以仅在所述容纳空间210和所述中子反射机构23之间设置。
又例如,所述光子屏蔽机构24也可以同时在所述容纳空间210和所述慢化机构22之间,以及在所述容纳空间210和所述中子反射机构23之间设置。同时,所述第一中子屏蔽机构25仅在所述容纳空间210和所述慢化机构22之间。或者,所述第一中子屏蔽机构25仅在所述容纳空间210和所述中子反射机构23之间设置。
再例如,所述第一中子屏蔽机构25可以同时在所述容纳空间210和所述慢化机构22之间,以及在所述容纳空间210和所述中子反射机构23之间设置。同时,所述光子屏蔽机构24仅在 所述容纳空间210和所述慢化机构22之间。或者,所述光子屏蔽机构24仅在所述容纳空间210和所述中子反射机构23之间设置。
借由上述结构,所述容纳空间210可以将动物200容纳其中,放射源10产生的中子束N从慢化机构22的方向朝向所述容纳空间210的方向照射,光子屏蔽机构24可以使照射空间2101和保护空间2102内的伽玛射线量维持在较低或极低的水平,中子反射机构23可以使照射空间2101内的中子剂量维持在较高或者符合试验照射需求的数值上,第一中子屏蔽机构25可以使保护空间2102内的中子剂量维持在较低或极低的水平。由此,可以优化动物200体内剂量分布来达到预设要求。
以动物200为小鼠举例,可以采用该动物照射装置20对小鼠的颈部肿瘤进行热中子治疗试验。在本实施方式中的治疗试验中,小鼠的照射部位可以包括小鼠的颈部。换言之,本试验希望在保证放射源10能量不变的情况下,使得小鼠的颈部可以尽可能多地获得热中子。而小鼠除去颈部的部位为非照射部位,可以包括小鼠的颈部以下的诸如躯干、腹部内的器官、尾部等。换言之,本试验希望在使小鼠的颈部获得尽可能多的热中子的同时,能够尽量降低热中子和其他射线对非照射部位的危害。
当然的,在其他试验中,也可以采用该动物照射装置20对其他动物200(例如,大鼠、兔子等)进行试验,也可以对其他照射部位(例如尾部、颈部等)进行热中子试验,当然试验的目的也可以不仅仅局限在治疗试验,还可以根据需要为毒性试验等其他试验内容。
图5和图6示出了本申请实施例中的一种动物照射装置20,该动物照射装置20包括沿轴线Y方向延伸的壳体21、位于所述壳体21的第一侧(图5中上侧)的慢化机构22和位于所述壳体21的第二侧(图5中下侧)的中子反射机构23。
参照图8和图9所示,所述壳体21形成有供动物200放置的容纳空间210。所述容纳空间210内可以将动物200容纳其中。所述容纳空间210包括相互连通的照射空间2101和保护空间2102。照射空间2101沿所述轴线Y方向与小鼠的照射部位(例如,颈部肿瘤)相对应。即,小鼠的照射部位完全或大部分地位于所述照射空间2101内。保护空间2102沿轴线Y方向与非照射部位相对应。即,小鼠的非照射部位(例如,除去颈部的其他躯干、腹部内的器官、尾部等)完全或大部分地位于所述保护空间2102内。
结合图9所示,在本实施方式中,照射空间2101沿径向位于所述保护空间2102的内侧(图9中的右侧)。即,小鼠的头部靠近壳体21的中心,而小鼠的尾部靠近壳体21的外周。当然的,在其他可选的实施方式中,照射空间2101和保护空间2102的排布可以根据实际需要设定。例如,也可以小鼠的头部朝向壳体21的外周,小鼠的尾部朝向中心。或者,小鼠也可以沿垂直于壳体21直径的方向排列设置。
如图5、图9和图10所示,在本实施方式中,所述壳体21呈圆柱形。当然的,所述壳体21也可以根据需要设计成长方体、正方体、多边形体等形状,只要其沿预设的轴线Y方向延伸即可。所述容纳空间210由形成在所述壳体21上并且贯通自所述壳体21的第一侧向第二侧贯通的空腔形成。当然的,在其他可选的实施方式中,所述容纳空间210的第一侧或第二侧或者两侧均可以是非贯通的。相应的,所述壳体21上只要设置有能将动物200塞入所述容纳空间210内的通道即可。例如,所述壳体21的周侧壁上开设有与所述容纳空间210连通的开口。动物200能从该开口沿径向置于所述容纳空间210内。
参照图5和图9所示,所述慢化机构22为沿轴线Y延伸的柱形体。所述慢化机构22可以由具有较高的中子散射截面的材料制成,例如PMMA材料。由此,慢化机构22可以更加充分地慢化中子,使由放射源10发出的中子束N的能量降至适宜小鼠照射的情况。当然的,所述慢化机构22的材料也可以根据实际需要进行选取,只要其能够达到慢化效果,且符合小鼠或其他动物200照射要求即可。所述慢化机构22在朝向垂直于所述轴线Y的截面上的投影大部分或者全部覆盖所述容纳空间210。
所述中子反射机构23可以为沿轴线Y延伸的柱形体。所述中子反射机构23可以由具有较高的中子散射截面的材料制成,例如纯度较高的PMMA材料(例如,PMMA的纯度达到8N)或石墨。由此,在通过所述照射空间2101和所述壳体21后的热中子可以被所述中子反射机构23反射而汇聚至照射空间2101。
在所述中子反射机构23由纯度较高的PMMA材料(例如,PMMA的纯度达到8N)制成时,所述中子反射机构23含有很少的氯、溴杂质,这样可以避免中子束N因这些杂质被活化而产生次级伽马射线,降低由此可能对动物200造成的毒性。考虑到纯度较高的PMMA材料的厚度(例如,一般不能超过20厘米)可能受到工艺等其他方面的限制,所述中子反射机构23可以包括沿所述轴线Y方向层叠设置的多个中子反射单元231。为了使尽量多的热中子能够通过中子反射机构23反射至照射空间2101,所述中子反射机构23的截面积可以尽可能的大。例如,所述中子反射机构23的外周和所述壳体21的外周重合。
参照图9和图12所示,在慢化机构22和容纳空间210之间叠设有第一光子屏蔽部241和第一中子屏蔽部251。其中,第一光子屏蔽部241覆盖大部分或者全部的容纳空间210,或者仅覆盖全部的所述照射空间2101和所述保护空间2102。即所述第一光子屏蔽部241在朝向垂直于所述轴线Y的截面上的投影覆盖了大部分或者全部的所述照射空间2101和所述保护空间2102,或者仅覆盖全部的所述照射空间2101和所述保护空间2102。第一中子屏蔽部251覆盖了大部分或者全部保护空间2102,或者仅覆盖全部的保护空间2102。即,所述第一中子屏蔽部251在朝向垂直于所述轴线Y的截面上的投影覆盖了大部分或者全部所述保 护空间2102,或者仅覆盖全部的保护空间2102。
参照图9和图13所示,在中子反射机构23和容纳空间210之间叠设有第二光子屏蔽部242和第二中子屏蔽部252。其中,第二光子屏蔽部242覆盖大部分或者全部的容纳空间210,或者仅覆盖全部的所述照射空间2101和所述保护空间2102。即所述第二光子屏蔽部242在朝向垂直于所述轴线Y的截面上的投影覆盖了大部分或者全部的所述照射空间2101和所述保护空间2102,或者仅覆盖全部的所述照射空间2101和所述保护空间2102。第二中子屏蔽部252覆盖了大部分或者全部保护空间2102,或者仅覆盖全部的保护空间2102。即,所述第二中子屏蔽部252在朝向垂直于所述轴线Y的截面上的投影覆盖了大部分或者全部所述保护空间2102,或者仅覆盖全部的保护空间2102。
所述光子屏蔽机构24(包括第一光子屏蔽部241和第二光子屏蔽部242)可以由铅或铅合金制成。铅或铅合金对伽马射线具有较佳的屏蔽效果,因此,光子屏蔽机构24可以屏蔽由靶出射以及中子慢化等过程产生的伽马射线,更大程度地减少由伽马射线对小鼠或其他动物200造成的伽马剂量毒性。
所述第一中子屏蔽机构25(包括第一中子屏蔽部251和第二中子屏蔽部252)可以由碳化硼(B4C)或碳酸锂(Li2CO3)材料制成。碳化硼或碳酸锂可以吸收中子。由此,所述第一中子屏蔽机构25可以将位于其内的小鼠的部位和器官保护在内,尤其是减少了进入小鼠腹部器官的中子通量,降低腹部器官的剂量。当然的,制成所述第一中子屏蔽机构25的材料也可以根据实际需要进行选取,只要其能够对中子或者其他对于小鼠非照射部位有害的射线或粒子进行屏蔽即可。
所述慢化机构22在接收到放射源10发射出中子束N后,将超热中子慢化成为热中子。经过慢化后携带有较多热中子的中子束N在通过第一光子屏蔽部241对于伽马射线的阻隔作用后,进入照射空间2101,并且穿过小鼠的照射部位。由于中子反射机构23具有较高的中子散射截面,因此部分的穿过小鼠的照射部位的热中子或者其他流向的热中子可以通过中子反射机构23散射再次反射至照射空间2101。由此,可以在不提高放射源10能量的情况下提高照射空间2101内的剂量率,使得照射空间2101具有符合要求的热中子通量。同时,第一中子屏蔽部251和第一光子屏蔽部241可以使保护空间2102屏蔽由中子束N带来的伽玛射线和热中子。而第二中子屏蔽部252和第二光子屏蔽部242可以使保护空间2102屏蔽由中子反射机构23带来的伽玛射线和热中子,从而使得保护空间2102内的伽玛射线和热中子均维持在较低的通量情况下,进而对保护空间2102内的小鼠的非照射部位起到保护作用。
由此,本申请实施例中的动物照射装置20在小鼠治疗实验中可以尽可能地增加小鼠照射部位的中子剂量率,减少非照射部位的中子剂量率,减少由非硼剂量特别是伽马射线造成的 毒性。
参照图9和图11所示,在本实施方式中,所述第一中子屏蔽部251通过胶水粘合在所述慢化机构22上,所述第一光子屏蔽部241通过胶水粘合在所述第一中子屏蔽部251背离所述慢化机构22的一侧上。参照图9和图8所示,所述第二中子屏蔽部252通过胶水粘合在所述中子反射机构23上,所述第二光子屏蔽部242通过胶水粘合在所述第二中子屏蔽部252背离所述中子反射机构23的一侧上。
在另一个可选的实施方式中,所述第一光子屏蔽部241通过胶水粘合在所述慢化机构22上,所述第一中子屏蔽部251通过胶水粘合在所述第一光子屏蔽部241背离所述慢化机构22的一侧上。所述第二光子屏蔽部242通过胶水粘合在所述中子反射机构23上,所述第二中子屏蔽部252通过胶水粘合在所述第二光子屏蔽部242背离所述中子反射机构23的一侧上。
相较于金属材料和非金属材料之间的粘合,非金属材料和非金属材料的粘合一般地更为牢固。考虑到第一中子屏蔽部251、第二中子屏蔽部252、慢化机构22和中子反射机构23为非金属材料,而第一光子屏蔽部241和第二光子屏蔽部242为金属材料,因此,图9示例中的结构相较于后一个实施例一般更为牢固。
当然的,上述各个连接也可以根据实际需要,采用诸如螺栓、螺钉、铆接、卡接、插接等固定连接方式。
在一个优选的实施方式中,在放射源10发射出同等能量的中子束N情况下,为了能使所述照射空间2101内聚集更多的热中子剂量,所述壳体21也可以和所述第一中子反射机构23类似的,由较高的中子散射截面的材料制成。例如,所述壳体21可以由纯度较高(例如,纯度达到8N)的PMMA材料制成。此时,经过壳体21的热中子会被进一步反射回照射空间2101,并且被所述第一中子屏蔽机构25屏蔽在所述保护空间2102外。同时,纯度较高的PMMA材料含有很少的氯、溴杂质,这样可以避免中子束N因这些杂质被活化而产生次级伽马射线,降低由此可能对动物200造成的毒性。考虑到纯度较高的PMMA材料的厚度(例如,一般不能超过20厘米)可能受到工艺等其他方面的限制,所述壳体21可以包括沿所述轴线Y方向层叠设置的多个壳单元211。各个壳单元211上均开设有空腔,所有空腔沿所述轴线Y方向连通共同形成所述容纳空间210。
如图10所示,在一个优选的实施方式中,所述光子屏蔽机构24包括设置在所述容纳空间210的内侧壁上的第三光子屏蔽部243。所述壳体A21的内部形成有自其第一侧向第二侧延伸且用于形成所述容纳空间210的内侧壁。一般的,所述第三光子屏蔽部243的形状与所述内侧壁匹配且贴合。在本实施方式中,所述内侧壁的数量为两个,且这两个内侧壁为自第一侧向第二延伸的平面。相应的,每个所述内侧壁均对应设置有一个所述第三光子屏蔽部243,任 一个所述第三光子屏蔽部243呈板状。当然的,在其他可选的实施方式中,所述第三光子屏蔽部243的形状并不与所述内侧壁相同,而只要将所述内侧壁完全覆盖即可。例如,用于形成所述容纳空间210的内侧壁也可以呈诸如弧形、波浪形等其他形状,相应的,所述第三光子屏蔽部243也可以呈板状。所述第三光子屏蔽部243也可以由铅或铅合金制成。正如前所述,铅或铅合金对伽马射线具有较佳的屏蔽效果,因此,所述第三光子屏蔽部243可以屏蔽可能由壳体A21的内侧壁进入容纳空间210的伽马射线,更大程度地减少由伽马射线对小鼠或其他动物200造成的伽马剂量毒性。
在一个优选的实施方式中,参照图5所示,所述慢化机构22的外周侧套设有第二中子屏蔽机构26。考虑到零件制作以及工艺性要求,所述第二中子屏蔽机构26可以由Teflon材料制成。当然的,在其他可选的实施方式中,第二中子屏蔽机构26也可以由PTFE或者石墨等能屏蔽热中子或其他粒子的屏蔽材料制成。在慢化机构22将超热中子慢化成热中子的同时,所述第二中子屏蔽机构26可以将产生的热中子限制在所述慢化机构22的范围内,尽量减少热中子从径向向外流动造成的损耗。
考虑到工艺尺寸的统一性,所述第二中子屏蔽机构26、所述壳体A21和所述中子反射机构23的外周在朝向垂直所述轴线Y的截面的投影重合。在本实施方式中,所述第二中子屏蔽机构26、所述壳体A21和所述中子反射机构23的外周均呈圆形,所述第二中子屏蔽机构26、所述壳体A21和所述中子反射机构23的最大外径相同。当然的,在其他可选的实施方式中,所述第二中子屏蔽机构26、所述壳体A21和所述中子反射机构23的外周也可以根据实际需要呈诸如长方形、正方形、椭圆形等其他形状。
优选地,参照图7、图11所示,所述慢化机构22包括第一慢化件221和第二慢化件222,所述第一慢化件221开设有分别与所述照射空间2101对应的照射孔2210,所述第二慢化件222设置在所述第一慢化件221背离所述壳体A21的一侧,所述第二慢化件222能覆盖所述照射孔2210。由第二慢化件222慢化产生的热中子往往会较多地向流动阻力较小的部分(即第一慢化件221的照射孔2210处)运动。因此,照射孔2210可以较多将热中子聚集,并且将热中子辐射至与其对应的照射空间2101。
在本实施方式中,第二中子屏蔽机构26呈圆环状。第一慢化件221和第二慢化件222均呈圆盘状,且嵌设在第二中子屏蔽机构26的内侧。所述第一慢化件221在背离所述第二慢化件222的一侧设置有定位部223。定位部223可以对所述第一中子屏蔽部251进行定位,以使所述第一中子屏蔽部251连接至所述第一慢化件221。在本实施方式中,所述定位部223对应设置在所述保护空间2102和照射空间2101之间的接合处。所述定位部223自所述第一慢化件221的端面朝着壳体A21的方向凸出的凸起,其凸起的高度与第一中子屏蔽部251的厚度相等或略小。 所述第一中子屏蔽部251在定位部223的定位作用下通过胶水贴合在第一慢化件221的端面上。在其他可选的实施方式中,所述定位部223也可以为自所述第一慢化件221的端面朝着背离所述壳体A21的方向凹陷的凹槽,所述第一中子屏蔽部251整体或者部分地位于所述凹槽内。
为了便于作业,参照图8所示,在容纳空间210内还可以可拆卸地设置有能固定小鼠的垫片27。例如,垫片27可以通过插接的方式固定在容纳空间210的内部。当然的,在其他可选的实施方式中,垫片27也可以通过诸如卡接、螺栓连接、粘接、铆接等其他可拆卸的方式固定在所述容纳空间210内部。由此,可以将小鼠通过诸如捆绑、粘结、捆扎等方式固定在垫片27上,再将垫片27固定在容纳空间210的内部,就可以实现将小鼠较为稳定地置于所述容纳空间210内。优选地,所述垫片27上可以设置有用于对动物200进行捆绑或者捆扎且沿轴线Y方向延伸的柱体271。
在一些应用场景下,常常需要对多个动物200(例如小鼠)进行同时照射,来进行对比参照研究。例如,可以对不同体重的小鼠施加相同的剂量,或者,可以对相同体重的小鼠施以不同的剂量,或者,可以对不同体重的小鼠施加同比的剂量。
因此,在一个可选的实施方式中,参照图8(结合图9)所示,所述容纳空间210、所述光子屏蔽机构24和所述第一中子屏蔽机构25的数量为多个,其中,至少为2。也就是说,所述容纳空间210可以根据实际需要设置为2个、3个、6个等。相应的,每个容纳空间210也必然设置有对应的所述光子屏蔽机构24和所述第一中子屏蔽机构25。其中,多个所述容纳空间210沿圆周方向间隔排列,任一个所述容纳空间210的照射空间2101沿径向位于对应的所述保护空间2102的内侧。即,在小鼠颈部肿瘤治疗试验中,小鼠的头部朝着圆心轴线Y,而小鼠的尾部朝向外周。为了保证小鼠在治疗过程中能够呼吸到足够的氧气,所述壳体A21的中心设置有沿轴线Y方向延伸的连通槽212,所述连通槽212自径向与任一个所述容纳空间210连通。同时,所述中子反射机构23上设置有呼吸孔2310(结合图14所示),该呼吸孔2310的一端与连通槽212连通。呼吸孔2310的另一端可以与外界连通。由此,小鼠的头部可以在治疗过程中,可以呼吸到由呼吸孔2310、连通槽212输入的氧气。考虑为了使各个小鼠或动物获得基本相同的热中子剂量,多个所述容纳空间210可以沿圆周方向均匀排列。
基于上述结构,当放射源10产生的中子束N从慢化机构22的一侧朝向小鼠照射时,照射空间2101内具有的第一伽马射线量(也就是小鼠的照射部位接收到的伽马射线量)和保护空间2102内具有的第二伽马射线量(也就是小鼠的非照射部位接收到的伽马射线量)均处于较低的且符合要求的范围内。同时,在中子反射机构23、第二中子屏蔽机构26和第一中子屏蔽机构25的作用下,照射空间2101内具有的第一热中子剂量(也就是小鼠的照射部位接收到的热中子剂量)远大于保护空间2102内具有的第二热中子剂量(也就是小鼠的非照射部位接收 到的热中子剂量)。并且,照射空间2101内具有的第一热中子剂量维持在较高的水平,满足诸如治疗试验等试验要求。保护空间2102内具有的第二热中子剂量维持在较低或极低的水平,能够尽量减小对小鼠或其他动物200的非照射部位的损害。
参照图15所示,本申请实施例还公开了一种动物照射装置20,包括:第一基体31,所述第一基体31包括中子慢化装置311、设置在所述中子慢化装置311上的第一屏蔽装置312;
沿轴线Y方向延伸的壳体A21,所述壳体A21内形成有用于放置动物200的容纳空间210;
第二基体32,所述第二基体32包括中子反射机构23、设置在所述中子反射机构23上的第二屏蔽装置321;
所述壳体A21沿所述轴线Y方向设置在所述第一基体31和所述第二基体32之间;
其中,所述第一屏蔽装置312、所述第二屏蔽装置321以及所述中子反射机构23在朝向垂直于所述轴线Y的截面上的投影至少部分地覆盖所述容纳空间210。
在本实施方式中,所述中子慢化装置311可以包括慢化机构22和套设在所述慢化机构22外侧的第二中子屏蔽机构26。慢化机构22可以包括沿轴线Y方向层叠设置的第一慢化件221和第二慢化件222,其中第一慢化件221相较于第二慢化件222临近壳体A21设置。其中,第一屏蔽装置312可以包括第一中子屏蔽部251和第一光子屏蔽部241。所述第一中子屏蔽部251通过胶水粘合在所述慢化机构22上,所述第一光子屏蔽部241通过胶水粘合在所述第一中子屏蔽部251背离所述慢化机构22的一侧上。其中,第一中子屏蔽部251与动物200的保护部位对应,所述第一光子屏蔽部241与动物200的照射部位对应。
在另一个可选的实施方式中,所述第一光子屏蔽部241通过胶水粘合在所述慢化机构22上,所述第一中子屏蔽部251通过胶水粘合在所述第一光子屏蔽部241背离所述慢化机构22的一侧上。
相较于金属材料和非金属材料之间的粘合,非金属材料和非金属材料的粘合一般地更为牢固。考虑到第一中子屏蔽部251和慢化机构22为非金属材料,而第一光子屏蔽部241为金属材料,因此,图8示例中的结构相较于后一个实施例一般更为牢固。
所述壳体A21呈圆柱形。所述壳体A21具有沿轴线Y方向贯通且用于形成所述容纳空间210的空腔。所述壳体A21朝向所述中子慢化装置311的一侧与所述第一基体31贴合。所述壳体A21的外周和所述第二中子屏蔽机构26的外周重合。在另一个实施方式中,该中子慢化装置311未设置有第二反射装置而仅设置了慢化机构22,此时,壳体A21与慢化机构22可以贴合设置。所述壳体A21的外周可以与所述慢化机构22的外周重合。
所述第二基体32包括用于构成所述第二基体32主体的中子反射机构23和设置在所述中子反射机构23朝向所述第二基体32一侧的第二屏蔽装置321。第二屏蔽装置321包括第 二中子屏蔽部252和第二光子屏蔽部242。所述第二中子屏蔽部252通过胶水粘合在所述第二中子反射装置上,所述第二光子屏蔽部242通过胶水粘合在所述第二中子屏蔽部252背离所述第二中子反射装置的一侧上。其中,第二中子屏蔽部252与动物200的保护部位对应,所述第二光子屏蔽部242与动物200的照射部位对应。
在另一个可选的实施方式中,所述第二光子屏蔽部242通过胶水粘合在所述中子反射机构23上,所述第二中子屏蔽部252通过胶水粘合在所述第二光子屏蔽部242背离所述中子反射机构23的一侧上。
相较于金属材料和非金属材料之间的粘合,非金属材料和非金属材料的粘合一般地更为牢固。考虑到第二中子屏蔽部252和中子反射机构23为非金属材料,而第二光子屏蔽部242为金属材料,因此,图8示例中的结构相较于后一个实施例一般更为牢固。
所述壳体A21朝向所述中子反射机构23的一侧与所述中子反射机构23贴合。所述壳体A21的外周可以与第二基体32(中子反射机构23)的外周重合。
在使用时,可以将壳体A21贴在第一基体31上,然后将动物200置入容纳空间210内,再将第二基体32和第一基体31固定连接,即可实现动物200的快速定位安装。
或者,也可以将壳体A21设置在第二基体32上,然后将动物200置入容纳空间210内,再将第二基体32固定连接,即可实现动物200的快速定位安装。
优选地,所述容纳空间210内能拆卸地设置有用于固定动物200的垫片27。在壳体A21设置在第一基体31上之后,可以将垫片27沿轴线Y方向插入所述容纳空间210内,再将第二基体32与壳体A21连接上,由此实现更快速地定位安装。考虑到垫片27的牢固性,还可以在壳体A21的中心设置有固定件(图中未示出),由此,在垫片27被插入至预设位置时,垫片27的四周均被限制。
在一个优选的实施方式中,所述第一基体31、所述壳体A21、所述第二基体32之间可以设置有第一定位机构34。所述第一定位机构34包括沿所述轴线Y方向设置在所述第一基体31、所述壳体A21、所述第二基体32外缘上的贯通槽341以及穿设在所述贯通槽341内的紧固部。考虑到该动物照射装置20的厚度较大,所述紧固部可以包括自该动物照射装置20的一侧穿入所述贯通槽341的第一紧固单元342和自该动物照射装置20的另一侧穿入所述贯通槽341的第二紧固单元343,所述第一紧固单元342和所述第二紧固单元343之间能在贯通槽341内通过螺纹等方式的拆卸连接。
优选地,所述第二中子屏蔽机构26还包括与所述贯通槽341连通的定位空间344。所述第二慢化件222设置有沿径向向外延伸的突出部,所述突出部能嵌入所述第二中子屏蔽机构26的定位空间344内。所述第二慢化件222上设置有与所述贯通槽341相对连通并能供所述 紧固部穿过的连通孔。
当然的,在其他可选的实施方式中,所述第一定位机构34可以为诸如扣接、卡接等其他的快速连接方式。
为了进一步提高第二基体32和壳体A21之间的精准定位,所述壳体A21和所述第二基体32之间可以设置有第二定位机构35。所述第二定位机构35包括沿所述轴线Y方向设置在所述壳体A21和所述第二基体32的贯通孔351以及穿设在所述贯通孔351内的固定部352。所述固定部352可以为诸如螺栓、螺钉、定位销等连接件。
优选地,为了便于操作,在所述第二基体32或者中子反射机构23背离所述壳体A21的一侧还可以设置有把手33。
结合图3、图4和图5所示,本申请实施例还公开了一种动物辐照系统100,包括:
用于产生放射线的放射源10,所述放射源10包括具有预设孔径的束流孔洞,本实施例中放射源10可以包括中子产生装置11、射束整形体12、准直器13,束流孔洞为设置在准直器13上的射束出口;在另一实施例中,可以不设置准直器,束流孔洞为设置在射束整形体12上的射束出口。
如上述的动物照射装置20穿设在所述束流孔洞即射束出口内,所述动物照射装置20的最大外径等于或略小于所述束流孔洞的预设孔径。
借由上述结构,动物照射装置20的直径与BSA射束出口直径一致,可以刚好放入BSA射束出口内,不用另外的固定装置,保持位置不变。
所述动物照射装置的最大外径等于或略小于所述束流孔洞的预设孔径,可以理解为,在保证所述动物照射装置能置于所述束流孔洞的前提条件下,所述动物照射装置20的最大外径无限接近于所述束流孔洞的预设孔径。换言之,所述动物照射装置20和所述束流孔洞之间可以形成一定的间隙,但是这两者形成的间隙可以被控制在极小或较小的允许范围内。
综上,本申请实施例一或实施例二所公开的适用于小鼠的动物照射装置具有以下优点:
1、中子反射机构23可以使经过照射空间2101内热中子再次汇聚至照射空间2101内,以提高照射空间2101内的热中子剂量;与此同时,光子屏蔽机构24可以使容纳空间210内的例如伽马射线等有害粒子维持在较低的水平,第一中子屏蔽机构25可以使保护空间2102内的中子剂量维持在较低水平。由此,可以优化动物200体内剂量分布来达到预设要求。
2、第二中子屏蔽机构26可以使慢化机构22产生的热中子进行汇聚,以更集中地辐射至照射空间2101。
3、当壳体A21由能反射热中子的材料制成时,壳体21也可以将进入其内的热中子进行反射并且汇聚至照射空间2101。
4、第三光子屏蔽部243可以进一步减少由壳体21汇聚带来的对动物非照射部位的辐射影响。
如图16和图17所示,本申请实施例三公开了一种动物照射装置20,包括:
动物容纳机构201,所述动物容纳机构201沿一轴线Y方向延伸,所述动物容纳机构201具有沿所述轴线Y方向相对的第一端和第二端,所述动物容纳机构201具有容纳动物200并且两端敞开的空腔2012;
第一屏蔽机构202,所述第一屏蔽机构202位于所述动物容纳机构201的第二端,所述第一屏蔽机构202包括沿所述轴线Y方向与所述空腔2012相对设置的第一孔单元2022;
第二屏蔽机构203,所述第二屏蔽机构203位于所述第一屏蔽机构202沿所述轴线Y方向背离所述动物容纳机构201的一侧,所述第二屏蔽机构203包括沿所述轴线Y方向与所述第一孔单元2022相对设置的第二孔单元2032。
参考图18所示,借由上述结构,所述动物容纳机构201可以将动物200容纳其中,放射源10产生的中子束N穿过第二屏蔽机构203、第一屏蔽机构202射向所述动物容纳机构201,第一屏蔽机构202和第二屏蔽机构203可以进行部分中子或γ射线的屏蔽,对无需照射区域进行辐射屏蔽保护。
以动物200为大鼠举例,可以采用该动物照射装置20对大鼠的头部进行中子毒性试验,该实验主要研究热中子的毒性试验,但也会有快中子和伽马射线的存在,毒性实验的剂量组成和占比与人体脑部治疗非肿瘤部位的正常脑部组织所受剂量组成和占比类似。在本实施方式中的毒性试验中,大鼠的照射部位可以包括大鼠的头部。换言之,本试验希望在保证放射源10不变的情况下,使得大鼠的头部可以尽可能多地获得热中子。而大鼠除去头部的部位为非照射部位,可以包括大鼠的头部以下的诸如颈部、躯干、腹部内的器官、尾部等。换言之,本试验希望在使大鼠的头部获得尽可能多的热中子的同时,能够尽量降低其他射线和热中子对非照射部位的危害。
当然的,在其他试验中,也可以采用该动物照射装置20对其他动物200(例如,小鼠、兔子等)进行试验,也可以对其他照射部位(例如尾部、颈部等)进行热中子照射试验,当然试验的目的也可以不仅仅局限在毒性试验,还可以根据需要为治疗试验等其他试验内容。
如图16所示,本申请实施例中的动物容纳机构201沿一轴线Y方向延伸。动物容纳机构201呈矩形体。当然的,在其他可选的实施方式中,动物容纳机构201也可以呈诸如圆柱形、正方体、六边形体等。所述动物容纳机构201具有沿所述轴线Y相对的第一端(图16中的左端)和第二端(图16中的右端)。所述动物容纳机构201的内部形成有一空腔2012。该空腔2012用于容纳动物200。并且该空腔2012朝向所述动物容纳机构201的第二端敞开, 以使得容纳其中的动物200能够从所述动物容纳机构201的第二端部分地伸出。一般的,大鼠的头部、靠近头部的躯干等部分部位位于动物容纳机构201的外部。而其余身体部位(例如,其余部分的躯干、腹部内的脏器、尾部等)位于所述动物容纳机构201内。
在本实施方式中,所述动物容纳机构201可以由碳化硼(B4C)或碳酸锂(Li2CO3)材料制成。碳化硼或碳酸锂可以吸收中子。由此,所述动物容纳机构201可以将位于其内的大鼠的部位和器官保护在内,尤其是减少了进入大鼠腹部器官的中子通量,降低腹部器官的剂量。当然的,制成所述动物容纳机构201的材料也可以根据实际需要进行选取,只要其能够对中子或者其他对于大鼠非照射部位有害的射线或粒子进行屏蔽即可。
为了便于作业,在动物容纳机构201内还可以可拆卸地设置有能固定大鼠的垫片2011。例如,动物容纳机构201的内侧壁具有沿其轴线Y方向延伸的插槽,垫片2011可以通过插接的方式从动物容纳机构201的第一端固定在动物容纳机构201的内部。当然的,在其他可选的实施方式中,垫片2011也可以通过诸如卡接、螺栓连接、粘接、铆接等其他可拆卸的方式与动物容纳机构201固定。由此,可以将大鼠通过诸如捆绑、粘结、捆扎等方式固定在垫片2011上,再将垫片2011固定在动物容纳机构201的内部,就可以实现将大鼠较为稳定地置于所述动物容纳机构201内。
考虑到需要将大鼠部分的身体部位伸出动物容纳机构201进而伸入第一屏蔽机构202和第二屏蔽机构203,垫片2011在固定在动物容纳机构201后,也可以部分地伸出动物容纳机构201以伸入第一屏蔽机构202的第一孔单元2022和第二屏蔽机构203的第二孔单元2032。由此,垫片2011伸出动物容纳机构201的部分可以对大鼠伸出动物容纳机构201的部位提供支撑,以保证大鼠以预设形态接受照射。
一般的,为了加工方便,垫片2011为由PMMA材料制成的板状。当然的,在其他可选的实施方式中,垫片2011的形状和材料也可以根据实际情况进行选取。
考虑到尽量降低该动物照射装置20的调试安装时间和繁琐度,所述动物容纳机构201、位于所述动物容纳机构201第二端一侧的第一屏蔽机构202(下文详述)、位于所述动物容纳机构201第二端一侧的第二屏蔽机构203(下文详述)一般可以处于较为固定的稳定状态。为了避免干涉,所述空腔2012自所述动物容纳机构201的第一端向第二端贯通,而所述垫片2011自所述动物容纳机构201的第一端与所述动物容纳机构201能拆卸地连接。由此,可以将设置有大鼠的垫片2011从动物容纳机构201的第一端置于所述动物容纳机构201内。而在完成照射作业后,也可以将垫片2011从动物容纳机构201的第一端移出。
主要参照图16至图19所示,第一屏蔽机构202位于所述动物容纳机构201的第二端,所述第一屏蔽机构202上开设有沿所述轴线Y方向贯通的第一孔单元2022。所述第一孔单 元2022可以用于供大鼠的部分部位,诸如颈部以及部分的与颈部连接的身体上部等,通过。所述第一孔单元2022沿所述轴线Y方向与所述动物容纳机构201的空腔2012相对。换言之,所述第一孔单元2022在朝向垂直于所述轴线Y截面所形成的投影和所述动物容纳机构201的空腔2012在朝向垂直于所述轴线Y截面所形成的投影至少部分的重合。考虑到大鼠的颈部一般小于大鼠的其他躯干部分。所述第一孔单元2022在朝向垂直于所述轴线Y截面形成的投影一般在所述动物容纳机构201的空腔2012在朝向垂直于所述轴线Y截面形成的投影范围内。
所述第一屏蔽机构202可以由铅或铅合金材料制成。由于铅或铅合金对伽马射线具有较佳的屏蔽功能,因此,第一屏蔽机构202可以减少大鼠位于所述动物容纳机构201内的部位接收到的伽马射线量,由此,可以减少例如腹部器官等器官受到的伽马剂量毒性。当然的,所述第一屏蔽机构202的材料也可以根据实际需要进行选取,只要其能够对伽马射线或者其他对于大鼠或其他动物200的非照射部位有害的射线或粒子进行屏蔽即可。
在一个优选的实施方式中,结合图16、图19和图20所示,考虑到大鼠的颈部和/或肩部一般是自其头部向其尾部逐渐变大,为了使所述第一孔单元2022尽量适配于大鼠的颈部和/或肩部,所述第一屏蔽机构202包括沿所述轴线Y方向排列的至少两个第一屏蔽单元2021,至少两个所述第一屏蔽单元2021形成有用于对大鼠的非照射部位进行限位的第一台阶部2023。任意两个相邻的第一屏蔽单元2021的第一孔单元2022的截面积自第一端向第二端逐渐变小,且所有第一屏蔽单元2021的第一孔单元2022的最小截面积也应该大于大鼠的头部,以保证大鼠可以穿过第一屏蔽机构202。所述第一台阶部2023可以由相邻两个所述第一屏蔽单元2021用于构成所述第一孔单元2022的壁面(图中剖面线示出,剖面线仅作为示意,不具有实际意义)和其中一个较为临近所述动物容纳机构201的所述第一屏蔽单元2021的端面形成。换言之,在大鼠置于该动物照射装置20后,任意一个第一屏蔽单元2021用于构成所述第一孔单元2022的壁面与大鼠的颈部或躯干的最大外径之间形成的间隙保持在较小的范围内,从而使得透过该间隙产生的射线或粒子的泄漏维持在较低或者说允许的范围内。在本实施方式中,所述第一屏蔽单元2021的数量为2个。当然的,在其他可选的实施方式中,所述第一屏蔽单元2021的数量也可以根据需要设置为3个、4个或其他数个。而各个第一屏蔽单元2021的第一孔单元2022的截面积也可以根据大鼠的实际情况进行调整。
主要参照图16和图19所示,所述第二屏蔽机构203位于所述第一屏蔽机构202的第二端,即,所述第二屏蔽机构203位于所述第一屏蔽机构202沿所述轴线Y方向背离所述动物容纳机构201的一侧。所述第二屏蔽机构203上开设有沿所述轴线Y方向贯通的第二孔单元2032。所述第二孔单元2032可以用于供大鼠的头部放置。所述第二孔单元2032沿所述轴线 Y方向与所述第一孔单元2022相对。换言之,所述第二孔单元2032在朝向垂直于所述轴线Y截面所形成的投影和所述第一孔单元2022在朝向垂直于所述轴线Y截面所形成的投影至少部分的重合。考虑到大鼠的头部一般小于大鼠的其他部分,所述第二孔单元2032在朝向垂直于所述轴线Y截面形成的投影一般在所述第一孔单元2022在朝向垂直于所述轴线Y截面形成的投影范围内。
所述第二屏蔽机构203可以由石墨材料制成。由于石墨对热中子具有较高的中子散射截面。因此,第二屏蔽机构203可以尽量增加大鼠头部(主要是脑部)接受的热中子剂量,相应的,也可以减少照射至大鼠非照射部位的热中子剂量。当然的,所述第一屏蔽机构202的材料也可以根据实际需要进行选取,只要其能够对热中子进行较好的反射,使得大鼠或其他大鼠的照射部位获得较多中子,而对非照射部位屏蔽热中子即可。
在一个优选的实施方式中,结合图16、图19和图21所示,考虑到大鼠的头部一般是自其头部向其尾部逐渐变大,为了使所述第二孔单元2032尽量适配于大鼠的头部,所述第二屏蔽机构203包括沿所述轴线Y方向排列的至少两个第二屏蔽单元2031,至少两个所述第二屏蔽单元2031形成有用于对大鼠的非照射部位进行限位的第二台阶部2033。任意两个相邻的第二屏蔽单元2031的第二孔单元2032的截面积自第一端向第二端逐渐变小。所述第二台阶部2033可以由相邻两个所述第二屏蔽单元2031用于构成所述第二孔单元2032的壁面(图中剖面线示出,剖面线仅作为示意,不具有实际意义)和其中一个较为临近所述动物容纳机构201的所述第二屏蔽单元2031的端面形成。换言之,在大鼠置于该动物照射装置20后,任意一个第二屏蔽单元2031用于构成所述第二孔单元2032的壁面与大鼠的头部之间形成的间隙保持在较小的范围内,以尽量提高第二屏蔽机构203对热中子的反射作用。在本实施方式中,所述第二屏蔽单元2031的数量为2个。当然的,在其他可选的实施方式中,所述第二屏蔽单元2031的数量也可以根据需要设置为3个、4个或其他数个。而各个第二屏蔽单元2031的第二孔单元2032的截面积也可以根据大鼠的实际情况进行调整。
基于上述结构,当放射源10产生的中子束N从第二屏蔽机构203的一侧朝向大鼠照射时,第二屏蔽机构203内具有的第一伽马射线量(也就是位于第二屏蔽机构203内的大鼠的照射部位接收到的伽马射线量)和动物容纳机构201内具有的第二伽马射线量(也就是位于动物容纳机构201内的大鼠的非照射部位接收到的伽马射线量)均处于较低的符合要求的范围内。当然的,在第一屏蔽机构202的作用下,动物容纳机构201内具有的第二伽马射线量小于第二屏蔽机构203内具有的第一伽马射线量。同时,在第二屏蔽机构203和动物容纳机构201的作用下,第二屏蔽机构203内具有的第一热中子剂量(也就是位于第二屏蔽机构203内的大鼠的照射部位接收到的热中子剂量)远大于动物容纳机构201内具有的第二热中子剂量(也就是 位于动物容纳机构201内的大鼠的非照射部位接收到的热中子剂量)。并且,第二屏蔽机构203内具有的第一热中子剂量维持在较高的水平,满足诸如毒性试验等试验要求。动物容纳机构201内具有的第二热中子剂量维持在较低或极低的水平,能够尽量减小对大鼠或其他动物200的非照射部位的损害。
在其他可选的实施方式中,参照图22所示,在所述第二屏蔽机构203的第二端可以设置有第三屏蔽机构207。换言之,第三屏蔽机构207沿所述轴线Y方向位于所述第二屏蔽机构203背离所述第一屏蔽机构202的一侧。第三屏蔽机构207能够覆盖所述第一孔单元2022。也就是说,所述第一孔单元2022在朝向垂直于所述轴线Y截面形成的投影完全在所述第三屏蔽机构207的范围内。所述第三屏蔽机构207可以由铅或铅合金材料制成。正如前所述,铅或铅合金对伽马射线较佳的屏蔽效果,因此,第三屏蔽机构207可以屏蔽由靶出射,以及中子慢化等过程产生的伽马射线,更大程度地减少由伽马射线对大鼠或其他动物200造成的伽马剂量毒性。
在其他可选的实施方式中,参照图16和图22所示,在所述第三屏蔽机构207的第二端可以设置有慢化机构204。换言之,慢化机构204沿所述轴线Y方向位于所述第三屏蔽机构207背离所述第二屏蔽机构203的一侧。慢化构能够覆盖所述第一孔单元2022。也就是说,所述第一孔单元2022在朝向垂直于所述轴线Y截面形成的投影完全在所述慢化机构204的范围内。所述慢化机构204可以由具有较高的中子散射截面的材料,例如PMMA材料,制成。由此,慢化机构204可以更加充分地慢化中子,使由放射源10发出的中子束N的能量降至适宜大鼠照射的情况。当然的,所述慢化机构204的材料也可以根据实际需要进行选取,只要其能够达到慢化效果,且符合大鼠或其他动物200照射要求即可。
在一些应用场景下,常常需要对多个动物200(例如大鼠)进行同时照射,来进行对比参照研究。例如,可以对不同体重的大鼠施加相同的剂量,或者,可以对相同体重的大鼠施以不同的剂量,或者,可以对不同体重的大鼠施加同比的剂量。
因此,在一个可选的实施方式中,参照图16和图23所示,所述动物容纳机构201的数量可以为多个,至少为2个。也就是说,所述动物容纳机构201的数量可以根据实际需要设置为2个、3个、6个等。相应的,每个动物容纳机构201也必然设置有对应的第一孔单元2022和第二孔单元2032。
参照图23和图24所示,所述动物照射装置20还可以包括壳体B 205,所述壳体B205内设置有支架206,所述支架206包括与所述壳体205内侧壁连接的第一杆单元2061和与所述第一杆单元2061连接的第二杆单元2062,所述第二杆单元2062包括沿垂直于所述轴线Y方向间隔排列的多个杆件,多个所述动物容纳机构201分别设置在对应的所述杆件上。由此,壳体205 以及支架206可以将所有动物容纳机构201集成在内,便于取放。多个所述动物容纳机构201可以通过与所述第二杆单元2062进行粘结或者捆扎或者卡接等方式,可以较为合理的排列在垂直于所述轴线Y的截面范围内。考虑为了使各个大鼠或动物获得基本相同的热中子剂量,多个所述动物容纳机构201可以沿圆周方向均匀排列。
在本实施方式中,主要参照图23和图24,壳体B205呈圆筒状。所述第一杆单元2061构成与所述壳体B205的内侧壁贴合的弧形状。各个所述第二杆单元2062的杆件通过螺丝或螺栓等固定装置与所述第一杆单元2061固定。所述动物容纳机构201的数量为6个。6个动物容纳机构201沿圆周方向间隔排列。相应的,所述第二杆单元2062包括三排杆件。每排杆件上搭设有两个动物容纳机构201。当然的,动物容纳机构201的数量和杆件的数量也可以根据实际需要进行调整。例如,所述动物容纳机构201的数量可以为4个。所述第二杆单元2062包括2排杆件。或者,所述动物容纳机构201的数量可以为8个。所述第二杆单元2062包括4排杆件。此外,在其他可选的实施方式中,多个动物容纳机构201的排列方式也可以根据实际需要进行选取,例如,可以呈矩形阵列、线性阵列或其他阵列形式。
考虑到支架206的强度,第二杆单元2062可以由诸如铝合金等金属材料制成。考虑到材料成本、轻便、加工方便程度等因素,壳体B205可以由PMMA材料制成。结合图16所示,相应的,为了兼顾自身强度和与壳体B205的连接强度,所述第一杆单元2061可以包括由金属材料制成的主体部2063和由PMMA材料制成的贴合部2064。贴合部2064可以套设在主体部2063的外侧。贴合部2064可以通过粘贴的方式与壳体205实现牢固连接。
在本实施方式中,参照图22和图23所示,所述第一屏蔽机构202中的各个第一屏蔽单元2021呈板状,每个第一屏蔽单元2021上开设有与所述动物容纳机构201对应的第一孔单元2022。所述第二屏蔽机构203中的各个第二屏蔽单元2031呈板状,各个第二屏蔽单元2031上开设有与第一孔单元2022对应的第二孔单元2032。所述第三屏蔽机构207和慢化机构204沿轴线Y方向延伸,并能覆盖所有的第一孔单元2022。具体的,相邻的两个第一屏蔽单元2021之间、相邻的所述第一屏蔽单元2021和相邻的所述第二屏蔽单元2031之间、相邻的两个第二屏蔽单元2031之间、所述第二屏蔽单元2031和所述第三屏蔽机构207、所述第三屏蔽机构207和所述慢化机构204之间可以通过粘结、卡接、螺栓固定等方式实现紧固连接。
在一个可选的实施方式中,参照图22和图23所示,所述慢化机构204的外缘朝向所述壳体B205的一侧凸起2041,以形成用于容纳所述第三屏蔽机构207的凹槽2042。所述第三屏蔽机构207可以呈圆盘状,并且设置在所述慢化机构204的凹槽2042内。所述第二屏蔽机构203和所述第一屏蔽机构202也可以呈圆盘状,并且嵌设在壳体B205内部,所述壳体B205可以通过慢化机构204的外缘与慢化机构204实现密封贴合。采用该种结构,只要保证 慢化机构204的外径和所述壳体B205的外径基本相同或相同即可。
在另一个可选的实施方式中,所述壳体B205的第二端具有翻边,所述第一屏蔽机构202可以通过翻边与壳体B205粘结。而第一屏蔽机构202与第二屏蔽机构203也可以通过粘结等方式实现连接。第三屏蔽机构207与第二屏蔽机构203也可以通过粘结等方式实现连接。慢化机构204和第三屏蔽机构207也可以通过粘结等方式实现连接。
优选地,考虑到外形尺寸的统一,所述慢化机构204、所述第三屏蔽机构207、第二屏蔽机构203、第一屏蔽机构202以及壳体B205的外径尺寸基本相同或相同。
结合图3、图4、图16和图23所示,本申请实施例还公开了一种动物辐照系统100,包括:
用于产生放射线的放射源10,所述放射源10包括具有预设孔径的束流孔洞;本实施例中放射源10可以包括中子产生装置11、射束整形体12、准直器13,束流孔洞为设置在准直器13上的射束出口;在另一实施例中,可以不设置准直器,束流孔洞为设置在射束整形体12上的射束出口。
如上述的动物照射装置20,所述动物照射装置20能置于所述束流孔洞即射束出口内。
借由上述结构,动物照射装置20的直径与BSA射束出口直径一致,可以刚好放入BSA射束出口内,不用另外的固定装置,保持位置不变。
所述动物照射装置20的最大外径与所述束流孔洞的预设孔径相同或相近。可以理解为,在保证所述动物照射装置能置于所述束流孔洞的前提条件下,所述动物照射装置20的最大外径无限接近于所述束流孔洞的预设孔径。换言之,所述动物照射装置20和所述束流孔洞之间可以形成一定的间隙,但是这两者形成的间隙可以被控制在极小或较小的允许范围内。
在前述的例子中,所述第一屏蔽机构202和所述第二屏蔽机构203位于所述壳体B205内部时,所述壳体B205和所述慢化机构204的最大外径可以被认为该动物照射装置20的最大外径。
在前述的例子中,当所述慢化机构204、所述第三屏蔽机构207、第二屏蔽机构203、第一屏蔽机构202以及壳体B205的外径相同或基本相同的情况下,这些部件中的最大外径可以被认定为该动物照射装置20的最大外径。
在一个优选的实施方式中,束流孔的中心线(图3中的X轴)与慢化机构204的中心线、第三屏蔽机构207的中心线、第二屏蔽机构203的中心线、第一屏蔽机构202的中心线、壳体B205的中心线重合。在实际情况下,此处的重合也可以在允许的范围内存在一定的误差。此外,多个动物容纳机构201还可以沿以束流孔的中心线(图3中的X轴)为中心的圆周方向排列。
综上,本申请实施例三所公开的动物照射装置具有以下有点:
1、第一屏蔽机构202和第二屏蔽机构203可以调整中子束N流,优化动物200体内剂量分布;
2、动物容纳机构201可以为能够吸收中子的材料制成,来保护动物200的器官,尤其是大鼠腹部内的器官;
3、壳体205和支架206可以起到固定支撑动物容纳机构201的目的;
4、第一台阶部2023和/或第二台阶部2033均考虑到了动物200,尤其是大鼠的实际身体形态特征,从而使其更适配于实际作业情况;
5、第三屏蔽机构207和慢化机构204能够对动物200的头部的剂量起到控制和保护的效果,慢化机构204充分慢化中子,第三屏蔽机构207可屏蔽伽马射线。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的申请专利范围,所以凡是运用本发明说明书及图式内容所做的等效技术变化,均包含于本发明的申请专利范围内。
本说明书中的各个实施例采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而不脱离本申请的精神,希望所附的实施方式包括这些变形和变化而不脱离本申请。

Claims (17)

  1. 一种动物照射装置,其特征在于,包括:
    沿一轴线方向延伸的壳体,所述壳体形成供动物放置的容纳空间,所述容纳空间包括相互连通的照射空间和保护空间;所述壳体具有沿所述轴线方向相对的第一侧和第二侧;
    慢化机构,所述慢化机构位于所述壳体的第一侧;
    中子反射机构,所述中子反射机构位于所述壳体的第二侧;
    沿所述轴线方向,所述容纳空间和所述慢化机构之间,或者,所述容纳空间和所述中子反射机构之间,设有能屏蔽伽马射线的光子屏蔽机构;
    沿所述轴线方向,所述容纳空间和所述慢化机构之间,或者,所述容纳空间和所述中子反射机构之间,设有能屏蔽热中子的第一中子屏蔽机构。
  2. 根据权利要求1所述的动物照射装置,其特征在于,所述光子屏蔽机构包括沿所述轴线方向位于所述容纳空间和所述慢化机构之间的第一光子屏蔽部,以及沿所述轴线方向位于所述容纳空间和所述中子反射机构之间的第二光子屏蔽部;
    所述第一中子屏蔽机构包括沿所述轴线方向位于所述容纳空间和所述慢化机构之间的第一中子屏蔽部,以及沿所述轴线方向位于所述容纳空间和所述中子反射机构之间的第二中子屏蔽部;
    其中,所述第一光子屏蔽部和所述第二光子屏蔽部在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述照射空间和所述保护空间;
    所述第一中子屏蔽部和所述第二中子屏蔽部在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述保护空间。
  3. 根据权利要求1所述的动物照射装置,其特征在于,所述光子屏蔽机构包括设置在所述容纳空间的内侧壁上的第三光子屏蔽部。
  4. 根据权利要求1所述的动物照射装置,其特征在于,所述壳体由能反射热中子的材料制成。
  5. 根据权利要求4所述的动物照射装置,其特征在于,所述壳体由PMMA材料制成。
  6. 根据权利要求1所述的动物照射装置,其特征在于,所述慢化机构的外周侧套设有能反射中子的第二中子屏蔽机构。
  7. 根据权利要求6所述的动物照射装置,其特征在于,所述第二中子屏蔽机构由Teflon或PTFE或石墨材料制成。
  8. 根据权利要求6所述的动物照射装置,其特征在于,所述第二中子屏蔽机构、所述壳体和所述中子反射机构的外周在朝向垂直所述轴线的截面的投影重合。
  9. 根据权利要求1所述的动物照射装置,其特征在于,所述慢化机构包括第一慢化件和第二慢化件,所述第一慢化件开设有分别与所述照射空间对应的照射孔,所述第二慢化件设置在所述第一慢化件背离所述壳体的一侧,所述第二慢化件能覆盖所述照射孔。
  10. 根据权利要求9所述的动物照射装置,其特征在于,所述第一慢化件在其背离所述第二慢化件的一侧设置有定位部,所述第一中子屏蔽部通过所述定位部与所述第一慢化件连接,所述第一光子屏蔽部叠设在所述第一中子屏蔽部上。
  11. 根据权利要求1所述的动物照射装置,其特征在于,所述容纳空间、所述光子屏蔽机构和所述第一中子屏蔽机构分别具有多个,所述光子屏蔽机构和所述第一中子屏蔽机构分别与所述容纳空间一一对应,多个所述容纳空间沿圆周方向间隔排列,任一个所述容纳空间的照射空间沿径向位于对应的所述保护空间的内侧;所述壳体的中心设置有沿其轴线方向延伸的连通槽,所述连通槽与任一个所述容纳空间相连通,所述中子反射机构上设置有与所述连通槽连通的呼吸孔。
  12. 根据权利要求1所述的动物照射装置,其特征在于,所述容纳空间内能拆卸地设置有用于固定动物的垫片。
  13. 根据权利要求1所述的动物照射装置,其特征在于,所述中子反射机构包括沿所述轴线方向层叠设置的多个中子反射单元,每个所述中子反射机构的厚度不大于20厘米。
  14. 一种动物照射装置,其特征在于,包括:
    第一基体,所述第一基体包括中子慢化装置、设置在所述中子慢化装置上的第一屏蔽装置;
    沿轴线方向延伸的壳体,所述壳体内形成有用于放置动物的容纳空间;
    第二基体,所述第二基体包括中子反射机构、设置在所述中子反射机构上的第二屏蔽装置;
    所述壳体沿所述轴线方向设置在所述第一基体和所述第二基体之间;
    其中,所述第一屏蔽装置、所述第二屏蔽装置以及所述中子反射机构在朝向垂直于所述轴线的截面上的投影至少部分地覆盖所述容纳空间。
  15. 根据权利要求14所述的动物照射装置,其特征在于,所述第一基体、所述壳体、所述第二基体的外周重合。
  16. 根据权利要求14所述的动物照射装置,其特征在于,所述壳体沿其轴线方向相对的两侧分别与所述第一基体和所述第二基体贴合。
  17. 一种动物辐照系统,其特征在于,包括:
    用于产生放射线的放射源,所述放射源包括具有预设孔径的束流孔洞,
    如权利要求1-16任一项所述的动物照射装置穿设在所述束流孔洞内,所述动物照射装置的最大外径等于或略小于所述束流孔洞的预设孔径。
PCT/CN2023/127618 2022-10-31 2023-10-30 一种动物照射装置以及动物辐照系统 WO2024093887A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211344733 2022-10-31
CN202211344733.8 2022-10-31
CN202211344748 2022-10-31
CN202211344748.4 2022-10-31
CN202211401657.XA CN117942504A (zh) 2022-10-31 2022-11-10 动物照射装置以及动物辐照系统
CN202211401661.6 2022-11-10
CN202211401657.X 2022-11-10
CN202211401661.6A CN117942505A (zh) 2022-10-31 2022-11-10 一种动物照射装置以及动物辐照系统

Publications (1)

Publication Number Publication Date
WO2024093887A1 true WO2024093887A1 (zh) 2024-05-10

Family

ID=90929714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127618 WO2024093887A1 (zh) 2022-10-31 2023-10-30 一种动物照射装置以及动物辐照系统

Country Status (1)

Country Link
WO (1) WO2024093887A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140270076A1 (en) * 2013-03-15 2014-09-18 The Ohio State University Rodent Ionizing Radiation Treatment Device
CN206167657U (zh) * 2016-08-24 2017-05-17 华中科技大学同济医学院附属同济医院 小鼠放射固定装置
CN213031688U (zh) * 2020-06-28 2021-04-23 中国人民解放军陆军军医大学 用于放射性小肠损伤模型的小鼠固定装置
CN215306976U (zh) * 2021-04-15 2021-12-28 中国疾病预防控制中心辐射防护与核安全医学所(国家卫生健康委核事故医学应急中心) 一种实验小鼠腿部局部照射固定装置
CN114209466A (zh) * 2021-12-21 2022-03-22 长沙市中心医院 实验动物精准放疗装置及方法
CN114522353A (zh) * 2020-11-23 2022-05-24 南京中硼联康医疗科技有限公司 动物辐照系统及其辐照固定装置
CN216629457U (zh) * 2021-12-21 2022-05-31 爱尔眼科医院集团股份有限公司 实验动物精准放疗固定舱
CN115151013A (zh) * 2022-08-31 2022-10-04 兰州大学 一种中子俘获照射系统
KR20220135883A (ko) * 2021-03-31 2022-10-07 (주)플라스바이오 동물 실험용 방사선 차폐 장치
CN219440459U (zh) * 2022-10-31 2023-08-01 中硼(厦门)医疗器械有限公司 一种动物照射装置以及动物辐照系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140270076A1 (en) * 2013-03-15 2014-09-18 The Ohio State University Rodent Ionizing Radiation Treatment Device
CN206167657U (zh) * 2016-08-24 2017-05-17 华中科技大学同济医学院附属同济医院 小鼠放射固定装置
CN213031688U (zh) * 2020-06-28 2021-04-23 中国人民解放军陆军军医大学 用于放射性小肠损伤模型的小鼠固定装置
CN114522353A (zh) * 2020-11-23 2022-05-24 南京中硼联康医疗科技有限公司 动物辐照系统及其辐照固定装置
KR20220135883A (ko) * 2021-03-31 2022-10-07 (주)플라스바이오 동물 실험용 방사선 차폐 장치
CN215306976U (zh) * 2021-04-15 2021-12-28 中国疾病预防控制中心辐射防护与核安全医学所(国家卫生健康委核事故医学应急中心) 一种实验小鼠腿部局部照射固定装置
CN114209466A (zh) * 2021-12-21 2022-03-22 长沙市中心医院 实验动物精准放疗装置及方法
CN216629457U (zh) * 2021-12-21 2022-05-31 爱尔眼科医院集团股份有限公司 实验动物精准放疗固定舱
CN115151013A (zh) * 2022-08-31 2022-10-04 兰州大学 一种中子俘获照射系统
CN219440459U (zh) * 2022-10-31 2023-08-01 中硼(厦门)医疗器械有限公司 一种动物照射装置以及动物辐照系统

Similar Documents

Publication Publication Date Title
US10603516B2 (en) Neutron source for neutron capture therapy
US11109476B2 (en) Filter
EP3666336B1 (en) Neutron capture therapy system
RU2707651C1 (ru) Аппарат для нейтронной терапии
JP6722281B2 (ja) 中性子捕捉療法に用いられるビーム整形体
JP2018161449A (ja) 中性子減速照射装置及び延長コリメータ
EP3795214B1 (en) Neutron capture therapy system and placement table
CN111821580A (zh) 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体
US20230057879A1 (en) Animal irradiation system
CN219440459U (zh) 一种动物照射装置以及动物辐照系统
CN210728446U (zh) 中子捕获治疗系统
CN209060381U (zh) 中子捕获治疗系统
WO2024093887A1 (zh) 一种动物照射装置以及动物辐照系统
Hang et al. Monte Carlo study of the beam shaping assembly optimization for providing high epithermal neutron flux for BNCT based on D–T neutron generator
CN109925606B (zh) 中子捕获治疗系统
TW202419121A (zh) 動物照射裝置以及動物輻照系統
CN219440457U (zh) 动物照射装置以及动物辐照系统
CN214435888U (zh) 动物辐照系统及其辐照固定装置
TWI683683B (zh) 中子捕獲治療系統
CN110523007B (zh) 中子捕获治疗系统
CN117942504A (zh) 动物照射装置以及动物辐照系统
WO2024067111A1 (zh) 中子捕获治疗系统
TW202415418A (zh) 射束整形體及中子捕獲治療系統
Yonai et al. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884818

Country of ref document: EP

Kind code of ref document: A1