WO2017054548A1 - 用于中子捕获治疗的射束整形体 - Google Patents

用于中子捕获治疗的射束整形体 Download PDF

Info

Publication number
WO2017054548A1
WO2017054548A1 PCT/CN2016/089731 CN2016089731W WO2017054548A1 WO 2017054548 A1 WO2017054548 A1 WO 2017054548A1 CN 2016089731 W CN2016089731 W CN 2016089731W WO 2017054548 A1 WO2017054548 A1 WO 2017054548A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion portion
expansion
base portion
neutron
reflector
Prior art date
Application number
PCT/CN2016/089731
Other languages
English (en)
French (fr)
Inventor
刘渊豪
陈韦霖
Original Assignee
南京中硼联康医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510643065.2A external-priority patent/CN106552323B/zh
Priority claimed from CN201520770873.0U external-priority patent/CN205073543U/zh
Application filed by 南京中硼联康医疗科技有限公司 filed Critical 南京中硼联康医疗科技有限公司
Priority to JP2018516559A priority Critical patent/JP6722281B2/ja
Priority to EP16850172.4A priority patent/EP3342458B1/en
Publication of WO2017054548A1 publication Critical patent/WO2017054548A1/zh
Priority to US15/918,262 priority patent/US10898733B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1098Enhancing the effect of the particle by an injected agent or implanted device

Definitions

  • the utility model relates to a beam shaping body, in particular to a beam shaping body for neutron capture treatment.
  • BNCT Boron Neutron Capture Therapy
  • 1Q B boron-containing
  • 1Q B(n, a ) 7 Li neutron capture and nuclear splitting reactions Two heavy charged particles of 4 He and 7 Li are produced.
  • Figure 1 there is shown a schematic diagram of a boron neutron capture reaction. The average energy of the two charged particles is about 2.33 MeV, with high linear transfer (LET), short range characteristics, linear energy transfer of alpha particles. The range is 150 keV/m and 8 ⁇ , respectively, while the 7 Li heavy particles are 175 keV/m, 5 ⁇ .
  • LET linear transfer
  • the total range of the two particles is about one cell size, so the radiation damage caused to the organism can be limited to the cell level.
  • boron-containing drugs are selectively aggregated in tumor cells and matched with appropriate neutron sources, they can achieve local killing of tumor cells without causing too much damage to normal tissues. Because the effectiveness of boron neutron capture therapy depends on the concentration of boron-containing drugs and the number of thermal neutrons in the tumor cell position, it is also called binary cancer therapy; thus, in addition to the development of boron-containing drugs, The improvement of flux and quality of neutron source plays an important role in the study of boron neutron capture therapy.
  • the beam shaping body design of the boron neutron capture treatment is mostly a monolithic fixed structure, and the neutron beam quality of such a beam shaping body is often fixed, but in the actual treatment process,
  • the requirements for neutron beam quality are not the same.
  • Different patients, the location of the tumor, the depth of the tumor, and the type of tumor may be different, which leads to different requirements for the quality of the neutron beam during the treatment, and the beam shaping body of the monolithic fixed structure in the prior art. It is impossible to adjust the quality of the neutron beam according to the specific condition of the patient's tumor to meet the actual situation of the patient. Therefore, it is necessary to provide a new technical solution to solve the above problems.
  • an aspect of the present invention provides a beam shaping body for neutron capture treatment, the beam shaping body including a beam entrance, a target, a retarding body adjacent to the target, and the surrounding In the retarder and the beam exit outside the retardation, the target reacts with a proton beam incident from the beam entrance to generate a neutron, and the retarder will be generated from the target Slowly, the reflector guides the deviated neutrons back to the retarding body to increase the intensity of the epithermal neutron beam, and the retarding body can be replaced to adjust the retarding ability of the retarding body to the neutrons.
  • the retarding body includes a base portion located behind the target and an expansion portion disposed with the base portion, and the expansion portion may be separately replaced to adjust the retarding ability of the retarding body to the neutron.
  • the base portion is adjacent to the rear of the target and fixed to the target, and the expansion portion is attached to the rear of the base portion and adjacent to the base portion.
  • the expansion portion includes at least a first expansion portion and a second expansion portion.
  • the first expansion portion is mounted behind the base portion and adjacent to the base portion.
  • the second expansion portion is mounted behind the first expansion portion and adjacent to the base portion. The first expansion portion, the first expansion portion and the second expansion portion are replaceable separately.
  • the reflector corresponding to the expansion portion is provided with a guide groove extending to the rear of the base portion, the guide groove is provided with a slide rail, and the expansion portion is installed in the guide groove and then moved to the rear of the base portion by the slide rail and adjacent to
  • the guiding groove includes at least a first guiding groove corresponding to the first expansion portion and a second guiding groove opposite to the second expansion portion; when the structure of the first expansion portion and the second expansion portion When the dimensions are the same only when the materials are different, the first expansion portion and the second expansion portion may be respectively installed in the first guiding groove or the second guiding groove; when the first expansion portion and the second expansion portion have different structural dimensions and materials are not simultaneously
  • the first expansion portion is installed in the first guiding slot, and the second expansion portion is installed in the second guiding slot.
  • the reflector further includes a supplementary reflector disposed on both outer sides of the expansion portion and mounted in the guide groove.
  • a supplementary reflector disposed on both outer sides of the expansion portion and mounted in the guide groove.
  • the reflector is provided with a rotating shaft
  • the rotating shaft is provided with a turntable located behind the base portion and rotatable relative to the base portion
  • the expansion portion is mounted in the turntable and then rotates with the turntable to the rear of the base portion and Adjacent to the base portion
  • the turntable includes at least a first turntable corresponding to the first expansion portion and a second turntable corresponding to the second expansion portion; when the first expansion portion and the second expansion portion have the same structural size
  • the first expansion portion and the second expansion portion may be respectively installed in the first rotating wheel or the second rotating portion; when the first expansion portion and the second expansion portion have different structural sizes and materials, the first An extension is mounted in the first turntable, and the second extension is mounted in the second turntable.
  • the reflector further includes a supplementary reflector disposed on the outer circumference of the expansion portion.
  • the supplemental reflector and the reflector surrounding the base portion cooperate with the scattered neutrons. reflection.
  • the material of the base portion, the first extension portion and the second extension portion may be Al, Pb, Ti, Bi, C, D 2 0, A1F 3 , FluentalTM, CaF 2 , Li 2 C0 3 Any one or more of MgF 2 and A1 2 0 3 are prepared.
  • the reflector is made of at least one of Pb or M, and the material of the supplementary reflector is the same as the material of the reflector.
  • the beam shaping body for neutron capture therapy of the present application designs the retarding body as a base portion and an extension portion, and sets the expansion portion as two replaceable parts.
  • the expansion parts of different materials are selected for replacement, so that the retarding body slows down the neutron beam, thereby obtaining the actual needs of the patient in the treatment process.
  • Figure 1 is a schematic diagram of a boron neutron capture reaction
  • FIG. 2 is a schematic structural view of a beam shaping body for neutron capture treatment of the present application
  • FIG. 3 is a schematic structural view of a deployment portion using a guide groove in the first embodiment of the present application
  • FIG. 4 is a schematic structural view of a turntable mounting extension portion used in Embodiment 2 of the present application.
  • Neutron capture therapy has been increasingly used as an effective treatment for cancer in recent years, with boron neutron capture therapy being the most common, and neutrons supplying boron neutron capture therapy can be supplied by nuclear reactors or accelerators.
  • Embodiments of the present application take the accelerator boron neutron capture treatment as an example.
  • the basic components of the accelerator boron neutron capture treatment typically include an accelerator, target and heat removal for accelerating charged particles (eg, protons, helium cores, etc.).
  • the system and the beam shaping body wherein the accelerated charged particles interact with the metal target to generate neutrons, according to the required neutron yield and energy, the energy and current of the accelerated charged particles, and the physicochemical properties of the metal target.
  • the nuclear reactions that are often discussed are 7 Li(p, n ) 7 Be and 9 Be(p,n) 9 B, both of which are endothermic reactions.
  • the energy thresholds for the two nuclear reactions are 1.881 MeV and 2.055 MeV, respectively.
  • the ideal neutron source for boron neutron capture therapy is the superheated neutron of the keV energy level, theoretically, if the proton bombardment with energy is only slightly above the threshold, A metallic lithium target that produces relatively low-energy neutrons that can be used clinically without too much slow processing, but the proton interaction cross section of lithium metal (Li) and base metal (Be) targets and threshold energy Not high, in order to generate a sufficiently large neutron flux, a higher energy proton is usually used to initiate the nuclear reaction.
  • Li lithium metal
  • Be base metal
  • the ideal target should have a high neutron yield, a neutron energy distribution close to the epithermal neutron energy zone, no excessively strong radiation generation, safe and cheap to operate, and high temperature resistance, but in fact can not find a match
  • targets made of lithium metal are used in the examples of the present application.
  • the material of the target can also be made of other metal materials than the metal materials discussed above.
  • the requirements for the heat removal system vary depending on the selected nuclear reaction. For example, 7 Li(p,n) 7 Be has a lower melting point and thermal conductivity coefficient of the metal target (lithium metal), and the requirements for the heat removal system are higher. 9 Be(p,n) 9 B high. A nuclear reaction of 7 Li(p,n) 7 Be is employed in the examples of the present application.
  • the specific conditions of different tumors may be different, so the neutron beam quality produced after the nuclear reaction between the proton and the target
  • the specific requirements may be different.
  • the present application proposes improvements to beam shaping bodies for neutron capture therapy. .
  • it is an improvement for beam shaping bodies for accelerator boron neutron capture therapy.
  • the radiation shaping body 10 includes a beam inlet 11, a target 12, a retarding body 13 adjacent to the target 12, and a surrounding The reflector 14 and the beam outlet 17 outside the retarding body 13.
  • the accelerator boron neutron capture treatment accelerates the proton beam by an accelerator, and the proton beam accelerates to an energy sufficient to overcome the nuclear force of the target, and a 7 Li(p, n ) 7 Be nuclear reaction occurs with the target 12 to generate neutrons (refer to FIG. 1 ).
  • the generated neutrons are decelerated by the retarding body 13, and the scattered neutrons are reflected by the reflector 14 back onto the beam axis and then emitted from the beam exit 17.
  • the retarding body 13 can be made of various materials, and the material of the retarding body 13 has a great influence on the beam neutron energy region, the neutron beam flux, and even the neutron beam forwardness. Therefore, the present application sets the retarding body 13 to be replaceable to solve the situation in which different tumor conditions (including position depth, type) cannot be treated by the same medical device for neutron capture therapy.
  • the retarding body 13 includes a base portion 131 and an extension portion 132, and the base portion 131 and the extension portion 132 are of a split structure.
  • the so-called split structure means that the base portion 131 is located behind the target 12, and the extension portion 132 is attached to the rear of the base portion 131.
  • the base portion 131 may be provided as a replaceable type or as a fixed type. When the base portion 131 is replaceable, the base portion 131 and the extension portion 132 may be replaced, respectively; when the base portion 131 is of a fixed type, only the extension portion 132 is replaced.
  • the base portion 131 and the extension portion 132 may be integrally formed, and the entire retarding body 13 may be replaced for different tumor conditions to change the retarding ability of the retarding body 13.
  • the base portion 131 and the extension portion 132 which are employed are of a split type design, and the base portion 131 is of a fixed type.
  • the base portion 131 of the retarding body 13 is disposed behind the target 12 and is fixed adjacent to the target 12 , and the expansion portion 132 is attached to the rear of the base portion 131 and adjacent to the base portion 131 (in other embodiments, the expansion portion 132 may be A gap is left between the base portion 131 and the extension portion 132 without being adjacent to the base portion 131.
  • the expansion unit 132 includes at least a first extension unit 133 and a second extension unit 134.
  • the first expansion portion 133 is adjacent to the rear of the base portion 131, and the second expansion portion 134 is adjacent to the rear of the first expansion portion 133.
  • the expansion portion 132 forms a stacked structure of two structures, and the first expansion portion 133 And the second extension 134 can be replaced separately.
  • the expansion portion 132 may be arranged in a stack of two or more (three, four, five or more) structures to be more subtle.
  • the ground slowly changes the retarding ability of the slow-moving body to achieve a more precise demand for the neutron beam quality, thereby improving the therapeutic effect against different tumors.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of the present application.
  • a guide groove 141 is defined in the reflector 14.
  • the guide groove 141 is provided with a slide rail 142.
  • the expansion portion 13 is mounted in the guide groove 141, and then slides along the slide rail 142 to the rear of the base portion 132 and is fixed adjacent to the base portion 132.
  • the guide groove 141 includes at least a first guide groove 143 corresponding to the first extension portion 133 and a second guide groove 144 corresponding to the second extension portion 134.
  • the first expansion portion 133 of different materials is selected as long as the neutron beam quality requirements obtained as needed are required.
  • the second expansion portion 134 may be installed in the first guide groove 143 or the second guide groove 144.
  • the material of the expansion portion 132 installed in the first guide groove 143 and the second guide groove 144 can be The neutron beam quality obtained after passing through the retarding body 13 can be achieved as expected, and whether the first expansion portion 133 or the second expansion portion is installed in the first guiding groove 143 and the second guiding groove 144 is There are no restrictions on 134.
  • the neutrons obtained as needed The beam quality is required to select the first expansion portion 133 and the second expansion portion 134 of different materials.
  • the first expansion portion 133 can only be correspondingly installed in the first guiding slot 143, and the second expansion portion 134 can only be correspondingly installed in the second guiding portion 134. In the guide groove 144.
  • the reflector 14 further includes a complementary reflector 145 disposed on both outer sides of the expansion portion 131 and mounted in the guide groove 141.
  • the supplementary reflector 145 may be integrally formed with the extension portion 131 and then mounted in the guide groove 141, or may be separately mounted in the guide groove 141 after the extension portion 131 is mounted in the guide groove 141.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of the present application.
  • a rotating shaft 15 parallel to the center line of the base portion 131 of the retarding body 13 is disposed on the reflector 14, and the rotating shaft 15 is provided with a turntable 146 located rearward of the base portion 131 and rotatable relative to the base portion 131.
  • the expansion unit 132 is attached to the turntable 146 and then rotates around the rotating shaft 15 to the rear of the base portion 131 and is fixed adjacent to the base portion 131.
  • the turntable 146 includes at least a first turntable 147 corresponding to the first extension 133 and a second turntable 148 corresponding to the second extension 144.
  • first expansion portion When the overall structure of the retarding body 13 is a cylinder, the first expansion portion When the structure size of the 133 and the second extension portion 134 are the same, the first extension portion 133 and the second extension portion 134 which are different materials are selected to be mounted on the first turntable 147 or the second turntable 148 as long as the neutron beam quality requirements obtained as required are required. Just in the middle.
  • the material of the expansion portion 132 installed in the first turntable 147 and the second turntable 148 can pass through the retarding body 13
  • the neutron beam quality obtained thereafter can be as expected, and it is not required to mount the first extension 133 or the second extension 134 in the first turntable 147 and the second turntable 148.
  • the overall structure of the retarding body 13 is a cylinder, or a cone or a combination of a cylinder and a cone
  • the structural dimensions of the first extension 133 and the second extension 134 are different, the neutrons obtained as needed
  • the beam quality requires the first expansion portion 133 and the second expansion portion 134 of different materials to be selected.
  • the first expansion portion 133 can only be correspondingly mounted in the first rotating table 147
  • the second expansion portion 134 can only be correspondingly mounted on the second rotating portion. 148.
  • the reflector 14 further includes a supplemental reflector 145 ′ disposed on the outer circumference of the expansion portion 132 .
  • the supplemental reflector 145 ′ may be integrally formed with the extension portion 132 and then mounted in the turntable 146 , or may be mounted on the turntable 146 after the extension portion 131 is mounted on the turntable 146 . It is installed separately in the turntable 146.
  • the expansion portion 132 is rotatably mounted behind the base portion 131 about the rotation axis Z
  • the supplemental reflector 145' reflects the scattered neutrons together with the reflector 14 surrounding the base portion 131, so that the scattered neutrons are reflected. Return to the main axis of the neutron beam to increase the beam intensity of the superheated neutrons.
  • the retarding body 13 is made of a material having a large fast neutron action cross section and a small thermal neutron action cross section.
  • the retarding body 13 is composed of Al, Pb, Ti, Bi, C, D 2 0, At least one of A1F 3 , FluentalTM, CaF 2 , Li 2 C0 3 , MgF 2 and A1 2 0 3 is formed.
  • the base portion 131 of the retarding body 13 is made of Al, Pb, Ti, Bi.
  • At least one or more of C, D 2 0, A1F 3 , Fluental TM , CaF 2 , Li 2 C0 3 , MgF 2 , and A1 2 0 3 are formed, the first extension 133 and the second extension 134
  • the material is also made of at least one or several of Al, Pb, Ti, Bi, C, D 2 0, AlF 3 , FluentalTM, CaF 2 , Li 2 C0 3 , MgF 2 and A1 2 0 3 . That is to say, the materials of the first expansion portion 133, the second expansion portion 134, and the base portion 131 in the present application may be identical to each other or may be different from each other.
  • the reflector 14 is made of a material having a strong neutron reflection capability. As a preferred embodiment, the reflector 14 is made of at least one of Pb or M.
  • a thermal neutron absorber (not shown) may be disposed at a rear end of the retarding body 13, and a gap passage 18, a thermal neutron absorber and a beam outlet 17 may be disposed between the retarding body 13 and the reflector 14.
  • An air passage 19 is provided between the reflectors 14 and a radiation shield 16 for reducing the amount of normal tissue in the non-irradiated area.
  • the so-called gap channel 18 refers to an empty area that is not covered by the solid material and which is easily passed by the neutron beam, and the gap channel 18 can be provided as an air channel or a vacuum channel.
  • the provision of the clearance channel 18 can increase the flux of the epithermal neutrons, and the arrangement of the air channel 19 can continue to direct the neutrons that are offset from the neutron beam main axis back to the main axis to increase the intensity of the epithermal neutron beam.
  • the radiation shield 16 includes a photon shield 161 for shielding leaking photons in the neutron beam and a neutron shield 162 for shielding leaking neutrons in the neutron beam.
  • the photon shield 161 may be provided integrally with the reflector 14, or may be provided in a component type, and the neutron shield 162 may be disposed adjacent to the beam outlet 17.
  • the proton beam is incident from the beam entrance 11 to a nuclear reaction with the target 12 to produce a neutron, the neutron forms a neutron beam, the neutron beam defines a beam main axis, and the formed neutron beam passes through the retarding body 13
  • the sub-guide beam back beam is used to increase the intensity of the epithermal neutron beam to obtain the beam quality that best fits the patient's treatment.
  • the thermal neutron absorber is made of a material having a large cross section with thermal neutrons.
  • the thermal neutron absorber is made of 6 Li.
  • the material of the photon shield 161 is made of lead (Pb), and the material of the neutron shield is made of polyethylene (PE).
  • Pb lead
  • PE polyethylene
  • the photon shield 161 can be made of other materials as long as it functions as a shield photon.
  • the neutron shield 162 can also be made of other materials or can be disposed elsewhere as long as it can satisfy the shielding. The conditions for leaking neutrons will do.
  • the beam shaping body of the neutron capture treatment of the present application only needs to select the retarding body of different materials to adjust the retarding ability of the neutron according to the actual requirements of the tumor on the beam neutron energy zone, the neutron beam flux and the like.
  • the same medical device can be used to treat different patients with a simple structure and strong applicability.
  • the beam shaping body for neutron capture treatment disclosed herein is not limited to the contents described in the above embodiments and the structures represented in the drawings. Obvious modifications, substitutions, or alterations to the materials, shapes and positions of the components in the present application are within the scope of the present application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

一种用于中子捕获治疗的射束整形体(10),所述射束整形体(10)包括射束入口(11)、靶材(12)、邻接于靶材(12)的缓速体(13)、包围在所述缓速体(13)外的反射体(14)及射束出口(17),所述缓速体(13)可以更换以调整缓速体(13)对中子的缓速能力。中子捕获治疗的射束整形体(10)只需要根据肿瘤对射束中子能区、中子射束通量等指标的实际要求选择不同材料的缓速体(13)对中子的缓速能力进行调整,就可以使用同一台医疗设备对不同患者进行治疗,结构简单,适用性强。

Description

用于中子捕获治疗的射束整形体 技术领域
本实用新型涉及一种射束整形体, 尤其涉及一种用于中子捕获治疗的射束整形体。 背景技术
随着原子科学的发展, 例如钴六十、 直线加速器、 电子射束等放射线治疗已成为癌症治 疗的主要手段之一。 然而传统光子或电子治疗受到放射线本身物理条件的限制, 在杀死肿瘤 细胞的同时, 也会对射束途径上大量的正常组织造成伤害; 另外由于肿瘤细胞对放射线敏感 程度的不同, 传统放射治疗对于较具抗辐射性的恶性肿瘤 (如: 多行性胶质母细胞瘤
(glioblastoma multiforme )、 黑色素细胞瘤 (melanoma)) 的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害, 化学治疗(chemotherapy)中的标靶治疗概念便 被应用于放射线治疗中; 而针对高抗辐射性的肿瘤细胞, 目前也积极发展具有高相对生物效 应 (relative biological effectiveness, RBE) 的辐射源, 如质子治疗、 重粒子治疗、 中子捕获治 疗等。 其中, 中子捕获治疗便是结合上述两种概念, 如硼中子捕获治疗, 借由含硼药物在肿 瘤细胞的特异性集聚, 配合精准的中子射束调控, 提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗 (Boron Neutron Capture Therapy, BNCT) 是利用含硼 (1QB )药物对热中 子具有高捕获截面的特性,借由 1QB(n,a) 7Li中子捕获及核分裂反应产生 4He和 7Li两个重荷电粒 子。 参照图 1, 其示出了硼中子捕获反应的示意图, 两荷电粒子的平均能量约为 2.33MeV, 具 有高线性转移 (Linear Energy Transfer, LET), 短射程特征, α粒子的线性能量转移与射程分别 为 150 keV/ m、 8μιη, 而 7Li重荷粒子则为 175 keV/ m、 5μιη, 两粒子的总射程约相当于一个 细胞大小, 因此对于生物体造成的辐射伤害能局限在细胞层级, 当含硼药物选择性地聚集在 肿瘤细胞中, 搭配适当的中子射源, 便能在不对正常组织造成太大伤害的前提下, 达到局部 杀死肿瘤细胞的目的。 因硼中子捕获治疗的成效取决于肿瘤细胞位置含硼药物浓度和热中子数量, 故又被称为 二元放射线癌症治疗 (binary cancer therapy); 由此可知, 除了含硼药物的开发, 中子射源通 量与品质的改善在硼中子捕获治疗的研究中占有重要角色。 然而, 现有技术中硼中子捕获治疗的射束整形体设计多为整体式固定结构, 这样的射束 整形体输出的中子射束品质往往是固定的, 但是在实际治疗过程中, 对中子射束品质的要求 并不是千篇一律的。 不同的患者, 肿瘤的位置、 深浅以及肿瘤的种类就有可能不同, 这就会 导致在治疗过程中对中子射束品质的要求不同, 而现有技术中整体式固定结构的射束整形体 无法根据病患肿瘤的具体情况对中子射束的品质进行调整以配合患者的实际情况进行治疗。 因此, 实有必要提供一种新的技术方案以解决上述问题。
实用新型内容
为了解决上述问题, 本实用新型的一个方面提供一种用于中子捕获治疗的射束整形体, 所述射束整形体包括射束入口、 靶材、 邻接于靶材的缓速体、 包围在所述缓速体外的反射体 及射束出口, 所述靶材与自所述射束入口入射的质子束发生核反应以产生中子, 所述缓速体 将自所述靶材产生的中子缓速, 所述反射体将偏离的中子导回至所述缓速体以提高超热中子 射束强度, 所述缓速体可以更换以调整缓速体对中子的缓速能力。
进一步地, 所述缓速体包括位于靶材后方的基底部和与基底部分体设置的扩充部, 所述 扩充部可以单独更换以调整缓速体对中子的缓速能力。
进一步地, 所述基底部邻接于靶材后方并与靶材固定, 所述扩充部安装于基底部的后方 并邻接于基底部。
进一步地, 所述扩充部至少包括第一扩充部和第二扩充部, 所述第一扩充部安装于基底 部后方并邻接于基底部, 第二扩充部安装于第一扩充部后方并邻接于第一扩充部, 所述第一 扩充部和第二扩充部可单独更换。
进一步地, 所述反射体对应扩充部开设有延伸至基底部后方的导槽, 所述导槽设置有滑 轨, 所述扩充部安装于导槽中后通过滑轨移动至基底部后方并邻接于基底部; 所述导槽至少 包括与第一扩充部相对应得第一导槽和与第二扩充部相对于的第二导槽; 当所述第一扩充部 和第二扩充部的结构尺寸相同仅材料不同时, 第一扩充部和第二扩充部分别可以安装在第一 导槽或者第二导槽中; 当第一扩充部和第二扩充部的结构尺寸不同且材料也不同时, 所述第 一扩充部安装于第一导槽中, 所述第二扩充部安装于第二导槽中。
进一步地, 反射体还包括设于扩充部两外侧且安装于导槽中的补充反射体, 当扩充部通 过滑轨安装于基底部的后方时, 补充反射体和包围在基底部外的反射体共同对散射的中子进 行反射。 进一步地, 所述反射体设有旋转轴, 所述旋转轴上设有位于基底部后方且可相对基底部 转动的转盘, 所述扩充部安装于转盘中后随转盘旋转运动至基底部后方并邻接于基底部; 所 述转盘至少包括与第一扩充部相对应的第一转盘和与第二扩充部相对应的第二转盘; 当所述 第一扩充部和第二扩充部的结构尺寸相同仅材料不同时, 第一扩充部和第二扩充部分别可以 安装在第一转盘或者第二转盘中; 当第一扩充部和第二扩充部的结构尺寸不同且材料也不同 时, 所述第一扩充部安装于第一转盘中, 所述第二扩充部安装于第二转盘中。 进一步地, 反射体还包括设于扩充部外周的补充反射体, 当扩充部绕旋转轴旋转安装于 基底部后方时, 补充反射体与包围在基底部外的反射体共同对散射的中子进行反射。 进一步地, 所述基底部、 第一扩充部和所述第二扩充部的材料皆可由 Al、 Pb、 Ti、 Bi、 C、 D20、 A1F3、 Fluental™、 CaF2、 Li2C03 、 MgF2和 A1203中的任意一种或几种制成。
进一步地, 所述反射体是由 Pb或 M中的至少一种制成, 所述补充反射体的材料和反射 体的材料相同。
与现有技术相比, 本申请具有以下有益效果: 本申请用于中子捕获治疗的射束整形体将 缓速体设计成基底部和扩充部, 将扩充部设置为可以更换的两个部分, 在实际治疗过程中, 结合患者的具体病情 (患者肿瘤的深浅) 选取不同材料的扩充部进行更换, 从而使得缓速体 对中子束进行缓速, 从而得到适合患者在治疗过程中实际需要的中子射束品质, 结构简单, 运用灵活。
附图说明
图 1是硼中子捕获反应示意图;
图 2是本申请用于中子捕获治疗的射束整形体的结构示意图;
图 3是本申请实施方式一中使用导槽安装扩充部的结构示意图;
图 4是本申请实施方式二中使用转盘安装扩充部的结构示意图。
具体实施方式
中子捕获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加, 其中以硼中子捕 获治疗最为常见, 供应硼中子捕获治疗的中子可以由核反应堆或加速器供应。 本申请的实施 例以加速器硼中子捕获治疗为例, 加速器硼中子捕获治疗的基本组件通常包括用于对带电粒 子 (如质子、 氘核等) 进行加速的加速器、 靶材与热移除系统以及射束整形体, 其中加速带 电粒子与金属靶材作用产生中子, 依据所需的中子产率与能量、 可提供的加速带电粒子能量 与电流大小、金属靶材的物化性等特性来挑选合适的核反应,常被讨论的核反应有 7Li(p,n)7Be 及 9Be(p,n)9B, 这两种反应皆为吸热反应。 两种核反应的能量阀值分别为 1.881MeV 和 2.055MeV, 由于硼中子捕获治疗的理想中子源为 keV能量等级的超热中子, 理论上若使用能 量仅稍高于阀值的质子轰击金属锂靶材, 可产生相对低能的中子, 不须太多的缓速处理便可 用于临床, 然而锂金属 (Li) 和铍金属 (Be) 两种靶材与阀值能量的质子作用截面不高, 为 产生足够大的中子通量, 通常选用较高能量的质子来引发核反应。
理想的靶材应具备高中子产率、 产生的中子能量分布接近超热中子能区、 无太多强穿辐 射产生、 安全便宜易于操作且耐高温等特性, 但实际上并无法找到符合所有要求的核反应, 本申请的实施例中采用锂金属制成的靶材。 但是本领域技术人员熟知的, 靶材的材料也可以 由其他除了上述谈论到的金属材料之外的金属材料制成。 针对热移除系统的要求则根据选择的核反应而异, 如 7Li(p,n)7Be因金属靶材 (锂金属) 的熔点及热导系数差, 对热移除系统的要求便较 9Be(p,n)9B 高。 本申请的实施例中采用 7Li(p,n)7Be的核反应。
另外, 在使用中子捕获治疗技术实际治疗过程中, 不同患者肿瘤的具体情况 (肿瘤的位 置、 深浅以及肿瘤的种类) 可能不同, 因此对质子与靶材发生核反应后产生的中子射束品质 的具体要求 (射束中子能区具体范围、 中子射束通量甚至中子射束的前向性等) 可能不同。 为了使得使中子捕获治疗技术更加灵活更加精确地运用于肿瘤患者的实际治疗过程中, 甚至 运用于更多种类的肿瘤治疗中, 本申请对用于中子捕获治疗的射束整形体提出改进。 作为一 种优选地, 是针对用于加速器硼中子捕获治疗的射束整形体的改进。
图 2至图 4为本申请中用于中子捕获治疗的射束整形体 10, 该射速整形体 10包括射束 入口 11、 靶材 12、 邻接于靶材 12的缓速体 13、 包围在缓速体 13外的反射体 14和射束出口 17。 加速器硼中子捕获治疗通过加速器将质子束加速, 质子束加速至足以克服靶材原子核力 的能量, 与靶材 12发生 7Li(p,n)7Be核反应以产生中子 (参照图 1 ), 产生的中子经过缓速体 13减速, 散射的中子由反射体 14反射回射束轴上再从射束出口 17射出。
缓速体 13的制作材料可以有多种, 且缓速体 13的材料对射束中子能区、 中子射束通量 甚至中子射束前向性这些指标都有很大的影响, 因此本申请将缓速体 13设置成可以更换式, 以解决不同肿瘤情况 (包括位置深浅、 类型) 无法使用同一医疗设备进行中子捕获治疗的情 况。
缓速体 13包括基底部 131和扩充部 132, 基底部 131和扩充部 132为分体式结构。 所谓 的分体式结构是指, 基底部 131位于靶材 12后方, 扩充部 132安装于基底部 131后方。基底 部 131可以设置为可更换式, 也可设置为固定式。 当基底部 131为可更换式时, 可以对基底 部 131和扩充部 132分别进行更换; 当基底部 131为固定式时, 仅对扩充部 132进行更换。 当然, 也可以将基底部 131和扩充部 132设置成整体式, 针对不同的肿瘤情况, 对整个缓速 体 13进行更换以改变缓速体 13的缓速能力。
在本实施方式中, 采用的基底部 131和扩充部 132为分体式设计, 且基底部 131为固定 式。将缓速体 13的基底部 131设置在靶材 12的后方并与靶材 12邻接固定, 扩充部 132安装 在基底部 131的后方并邻接于基底部 131 (在其他实施方式中扩充部 132可以不邻接于基底 部 131而使基底部 131与扩充部 132之间留有间隙)。在本实施方式中, 扩充部 132至少包括 第一扩充部 133和第二扩充部 134。第一扩充部 133邻接于基底部 131后方, 第二扩充部 134 邻接于第一扩充部 133后方, 如此使得扩充部 132形成两个结构的层叠式, 第一扩充部 133 和第二扩充部 134分别可以单独更换。 需要指出的是, 因为制作缓速体 13的材料有多种, 可 以将扩充部 132设置成两个以上 (三个、 四个、 五个或者更多) 多个结构的层叠式, 以更加 细微地改变缓速体的缓速能力, 实现对中子射束品质更加精确的需求, 从而提高针对不同肿 瘤的治疗效果。
下面具体介绍下如何实现对缓速体 13的扩充部 132进行更换。
请再次参照图 3,图 3为本申请实施方式一的结构示意图。在反射体 14上开设导槽 141, 导槽 141中设有滑轨 142,扩充部 13安装于导槽 141中后随滑轨 142的滑动运动至基底部 132 后方并与基底部 132邻接固定。 导槽 141至少包括与第一扩充部 133相对应的第一导槽 143 和与第二扩充部 134相对应的第二导槽 144。 当缓速体 13的整体结构为圆柱体, 第一扩充部 133和第二扩充部 134的结构尺寸相同时, 只要根据需要获得的中子射束品质要求选择不同 材料的第一扩充部 133和第二扩充部 134安装在第一导槽 143或者第二导槽 144中即可。 也 就是说, 在这种情况下, 因为第一扩充部 133和第二扩充部 134的结构尺寸相同, 所以只要 安装在第一导槽 143和第二导槽 144中的扩充部 132的材料能够使得经过缓速体 13后得到的 中子射束品质能够达到预期要求即可, 而对第一导槽 143中和第二导槽 144中安装的究竟是 第一扩充部 133还是第二扩充部 134并没有限制。 当缓速体 13的整体结构是圆柱体, 或者圆 锥体又或者是圆柱体和圆锥体的组合, 且第一扩充部 133和第二扩充部 134的结构尺寸不同 时, 根据需要获得的中子射束品质要求选择不同材料的第一扩充部 133和第二扩充部 134, 第一扩充部 133只能对应安装于第一导槽 143中, 第二扩充部 134也只能对应安装于第二导 槽 144中。
反射体 14还包括设于扩充部 131两外侧且安装于导槽 141中的补充反射体 145。 补充反 射体 145可以与扩充部 131做成一个整体后安装于导槽 141中, 也可以在扩充部 131安装于 导槽 141中之后单独分别安装于导槽 141中。 当扩充部 131通过滑轨 142安装于基底部 132 的后方时, 补充反射体 145和包围在基底部 131外的反射体 14共同对散射的中子进行反射, 以使散射的中子被反射回中子射束主轴上, 以提高超热中子的射束强度。
请再次参照图 4, 图 4为本申请实施方式二的结构示意图。 在实施方式二中, 与实施方 式一相同的部件采用与实施方式一同样的数字标记。 在反射体 14上设置一根与缓速体 13的 基底部 131的中心线平行的旋转轴 15, 旋转轴 15上设有位于基底部 131后方且可相对基底 部 131转动的转盘 146。 扩充部 132安装于转盘 146后随转盘绕旋转轴 15旋转至基底部 131 后方并与基底部 131邻接固定。 转盘 146至少包括与第一扩充部 133相对应的第一转盘 147 和与第二扩充部 144相对应的第二转盘 148。 当缓速体 13的整体结构为圆柱体, 第一扩充部 133和第二扩充部 134的结构尺寸相同时, 只要根据需要获得的中子射束品质要求选择不同 材料的第一扩充部 133和第二扩充部 134安装在第一转盘 147或者第二转盘 148中即可。 在 这种情况下, 因为第一扩充部 133和第二扩充部 134的结构尺寸相同, 所以只要安装在第一 转盘 147和第二转盘 148中的扩充部 132的材料能够使得经过缓速体 13后得到的中子射束品 质能够达到预期要求即可,而对第一转盘 147和第二转盘 148中安装的究竟是第一扩充部 133 还是第二扩充部 134并没有要求。 当缓速体 13的整体结构是圆柱体, 或者圆锥体又或者是圆 柱体和圆锥体的组合时, 第一扩充部 133和第二扩充部 134的结构尺寸不同时, 根据需要获 得的中子射束品质要求选择不同材料的第一扩充部 133和第二扩充部 134, 第一扩充部 133 只能对应安装于第一转盘 147中, 第二扩充部 134也只能对应安装于第二转盘 148中。
反射体 14还包括设于扩充部 132外周的补充反射体 145 ', 补充反射体 145 '可以与扩充 部 132做成一个整体后安装于转盘 146中, 也可以在扩充部 131安装于转盘 146之后单独安 装于转盘 146中。当扩充部 132绕旋转轴 Z旋转安装于基底部 131后方时,补充反射体 145 ' 与包围在基底部 131外的反射体 14共同对散射的中子进行反射,以使散射的中子被反射回中 子射束的主轴上, 以提高超热中子的射束强度。
缓速体 13由具有快中子作用截面大、超热中子作用截面小的材料制成,作为一种优选地, 缓速体 13 由 Al、 Pb、 Ti、 Bi、 C、 D20、 A1F3、 Fluental™、 CaF2、 Li2C03 、 MgF2禾口 A1203 中的至少一种制成, 进一步说明, 缓速体 13的基底部 131是由 Al、 Pb、 Ti、 Bi、 C、 D20、 A1F3、 FluentalTM、 CaF2、 Li2C03 、 MgF2和 A1203中的至少一种或者几种制成, 第一扩充部 133和第二扩充部 134的材料也是由 Al、Pb、Ti、Bi、C、D20、 AlF3、Fluental™、CaF2、Li2C03 、 MgF2和 A1203中的至少一种或几种制成。 也就是说, 本申请中第一扩充部 133、 第二扩充部 134以及基底部 131的材料可以相互一致, 也可以彼此不同。 反射体 14由具有中子反射能力 强的材料制成, 作为一种优选实施例, 反射体 14由 Pb或 M中的至少一种制成。
另外, 缓速体 13的后端可设有热中子吸收体 (未图示), 缓速体 13和反射体 14之间设 有间隙通道 18, 热中子吸收体和射束出口 17之间设有空气通道 19, 反射体 14内设有可以减 少非照射区的正常组织剂量的辐射屏蔽 16。 所谓的间隙通道 18指的是未用实体材料覆盖的 空的容易让中子束通过的区域, 该间隙通道 18可以设置为空气信道或者真空信道。 间隙通道 18 的设置可以提高超热中子的通量, 空气通道 19的设置可以持续将偏离中子射束主轴的中 子导回主轴以提高超热中子射束强度。辐射屏蔽 16包括用以屏蔽中子射束中渗漏光子的光子 屏蔽 161和用以屏蔽中子射束中渗漏中子的中子屏蔽 162。 光子屏蔽 161可以与反射体 14设 置为一体, 也可以设置成分体式, 而中子屏蔽 162可以设置在邻近射束出口 17的位置。 质子束自射束入口 11入射与靶材 12发生核反应以产生中子, 中子形成中子射束, 中子 射束限定一根射束主轴, 形成的中子束经过缓速体 13将中子减速至超热中子能区, 热中子吸 收体吸收中子射束中的热中子, 以避免治疗时与浅层正常组织造成过多剂量, 反射体 14将偏 离射束主轴的中子导回射束主轴以提高超热中子射束强度, 从而获得最符合该患者治疗的射 束品质。
热中子吸收体由与热中子作用截面大的材料制成, 作为一种优选实施例, 热中子吸收体 由 6Li制成。 作为一种优选地, 光子屏蔽 161 的材料选用铅 (Pb) 制成, 中子屏蔽的材料选 用聚乙烯 (PE) 制成。 本领域技术人员熟知的, 光子屏蔽 161可以由其他材料制成, 只要起 到屏蔽光子的作用就行, 中子屏蔽 162也可以由其他材料制成, 也可以设置在其它地方, 只 要能够满足屏蔽渗漏中子的条件就行。 本申请中子捕获治疗的射束整形体只需要根据肿瘤对射束中子能区、 中子射束通量等指 标的实际要求选择不同材料的缓速体对中子的缓速能力进行调整, 就可以使用同一台医疗设 备对不同患者进行治疗, 结构简单, 适用性强。 本申请揭示的用于中子捕获治疗的射束整形体并不局限于以上实施例所述的内容以及附 图所表示的结构。在本申请的基础上对其中构件的材料、形状及位置所做的显而易见地改变、 替代或者修改, 都在本申请要求保护的范围之内。

Claims

WO 2017/054548 利 要 求 书 PCT/CN2016/089731 、 一种用于中子捕获治疗的射束整形体,其特征在于:所述射束整形体包括射束入口、靶材、 邻接于靶材的缓速体、包围在所述缓速体外的反射体及射束出口, 所述靶材与自所述射束 入口入射的质子束发生核反应以产生中子, 所述缓速体将自所述靶材产生的中子缓速, 所 述反射体将偏离的中子导回至所述缓速体以提高超热中子射束强度,所述缓速体可以更换 以调整缓速体对中子的缓速能力。
、 根据权利要求 1所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述缓速体包括位 于靶材后方的基底部和与基底部分体设置的扩充部,所述扩充部可以单独更换以调整缓速 体对中子的缓速能力。
、 根据权利要求 2所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述基底部邻接于 靶材后方并与靶材固定, 所述扩充部安装于基底部的后方并邻接于基底部。
、 根据权利要求 2所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述扩充部至少包 括第一扩充部和第二扩充部, 所述第一扩充部安装于基底部后方并邻接于基底部, 第二扩 充部安装于第一扩充部后方并邻接于第一扩充部,所述第一扩充部和第二扩充部可单独更 换。
、 根据权利要求 4所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述反射体对应扩 充部开设有延伸至基底部后方的导槽, 所述导槽设置有滑轨, 所述扩充部安装于导槽中后 通过滑轨移动至基底部后方并邻接于基底部;所述导槽至少包括与第一扩充部相对应得第 一导槽和与第二扩充部相对于的第二导槽;当所述第一扩充部和第二扩充部的结构尺寸相 同仅材料不同时, 第一扩充部和第二扩充部分别可以安装在第一导槽或者第二导槽中; 当 第一扩充部和第二扩充部的结构尺寸不同且材料也不同时,所述第一扩充部安装于第一导 槽中, 所述第二扩充部安装于第二导槽中。
、 根据权利要求 5所述的用于中子捕获治疗的射束整形体, 其特征在于: 反射体还包括设于 扩充部两外侧且安装于导槽中的补充反射体, 当扩充部通过滑轨安装于基底部的后方时, 补充反射体和包围在基底部外的反射体共同对散射的中子进行反射。
、 根据权利要求 4所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述反射体设有旋 转轴, 所述旋转轴上设有位于基底部后方且可相对基底部转动的转盘, 所述扩充部安装于 转盘中后随转盘旋转运动至基底部后方并邻接于基底部;所述转盘至少包括与第一扩充部 相对应的第一转盘和与第二扩充部相对应的第二转盘;当所述第一扩充部和第二扩充部的 结构尺寸相同仅材料不同时,第一扩充部和第二扩充部分别可以安装在第一转盘或者第二 转盘中; 当第一扩充部和第二扩充部的结构尺寸不同且材料也不同时, 所述第一扩充部安 装于第一转盘中, 所述第二扩充部安装于第二转盘中。
、 根据权利要求 7所述的用于中子捕获治疗的射束整形体, 其特征在于: 反射体还包括设于 扩充部外周的补充反射体, 当扩充部绕旋转轴旋转安装于基底部后方时, 补充反射体与包 围在基底部外的反射体共同对散射的中子进行反射。
、 根据权利要求 3所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述基底部、 第一 扩充部和所述第二扩充部的材料皆可由 Al、 Pb、 Ti、 Bi、 C、 D20、 A1F3、 Fluental™、 CaF2、 Li2C03 、 MgF2和 A1203中的任意一种或几种制成。
、 根据权利要求 5或 7所述的用于中子捕获治疗的射束整形体, 其特征在于: 所述反射 体是由 Pb或 Ni中的至少一种制成, 所述补充反射体的材料和反射体的材料相同。
PCT/CN2016/089731 2015-09-30 2016-07-12 用于中子捕获治疗的射束整形体 WO2017054548A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018516559A JP6722281B2 (ja) 2015-09-30 2016-07-12 中性子捕捉療法に用いられるビーム整形体
EP16850172.4A EP3342458B1 (en) 2015-09-30 2016-07-12 Beam shaper for neutron capture therapy
US15/918,262 US10898733B2 (en) 2015-09-30 2018-03-12 Beam shaping assembly for neutron capture therapy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510643065.2 2015-09-30
CN201520770873.0 2015-09-30
CN201510643065.2A CN106552323B (zh) 2015-09-30 2015-09-30 用于中子捕获治疗的射束整形体
CN201520770873.0U CN205073543U (zh) 2015-09-30 2015-09-30 用于中子捕获治疗的射束整形体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/918,262 Continuation US10898733B2 (en) 2015-09-30 2018-03-12 Beam shaping assembly for neutron capture therapy

Publications (1)

Publication Number Publication Date
WO2017054548A1 true WO2017054548A1 (zh) 2017-04-06

Family

ID=58422660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089731 WO2017054548A1 (zh) 2015-09-30 2016-07-12 用于中子捕获治疗的射束整形体

Country Status (4)

Country Link
US (1) US10898733B2 (zh)
EP (1) EP3342458B1 (zh)
JP (1) JP6722281B2 (zh)
WO (1) WO2017054548A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10462893B2 (en) 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
US11024437B2 (en) 2015-05-06 2021-06-01 Neutron Therapeutics Inc. Neutron target for boron neutron capture therapy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717364C1 (ru) * 2015-11-12 2020-03-23 Нойборон Медтех Лтд. Система нейтрон-захватной терапии
WO2019037624A1 (zh) * 2017-08-24 2019-02-28 南京中硼联康医疗科技有限公司 中子捕获治疗系统
WO2019114307A1 (zh) * 2017-12-15 2019-06-20 南京中硼联康医疗科技有限公司 中子捕获治疗系统
TWI757716B (zh) 2019-04-15 2022-03-11 禾榮科技股份有限公司 微創型中子束產生裝置及微創型中子捕獲治療系統
CN111821580A (zh) * 2019-04-17 2020-10-27 中硼(厦门)医疗器械有限公司 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体
US11517769B2 (en) * 2019-07-10 2022-12-06 Ricoh Company, Ltd. Neutron beam transmission adjusting device comprising a neutron beam transmission unit including a neutron reactant, method for producing neutron beam transmission adjusting device, and neutron beam adjusting method
KR102538226B1 (ko) * 2020-11-30 2023-05-31 한국원자력의학원 붕소 중성자 포획치료 장치용 빔 성형장치 및 이를 포함하는 붕소 중성자 포획치료장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022920A (ja) * 2006-07-18 2008-02-07 Hitachi Ltd ホウ素中性子捕捉療法用の医療装置
CN103052425A (zh) * 2010-09-01 2013-04-17 住友重机械工业株式会社 中子束照射系统
JP2014115122A (ja) * 2012-12-06 2014-06-26 Mitsubishi Heavy Industries Mechatronics Systems Ltd 中性子速度調整装置および中性子発生装置
CN104511096A (zh) * 2014-12-08 2015-04-15 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN205073543U (zh) * 2015-09-30 2016-03-09 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319840Y2 (zh) * 1979-03-06 1988-06-02
US7394082B2 (en) 2006-05-01 2008-07-01 Hitachi, Ltd. Ion beam delivery equipment and an ion beam delivery method
CN200998534Y (zh) 2006-05-18 2008-01-02 深圳市华科核医疗技术有限公司 一种医用辐照装置
JP5112105B2 (ja) * 2008-02-18 2013-01-09 住友重機械工業株式会社 減速材及び減速装置
TWI532056B (zh) 2013-10-15 2016-05-01 財團法人工業技術研究院 濾屏與中子束源
DK3032927T3 (en) * 2014-12-08 2017-02-06 Neuboron Medtech Ltd RADIATING DEVICE FOR NEUTRON COLLECTION THERAPY
EP3570294B1 (en) * 2015-05-04 2020-12-23 Neuboron Medtech Ltd. Beam shaping body for neutron capture therapy
RU2717364C1 (ru) * 2015-11-12 2020-03-23 Нойборон Медтех Лтд. Система нейтрон-захватной терапии
RU2717363C1 (ru) * 2015-11-26 2020-03-23 Нойборон Медтех Лтд. Блок формирования пучка для нейтрон-захватной терапии
EP3395404B1 (en) * 2016-01-08 2020-08-19 Neuboron Medtech Ltd. Beam shaper for neutron capture therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022920A (ja) * 2006-07-18 2008-02-07 Hitachi Ltd ホウ素中性子捕捉療法用の医療装置
CN103052425A (zh) * 2010-09-01 2013-04-17 住友重机械工业株式会社 中子束照射系统
JP2014115122A (ja) * 2012-12-06 2014-06-26 Mitsubishi Heavy Industries Mechatronics Systems Ltd 中性子速度調整装置および中性子発生装置
CN104511096A (zh) * 2014-12-08 2015-04-15 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN205073543U (zh) * 2015-09-30 2016-03-09 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024437B2 (en) 2015-05-06 2021-06-01 Neutron Therapeutics Inc. Neutron target for boron neutron capture therapy
US10462893B2 (en) 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
US11553584B2 (en) 2017-06-05 2023-01-10 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target

Also Published As

Publication number Publication date
EP3342458B1 (en) 2019-06-05
EP3342458A4 (en) 2018-08-08
JP2018535717A (ja) 2018-12-06
EP3342458A1 (en) 2018-07-04
US20180193673A1 (en) 2018-07-12
JP6722281B2 (ja) 2020-07-15
US10898733B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2017054548A1 (zh) 用于中子捕获治疗的射束整形体
JP7464672B2 (ja) 中性子捕捉療法用のビーム成形体
CN108325092B (zh) 用于中子捕获治疗的射束整形体
CN107497060B (zh) 用于中子捕获治疗的射束整形体
TWI581821B (zh) 用於中子捕獲治療的射束整形體
TWI642410B (zh) Beam shaping body for neutron capture therapy
CN110180095B (zh) 用于中子捕获治疗的射束整形体
WO2017206485A1 (zh) 辐射剂量测量方法
WO2017088606A1 (zh) 用于中子捕获治疗的射束整形体
CN108325095B (zh) 用于中子捕获治疗的射束整形体
JP2022091813A (ja) 中性子捕捉治療システムおよび粒子線発生装置用のターゲット
WO2017080344A1 (zh) 中子捕获治疗系统
CN205073543U (zh) 用于中子捕获治疗的射束整形体
TW201912199A (zh) 中子捕獲治療系統
WO2019114308A1 (zh) 中子捕获治疗系统
CN109925607B (zh) 中子捕获治疗系统
TWI649012B (zh) Target and neutron capture treatment system for neutron beam generating device
CN106798969B (zh) 用于中子捕获治疗的射束整形体
CN109925610B (zh) 中子捕获治疗系统
CN112933422A (zh) 用于中子线产生装置的靶材
CN109420261B (zh) 中子捕获治疗系统
TWI632933B (zh) Neutron capture therapy system and target for particle beam generating device
CN108934120B (zh) 用于中子线产生装置的靶材及中子捕获治疗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018516559

Country of ref document: JP

Ref document number: 2016850172

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE