WO2018110625A1 - 液晶表示装置、偏光板および偏光子保護フィルム - Google Patents

液晶表示装置、偏光板および偏光子保護フィルム Download PDF

Info

Publication number
WO2018110625A1
WO2018110625A1 PCT/JP2017/044827 JP2017044827W WO2018110625A1 WO 2018110625 A1 WO2018110625 A1 WO 2018110625A1 JP 2017044827 W JP2017044827 W JP 2017044827W WO 2018110625 A1 WO2018110625 A1 WO 2018110625A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyethylene terephthalate
polarizer protective
protective film
liquid crystal
Prior art date
Application number
PCT/JP2017/044827
Other languages
English (en)
French (fr)
Inventor
章太 早川
尭永 阿部
村田 浩一
向山 幸伸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020197019190A priority Critical patent/KR102216520B1/ko
Priority to JP2018556733A priority patent/JP7156034B2/ja
Priority to CN201780075986.0A priority patent/CN110050208B/zh
Publication of WO2018110625A1 publication Critical patent/WO2018110625A1/ja
Priority to JP2022113822A priority patent/JP7396402B2/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a liquid crystal display device, a polarizing plate and a polarizer protective film.
  • a polarizing plate used in a liquid crystal display device is usually configured by sandwiching a polarizer obtained by dyeing iodine in polyvinyl alcohol (PVA) or the like between two polarizer protective films.
  • PVA polyvinyl alcohol
  • TAC triacetylcellulose
  • TAC films are very expensive, and polyester films have been proposed as inexpensive alternative materials (Patent Documents 1 to 3), but there is a problem that rainbow-like color spots are observed.
  • the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film.
  • the transmitted light shows an interference color peculiar to retardation which is a product of birefringence and thickness of the oriented polyester film. Therefore, if a discontinuous emission spectrum such as a cold cathode tube or a hot cathode tube is used as the light source, the transmitted light intensity varies depending on the wavelength, resulting in a rainbow-like color spot (see: Proceedings of the 15th Micro Optical Conference Proceedings, No. 1) 30-31).
  • a white light source having a continuous and broad emission spectrum such as a white light emitting diode as a backlight light source, and further using an oriented polyester film having a certain retardation as a polarizer protective film.
  • Patent Document 4 White light emitting diodes have a continuous and broad emission spectrum in the visible light region. Therefore, focusing on the envelope shape of the interference color spectrum due to the light transmitted through the birefringent body, it is possible to obtain a spectrum similar to the emission spectrum of the light source by controlling the retardation of the oriented polyester film. It was possible to suppress the spots.
  • White light-emitting diodes consisting of light-emitting elements that combine blue light-emitting diodes and yttrium / aluminum / garnet-based yellow phosphors (YAG-based yellow phosphors) have been widely used as backlight sources for liquid crystal display devices. It has been.
  • the emission spectrum of this white light source is widely used as a backlight light source because it has a broad spectrum in the visible light region and is excellent in luminous efficiency.
  • this white LED as a backlight light source, the color can be reproduced only about 20% of the spectrum recognizable by human eyes.
  • the emission spectrum of white light sources has a wide color gamut having clear peak shapes in each wavelength region of R (red), G (green), and B (blue).
  • Corresponding liquid crystal display devices have been developed.
  • a white light source using quantum dot technology a phosphor type white LED light source using a phosphor and a blue LED having a clear emission peak in the R (red) and G (green) regions by excitation light, three wavelengths
  • Liquid crystal display devices that support a wide color gamut using various types of light sources such as white LED light sources of the type have been developed.
  • a liquid crystal display device using a white light source using quantum dot technology as a backlight light source it is said that it is possible to reproduce colors of 60% or more of the spectrum that can be recognized by human eyes.
  • Each of these white light sources has a narrow peak half-value width compared to a light source composed of a white light-emitting diode using a conventional YAG-based yellow phosphor, and is composed of a polyethylene terephthalate resin film having retardation as a constituent member of a polarizing plate. It was newly found that when used as a polarizer protective film, rainbow spots may occur depending on the type of light source.
  • An object is to provide a polarizer protective film, a polarizing plate including the polarizer protective film, and a liquid crystal display device.
  • the present inventors have found that the polyethylene terephthalate resin film has a specific range of retardation, and the degree of orientation relative to the film surface of the (100) plane of the crystal measured by X-ray diffraction is low. It was found that it is so effective in suppressing iridosphere.
  • the representative present invention is as follows.
  • Item 1 A polarizer protective film comprising a polyethylene terephthalate resin film, wherein the polyethylene terephthalate resin film satisfies the following (1) and (2).
  • the polyethylene terephthalate resin film has a retardation of 3000 nm or more and 30000 nm or less (2)
  • the degree of orientation of the (100) plane of the crystal measured by X-ray diffraction is 0.70 or less.
  • Item 2. The polarizer protective film according to Item 1, wherein the polyethylene terephthalate-based resin film has a crystal size of ( ⁇ 105) plane of the crystal measured in the slow axis direction of 36 mm or more.
  • Item 4. A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates, 4. A liquid crystal display device, wherein at least one of the two polarizing plates is the polarizing plate according to item 3.
  • liquid crystal display device polarizing plate and polarizer protective film of the present invention
  • a polyethylene terephthalate resin film as a polarizer protective film is used in a liquid crystal display device compatible with a wide color gamut, or when it is thinned In addition, the generation of rainbow spots on the display screen can be suppressed.
  • the polyethylene terephthalate resin film used for the polarizer protective film of the present invention preferably has a retardation (Re, in-plane retardation) of 3000 nm or more and 30000 nm or less.
  • Re in-plane retardation
  • a preferred lower limit of retardation is 4000 nm
  • a next preferred lower limit is 5000 nm
  • a more preferred lower limit is 6000 nm.
  • the upper limit of retardation is preferably 30000 nm, and the more preferable upper limit is 10000 nm. If the upper limit of 30000 nm is significantly exceeded, not only a further improvement effect of visibility is not obtained, but also the thickness of the film is considerably increased, and the handling property as an industrial material is deteriorated.
  • the difference in refractive index in the film plane is preferably 0.08 or more, more preferably 0.09 or more, and even more preferably 0.10 or more.
  • the upper limit of the refractive index difference is preferably 0.15 or less. It is preferable that the film is strongly stretched in one direction and has a large refractive index difference in the film plane from the viewpoint of further suppressing rainbow spots.
  • the retardation of the present invention can be obtained by measuring the biaxial refractive index and film thickness in the film plane, or by using a commercially available automatic birefringence measuring apparatus such as KOBRA-21ADH (Oji Scientific Instruments). It can also be obtained using.
  • the refractive index in the biaxial direction in the film plane can be determined by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
  • the polyethylene terephthalate-based resin film used for the polarizer protective film of the present invention has an orientation degree of 0.70 or less with respect to the (100) plane of the crystal measured by X-ray diffraction. It is preferable from the viewpoint of suppressing rainbow spots observed from an oblique direction.
  • the degree of orientation of the crystal of the polyethylene terephthalate resin film with respect to the (100) plane is preferably 0.70 or less, more preferably 0.65 or less, more preferably 0.60 or less, more preferably 0. .59 or less, more preferably 0.58 or less.
  • the lower limit is preferably 0.40.
  • the degree of orientation of the crystal with respect to the (100) plane of the crystal is an index indicating the orientation of the polyethylene terephthalate resin film around the molecular chain direction (c-axis), and the lower the value, the more random the orientation around the c-axis. It represents that. The more the orientation around the c axis is random, the more rainbow spots observed from the oblique direction are suppressed.
  • the degree of orientation of the crystal with respect to the film plane of the (100) plane is a half-value width centering on the slow axis direction of the diffraction intensity obtained by pole measurement using an X-ray diffractometer (RINT2100PC, manufactured by Rigaku Corporation). Is a parameter defined as (180-half width) / 180. However, the unit of the full width at half maximum is degrees.
  • the slow axis direction of the film can be determined using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments). Details regarding the measurement of the degree of orientation will be described later in Examples.
  • the polyethylene terephthalate resin film preferably has a crystal size of ( ⁇ 105) plane of 36 ⁇ (angstrom) or more as measured in the slow axis direction by X-ray diffraction.
  • the crystal size of the crystal ( ⁇ 105 plane) is preferably 36 mm or more, more preferably 38 mm or more, and still more preferably 39 mm or more.
  • the upper limit is preferably 60 mm, but about 45 mm is sufficient.
  • the crystal molecular chain direction (c-axis direction) of the polyethylene terephthalate resin film is oriented in the slow axis direction of the film, and the crystal size in the crystal molecular chain direction (c-axis direction) is larger than a specific value. By reducing the orientation around the chain axis (c-axis), it is considered that iridescent color spots are less likely to occur.
  • the crystal size in the molecular chain axis direction of the crystal can be measured as the apparent crystal size of the ( ⁇ 105) plane of the crystal as follows.
  • the crystal size of the ( ⁇ 105) plane of the crystal measured in the slow axis direction is based on the diffraction intensity profile of ⁇ / 2 ⁇ measured in the slow axis direction using an X-ray diffractometer (RINT2500, manufactured by Rigaku Corporation). Then, the diffraction position on the ( ⁇ 105) plane of the crystal and the measured half width (B) can be read and calculated as the apparent crystal size (ACS) using the following formula (Scherrer formula).
  • the X-ray used for the measurement is Cu—K ⁇ ray, and the wavelength is 1.5418 mm.
  • the crystal size of the ( ⁇ 105) plane of the crystal measured in the slow axis direction is an apparent crystal size.
  • is the X-ray wavelength (1.5418 mm)
  • is a half calculated from (B 2 ⁇ b 2 ) 1/2 from the actually measured half width (B) and the correction constant (b).
  • the constant (b) for correction is a half width when silicon powder NIST640b is measured under the same conditions.
  • ⁇ , B, and b are all values in radians.
  • the in-plane orientation degree of the ( ⁇ 105) plane of the crystal is preferably 0.6 or more, more preferably 0.7 or more, and still more preferably 0.8 or more.
  • the in-plane orientation degree of the ( ⁇ 105) plane of the crystal can be measured using an X-ray diffractometer (RINT 2500, manufactured by Rigaku Corporation). In the measurement, the distribution of the diffraction intensity in the circumferential direction of the ( ⁇ 105) plane of the crystal is obtained by rotating ⁇ 360 ° using a sample holder for azimuth measurement while fixing ⁇ / 2 ⁇ . From the half width of the obtained distribution, the parameter defined by (180 ⁇ half width) / 180 is defined as the in-plane orientation degree. The unit of the half width here is degrees.
  • the film in one direction In order to align the molecular chain axis direction of the crystal uniaxially, it is preferable to stretch the film in one direction.
  • in order to increase the degree of orientation in the stretching direction there are methods of increasing the stretching ratio or decreasing the stretching temperature.
  • the stress generated inside may be different in the stretching direction, the direction perpendicular to the stretching direction in the film plane, and the thickness direction.
  • the internal stress differs greatly between the case where the dimension in the direction perpendicular to the stretching direction is made free and the case where the dimension is fixed, as called free end uniaxial stretching and fixed end uniaxial stretching.
  • the polyethylene terephthalate resin film which is a protective film of the present invention, can be manufactured according to a general polyester film manufacturing method.
  • a non-oriented polyethylene terephthalate resin melted from a polyethylene terephthalate resin and extruded into a sheet shape is stretched in the machine direction at a temperature equal to or higher than the glass transition temperature by using a speed difference of a roll, and then stretched by a tenter.
  • stretching to a direction and giving heat processing is mentioned.
  • the film forming conditions of the polyethylene terephthalate resin film will be specifically described.
  • the longitudinal stretching temperature and the transverse stretching temperature are preferably from 100 to 130 ° C, particularly preferably from 110 to 125 ° C.
  • the longitudinal draw ratio is preferably 0.7 to 1.0.
  • the transverse draw ratio is preferably 4.0 to 6.0 times, more preferably 4.0 to 5.5 times, and most preferably 4.5 to 5.5 times.
  • the transverse draw ratio is preferably 1.0 to 3.0 times, more preferably 1.5 to 3.0 times, still more preferably Is 2.0 to 3.0 times.
  • the longitudinal draw ratio is preferably 4.0 to 6.5 times, more preferably 5.0 to 6.0 times.
  • stretch longitudinally after extending
  • the wind speed of the hot air is preferably 6 m / second to 15 m / second, more preferably 8 m / second to 12 m / second.
  • the treatment temperature is preferably 150 to 250 ° C., particularly preferably 180 to 220 ° C. From the viewpoint of lowering the degree of orientation of the (100) plane of the crystal with respect to the film surface, the heat treatment temperature is preferably low. On the other hand, from the viewpoint of increasing the crystal size of the ( ⁇ 105) plane of the crystal, it is preferable that the treatment temperature of the heat treatment is high.
  • the polyethylene terephthalate resin constituting the polyethylene terephthalate resin film 85 mol% or more of the monomer units are preferably ethylene terephthalate.
  • the ethylene terephthalate unit is preferably 90 mol% or more, more preferably 95 mol% or more.
  • a particularly preferable polyethylene terephthalate resin is polyethylene terephthalate which is a homopolymer. The proportion of monomer units can be confirmed by 1 H-NMR measurement.
  • Polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and can easily obtain a large retardation even when the film is thin.
  • the protective film of the present invention desirably has a light transmittance of 20% or less at a wavelength of 380 nm.
  • the light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays.
  • the light transmittance in the present invention is measured in a direction perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
  • the ultraviolet absorber used in the present invention is a known substance.
  • the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • the organic ultraviolet absorber include benzotriazole, benzophenone, cyclic imino ester, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention.
  • benzotriazole type and cyclic imino ester type are particularly preferable.
  • benzophenone ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 ′.
  • cyclic imino ester UV absorbers examples include 2,2 ′-(1,4-phenylene).
  • Bis (4H-3,1-benzoxazin-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl- Examples include 3,1-benzoxazin-4-one, but are not particularly limited thereto.
  • additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants.
  • the polyethylene terephthalate resin film does not substantially contain particles.
  • “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
  • a known method can be used in combination.
  • the ultraviolet absorber and the polymer raw material that have been dried beforehand using a kneading extruder are blended.
  • a master batch can be prepared and blended by, for example, a method of mixing the predetermined master batch and polymer raw material during film formation.
  • the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and mix it economically.
  • a kneading extruder is used, and the extrusion temperature is preferably from 1 to 15 minutes at a temperature not lower than the melting point of the polyethylene terephthalate resin material and not higher than 290 ° C. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. If the extrusion time is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
  • the film has a multilayer structure of at least three layers and an ultraviolet absorber is added to the intermediate layer of the film.
  • a film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be specifically produced as follows. Polyethylene terephthalate resin pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyethylene terephthalate resin pellets are mixed at a predetermined ratio, dried, and then fed to a known melt laminating extruder. The unstretched film is produced by feeding, extruding into a sheet from a slit-shaped die, and cooling and solidifying on a casting roll.
  • a three-layer manifold or a merging block for example, a merging block having a square merging portion
  • a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated
  • An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less. When the filter particle size of the filter medium exceeds 15 ⁇ m, removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • the polyethylene terephthalate resin film of the present invention can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion to the polarizer.
  • the coating solution used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin, and polyurethane resin.
  • coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982.
  • coating solutions include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
  • the easy-adhesion layer can be obtained by applying the coating solution on one or both sides of an unstretched film or a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and further stretching in the transverse direction.
  • the final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.20 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesion with the resulting polarizer may be insufficient. On the other hand, when the coating amount exceeds 0.20 g / m 2 , blocking resistance may be lowered.
  • the coating amount of the easy-adhesion layers on both surfaces may be the same or different, and can be independently set within the above range. .
  • particles it is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 ⁇ m or less. When the average particle diameter of the particles exceeds 2 ⁇ m, the particles easily fall off from the coating layer.
  • particles to be included in the easy adhesion layer for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride,
  • examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
  • a known method can be used as a method for applying the coating solution.
  • reverse roll coating method gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc.
  • spray coating method air knife coating method, wire bar coating method, pipe doctor method, etc.
  • wire bar coating method wire bar coating method
  • pipe doctor method etc.
  • the average particle size of the above particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM) and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) Distance) is measured, and the average value is taken as the average particle diameter.
  • SEM scanning electron microscope
  • the thickness of the polyethylene terephthalate resin film of the present invention is arbitrary, but is preferably in the range of 30 to 300 ⁇ m. Even in the case of a film having a thickness of less than 30 ⁇ m, it is possible in principle to obtain a retardation of 3000 nm or more. However, in that case, the anisotropy of the mechanical properties of the film becomes remarkable, and it becomes easy to cause tearing, tearing, etc., and the practicality as an industrial material is remarkably lowered.
  • the lower limit of the preferred thickness is 40 ⁇ m, and the particularly preferred lower limit of the thickness is 45 ⁇ m.
  • the upper limit of the thickness of the polarizer protective film exceeds 300 ⁇ m, the thickness of the polarizing plate becomes too thick, which is not preferable.
  • the upper limit of the thickness is preferably 200 ⁇ m, preferably 120 ⁇ m, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less, even more preferably 65 ⁇ m or less, and even more preferably 60 ⁇ m or less. Even more preferably, it is 55 ⁇ m or less.
  • the thickness unevenness of the film is small. Since the stretching temperature and the stretching ratio greatly affect the thickness variation of the film, it is preferable to optimize the film forming conditions from the viewpoint of the thickness variation. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes very bad in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
  • the thickness unevenness of the film of the present invention is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% or less. It is particularly preferred.
  • the polyethylene terephthalate resin film has a ratio (Re / Rth) of retardation (Re) to thickness direction retardation (Rth) of preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.6. That's it. From the viewpoint of suppressing rainbow spots when viewed from an oblique direction, the ratio (Re / Rth) is preferably as large as possible.
  • the upper limit of the ratio (Re / Rth) is preferably 2.0 or less, and more preferably 1.8 or less. On the other hand, the upper limit of the ratio (Re / Rth) is preferably less than 1.0 from the viewpoint of thickness unevenness and planarity.
  • ) and ⁇ Nyz (
  • the thickness direction retardation (Rth) can be determined by calculating nx, ny, nz and the film thickness d (nm) and calculating the average value of ( ⁇ Nxz ⁇ d) and ( ⁇ Nyz ⁇ d).
  • nx, ny, and nz are obtained by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
  • the polarizing plate of the present invention has a structure in which a polarizer protective film is bonded to at least one surface of a polarizer in which polyvinyl alcohol (PVA) or the like is dyed with iodine.
  • PVA polyvinyl alcohol
  • the other polarizer protective film it is preferable to use a film having no birefringence such as a TAC film, an acrylic film, and a norbornene-based film.
  • the polarizer protective film may not exist on the other side.
  • a liquid crystal panel includes a rear module, a liquid crystal cell, and a front module in order from the side facing the backlight light source toward the image display side (viewing side).
  • the rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side.
  • the polarizing plate is arranged on the side facing the backlight light source in the rear module, and is arranged on the side (viewing side) displaying the image in the front module.
  • the liquid crystal display device of the present invention includes at least a backlight light source and a liquid crystal cell disposed between two polarizing plates. Moreover, you may have suitably other structures other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film etc. suitably. Of the two polarizing plates, at least one polarizing plate is preferably the polarizing plate of the present invention described above.
  • the configuration of the backlight may be an edge light method using a light guide plate or a reflection plate as a constituent member, or a direct type.
  • the backlight light source of the liquid crystal display device is not particularly limited.
  • the backlight light source may be a phosphor-type white LED (that is, an element that emits white light by combining a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor and a phosphor).
  • the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor.
  • the backlight light source is preferably a white light source having a peak top of an emission spectrum in each wavelength region of 400 nm to less than 495 nm, 495 nm to less than 600 nm, and 600 nm to 780 nm.
  • a white light source using quantum dot technology a phosphor type white LED light source using a phosphor and a blue LED each having an emission peak in the R (red) and G (green) regions by excitation light
  • a three-wavelength method White LED light source, white LED light source combining red laser, and other white LED light source using blue LED and fluoride phosphor (also referred to as “KSF”) whose composition formula is K 2 SiF 6 : Mn 4+ Etc.
  • KSF blue LED and fluoride phosphor
  • the arrangement of the polarizer protective film of the present invention having the specific retardation in the liquid crystal display device is not particularly limited.
  • the polarizing plate disposed on the incident light side (light source side), the liquid crystal cell, and the outgoing light side visible
  • a polarizer protective film on the incident light side of the polarizing plate disposed on the incident light side and / or a polarizing plate disposed on the outgoing light side is a polarizer protective film made of a polyethylene terephthalate resin film having the specific retardation.
  • a particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate disposed on the exit light side is a polyethylene terephthalate resin film having the specific retardation.
  • a polyethylene terephthalate resin film is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since it is not preferable to use the polymer film of the present invention at a place where polarization characteristics are required, it is preferably used as a protective film for a polarizing plate at such a specific position.
  • the biaxial refractive index anisotropy ( ⁇ Nxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), determine the slow axis direction of the film, 4 cm so that the slow axis direction is parallel to the long side of the measurement sample.
  • MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments Co., Ltd.
  • a rectangle of ⁇ 2 cm was cut out and used as a measurement sample.
  • Abbe refracts the biaxial refractive index (refractive index in the slow axis direction: ny, refractive index in the direction perpendicular to the slow axis direction: nx), and refractive index (nz) in the thickness direction.
  • ) of the biaxial refractive index difference was determined as a refractive index anisotropy ( ⁇ Nxy), which was obtained by a refractive index meter (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
  • the thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm.
  • Retardation (Re) was determined from the product ( ⁇ Nxy ⁇ d) of refractive index anisotropy ( ⁇ Nxy) and film thickness d (nm).
  • ) and ⁇ Nyz (
  • the degree of orientation of the crystal with respect to the (100) plane is obtained by pole measurement using an X-ray diffractometer (RINT2100PC, manufactured by Rigaku Corporation). This is a parameter defined by (180 ⁇ half-value width) / 180 from the half-value width around the slow axis direction of the obtained diffraction intensity.
  • the X-ray used for the measurement is Cu—K ⁇ ray, and the wavelength is 1.5418 mm.
  • Pole measurement was performed by the Schulz reflection method with a RINT 2000 goniometer that can be attached to the RINT 2100 PC and a multi-purpose sample stand for poles.
  • the slow axis direction of the sample was determined using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments). Details of the measurement conditions are as follows: the tube voltage is 40 kV, the tube current is 40 mA, the 2 ⁇ fixed angle is 25.830 degrees, the divergence length limit is 1.2 mm, the divergence slit is 1 degree, the scattering slit is 7 mm, and the light receiving slit is 7 mm. .
  • the degree of orientation relative to the film surface was calculated.
  • the unit of the full width at half maximum is degrees.
  • the X-ray used for the measurement is Cu—K ⁇ ray, and the wavelength is 1.5418 mm.
  • the baseline is a straight line connecting the two points of the lowest diffraction intensity between 2 ⁇ and 30 degrees to 42.7 degrees and the lowest diffraction intensity between 42.7 degrees and 50 degrees.
  • is the X-ray wavelength (1.5418 mm)
  • is a half calculated from (B 2 ⁇ b 2 ) 1/2 from the actually measured half width (B) and the correction constant (b).
  • the constant (b) for correction is a half width when silicon powder NIST640b is measured under the same conditions.
  • ⁇ , B, and b are all values in radians.
  • the slow axis direction of the sample was determined using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
  • a polyethylene terephthalate film prepared by the method described later is attached to one side of a polarizer made of PVA and iodine so that the absorption axis of the polarizer and the orientation main axis of the film are perpendicular to each other, and on the opposite surface
  • a commercially available TAC film was attached to form a polarizing plate made of polyethylene terephthalate film / polarizer / TAC film.
  • the obtained polarizing plate was replaced with a polarizing plate on the outgoing light side originally present in a commercially available liquid crystal display device (BRAVIA KDL-40W920A manufactured by SONY).
  • the polarizing plate was replaced so that the polyethylene terephthalate film was on the viewing side so that the absorption axis of the polarizing plate coincided with the absorption axis direction of the polarizing plate originally attached to the liquid crystal display device.
  • the liquid crystal display device includes a light source that emits excitation light and a backlight light source that includes quantum dots.
  • emission spectrum of the backlight source of this liquid crystal display device was measured using a multi-channel spectrometer PMA-12 manufactured by Hamamatsu Photonics, emission spectra having peak tops in the vicinity of 450 nm, 528 nm and 630 nm were observed. The half width of was 16 nm to 34 nm.
  • the exposure time for spectrum measurement was 20 msec.
  • a white image was displayed on the liquid crystal display device thus produced, and visual observation was performed from the front of the display and from an oblique direction, and the occurrence of rainbow unevenness was determined according to the following criteria.
  • the observation angle was an angle formed by a line drawn in the normal direction (vertical) from the center of the display screen and a straight line connecting the display center and the position of the eye at the time of observation.
  • Slight rainbow unevenness was observed in the observation angle range of 0 to 65 degrees.
  • Rainbow irregularities were observed in the observation angle range of 0 to 65 degrees.
  • the obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
  • PET (B) 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one), PET (A) substantially free of particles (inherent 90 parts by mass of a viscosity of 0.62 dl / g) was mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared.
  • Example 1 After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. .
  • the unstretched film on which this coating layer has been formed is guided to a tenter stretching machine, and the edge of the film is held by a clip while being guided to a hot air zone at a temperature of 110 ° C. and a wind speed of a hot air outlet of 12 m / sec. ) 4.0 times and 0.7 times in the film flow direction (MD).
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec.
  • a 50 ⁇ m uniaxially oriented PET film was obtained.
  • Example 2 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 125 ° C. and a wind speed of a hot air outlet of 10 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. An 80 ⁇ m uniaxially oriented PET film was obtained.
  • Example 3 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 120 ° C. and a wind speed of a hot air outlet of 12 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 100 ⁇ m uniaxially oriented PET film was obtained.
  • Example 4 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 130 ° C. and a wind speed of a hot air outlet of 9 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 60 ⁇ m uniaxially oriented PET film was obtained.
  • Example 5 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 125 ° C. and a wind speed of a hot air outlet of 10 m / sec. The film was stretched to be 5.0 times in the width direction and 0.9 times in the flow direction. Next, while maintaining the width stretched in the width direction, heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 60 ⁇ m uniaxially oriented PET film was obtained.
  • Example 6 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 120 ° C. and a wind speed of a hot air outlet of 10 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 40 ⁇ m uniaxially oriented PET film was obtained.
  • Example 7 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 110 ° C. and a wind speed of a hot air outlet of 12 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 125 ⁇ m uniaxially oriented PET film was obtained.
  • Example 8 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 115 ° C. and a wind speed of a hot air outlet of 10 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 60 ⁇ m uniaxially oriented PET film was obtained.
  • Example 9 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 120 ° C. and a wind speed of a hot air outlet of 12 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 130 ° C. and a hot air blowing speed of 10 m / sec. A 50 ⁇ m uniaxially oriented PET film was obtained.
  • Example 1 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 125 ° C. and a wind speed of a hot air outlet of 5 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 225 ° C. and a wind speed of the hot air outlet of 5 m / sec. A 50 ⁇ m uniaxially oriented PET film was obtained.
  • Example 2 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 95 ° C. and a wind speed of a hot air outlet of 10 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 150 ° C. and a hot air blowing speed of 10 m / sec. A 60 ⁇ m uniaxially oriented PET film was obtained.
  • Example 3 The unstretched film produced by the same method as in Example 1 was heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched 1.5 times in the running direction with a roll group having a difference in peripheral speed. Then, it was led to a hot air zone at a temperature of 100 ° C. and a hot air blowing port having a wind speed of 10 m / second, and stretched to 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 50 ⁇ m biaxially oriented PET film was obtained.
  • Example 4 The unstretched film produced by the same method as in Example 1 is guided to a tenter stretching machine, and the end of the film is held by a clip while being guided to a hot air zone at a temperature of 90 ° C. and a wind speed of a hot air outlet of 10 m / sec. It extended
  • heat treatment was performed in a hot air zone at a temperature of 200 ° C. and a hot air blowing speed of 10 m / sec. A 50 ⁇ m uniaxially oriented PET film was obtained.
  • Example 5 The unstretched film produced by the same method as in Example 1 was heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched 3.5 times in the running direction by a roll group having a difference in peripheral speed. After that, the film was guided to a tenter stretching machine, and the end of the film was gripped with a clip, and the temperature of the hot air outlet was guided to a hot air zone of 10 m / second at a temperature of 130 ° C. and stretched to 4.0 times in the width direction. . Next, while maintaining the width stretched in the width direction, heat treatment was performed in a hot air zone at a temperature of 220 ° C. and a hot air outlet having a wind speed of 10 m / sec, and further a relaxation treatment of 3% in the width direction was performed. A 100 ⁇ m biaxially oriented PET film was obtained.
  • Table 1 below shows the results of physical properties, X-ray structural analysis, and rainbow spot observation for the PET films of Examples 1 to 9 and Comparative Examples 1 to 5.
  • the PET films obtained in Examples 2 to 4 and 6 to 9 had an Re / Rth of less than 1 and excellent film flatness.
  • liquid crystal display device polarizing plate and polarizer protective film of the present invention
  • a polyethylene terephthalate resin film as a polarizer protective film is used in a liquid crystal display device compatible with a wide color gamut, or when it is thinned
  • the occurrence of rainbow spots observed on the display screen can be suppressed.

Abstract

偏光板の構成部材である偏光子保護フィルムとしてポリエチレンテレフタレート系樹脂フィルムを、広色域化対応の液晶表示装置に使用した場合や、薄膜化した場合にも、虹斑の発生を抑制でき視認性が改善された液晶表示装置、偏光板、偏光子保護フィルムを提供すること。 ポリエチレンテレフタレート系樹脂フィルムからなる偏光子保護フィルムであって、前記ポリエチレンテレフタレート系樹脂フィルムは下記の(1)及び(2)を満たすことを特徴とする偏光子保護フィルム。(1)ポリエチレンテレフタレート系樹脂フィルムが3000以上30000nm以下のリタデーションを有する、(2)X線回折で測定した結晶の(100)面のフィルム面に対する配向度が0.70以下である

Description

液晶表示装置、偏光板および偏光子保護フィルム
 本発明は、液晶表示装置、偏光板および偏光子保護フィルムに関する。
 液晶表示装置(LCD)に使用される偏光板は、通常ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子を2枚の偏光子保護フィルムで挟んだ構成であり、偏光子保護フィルムとしては主にトリアセチルセルロース(TAC)フィルムが用いられている。近年、LCDの薄型化に伴い、偏光板の薄層化が求められるようになっている。しかし、このために保護フィルムとして用いられているTACフィルムの厚みを薄くすると、充分な機械強度を得ることが出来ず、また透湿性が悪化するという問題が発生する。また、TACフィルムは非常に高価であり、安価な代替素材としてポリエステルフィルムが提案されているが(特許文献1~3)、虹状の色斑が観察されるという問題があった。
 偏光子の片側に複屈折性を有する配向ポリエステルフィルムを配した場合、バックライトユニット、または、偏光子から出射した直線偏光はポリエステルフィルムを通過する際に偏光状態が変化する。透過した光は配向ポリエステルフィルムの複屈折と厚さの積であるリタデーションに特有の干渉色を示す。そのため、光源として冷陰極管や熱陰極管など不連続な発光スペクトルを用いると、波長によって異なる透過光強度を示し、虹状の色斑となる(参照:第15回マイクロオプティカルカンファレンス予稿集、第30~31項)。
 上記の問題を解決する手段として、バックライト光源として白色発光ダイオードのような連続的で幅広い発光スペクトルを有する白色光源を用い、更に偏光子保護フィルムとして一定のリタデーションを有する配向ポリエステルフィルムを用いることが提案されている(特許文献4)。白色発光ダイオードは、可視光領域において連続的で幅広い発光スペクトルを有する。そのため、複屈折体を透過した光による干渉色スペクトルの包絡線形状に着目すると、配向ポリエステルフィルムのリタデーションを制御することで、光源の発光スペクトルと相似なスペクトルを得ることが可能となり、これにより虹斑を抑制することを可能とした。
特開2002-116320号公報 特開2004-219620号公報 特開2004-205773号公報 WO2011/162198
 液晶表示装置のバックライト光源として、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体(YAG系黄色蛍光体)とを組み合わせた発光素子からなる白色発光ダイオード(白色LED)が、従来から広く用いられている。この白色光源の発光スペクトルは、可視光領域で幅広いスペクトルを有しているとともに、発光効率にも優れるため、バックライト光源として汎用されている。しかし、この白色LEDをバックライト光源とした液晶表示装置では、人間の目が認識可能なスペクトルの20%程度しか色を再現することが出来ない。
 一方、近年の色域拡大要求の高まりから、白色光源の発光スペクトルが、R(赤)、G(緑)、B(青)の各波長領域に、それぞれ明確なピーク形状を有する広色域化対応の液晶表示装置が開発されている。例えば、量子ドット技術を利用した白色光源、励起光によりR(赤)、G(緑)の領域に明確な発光ピークを有する蛍光体と青色LEDを用いた蛍光体方式の白色LED光源、3波長方式の白色LED光源等、様々な種類の光源を用いた、広色域化対応の液晶表示装置が開発されている。量子ドット技術を利用した白色光源をバックライト光源とする液晶表示装置の場合、人間の目が認識可能なスペクトルの60%以上の色を再現することが可能になると言われている。
 これらの白色光源は、いずれも従来のYAG系黄色蛍光体を用いた白色発光ダイオードからなる光源と比較してピークの半値幅が狭く、リタデーションを有するポリエチレンテレフタレート系樹脂フィルムを偏光板の構成部材である偏光子保護フィルムとして用いた場合に、光源の種類によっては虹斑が発生する場合があることが新たにわかった。
 また、偏光子保護フィルムのさらなる薄膜化の要望が強くなっており、そのような場合にも、表示画面を斜め方向から観察した場合の虹斑をより抑制することのできるポリエチレンテレフタレート系樹脂フィルム(偏光子保護フィルム)を提供することが求められている。
 すなわち、本発明では、広色域化対応の液晶表示装置の偏光子保護フィルムとしてポリエチレンテレフタレート系樹脂フィルムを使用した場合や、偏光子保護フィルムを薄膜化した場合にも、虹斑の発生を抑制できる、偏光子保護フィルム、それを含む偏光板及び液晶表示装置を提供することを課題とする。
 本発明者らは、鋭意検討した結果、ポリエチレンテレフタレート系樹脂フィルムが特定範囲のリタデーションを有していることに加え、X線回折で測定した結晶の(100)面のフィルム面に対する配向度が低いほど虹斑抑制に効果的であることを見出した。
代表的な本発明は、以下の通りである。
項1.
ポリエチレンテレフタレート系樹脂フィルムからなる偏光子保護フィルムであって、前記ポリエチレンテレフタレート系樹脂フィルムは下記の(1)及び(2)を満たすことを特徴とする偏光子保護フィルム。
(1)ポリエチレンテレフタレート系樹脂フィルムが3000nm以上30000nm以下のリタデーションを有する
(2)X線回折で測定した結晶の(100)面のフィルム面に対する配向度が0.70以下である
項2.
前記ポリエチレンテレフタレート系樹脂フィルムは、遅相軸方向に測定した結晶の(-105)面の結晶サイズが36Å以上である、項1に記載の偏光子保護フィルム。
項3.
偏光子の少なくとも一方の面に項1又は2に記載の偏光子保護フィルムが積層された偏光板。
項4.
バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
前記2つの偏光板のうち、少なくとも一方が項3に記載の偏光板である、液晶表示装置。
 本発明の液晶表示装置、偏光板および偏光子保護フィルムであれば、偏光子保護フィルムとしてのポリエチレンテレフタレート系樹脂フィルムを、広色域化対応の液晶表示装置に使用した場合や、薄膜化した場合にも、表示画面への虹斑の発生を抑制することができる。
 1.偏光子保護フィルム
 本発明の偏光子保護フィルムに用いられるポリエチレンテレフタレート系樹脂フィルムは、3000nm以上30000nm以下のリタデーション(Re、面内リタデーション)を有することが好ましい。リタデーションが3000nm未満では、偏光子保護フィルムとして用いた場合、斜め方向から観察した時に強い干渉色を呈し、良好な視認性を確保することができない。好ましいリタデーションの下限値は4000nm、次に好ましい下限値は5000nm、より好ましい下限値は6000nmである。
 一方、リタデーションの上限は30000nmが好ましく、より好ましい上限は10000nmである。30000nmの上限を著しく超えると更なる視認性の改善効果は実質的に得られないばかりか、フィルムの厚みも相当に厚くなり、工業材料としての取り扱い性が低下するので好ましくない。
 フィルム面内における屈折率差(遅相軸方向の屈折率-進相軸方向の屈折率)は、0.08以上が好ましく、より好ましくは0.09以上、さらに好ましくは0.10以上である。前記屈折率差の上限は0.15以下が好ましい。一方向に強く延伸され、フィルム面内における屈折率差が大きいほうが、虹斑をより抑制する観点から好ましい。
 なお、本発明のリタデーションは、フィルム面内における2軸方向の屈折率とフィルム厚みを測定して求めることもできるし、KOBRA-21ADH(王子計測機器株式会社)といった市販の自動複屈折測定装置を用いて求めることもできる。フィルム面内における2軸方向の屈折率は、アッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めることができる。
 本発明の偏光子保護フィルムに用いるポリエチレンテレフタレート系樹脂フィルムは、特定範囲のリタデーションを有することに加え、X線回折で測定した結晶の(100)面のフィルム面に対する配向度が0.70以下であることが斜め方向から観察される虹斑を抑制する観点から好ましい。ポリエチレンテレフタレート系樹脂フィルムの結晶の(100)面のフィルム面に対する配向度は0.70以下が好ましく、より好ましくは0.65以下であり、より好ましくは0.60以下であり、より好ましくは0.59以下であり、さらに好ましくは0.58以下である。下限は0.40が好ましい。結晶の(100)面のフィルム面に対する配向度は、ポリエチレンテレフタレート系樹脂フィルムの結晶の分子鎖方向(c軸)まわりの配向を示す指標であり、この値が低いほどc軸まわりの配向がランダムであることを表している。このc軸まわりの配向がランダムであるほど、斜め方向から観察される虹斑が抑制される。
 結晶の(100)面のフィルム面に対する配向度は、X線回折装置(株式会社リガク社製、RINT2100PC)を用いて、極点測定により得られた回折強度の遅相軸方向を軸とした半値幅を用いて、(180-半値幅)/180と定義されるパラメーターである。ただし、半値幅の単位は度である。フィルムの遅相軸方向は、分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、求めることができる。配向度の測定に関する詳細は実施例で後述する。
 さらに、前記ポリエチレンテレフタレート系樹脂フィルムは、X線回折で遅相軸方向に測定した結晶の(-105)面の結晶サイズが36Å(オングストローム)以上であることが好ましい。前記結晶の(-105面)の結晶サイズは、36Å以上が好ましく、より好ましくは38Å以上であり、さらに好ましくは39Å以上である。上限は60Åが好ましいが、45Å程度で十分である
 ポリエチレンテレフタレート系樹脂フィルムの結晶の分子鎖方向(c軸方向)がフィルムの遅相軸方向に配向し、結晶の分子鎖方向(c軸方向)の結晶サイズが特定の値より大きく、結晶の分子鎖方向軸(c軸)まわりの配向を低くすることで、より虹状の色斑が発生しにくくなると考えられる。結晶の分子鎖軸方向の結晶サイズは、下記のとおり結晶の(-105)面の見かけの結晶サイズとして測定することができる。
 遅相軸方向に測定した結晶の(-105)面の結晶サイズは、X線回折装置(株式会社リガク社製、RINT2500)を用いて遅相軸方向に測定したθ/2θの回折強度プロファイルから、結晶の(-105)面の回折位置、実測半値幅(B)を読み取り、次式(シェラーの式)を用いて見掛けの結晶サイズ(ACS)として算出することができる。測定に用いたX線は、Cu-Kα線で、波長は1.5418Åである。本発明でいう遅相軸方向に測定した結晶の(-105)面の結晶サイズとは、見掛けの結晶サイズのことである。(ACS=0.9λ/(βcosθ))。ここで、λはX線の波長(1.5418Å)、βは読み取った実測半値幅(B)と補正のための定数(b)から(B-b1/2で計算される半値幅である。なお、補正のための定数(b)は、シリコン粉末NIST640bを同条件で測定したときの半値幅である。β、B、bは、いずれもラジアン単位の値である。
 結晶の(-105)面の面内配向度は、0.6以上が好ましく、より好ましくは0.7以上、さらに好ましくは0.8以上である。結晶の(-105)面の面内配向度は、X線回折装置(株式会社リガク社製、RINT2500)を用いて測定することができる。測定は、θ/2θを固定して方位角測定用サンプルホルダーを用いてサンプルを360°回転させることにより結晶の(-105)面の回折強度の円周方向の分布を得る。得られた分布の半値幅から、(180-半値幅)/180で定義されるパラメーターを面内配向度とする。ここでいう半値幅の単位は度である。
 結晶の分子鎖軸方向を一軸に配向させるためには、フィルムを一方向に延伸することが好ましい。一般に延伸方向への配向度を高めるためには、延伸倍率を高くする、または、延伸温度を低くする方法がある。また、フィルム状物を一軸延伸する際、延伸方向、フィルム平面内で延伸方向に垂直な方向、厚み方向で内部に発生する応力は異なることがある。一般的には、自由端一軸延伸、固定端一軸延伸と呼ばれるように、延伸方向に垂直な方向の寸法を自由にする場合と固定する場合で内部の応力は大きく異なることが知られている。これは、延伸時に発生するポアソン収縮を延伸方向に垂直な方向に自由にするか、抑制するかの違いによるものである。通常のテンター横延伸の場合、端部をクリップで把持しているため、横延伸時にフィルム流れ方向(MD)のポアソン収縮が制限される。したがって、横延伸方向(TD)はもちろん、流れ方向への応力も発生する。厚み方向については制限されないため、応力も発生していないと考えられる。すなわち、延伸方向に配向した分子鎖軸周りの応力分布が、流れ方向と厚み方向で異なることにより、結晶のベンゼン環面の配向が進むと考えられる。よって、結晶の分子鎖方向軸(c軸)まわりの配向を低くするためには、延伸方向への応力とひずみを保ちつつ、配向軸まわりの応力を均等にすることが好ましい。実質的に、厚み方向には応力は働かないので、延伸方向に垂直な方向(流れ方向)への応力を下げることが好ましい。
 本発明の保護フィルムであるポリエチレンテレフタレート系樹脂フィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエチレンテレフタレート系樹脂を溶融し、シート状に押出し成形された無配向ポリエチレンテレフタレート系樹脂をガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。
 ポリエチレンテレフタレート系樹脂フィルムの製膜条件を具体的に説明すると、縦延伸温度、横延伸温度は100~130℃が好ましく、特に好ましくは110~125℃である。
 フィルム幅方向(TD方向)に遅相軸を有するフィルムを製造する場合、縦延伸倍率は0.7~1.0倍が好ましい。また、横延伸倍率は4.0~6.0倍が好ましく、より好ましくは4.0~5.5倍、最も好ましくは4.5~5.5倍である。
 一方、フィルム縦方向(MD方向)に遅相軸を有するフィルムを製造する場合、横延伸倍率は1.0~3.0倍が好ましく、より好ましくは1.5~3.0倍、さらに好ましくは2.0~3.0倍である。縦延伸倍率は4.0~6.5倍が好ましく、より好ましくは5.0~6.0倍である。なお、フィルム縦方向に遅相軸を有するフィルムを製造する場合、結晶の(100)面のフィルム面に対する配向度を下げる観点から、横延伸した後、縦延伸することが好ましい。
 リタデーションを上記範囲に制御するためには、縦延伸倍率と横延伸倍率の比率や、延伸温度、フィルムの厚みを制御することが好ましい。縦横の延伸倍率の差が小さすぎるとリタデーションを高くすることが難しくなり好ましくない。
 結晶の(-105)面の結晶サイズを大きくし、結晶の(100)面のフィルム面に対する配向度を下げるためには、一方向に対する延伸倍率を大きくすること、延伸温度を高く設定すること、その際、フィルムに十分な熱量が加わるように熱風の風速を適切に調整することが好ましい。熱風の風速は、好ましくは6m/秒~15m/秒であり、より好ましくは8m/秒~12m/秒である。フィルムに十分な熱量を加えながら高倍率で一方向に延伸することで、延伸方向への応力とひずみを保ちつつ、配向軸まわりの応力を均等にでき、結晶の(-105)面の結晶サイズを大きくし、結晶の(100)面のフィルム面に対する配向度を下げることができる。
 続く熱処理においては、処理温度は150~250℃が好ましく、特に好ましくは180~220℃である。結晶の(100)面のフィルム面に対する配向度を下げる観点からは、熱処理の処理温度は低いほうが好ましい。一方、結晶の(-105)面の結晶サイズを大きくする観点からは、熱処理の処理温度は高いほうが好ましいため、両者のバランスを考慮して調整することが好ましい。
 ポリエチレンテレフタレート系樹脂フィルムを構成するポリエチレンテレフタレート系樹脂は、モノマーユニットの85モル%以上がエチレンテレフタレートであることが好ましい。エチレンテレフタレート単位は90モル%以上が好ましく、より好ましくは95モル%以上である。なお、共重合成分としては、公知の酸成分、グリコール成分を含んでもよい。ポリエチレンテレフタレート系樹脂として、特に好ましいものは、ホモポリマーであるポリエチレンテレフタレートである。モノマーユニットの割合は、H-NMR測定により確認することができる。
 これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。ポリエチレンテレフタレートは、固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得ることができ、最も好適な素材である。
 また、ヨウ素色素などの光学機能性色素の劣化を抑制することを目的として、本発明の保護フィルムは、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。なお、本発明における光線透過率は、フィルムの平面に対して垂直方向に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。
 本発明の保護フィルムの波長380nmの光線透過率を20%以下にするためには、紫外線吸収剤の種類、濃度、及びフィルムの厚みを適宜調節することが望ましい。本発明で使用される紫外線吸収剤は公知の物質である。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられるが本発明の規定する吸光度の範囲であれば特に限定されない。しかし、耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、より紫外線吸収効果を改善することができる。
 ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤としては例えば2-[2'-ヒドロキシ-5' -(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(5-クロロ(2H)-ベンゾトリアゾール-2-イル)-4-メチル-6-(tert-ブチル)フェノール、2,2'-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールなどが挙げられる。環状イミノエステル系紫外線吸収剤としては例えば2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジン-4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オンなどが挙げられる。しかし特にこれらに限定されるものではない。
 紫外線吸収剤以外に、本発明の効果を妨げない範囲で、触媒以外の各種の添加剤を含有させることも好ましい様態である。添加剤として、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエチレンテレフタレート系樹脂フィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。
 本発明におけるポリエチレンテレフタレート系樹脂フィルムに紫外線吸収剤を配合する方法としては、公知の方法を組み合わせて採用し得るが、例えば予め混練押出機を用い、乾燥させた紫外線吸収剤とポリマー原料とをブレンドしマスターバッチを作製しておき、フィルム製膜時に所定の該マスターバッチとポリマー原料を混合する方法などによって配合することができる。
 この時マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために5~30質量%の濃度にするのが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエチレンテレフタレート系樹脂原料の融点以上、290℃以下の温度で1~15分間で押し出すのが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。押し出し時間1分以下では紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。
 本発明ではフィルムを少なくとも3層以上の多層構造とし、フィルムの中間層に紫外線吸収剤を添加することが好ましい。中間層に紫外線吸収剤を含む3層構造のフィルムは、具体的には次のように作製することができる。外層用としてポリエチレンテレフタレート系樹脂のペレット単独、中間層用として紫外線吸収剤を含有したマスターバッチとポリエチレンテレフタレート系樹脂のペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、2台以上の押出機、3層のマニホールドまたは合流ブロック(例えば角型合流部を有する合流ブロック)を用いて、両外層を構成するフィルム層、中間層を構成するフィルム層を積層し、口金から3層のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。なお、発明では、光学欠点の原因となる、原料のポリエチレンテレフタレート系樹中に含まれている異物を除去するため、溶融押し出しの際に高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率95%)は、15μm以下が好ましい。濾材の濾過粒子サイズが15μmを超えると、20μm以上の異物の除去が不十分となりやすい。
 さらに、本発明のポリエチレンテレフタレート系樹脂フィルムには、偏光子との接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
 本発明においては、偏光子との接着性を改良のために、本発明のフィルムの少なくとも片面(好ましくは、偏光子と接する面)に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。本発明の易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。
 易接着層は、前記塗布液を未延伸フィルム又は縦方向の1軸延伸フィルムの片面または両面に塗布した後、100~150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な易接着層の塗布量は、0.05~0.20g/mに管理することが好ましい。塗布量が0.05g/m未満であると、得られる偏光子との接着性が不十分となる場合がある。一方、塗布量が0.20g/mを超えると、耐ブロッキング性が低下する場合がある。ポリエチレンテレフタレート系樹脂フィルムの両面に易接着層を設ける場合は、両面の易接着層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。
 易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組合せて添加することもできる。
 また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。
 なお、上記の粒子の平均粒径の測定は次の方法により行う。粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を平均粒径とする。
 本発明のポリエチレンテレフタレート系樹脂フィルムの厚みは任意であるが、30~300μmの範囲が好ましい。30μmを下回る厚みのフィルムでも、原理的には3000nm以上のリタデーションを得ることは可能である。しかし、その場合にはフィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する。好ましい厚みの下限は40μmであり、特に好ましい厚みの下限は45μmである。一方、偏光子保護フィルムの厚みの上限は、300μmを超えると偏光板の厚みが厚くなりすぎてしまい好ましくない。偏光子保護フィルムとしての実用性の観点からは厚みの上限は200μmが好ましく、120μmが好ましく、より好ましくは100μm以下、さらにより好ましくは80μm以下、さらにより好ましくは65μm以下、さらにより好ましくは60μm以下、さらにより好ましくは55μm以下である。
 リタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。延伸温度、延伸倍率はフィルムの厚み斑に大きな影響を与えることから、厚み斑の観点からも製膜条件の最適化が好ましい。特にリタデーションを高くするために縦延伸倍率を低くすると、縦厚み斑が悪くなることがある。縦厚み斑は延伸倍率のある特定の範囲で非常に悪くなる領域があることから、この範囲を外したところで製膜条件を設定することが望ましい。
 本発明のフィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。
 ポリエチレンテレフタレート系樹脂フィルムは、そのリタデーション(Re)と厚さ方向リタデーション(Rth)の比(Re/Rth)が、好ましくは0.2以上、より好ましくは0.5以上、さらに好ましくは0.6以上である。斜め方向から見た際の虹斑を抑制する観点から、上記比(Re/Rth)が大きいほど好ましい。比(Re/Rth)の上限は2.0以下が好ましく、より好ましくは1.8以下である。一方、厚みムラや平面性の観点から上記比(Re/Rth)の上限は1.0未満が好ましい。なお、厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|nx-nz|)、△Nyz(=|ny-nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。nx、ny、nzとフィルム厚みd(nm)を求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めることができる。なお、nx、ny、nzは、アッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求める。
2.偏光板
 本発明の偏光板は、ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子の少なくとも一方の面に偏光子保護フィルムを貼り合わせた構造を有し、いずれかの偏光子保護フィルムが前述した本発明の偏光子保護フィルムであることが好ましい。他方の偏光子保護フィルムには、TACフィルムやアクリルフィルム、ノルボルネン系フィルムに代表されるような複屈折が無いフィルムを用いることが好ましい。もしくは他方には偏光子保護フィルムが存在しなくてもよい。本発明に用いられる偏光板には、写り込み防止やギラツキ抑制、キズ抑制などを目的として、種々のハードコートを表面に塗布することも好ましい様態である。
3.液晶表示装置
 一般に、液晶パネルは、バックライト光源に対向する側から画像を表示する側(視認側)に向かう順に、後面モジュール、液晶セルおよび前面モジュールから構成されている。後面モジュールおよび前面モジュールは、一般に、透明基板と、その液晶セル側表面に形成された透明導電膜と、その反対側に配置された偏光板とから構成されている。ここで、偏光板は、後面モジュールでは、バックライト光源に対向する側に配置され、前面モジュールでは、画像を表示する側(視認側)に配置されている。
 本発明の液晶表示装置は少なくとも、バックライト光源と、2つの偏光板の間に配された液晶セルとを構成部材とする。また、これら以外の他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。前記2つの偏光板のうち、少なくとも一方の偏光板が前述した本発明の偏光板であることが好ましい。
 バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わない。
 液晶表示装置のバックライト光源としては、特に限定されない。例えば、バックライト光源は、蛍光体方式の白色LED(すなわち化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子)であってもよい。蛍光体としては、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等がある。
 一実施形態において、バックライト光源は、400nm以上495nm未満、495nm以上600nm未満、及び600nm以上780nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有する白色光源が好ましい。例えば、量子ドット技術を利用した白色光源、励起光によりR(赤)、G(緑)の領域にそれぞれ発光ピークを有する蛍光体と青色LEDを用いた蛍光体方式の白色LED光源、3波長方式の白色LED光源、赤色レーザーを組み合わせた白色LED光源、その他、例えば組成式がKSiF:Mn4+であるフッ化物蛍光体(「KSF」ともいう)等と青色LEDを用いた白色LED光源等が挙げられる。これらは、広色域対応の液晶表示装置のバックライト光源として注目されているものである。
 当該特定のリタデーションを有する本発明の偏光子保護フィルムの液晶表示装置内における配置は特に限定されないが、入射光側(光源側)に配される偏光板と、液晶セルと、出射光側(視認側)に配される偏光板とを配された液晶表示装置の場合、入射光側に配される偏光板の入射光側の偏光子保護フィルム、及び/又は出射光側に配される偏光板の射出光側の偏光子保護フィルムが当該特定のリタデーションを有するポリエチレンテレフタレート系樹脂フィルムからなる偏光子保護フィルムであることが好ましい。特に好ましい態様は、出射光側に配される偏光板の射出光側の偏光子保護フィルムを当該特定のリタデーションを有するポリエチレンテレフタレート系樹脂フィルムとする態様である。上記以外の位置にポリエチレンテレフタレート系樹脂フィルムを配する場合は、液晶セルの偏光特性を変化させてしまう場合がある。偏光特性が必要とされる箇所には本発明の高分子フィルムを用いることは好ましくない為、このような特定の位置の偏光板の保護フィルムとして使用されることが好ましい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、以下の実施例における物性の評価方法は以下の通りである。
(1)リタデーション(Re)
 リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|nx-ny|)とフィルム厚みd(nm)との積(△Nxy×d)と定義されるパラメーターであり、光学的等方性又は異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:ny,遅相軸方向と直交する方向の屈折率:nx)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|nx-ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。
(2)厚さ方向リタデーション(Rth)
 厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|nx-nz|)、△Nyz(=|ny-nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。リタデーションの測定と同様の方法でnx、ny、nzとフィルム厚みd(nm)を求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めた。
(3)結晶の(100)面のフィルム面に対する配向度
 結晶の(100)面のフィルム面に対する配向度は、X線回折装置(株式会社リガク社製、RINT2100PC)を用いて、極点測定により得られた回折強度の遅相軸方向を軸とした半値幅から、(180-半値幅)/180で定義されるパラメーターである。測定に用いたX線は、Cu-Kα線で、波長は1.5418Åである。極点測定はRINT2100PCに装着できるRINT2000ゴニオメータと極点用多目的試料台を取り付け、シュルツ反射法にて行った。サンプルは直径5cmの円状に切り出し、遅相軸方向がβ=90度および270度方向と一致するよう試料台に取り付けた。なお、サンプルの遅相軸方向は、分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて求めた。測定条件の詳細は、管電圧を40kV、管電流を40mA、2θ固定角度を25.830度、発散縦制限を1.2mm、発散スリットを1度、散乱スリットを7mm、受光スリットを7mmとした。透過測定ではα開始角度=0度、α終了角度=35度、αステップ角度=5度とした。反射測定ではα開始角度=25度、α終了角度=90度、αステップ角度=5度とした。走査方法は同心円にβ開始角度=0度、β終了角度=360度、βステップ角度=5度である。
 以下、結晶の(100)面のフィルム面に対する配向度の計算方法を示す。測定で得られたβ=0度およびβ=180度における反射回折強度プロファイルをI(α)(25≦α≦90)とする。横軸をα’(β=0度のときα’=α、β=180度のときα’=180-α)、縦軸を各α’における回折強度とすることで、β=0度および180度における回折強度プロファイルを接続し、回折強度プロファイルI(α’)(25≦α’≦155)が得られる。このとき、α’=90度における回折強度は、β=0度とβ=180度の平均値を用いた。α’=25度および155度での回折強度を結ぶ直線をベースラインとして差し引き、得られた回折強度プロファイルから半値幅を用いて、(180-半値幅)/180により、結晶の(100)面のフィルム面に対する配向度を算出した。半値幅の単位は度である。
(4)結晶の(-105)面の結晶サイズ
 フィルムの遅相軸方向における結晶の(-105)面の結晶サイズは、X線回折装置(株式会社リガク社製、RINT2500)を用いて遅相軸方向に測定したθ/2θの回折強度プロファイルから、結晶の(-105)面の回折位置(2θ=42.7度)における回折ピークの実測半値幅(B)を読み取り、次式(シェラーの式)を用いて見掛けの結晶サイズ(ACS)として算出した。測定に用いたX線は、Cu-Kα線で、波長は1.5418Åである。なお、ベースラインは、2θが30度から42.7度の間で最も回折強度が小さい点と、42.7度から50度の間で最も回折強度の小さい点の2点を直線で繋いだ線とした。(ACS=0.9λ/(βcosθ))。ここで、λはX線の波長(1.5418Å)、βは読み取った実測半値幅(B)と補正のための定数(b)から(B-b1/2で計算される半値幅である。なお、補正のための定数(b)は、シリコン粉末NIST640bを同条件で測定したときの半値幅である。ここで、β、B、bはいずれもラジアン単位の値である。なお、サンプルの遅相軸方向は、分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて求めた。
(5)虹斑観察
 PVAとヨウ素からなる偏光子の片側に後述する方法で作成したポリエチレンテレフタレートフィルムを偏光子の吸収軸とフィルムの配向主軸が垂直になるように貼り付け、その反対の面に市販のTACフィルムを貼り付けて、ポリエチレンテレフタレートフィルム/偏光子/TACフィルムからなる偏光板を作成した。得られた偏光板を、市販の液晶表示装置(SONY社製のBRAVIA KDL-40W920A)に元々存在した出射光側の偏光板と置き換えた。なお、偏光板の吸収軸が、元々液晶表示装置に貼付されていた偏光板の吸収軸方向と一致するように、ポリエチレンテレフタレートフィルムが視認側になるよう偏光板を置き換えた。前記液晶表示装置は、励起光を出射する光源と量子ドットを含むバックライト光源を有する。この液晶表示装置のバックライト光源の発光スペクトルを、浜松ホトニクス製 マルチチャンネル分光器 PMA-12を用いて測定したところ、450nm、528nm、630nm付近にピークトップを有する発光スペクトルが観察され、各ピークトップの半値幅は16nm~34nmであった。なお、スペクトル測定の際の露光時間は20msecとした。
 このようにして作製した液晶表示装置に白画像を表示させ、ディスプレイの正面、および、斜め方向から目視観察を行って、虹ムラの発生について、以下の基準に従って判定した。なお、観察角度は、ディスプレイの画面の中心から法線方向(垂直)に引いた線と、ディスプレイ中心と観察時の眼の位置とを結ぶ直線とのなす角とした。
 ◎: 観察角度0~65度の範囲で、虹ムラは観察されなかった。
 ○: 観察角度0~65度の範囲で、わずかに虹ムラは観察された。
 ×: 観察角度0~65度の範囲で虹ムラが観察された。
 (製造例1-ポリエステルA)
  エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部およびエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。)
 (製造例2-ポリエステルB)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジン-4-オン)10質量部、粒子を実質上含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た。(以後、PET(B)と略す。)
 (製造例3-接着性改質塗布液の調整)
 常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
 (実施例1)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
次いで、リバースロール法によりこの未延伸PETフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度110℃で熱風吹き出し口の風速が12m/秒の熱風ゾーンに導き、幅方向(TD)に4.0倍、フィルム流れ方向(MD)に0.7倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの一軸配向PETフィルムを得た。
 (実施例2)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.5倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約80μmの一軸配向PETフィルムを得た。
 (実施例3)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度120℃で熱風吹き出し口の風速が12m/秒の熱風ゾーンに導き、幅方向に4.5倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約100μmの一軸配向PETフィルムを得た。
 (実施例4)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度130℃で熱風吹き出し口の風速が9m/秒の熱風ゾーンに導き、幅方向に5.5倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約60μmの一軸配向PETフィルムを得た。
 (実施例5)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に5.0倍、流れ方向に0.9倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約60μmの一軸配向PETフィルムを得た。
 (実施例6)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度120℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に5.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約40μmの一軸配向PETフィルムを得た。
 (実施例7)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度110℃で熱風吹き出し口の風速が12m/秒の熱風ゾーンに導き、幅方向に4.5倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約125μmの一軸配向PETフィルムを得た。
 (実施例8)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度115℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.5倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約60μmの一軸配向PETフィルムを得た。
 (実施例9)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度120℃で熱風吹き出し口の風速が12m/秒の熱風ゾーンに導き、幅方向に5.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度130℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの一軸配向PETフィルムを得た。
 (比較例1)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃で熱風吹き出し口の風速が5m/秒の熱風ゾーンに導き、幅方向に4.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃で熱風吹き出し口の風速が5m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの一軸配向PETフィルムを得た。
 (比較例2)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度95℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度150℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約60μmの一軸配向PETフィルムを得た。
 (比較例3)
 実施例1と同じ方法で作製された未延伸フィルムを、加熱されたロール群および赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に1.5倍延伸した後、温度100℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの二軸配向PETフィルムを得た。
 (比較例4)
 実施例1と同じ方法で作製された未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度90℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度200℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約50μmの一軸配向PETフィルムを得た。
 (比較例5)
 実施例1と同じ方法で作製された未延伸フィルムを、加熱されたロール群および赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に3.5倍延伸した後、テンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度130℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンに導き、幅方向に4.0倍となるよう延伸した。次に、幅方向に延伸された幅を保ったまま、温度220℃で熱風吹き出し口の風速が10m/秒の熱風ゾーンで熱処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約100μmの二軸配向PETフィルムを得た。
 実施例1~9、比較例1~5のPETフィルムについて、各物性、X線構造解析、虹斑観察をした結果を以下の表1に示す。なお、実施例2~4、6~9で得られたPETフィルムは、Re/Rthが1未満でありフィルムの平面性に優れていた。
Figure JPOXMLDOC01-appb-T000001
 本発明の液晶表示装置、偏光板および偏光子保護フィルムであれば、偏光子保護フィルムとしてのポリエチレンテレフタレート系樹脂フィルムを、広色域化対応の液晶表示装置に使用した場合や、薄膜化した場合にも、表示画面に観察される虹斑の発生を抑制することができる。

Claims (4)

  1. ポリエチレンテレフタレート系樹脂フィルムからなる偏光子保護フィルムであって、
    前記ポリエチレンテレフタレート系樹脂フィルムは下記の(1)及び(2)を満たすことを特徴とする偏光子保護フィルム。
    (1)ポリエチレンテレフタレート系樹脂フィルムが3000nm以上30000nm以下のリタデーションを有する
    (2)X線回折で測定した結晶の(100)面のフィルム面に対する配向度が0.70以下である
  2. 前記ポリエチレンテレフタレート系樹脂フィルムは、遅相軸方向に測定した結晶の(-105)面の結晶サイズが36Å以上である、請求項1に記載の偏光子保護フィルム。
  3. 偏光子の少なくとも一方の面に請求項1又は2に記載の偏光子保護フィルムが積層された偏光板。
  4. バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配された液晶セルを有する液晶表示装置であって、
    前記2つの偏光板のうち、少なくとも一方が請求項3に記載の偏光板である、液晶表示装置。
PCT/JP2017/044827 2016-12-14 2017-12-14 液晶表示装置、偏光板および偏光子保護フィルム WO2018110625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197019190A KR102216520B1 (ko) 2016-12-14 2017-12-14 액정 표시 장치, 편광판 및 편광자 보호 필름
JP2018556733A JP7156034B2 (ja) 2016-12-14 2017-12-14 液晶表示装置、偏光板および偏光子保護フィルム
CN201780075986.0A CN110050208B (zh) 2016-12-14 2017-12-14 液晶显示装置、偏光板和偏振片保护膜
JP2022113822A JP7396402B2 (ja) 2016-12-14 2022-07-15 液晶表示装置、偏光板および偏光子保護フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242224 2016-12-14
JP2016242224 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110625A1 true WO2018110625A1 (ja) 2018-06-21

Family

ID=62558927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044827 WO2018110625A1 (ja) 2016-12-14 2017-12-14 液晶表示装置、偏光板および偏光子保護フィルム

Country Status (5)

Country Link
JP (2) JP7156034B2 (ja)
KR (1) KR102216520B1 (ja)
CN (2) CN113912994A (ja)
TW (2) TWI795086B (ja)
WO (1) WO2018110625A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071282A1 (ja) * 2018-10-02 2020-04-09 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
KR20200136819A (ko) * 2019-05-28 2020-12-08 주식회사 엘지화학 반사 방지 필름, 편광판 및 디스플레이 장치
EP3715921A4 (en) * 2018-10-17 2021-03-24 Lg Chem, Ltd. ANTI-REFLECTIVE FILM, POLARIZING PLATE AND DISPLAY DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102514152B1 (ko) * 2019-11-06 2023-03-24 삼성에스디아이 주식회사 편광자 보호 필름, 이를 포함하는 편광판 및 이를 포함하는 광학표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053271A (ja) * 2009-08-31 2011-03-17 Teijin Dupont Films Japan Ltd 偏光子支持基材用フィルム
WO2013100041A1 (ja) * 2011-12-28 2013-07-04 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JP2015143758A (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 光学用ポリエステルフィルム、偏光板、画像表示装置、光学用ポリエステルフィルムの製造方法、および易接着層用組成物

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60029920T2 (de) * 1999-04-19 2007-02-22 Toray Industries, Inc. Biaxial orientierte polyesterfolie, verfahren zu deren herstellung, und magnetisches aufzeichnungsmedium
JP4341163B2 (ja) 2000-10-10 2009-10-07 コニカミノルタホールディングス株式会社 偏光板保護フィルム及びそれを用いた偏光板、製造方法、液晶表示装置
JP2004205773A (ja) 2002-12-25 2004-07-22 Konica Minolta Holdings Inc 偏光板、その製造方法及びこれを用いた液晶表示装置
JP4352705B2 (ja) 2003-01-14 2009-10-28 コニカミノルタホールディングス株式会社 偏光板保護フィルムとそれを用いた偏光板及び液晶表示装置
CN1768293A (zh) * 2003-04-09 2006-05-03 日东电工株式会社 具有内部偏振镜的液晶显示器
US20070159576A1 (en) * 2004-03-09 2007-07-12 Kuraray Co. Ltd. Optical device
TW200712579A (en) * 2005-08-12 2007-04-01 Dainippon Printing Co Ltd Protective film for polarizing plate and polarizing plate
CN101253440B (zh) * 2005-08-29 2010-10-06 柯尼卡美能达精密光学株式会社 液晶显示装置
JP2008120071A (ja) * 2006-10-16 2008-05-29 Fujifilm Corp ポリマーフィルム、その製造方法、それを用いた偏光板並びに液晶表示装置
JP2010058455A (ja) * 2008-09-05 2010-03-18 Nippon Shokubai Co Ltd 延伸フィルム
JP5451186B2 (ja) * 2009-06-01 2014-03-26 帝人デュポンフィルム株式会社 偏光子支持基材用一軸配向芳香族ポリエステルフィルム
JP4962661B2 (ja) 2010-06-22 2012-06-27 東洋紡績株式会社 液晶表示装置、偏光板および偏光子保護フィルム
EP2711765B1 (en) * 2011-05-18 2018-07-04 Toyobo Co., Ltd. Liquid crystal display device, use of polarizer, use of protective film
JP6111551B2 (ja) * 2012-08-02 2017-04-12 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム
JP6414380B2 (ja) 2013-06-24 2018-10-31 東洋紡株式会社 偏光子保護フィルム及びこれを用いた偏光板、液晶表示装置
WO2015037527A1 (ja) 2013-09-10 2015-03-19 東洋紡株式会社 液晶表示装置、偏光板及び偏光子保護フィルム
JP6153440B2 (ja) * 2013-10-03 2017-06-28 日東電工株式会社 位相差フィルムおよびその製造方法、ならびに該位相差フィルムを含む円偏光板
JP6169530B2 (ja) 2014-05-13 2017-07-26 富士フイルム株式会社 液晶表示装置
KR101758432B1 (ko) 2014-08-29 2017-07-17 삼성에스디아이 주식회사 편광판 및 이를 포함하는 액정표시장치
KR101645550B1 (ko) * 2015-01-16 2016-08-04 에스케이씨 주식회사 기재 필름 및 이를 포함하는 표시 장치
KR101675124B1 (ko) * 2015-01-16 2016-11-10 에스케이씨 주식회사 보호 필름 및 이를 사용하여 표시 장치를 제조하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053271A (ja) * 2009-08-31 2011-03-17 Teijin Dupont Films Japan Ltd 偏光子支持基材用フィルム
WO2013100041A1 (ja) * 2011-12-28 2013-07-04 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JP2015143758A (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 光学用ポリエステルフィルム、偏光板、画像表示装置、光学用ポリエステルフィルムの製造方法、および易接着層用組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071282A1 (ja) * 2018-10-02 2020-04-09 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JPWO2020071282A1 (ja) * 2018-10-02 2021-09-02 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
JP7476794B2 (ja) 2018-10-02 2024-05-01 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
EP3715921A4 (en) * 2018-10-17 2021-03-24 Lg Chem, Ltd. ANTI-REFLECTIVE FILM, POLARIZING PLATE AND DISPLAY DEVICE
JP2021509973A (ja) * 2018-10-17 2021-04-08 エルジー・ケム・リミテッド 反射防止フィルム、偏光板およびディスプレイ装置
KR20200136819A (ko) * 2019-05-28 2020-12-08 주식회사 엘지화학 반사 방지 필름, 편광판 및 디스플레이 장치
KR102581428B1 (ko) * 2019-05-28 2023-09-21 주식회사 엘지화학 반사 방지 필름, 편광판 및 디스플레이 장치

Also Published As

Publication number Publication date
JP7396402B2 (ja) 2023-12-12
JPWO2018110625A1 (ja) 2019-10-24
TW201831554A (zh) 2018-09-01
JP7156034B2 (ja) 2022-10-19
KR20190087619A (ko) 2019-07-24
TW202208525A (zh) 2022-03-01
TWI750280B (zh) 2021-12-21
JP2022153484A (ja) 2022-10-12
CN110050208B (zh) 2021-09-28
KR102216520B1 (ko) 2021-02-17
CN110050208A (zh) 2019-07-23
CN113912994A (zh) 2022-01-11
TWI795086B (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
JP5472519B2 (ja) 液晶表示装置、偏光板および偏光子保護フィルム
WO2016084729A1 (ja) 液晶表示装置及び偏光板
JP2019174822A (ja) 液晶表示装置、偏光板および偏光子保護フィルム
JP7396402B2 (ja) 液晶表示装置、偏光板および偏光子保護フィルム
TWI686642B (zh) 液晶顯示裝置及偏光板
WO2013080948A1 (ja) 液晶表示装置、偏光板および偏光子保護フィルム
WO2017010444A1 (ja) 液晶表示装置及び偏光板
JP6032385B1 (ja) 液晶表示装置
WO2018181655A1 (ja) 液晶表示装置、偏光板および偏光子保護フィルム
JP2016200817A (ja) 液晶表示装置
JP7476794B2 (ja) 液晶表示装置、偏光板および偏光子保護フィルム
JP2016157116A (ja) 液晶表示装置
JP2018028611A (ja) 液晶表示装置
JP2018028612A (ja) 液晶表示装置
JP6521216B2 (ja) 液晶表示装置及び偏光板
JP2016157117A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019190

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17881571

Country of ref document: EP

Kind code of ref document: A1