WO2018110562A1 - ブレーキ摩擦材用酸化鉄粉末 - Google Patents

ブレーキ摩擦材用酸化鉄粉末 Download PDF

Info

Publication number
WO2018110562A1
WO2018110562A1 PCT/JP2017/044609 JP2017044609W WO2018110562A1 WO 2018110562 A1 WO2018110562 A1 WO 2018110562A1 JP 2017044609 W JP2017044609 W JP 2017044609W WO 2018110562 A1 WO2018110562 A1 WO 2018110562A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
oxide powder
friction material
brake friction
less
Prior art date
Application number
PCT/JP2017/044609
Other languages
English (en)
French (fr)
Inventor
康二 安賀
小島 隆志
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to CN201780075571.3A priority Critical patent/CN110062799B/zh
Priority to EP17880982.8A priority patent/EP3553149B1/en
Priority to JP2018556698A priority patent/JP6893040B2/ja
Priority to US16/466,799 priority patent/US10919779B2/en
Publication of WO2018110562A1 publication Critical patent/WO2018110562A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0043Ceramic base, e.g. metal oxides or ceramic binder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size

Definitions

  • the present invention relates to iron oxide powder for brake friction materials.
  • Magnetite Iron oxide is advantageous, for example, in that it is cheaper and more stable than other materials, and has a high frictional force against the disk.
  • An object of the present invention is to provide an iron oxide powder for a brake friction material that can be suitably used for a brake friction material that hardly causes a problem of brake squealing and has excellent braking performance.
  • the iron oxide powder for brake friction material of the present invention is characterized in that the average particle diameter is 40 ⁇ m or more and the saturation magnetization is 20 emu / g or less.
  • the pore volume is preferably 10 mm 3 / g or more and 180 mm 3 / g or less.
  • the brake friction material iron oxide powder of the present invention preferably has a BET specific surface area of less 0.05 m 2 / g or more 1.20 m 2 / g.
  • the peak pore diameter is preferably 0.2 ⁇ m or more and 1.2 ⁇ m or less.
  • the blackness (L * value) is preferably 23 or more and 31 or less.
  • an iron oxide powder for a brake friction material that can be suitably used for a brake friction material that hardly causes a problem of brake squealing and has excellent braking performance.
  • FIG. 1 It is a figure showing the cross-sectional SEM photograph of the molded object manufactured using the iron oxide powder for brake friction materials of Example 1.
  • FIG. 2 It is a figure showing the cross-sectional SEM photograph of the molded object manufactured using the iron oxide powder for brake friction materials of the comparative example 2.
  • FIG. 1 It is a figure showing the cross-sectional SEM photograph of the molded object manufactured using the iron oxide powder for brake friction materials of the comparative example 2.
  • the iron oxide powder for a brake friction material of the present invention is used for manufacturing a brake friction material, and includes a plurality of particles mainly composed of iron oxide.
  • magnetite iron oxide
  • wet synthesis as a brake friction material because it has features such as low cost and stable availability compared to other materials, and high frictional force against the disk.
  • the thing containing is widely used.
  • the present inventor conducted earnest research for the purpose of effectively preventing and suppressing the occurrence of the above problems while taking advantage of the features of iron oxide, and as a result, the present invention has been achieved.
  • the disk is mainly composed of iron. If the magnetization of the iron oxide powder is too large, the coercive force and residual magnetization of the iron oxide particles contained in the dust generated when the brake slides will cause the brake sliding. It is thought that it becomes larger due to the stress of time and magnetic aggregation.
  • the average particle diameter of the iron oxide powder may be 40 ⁇ m or more, preferably 45 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 450 ⁇ m or less, and 55 ⁇ m or more and 400 ⁇ m or less. Is more preferable.
  • the magnetization of the iron oxide powder may be 20 emu / g or less, preferably 10 emu / g or less, more preferably 5 emu / g or less, and 1 emu / g or less. Is more preferable.
  • the average particle diameter means a volume average particle diameter unless otherwise specified.
  • the volume average particle diameter can be determined, for example, by the following measurement. Specifically, first, 10 g of iron oxide powder as a sample and 80 ml of water are placed in a 100 ml beaker, and 2 to 3 drops of a dispersant (sodium hexametaphosphate) are added. Next, dispersion is performed using an ultrasonic homogenizer (for example, UH-150 model manufactured by SMT Co. LTD.). As an ultrasonic homogenizer, SMT. Co. LTD. When using the UH-150 model, for example, the output level may be set to 4 and dispersion may be performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker can be removed and introduced into a Microtrac particle size analyzer (for example, Model 9320-X100 manufactured by Nikkiso Co., Ltd.) for measurement.
  • a Microtrac particle size analyzer for example, Model 9320-X100 manufactured by Nikkiso Co., Ltd.
  • magnetization refers to magnetization obtained by measurement (VSM measurement) using a vibrating sample magnetometer when a magnetic field of 5K ⁇ 1000 / 4 ⁇ A / m is applied unless otherwise specified. Point to.
  • iron oxide powder is packed in a cell having an inner diameter of 5 mm and a height of 2 mm and set in a vibration sample type magnetic measuring apparatus.
  • an applied magnetic field is applied, sweeping to 5K ⁇ 1000 / 4 ⁇ ⁇ A / m, and then the applied magnetic field is decreased to create a hysteresis curve.
  • Magnetization saturation magnetization
  • VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.
  • the iron oxide powder may be composed mainly of iron oxide, but is preferably composed mainly of ⁇ -Fe 2 O 3 .
  • iron oxide powder with low saturation magnetization is less reactive with oxygen and has a small structural change with temperature, so the stability is particularly excellent, and the brake friction material containing iron oxide powder is superior over a longer period of time. The characteristics can be exhibited stably.
  • the content of ⁇ -Fe 2 O 3 in the iron oxide powder is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more. Thereby, the effects as described above are more remarkably exhibited.
  • the iron oxide powder is mainly composed of Fe and O, but may contain elements other than Fe and O.
  • elements other than Fe and O examples include Mn, Sr, Mg, Ti, Si, Cl, Ca, Al, and the like.
  • the content of elements other than Fe and O in the iron oxide powder (the sum of these contents when containing multiple elements) is 2.0.
  • the content is preferably at most mass%, more preferably at most 1.0 mass%, further preferably at most 0.5 mass%.
  • the proportion of particles having a particle size of 30 ⁇ m or less is preferably 50% by mass or less, more preferably 30% by mass or less, and 10% by mass or less. Is more preferable.
  • the pore volume of the iron oxide powder, 10 mm 3 / g or more 180 mm 3 / is preferably g or less, 20 mm 3 / g or more 150mm and more preferably at 3 / g or less, 30 mm 3 / g or more 100 mm 3 / More preferably, it is g or less.
  • the pore volume of the iron oxide powder is less than the lower limit value, one particle of the iron oxide powder is too hard, so that the disk is easily damaged and the particles are easily dropped. The disc is easily scratched. In addition, unintentional dropping of relatively large iron oxide powder particles from the brake friction material is likely to occur.
  • the pore volume of the iron oxide powder exceeds the above upper limit value, since the particles are likely to break due to the brake braking stress, the braking performance and durability deteriorate, so the braking performance of the brake friction material containing the iron oxide powder. Tends to be low. In addition, the durability of the brake friction material tends to be low.
  • the pore diameter and pore volume of the iron oxide powder can be determined by measurement using, for example, mercury porosimeters Pascal 140 and Pascal 240 (manufactured by ThermoFisher Scientific).
  • the peak pore diameter of the iron oxide powder is preferably 0.2 ⁇ m or more and 1.2 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less.
  • the peak pore diameter is the pore diameter having the highest frequency in the distribution of the pore diameter of the iron oxide powder.
  • the below-mentioned binder (binding material) that can constitute the brake friction material together with the iron oxide powder can be more efficiently infiltrated into the pores of the iron oxide powder.
  • the adhesiveness can be further improved.
  • the durability of the brake friction material can be further improved.
  • the braking performance of the brake friction material can be further improved.
  • the resin constituting the brake material is less likely to penetrate into the iron oxide powder, so that the iron oxide powder easily falls off and the disk is damaged.
  • the durability of the brake friction material tends to be low.
  • the disk with which the brake friction material comes into contact is easily damaged.
  • unintentional dropping of relatively large iron oxide powder particles from the brake friction material is likely to occur.
  • the peak pore diameter of the iron oxide powder exceeds the above upper limit, the iron oxide powder is liable to crack from the location where the peak pore diameter is large due to the stress caused by brake braking, so that the braking performance and durability deteriorate.
  • Brake friction material containing powder tends to have low braking performance.
  • the durability of the brake friction material tends to be low.
  • BET specific surface area of the iron oxide powder is preferably equal to or less than 0.05 m 2 / g or more 1.20 m 2 / g, more preferably not more than 0.10 m 2 / g or more 1.0 m 2 / g, 0.15m and even more preferably 2 / g or more 0.80 m 2 / g or less.
  • the adhesion between the iron oxide powder and the binder described later can be further improved.
  • the durability of the brake friction material can be further improved.
  • the braking performance of the brake friction material can be further improved.
  • the BET specific surface area of the iron oxide powder is less than the lower limit value, the iron oxide powder is less likely to adhere to the resin constituting the brake material, so that the iron oxide powder easily falls off and the disk is damaged. As a result, the disc that the brake friction material comes into contact with is easily damaged. In addition, unintentional dropping of relatively large iron oxide powder particles from the brake friction material is likely to occur.
  • the resin constituting the brake material is likely to penetrate into the iron oxide powder, so that the elasticity of the brake material resin is lost, and the braking performance and durability are improved. Since it gets worse, the braking performance of the brake friction material containing iron oxide powder tends to be low. In addition, the durability of the brake friction material tends to be low.
  • the BET specific surface area can be determined by measurement using a specific surface area measuring device (for example, model: Macsorb HM model-1208 (manufactured by Mountec)).
  • a specific surface area measuring device for example, model: Macsorb HM model-1208 (manufactured by Mountec)
  • the particles constituting the iron oxide powder of the present invention are preferably agglomerates having an appropriate particle diameter formed by agglomeration of iron oxide fine particles by firing.
  • iron oxide typified by ⁇ -Fe 2 O 3 has a strong reddish tint, but when the particles constituting the iron oxide powder are aggregates of iron oxide fine particles, it is composed of ⁇ -Fe 2 O 3. Even if it is a thing, it will exhibit black.
  • the appearance of the brake friction material can be further improved.
  • the blackness (L * value) of the iron oxide powder is preferably 23 or more and 31 or less, more preferably 25 or more and 31 or less, and even more preferably 27 or more and 31 or less.
  • the blackness (L * value) of the iron oxide powder is smaller than 23, it means that the particle size of the iron oxide powder is too small, which is not preferable. If it is larger than 31, it means that the particle size of the iron oxide powder is too large, which is not preferable.
  • the a * value in the L * a * b * color space is reddish and yellow because the particle size of the iron oxide fine particles (granulated material formed in the granulation step) before becoming an aggregate is about 0.1 ⁇ m. It has a strong taste and does not become smaller than ⁇ 0.2 even if it becomes an aggregate by baking.
  • the a * value is larger than 6.0, it means that the iron oxide fine particles are not sufficiently aggregated by sintering, which is not preferable.
  • the b * value is strong in red and yellow because the particle size of the iron oxide fine particles (granulated product formed in the granulation step) before being agglomerated is about 0.1 ⁇ m. However, it does not become smaller than -3.0. When the b * value is larger than 1.0, it means that the iron oxide fine particles are not sufficiently aggregated by firing, which is not preferable.
  • the blackness (L * value), a * value, and b * value can be obtained by measurement using a color difference meter (for example, x-rite 938 manufactured by X-Rite).
  • the particles constituting the iron oxide powder may be subjected to surface treatment.
  • the surface treatment agent used for the surface treatment of the particles include a silane coupling agent, a phosphoric acid compound, a carboxylic acid, and a fluorine compound.
  • silane coupling agent for example, a silane compound having a silyl group and a hydrocarbon group can be used.
  • Examples of the phosphoric acid compound include lauryl phosphate, lauryl-2-phosphate, steareth-2 phosphate, phosphate ester of 2- (perfluorohexyl) ethylphosphonic acid, and the like.
  • carboxylic acid for example, a compound having a hydrocarbon group and a carboxyl group (fatty acid) can be used. Specific examples of such compounds include decanoic acid, tetradecanoic acid, octadecanoic acid, cis-9-octadecenoic acid and the like.
  • fluorine compound examples include a silane coupling agent as described above, a phosphoric acid compound, and a compound having a structure in which at least a part of hydrogen atoms of the carboxylic acid is substituted with a fluorine atom (fluorine silane compound, fluorine A phosphoric acid compound and a fluorine-substituted fatty acid).
  • the chlorine content of the iron oxide powder is preferably 100 ppm or less, more preferably 20 ppm or less on a weight basis.
  • the chlorine content refers to the chlorine content measured by combustion ion chromatography unless otherwise specified.
  • the sulfuric acid content of the iron oxide powder is preferably 500 ppm or less, more preferably 200 ppm or less on a weight basis.
  • the content of sulfuric acid refers to the content of sulfate ions measured by combustion method ion chromatography unless otherwise specified.
  • the chlorine content and sulfur ion content in the iron oxide powder can be determined by quantitative analysis of the anion component contained in the iron oxide powder by combustion method ion chromatography.
  • Combustion method ion chromatography can be performed, for example, under the following conditions.
  • -Combustion device AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • -Sample amount 50mg -Combustion temperature: 1100 ° C
  • Combustion time 10 minutes-Ar flow rate: 400 ml / min -O 2 flow rate: 200 ml / min -Humidification
  • Air flow rate 100ml / min -Absorbent: 1% by weight of hydrogen peroxide dissolved in the following eluent
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) - Eluent: A to water of 1L dissolved NaHCO 3 3.8 mmol and Na 2 CO 3 3.0 mmol solution - flow rate: 1.5 mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Suppressor method-Detector: CM detector-Standard sample: Anion mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the pH of the iron oxide powder is preferably 6.0 or more and 9.0 or less, and more preferably 6.3 or more and 8.0 or less.
  • the pH of the iron oxide powder refers to the pH measured by the glass electrode method after preparing a solution according to the procedure according to JIS K0102.
  • the apparent density of the iron oxide powder is preferably equal to or less than 1.50 g / cm 3 or more 2.50 g / cm 3, more preferably not more than 1.60 g / cm 3 or more 2.40 g / cm 3 .
  • the brake friction material containing iron oxide powder can be more effectively prevented from being damaged, and the durability of the brake friction material can be further improved.
  • the iron oxide powder can contain pores (pores) at an appropriate ratio.
  • the binder can be more suitably infiltrated into the pores (pores), and the braking performance of the brake friction material containing iron oxide powder is improved, and the durability of the brake friction material is further improved. Can be. Further, it is possible to more effectively prevent relatively large iron oxide powder particles from unintentionally falling off the brake friction material.
  • the braking performance of the brake friction material containing the iron oxide powder tends to be low.
  • the durability of the brake friction material tends to be low.
  • the apparent density of the iron oxide powder exceeds the upper limit, the durability of the brake friction material tends to be low. In addition, the disk with which the brake friction material comes into contact is easily damaged. In addition, unintentional dropping of relatively large iron oxide powder particles from the brake friction material is likely to occur.
  • the iron oxide powder of the present invention may be produced by any method, but can be suitably produced, for example, by the method described below.
  • the iron oxide powder of the present invention has a granulation step of spraying and drying a slurry containing Fe 2 O 3 powder as a raw material and granulating, and a firing step of firing the obtained granulated product Can be manufactured.
  • iron oxide powders satisfying the above-described conditions those having a relatively small particle size (for example, those having an average particle size of 40 ⁇ m or more and less than 100 ⁇ m) can be suitably produced.
  • the wet granulation method using an acid or an alkali in the production process (for example, the method described in Japanese Patent No. 5760599) can produce only an average particle size of 10 ⁇ m or less, as described above.
  • iron oxide powder having a particle size larger than that of the wet granulation method can be preferably produced.
  • the durability and reliability of the brake friction material containing iron oxide powder or iron oxide powder can be further improved. Further, in the manufacturing process, it is difficult to make the magnetization of the iron oxide powder sufficiently small in the wet granulation method using acid or alkali, whereas in the above method, the temperature or gas atmosphere Since the magnetization can be controlled by the firing process according to, iron oxide powder having sufficiently small magnetization can be easily obtained.
  • the average particle size of the iron oxide powder is set to a value within the above range, it is possible to more effectively prevent the disc that contacts the brake friction material containing the iron oxide powder from being damaged. Moreover, the durability of the brake friction material containing iron oxide powder can be further improved.
  • binders such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), dispersants, carbon black, charcoal and the like can be used for the preparation of the slurry.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • dispersants carbon black, charcoal and the like
  • a polycarboxylic acid-based dispersant or the like can be suitably used as the dispersant.
  • the organic content in the slurry is preferably 0.30% by mass or less, and more preferably 0.20% by mass or less, based on the total amount of the slurry. Thereby, magnetization of iron oxide powder can be controlled more suitably.
  • the viscosity of the slurry is preferably 0.3 poise or more and 5 poise or less, and more preferably 0.5 poise or more and 4 poise or less.
  • the ease of handling of the slurry can be improved, and the slurry can be sprayed and dried more suitably.
  • a granulated product having a desired size and shape can be produced with superior productivity.
  • the viscosity refers to a value measured at 25 ° C. using a B-type viscometer (for example, Viscotester VT-04 manufactured by Rion Co., Ltd.).
  • the spraying of the slurry can be suitably performed by spray drying, for example.
  • the average particle size of the granulated product formed in the granulation step is preferably 40 ⁇ m or more and 120 ⁇ m or less.
  • the firing step is preferably performed in the air. Thereby, while being able to make the productivity of an iron oxide powder more excellent, the magnetization of an iron oxide powder can be controlled more suitably.
  • the heating temperature in a baking process is not specifically limited, It is preferable that it is 800 to 1300 degreeC, It is preferable that it is 900 to 1200 degreeC, It is more preferable that it is 950 to 1150 degreeC.
  • the magnetization and shape (for example, pore volume, peak pore diameter, BET specific surface area) of the iron oxide powder can be adjusted more suitably, and the braking performance of the brake friction material can be improved, It is possible to more effectively prevent the occurrence of problems such as squealing and scratching of the disc that the brake friction material contacts.
  • two or more stages of heat treatment (firing treatment) with different conditions may be performed.
  • the iron oxide powder of the present invention is prepared by pelletizing a composition containing Fe 2 O 3 powder as a raw material and pre-baking to obtain a pre-fired body, and after pulverizing the pre-fired body, a binder and the like Is added, and a granulation step of granulating using a dry mixing apparatus, a debinding step for obtaining a degreased body by performing a debinding process on the obtained granulated product, and firing the degreased body (main firing) And a main baking step to be manufactured.
  • the iron oxide powders satisfying the above-mentioned conditions those having a relatively large particle size (for example, those having an average particle size of 100 ⁇ m or more) can be suitably produced.
  • a relatively large particle size for example, those having an average particle size of 100 ⁇ m or more
  • the durability and reliability of the brake friction material containing iron oxide powder or iron oxide powder can be further improved.
  • the temperature or gas atmosphere Since the magnetization can be controlled by the firing process according to, iron oxide powder having sufficiently small magnetization can be easily obtained.
  • the braking performance of the brake friction material can be further improved by setting the average particle size of the iron oxide powder to a value within the above range.
  • durability of the brake friction material containing iron oxide powder can be made more excellent.
  • the ease of handling of the iron oxide powder is further improved, and the safety of the worker when handling the iron oxide powder (for example, when manufacturing a brake friction material) can be further enhanced. .
  • the productivity of a brake friction material can be made further excellent, for example.
  • the production of the pellet can be suitably performed by using a pressure molding machine.
  • the heating temperature in the pre-baking step is not particularly limited, but is preferably 600 ° C. or higher and 1200 ° C. or lower, more preferably 650 ° C. or higher and 1000 ° C. or lower, and more preferably 700 ° C. or higher and 900 ° C. or lower. preferable.
  • the magnetization and shape (for example, pore volume, peak pore diameter, BET specific surface area) of the iron oxide powder finally obtained can be adjusted more suitably, and the braking performance of the brake friction material is more excellent.
  • the temporary baking step two or more stages of heat treatment (firing treatment) may be performed.
  • binder to be added to the raw material or the pulverized product of the pre-fired body for example, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), or the like can be used.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • Examples of the dry mixing device used in the granulation step include a Henschel mixer.
  • the debinding step can be suitably performed by heating at a temperature lower than the processing temperature in the main baking step.
  • the heating temperature in the debinding step is not particularly limited, but is preferably 400 ° C. or higher and 1000 ° C. or lower, more preferably 450 ° C. or higher and 900 ° C. or lower, and more preferably 500 ° C. or higher and 800 ° C. or lower. preferable.
  • the magnetization and shape (for example, pore volume, peak pore diameter, BET specific surface area) of the iron oxide powder finally obtained can be adjusted more suitably, and the braking performance of the brake friction material is more excellent.
  • the magnetization and shape for example, pore volume, peak pore diameter, BET specific surface area
  • the heating temperature in the main baking step is not particularly limited, but is preferably 800 ° C. or higher and 1300 ° C. or lower, preferably 900 ° C. or higher and 1200 ° C. or lower, and more preferably 950 ° C. or higher and 1150 ° C. or lower. .
  • the heating time in the main baking step is not particularly limited, but is preferably 1 hour or more and 24 hours or less.
  • the magnetization and shape (for example, pore volume, peak pore diameter, BET specific surface area) of the iron oxide powder can be adjusted more suitably, and the braking performance of the brake friction material can be improved, It is possible to more effectively prevent the occurrence of problems such as squealing and scratching of the disc that the brake friction material contacts.
  • the brake friction material contains the iron oxide powder of the present invention described above. As a result, it is possible to provide a brake friction material that hardly causes the problem of brake squealing and has excellent braking performance.
  • the content of the iron oxide powder in the brake friction material is preferably 10% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 80% by mass or less.
  • the brake friction material may contain components other than the iron oxide powder of the present invention described above.
  • binder binder
  • organic filler organic filler
  • inorganic filler inorganic filler
  • fiber base material fiber base material
  • the binding material has a function of combining and integrating iron oxide powder and the like contained in the brake friction material to improve the strength as the brake friction material.
  • the binder is not particularly limited, and for example, a thermosetting resin can be used.
  • thermosetting resin examples include epoxy resins; acrylic resins; silicone resins; thermosetting fluorine resins; phenol resins; various elastomer-dispersed phenol resins such as acrylic elastomer-dispersed phenol resins and silicone elastomer-dispersed phenol resins; Various modified phenolic resins such as modified phenolic resin, silicone modified phenolic resin, cashew modified phenolic resin, epoxy modified phenolic resin, alkylbenzene modified phenolic resin, etc. may be used, and one or more selected from these may be used in combination. Can do.
  • a phenol resin an acrylic-modified phenol resin, a silicone-modified phenol resin, or an alkylbenzene-modified phenol resin because it gives good heat resistance, moldability, and friction coefficient.
  • the content of the binder in the brake friction material is preferably 4% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 10% by mass or less.
  • Organic filler has a function as a friction modifier for improving the sound vibration performance, wear resistance, etc. of the brake friction material, for example.
  • Cashew dust is obtained by crushing a hardened cashew nut shell oil.
  • the rubber component examples include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber), chlorinated butyl rubber, butyl rubber, silicone rubber, and the like. Alternatively, two or more kinds can be used in combination.
  • the content of the organic filler in the brake friction material is preferably 0.5% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 8% by mass. % Or less is more preferable.
  • the elastic modulus of the brake friction material increases, and deterioration of sound vibration performance such as brake squealing can be prevented and suppressed more effectively, and deterioration of heat resistance and strength reduction due to thermal history are more effective. Can be prevented and suppressed.
  • Inorganic filler Inorganic filler
  • Inorganic fillers are used for the purpose of, for example, avoiding deterioration of heat resistance of brake friction materials, improving wear resistance, improving friction coefficient, improving lubricity, and adjusting pH. It is to be added.
  • the inorganic filler examples include tin sulfide, molybdenum disulfide, iron sulfide, antimony trisulfide, bismuth sulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, barium sulfate, coke, graphite, mica, vermiculite, Calcium sulfate, talc, clay, zeolite, mullite, chromite, wollastonite, sepiolite, titanium oxide, magnesium oxide, silica, dolomite, calcium carbonate, magnesium carbonate, calcium silicate, zirconium silicate, gamma alumina, manganese dioxide, zinc oxide, Examples thereof include titanates such as cerium oxide, zirconia, potassium titanate, potassium 6 titanate, potassium 8 titanate, lithium potassium titanate, magnesium potassium titanate, and sodium titanate. It can be used alone or in combination are-option.
  • the content of the inorganic filler in the brake friction material is preferably 20% by mass to 80% by mass, more preferably 25% by mass to 70% by mass, and more preferably 30% by mass to 60% by mass. More preferably.
  • the heat resistance of the brake friction material can be improved, and other components of the brake friction material (components other than iron oxide powder, such as binders, organic fillers, inorganic fillers, fiber base materials, etc.) ) Is preferable from the viewpoint of content balance.
  • Fiber substrate The fiber base material exhibits a reinforcing action in the brake friction material.
  • inorganic fibers composed of metal materials and other inorganic materials organic fibers composed of organic materials, fibers composed of these composite materials, and the like can be used, and are selected from these.
  • One kind or a combination of two or more kinds can be used.
  • metal fibers made of a metal material include fibers mainly composed of metals such as Al, Fe, Zn, Sn, Ti, Ni, Mg, Si, and Cu, and alloys containing at least one of them. Can be used. These metals and alloys may be contained in the form of powder in addition to the fiber form.
  • inorganic fibers composed of inorganic materials other than metal materials include ceramic fibers, mineral fibers, glass fibers, silicate fibers, basalt fibers, and the like, and one or more selected from these are combined. Can be used.
  • the inorganic fibers SiO 2, Al 2 O 3 , CaO, MgO, FeO, biodegradable mineral fibers containing any combination of Na 2 O, etc.
  • Lapinus FIBERS B examples include V Roxul series.
  • organic fibers composed of organic materials include carbon fibers, aramid fibers, cellulose fibers, acrylic fibers, phenol resin fibers, poly (paraphenylenebenzobisoxazole) fibers, biodegradable ceramic fibers, and the like. One or more selected from these can be used in combination.
  • carbon-based fibers examples include flame-resistant fibers, pitch-based carbon fibers, PAN-based carbon fibers, activated carbon fibers, and the like, and one or more selected from these can be used in combination.
  • the content of the fiber base material in the brake friction material is preferably 2% by mass or more and 40% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and 2% by mass or more and 15% by mass or less. More preferably.
  • the brake friction material has excellent strength, while the porosity of the brake friction material can be made more appropriate, and deterioration of sound vibration performance such as brake noise can be more effectively prevented and suppressed. be able to.
  • the wear resistance of the brake friction material can be further improved.
  • more excellent moldability can be obtained when manufacturing the brake friction material.
  • a pretreatment step for producing iron oxide powder of the present invention
  • other steps may be included in addition to the steps described above as necessary.
  • a classification process for performing classification processing may be included.
  • the classification method include wind classification, mesh filtration method, sedimentation method, classification using various sieves, and the like.
  • iron oxide powder of the present invention is not limited to the one manufactured by the method as described above, and may be manufactured by any method.
  • Example 1 Carbon black, water, PVA as a binder component and a polycarboxylic acid-based dispersant were added to Fe 2 O 3 as a raw material so that the solid content was 55% by mass, and they were mixed by a bead mill and obtained by mixing. The slurry was granulated by spraying with a spray dryer and drying.
  • firing main firing was performed by heating at 1000 ° C. in the air using an electric furnace.
  • the average particle diameter (volume average particle diameter) of the iron oxide powder was determined by the following measurement. That is, first, iron oxide powder as a sample: 10 g and water: 80 ml were placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) were added. Subsequently, dispersion was performed using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds.
  • UH-150 type manufactured by SMT Co Ltd the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds.
  • the saturation magnetization was 0.2349 emu / g.
  • the above magnetic properties were obtained as follows. That is, first, iron oxide powder was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetometer (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeping to 5K ⁇ 1000 / 4 ⁇ ⁇ A / m, and then the applied magnetic field was reduced to create a hysteresis curve. Thereafter, the magnetization was obtained from the data of this curve. In addition, it calculated
  • the obtained iron oxide powder had a pore volume of 81 mm 3 / g, a peak pore diameter of 0.51 ⁇ m, a BET specific surface area of 0.61 m 2 / g, and a blackness (L * value) of 29.088, a * Value is 3.73, b * value is -1.04, chlorine content is less than detection limit ( ⁇ 2 ppm), sulfate ion content is 13 ppm, pH is 8.62, apparent density is 1.78 g / cm 3 .
  • the pore volume and peak pore diameter of the iron oxide powder were determined using mercury porosimeter Pascal 140 and Pascal 240 (manufactured by Thermo Fisher Scientific). More specifically, CD3P (for powder) was used as the dilatometer, and the sample was put in a commercially available gelatin capsule having a plurality of holes and placed in the dilatometer. After degassing with Pascal 140, it was filled with mercury and the low pressure region (0 to 400 Kpa) was measured to obtain 1st Run. Next, deaeration and measurement of the low pressure region (0 to 400 Kpa) were performed again to obtain 2nd Run. After 2nd Run, the combined weight of the dilatometer, mercury, capsule and sample was measured.
  • the high pressure region (0.1 Mpa to 200 Mpa) was measured with Pascal240.
  • the pore volume, the pore size distribution, and the peak pore size of the iron oxide powder were determined from the amount of mercury intrusion obtained by the measurement at the high pressure part.
  • the BET specific surface area was determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). More specifically, about 5 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement device, accurately weighed with a precision balance, the sample (iron oxide powder) was set in the measurement port, and measurement was started. The measurement was performed by a one-point method, and the BET specific surface area was automatically calculated when the weight of the sample was input at the end of the measurement.
  • a specific surface area measuring device model: Macsorb HM model-1208 (manufactured by Mountec)
  • the blackness (L * value), a * value, and b * value were determined by filling the sample (iron oxide powder) into a plastic container having a diameter of 37 mm, and then grinding the raised portion so that it was almost flat. The surface was sealed with a polyethylene wrap and measured using a color difference meter (X-Rite 938, manufactured by X-Rite). In addition, it calculated
  • Chlorine content and sulfur content were measured by combustion analysis ion chromatography by quantitatively analyzing the anion component contained in the iron oxide powder under the following conditions.
  • -Combustion device AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • -Sample amount 50mg -Combustion temperature: 1100 ° C
  • Combustion time 10 minutes-Ar flow rate: 400 ml / min -O 2 flow rate: 200 ml / min -Humidification
  • Air flow rate 100ml / min -Absorbent: 1% by weight of hydrogen peroxide dissolved in the following eluent
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Anion HS (4.6 mm ID 1 cm + 4.6 mm ID 10 cm) - Eluent: prepared by dissolving the water into NaHCO 3 3.8 mmol and Na 2 CO 3 3.0 mmol of 1L solution - flow rate: 1.5 mL / min -Column temperature: 40 ° C -Injection volume: 30L -Measurement mode: Suppressor method-Detector: CM detector-Standard sample: Anion mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the pH was measured by a glass electrode method using HM-20J (manufactured by Toa DKK Corporation). 5 g of iron oxide particles were weighed into a beaker, 100 mL of ultrapure water was added, and after stirring for 30 seconds, a pH electrode was immediately put in and the pH value was read. In addition, it calculated
  • the apparent density was measured according to JIS Z 2504. Details are as follows. 1. Apparatus The apparent powder density meter is composed of a funnel, a cup, a funnel support, a support bar and a support base. A balance with a weighing of 200 mg and a weighing of 50 mg is used. 2. Measuring method (1) The sample shall be at least 150 g or more. (2) The sample is poured into a funnel having an orifice with a pore diameter of 2.5 + 0.2 / ⁇ 0 mm until the sample that has flowed out is full and overflows. (3) Stop the inflow of the sample as soon as it begins to overflow, and scrape the sample raised on the cup flatly with a spatula along the top edge of the cup so as not to give vibration.
  • Magnetic characteristics were measured using a vibration sample type magnetometer (model: VSM-C7-10A (manufactured by Toei Kogyo Co., Ltd.)).
  • the measurement sample (ferrite particles) was packed in a cell having an inner diameter of 5 mm and a height of 2 mm and set in the above apparatus.
  • the measurement was performed by applying an applied magnetic field and sweeping to 5K ⁇ 1000/4 ⁇ A / m.
  • the applied magnetic field was decreased to create a hysteresis curve on the recording paper.
  • the magnetization at an applied magnetic field of 5K ⁇ 1000/4 ⁇ A / m was read from the data of this curve. Also, the residual magnetization and coercive force were calculated in the same manner.
  • the true specific gravity was measured using a peak meter in accordance with JIS R9301-2-1.
  • methanol was used as a solvent, and measurement was performed at a temperature of 25 ° C.
  • the Fe content is measured as follows. 0.2 g of iron oxide powder was weighed, 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid was heated to prepare an aqueous solution in which the iron oxide powder was completely dissolved, and an ICP analyzer (Shimadzu Corporation) The content of Fe was measured using ICPS-1000IV).
  • Iron oxide powder was produced in the same manner as in Example 1 except that the conditions of the iron oxide powder were as shown in Table 1 by adjusting the granulation conditions and the firing treatment conditions with a spray dryer.
  • Example 7 Polyvinyl alcohol (10% by mass aqueous solution) was added as a binder component to Fe 2 O 3 as a raw material so as to have a solid content of 55% by mass, and mixed and granulated using a Henschel mixer for 15 minutes.
  • the obtained granulated material was subjected to a binder removal treatment at 800 ° C. to remove organic substances, and then held in an electric furnace at 1000 ° C. for 4 hours in the atmosphere to perform main firing.
  • the saturation magnetization was 0.1678 emu / g.
  • the obtained iron oxide powder had a pore volume of 88 mm 3 / g, a peak pore diameter of 0.42 ⁇ m, a BET specific surface area of 0.38 m 2 / g, and a blackness (L * value) of 25.84, a * Value was 5.31, b * value was 0.87, chlorine content was 35 ppm, sulfate ion was 38 ppm, pH was 8.63, and apparent density was 1.61 g / cm 3 .
  • Example 8 An iron oxide powder was produced in the same manner as in Example 7 except that the conditions of the iron oxide powder were set as shown in Table 1 by adjusting the granulation conditions in the Henschel mixer and the main baking treatment conditions.
  • Example 2 An iron oxide powder was produced in the same manner as in Example 1 except that the granulated material was fired in a non-oxidizing atmosphere (in a nitrogen atmosphere) under the condition of a heating temperature of 900 ° C.
  • the saturation magnetization was 83.1000 emu / g.
  • the obtained iron oxide powder has a pore volume of 157 mm 3 / g, a peak pore diameter of 0.13 ⁇ m, a BET specific surface area of 3.90 m 2 / g, a blackness (L * value) of 15.31, chlorine
  • the content was less than the detection limit ( ⁇ 2 ppm), the sulfate ion content was 750 ppm, the pH was 8.44, and the apparent density was 0.98 g / cm 3 .
  • the production conditions of the iron oxide powders of the examples and comparative examples described above are shown together in Table 1, and the characteristics and the like of the iron oxide powders of the examples and comparative examples described above are shown together in Table 2.
  • grains which comprise an iron oxide powder account for 30 micrometers or less was 5 mass% or less.
  • the content of ⁇ -Fe 2 O 3 in the iron oxide powder was 99% by mass or more.
  • the particle size (average particle size) of the granulated product was measured by the same method as the measurement of the average particle size of the iron oxide powder.
  • ⁇ 2 Production and Evaluation of Molded Body Using Iron Oxide Particles
  • 4.5 g of the obtained iron oxide powder and 0.5 g of fluororesin powder were mixed with a ball mill. Thereafter, 1 g of the mixture was put into a mold having a cross-sectional area of 1.13 cm 2 and pressurized at 50 kN to prepare a molded body of the mixture. A surface perpendicular to the pressing direction of the obtained molded body was processed by ion milling, and a cross-section was observed with FE-SEM.
  • IM-4000 manufactured by Hitachi High-Tech was used and processed under the following conditions.
  • Although the particles are deformed, the portion where the iron oxide particles are present can be distinguished from the portion containing only the resin.
  • ⁇ * 1 Particles are deformed, and resin and iron oxide are uniformly spread in the molded product.
  • ⁇ * 2 A mixture of particles that have been destroyed and particles that remain in their shape (particles do not deform).
  • ⁇ * 3 Resin and iron oxide spread uniformly in the molded product.
  • the iron oxide powder for brake friction material of the present invention has an average particle size of 40 ⁇ m or more and a saturation magnetization of 20 emu / g or less. Therefore, it is possible to provide an iron oxide powder that is less likely to cause a problem of brake squealing and can be suitably used for a brake friction material having excellent braking performance. Therefore, the iron oxide powder for brake friction material of the present invention has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Compounds Of Iron (AREA)

Abstract

ブレーキ鳴きの問題を生じにくく、制動性に優れたブレーキ摩擦材に好適に用いることができるブレーキ摩擦材用酸化鉄粉末を提供すること。 本発明のブレーキ摩擦材用酸化鉄粉末は、平均粒径が40μm以上で、かつ、飽和磁化が20emu/g以下であることを特徴とする。酸化鉄粉末の細孔容積は、10mm/g以上180mm/g以下であるのが好ましい。また、酸化鉄粉末のBET比表面積は、0.05m/g以上1.20m/g以下であるのが好ましい。

Description

ブレーキ摩擦材用酸化鉄粉末
 本発明は、ブレーキ摩擦材用酸化鉄粉末に関する。
 回転(回動)するディスクに圧接され、摩擦力によってディスクの回転を制御する(回転速度を低下させる)機能を有するブレーキ摩擦材として、マグネタイトを含むものが広く用いられている(例えば、特許文献1参照)。
 マグネタイト(酸化鉄)は、例えば、他の材料に比べて安価、安定的な入手が可能、ディスクに対する摩擦力が大きい等の点で有利である。
 しかしながら、従来においては、マグネタイトを用いた場合、いわゆるブレーキ鳴きを生じやすいという問題があった。また、従来においては、マグネタイトのみによって、十分な制動力を得ることができなかった。
日本国特許第5760599号公報
 本発明の目的は、ブレーキ鳴きの問題を生じにくく、制動性に優れたブレーキ摩擦材に好適に用いることができるブレーキ摩擦材用酸化鉄粉末を提供することにある。
 このような目的は、下記の本発明により達成される。
 本発明のブレーキ摩擦材用酸化鉄粉末は、平均粒径が40μm以上で、かつ、飽和磁化が20emu/g以下であることを特徴とする。
 本発明のブレーキ摩擦材用酸化鉄粉末では、細孔容積が10mm/g以上180mm/g以下であることが好ましい。
 本発明のブレーキ摩擦材用酸化鉄粉末では、BET比表面積が0.05m/g以上1.20m/g以下であることが好ましい。
 本発明のブレーキ摩擦材用酸化鉄粉末では、ピーク細孔径が0.2μm以上1.2μm以下であることが好ましい。
 本発明のブレーキ摩擦材用酸化鉄粉末では、黒色度(L*値)が23以上31以下であることが好ましい。
 本発明によれば、ブレーキ鳴きの問題を生じにくく、制動性に優れたブレーキ摩擦材に好適に用いることができるブレーキ摩擦材用酸化鉄粉末を提供することができる。
実施例1のブレーキ摩擦材用酸化鉄粉末を用いて製造された成形体の断面SEM写真を表す図である。 比較例2のブレーキ摩擦材用酸化鉄粉末を用いて製造された成形体の断面SEM写真を表す図である。
 以下、本発明の好適な実施形態について詳細な説明をする。
 《ブレーキ摩擦材用酸化鉄粉末》
 まず、本発明のブレーキ摩擦材用酸化鉄粉末について説明する。
 本発明のブレーキ摩擦材用酸化鉄粉末は、ブレーキ摩擦材の製造に用いられるものであり、主として酸化鉄で構成された複数個の粒子を含むものである。
 ところで、他の材料に比べて安価、安定的な入手が可能、ディスクに対する摩擦力が大きい等の特長を有していることから、ブレーキ摩擦材として、湿式合成により生成されたマグネタイト(酸化鉄)を含むものが広く用いられている。
 しかしながら、従来においては、マグネタイトを用いた場合、磁化が高いことと微粒であるため、いわゆるブレーキ鳴きを生じやすいという問題があった。特に、ブレーキ摩擦材中に占めるマグネタイトの割合が高い場合に、このような問題が顕著に発生していた。ブレーキ鳴きは、ブレーキ摩擦材が摺動する際に、ブレーキ摩擦材とローターとの間の摩擦力により発生する摩擦材の粉じんが磁気的に凝集し、摩擦材とローターの隙間から粉じんとして排出しにくくなることによりローターが細かく振動することで発生する。また、従来においては、湿式合成により製造されたマグネタイトのみでは摩擦材に広く薄く存在することになるため、十分な制動力を得ることができなかった。
 また、従来においては、上記のような問題の発生を抑制するために、ブレーキ摩擦材中におけるマグネタイト以外の成分を比較的高い含有率で含ませることも提案されているが、このような場合、ブレーキ摩擦材の耐磨耗性が低下する等の問題があった。
 そこで、本発明者は、酸化鉄が有する特長を生かしつつ、上記のような問題の発生を効果的に防止、抑制することを目的に鋭意研究を行い、その結果、本発明に至った。
 すなわち、本発明のブレーキ摩擦材用酸化鉄粉末(以下、単に、「酸化鉄粉末」とも言う)は、平均粒径が40μm以上で、かつ、飽和磁化(以下、単に「磁化」と称する場合がある)が20emu/g(1emu/g=1A・m/kg)以下であるものである。
 これにより、ブレーキ鳴きの問題を生じにくく、制動性(制動性能)に優れたブレーキ摩擦材に好適に用いることができる酸化鉄粉末を提供することができる。
 特に、ブレーキ摩擦材中に占める酸化鉄粉末の割合が高い場合であっても、上記のような問題の発生を効果的に防止することができるため、ブレーキ摩擦材の制動性のさらなる向上を図ることができる。
 上記のような平均粒径とすることで、従来の湿式合成により得られたマグネタイトと比較して、摩擦材中に酸化鉄粒子が局所的に高充填した場所とそうでない場所を存在させることが可能となる。
 また、ブレーキ摩擦材中における酸化鉄粉末以外の成分を比較的低いものとした場合でも、酸化鉄粒子が局所的に高充填した状態が維持されるため十分な制動性が得られる。そのため、ブレーキ摩擦材中における酸化鉄粉末以外の成分の含有率を高くする必要がなく、ブレーキ摩擦材の耐磨耗性の低下等の問題の発生も効果的に防止することができる。また、上記のような粒径の酸化鉄粉末は、飛散しにくく、酸化鉄粉末の取り扱いのしやすさが優れたものとなり、酸化鉄粉末の取り扱い時(例えば、ブレーキ摩擦材の製造時等)における作業者の安全性を高いものとすることができる。また、酸化鉄粉末の流動性や他の成分との混合性を優れたものとすることができるため、例えば、ブレーキ摩擦材の生産性をより優れたものとすることができる。
 これに対し、上記の条件を満たさない場合には、満足のいく結果が得られない。
 例えば、酸化鉄粉末の平均粒径が小さすぎると、ブレーキ摩擦材の制動性を十分に優れたものとすることが困難となる。また、酸化鉄粉末の取り扱いのしやすさが低下し、酸化鉄粉末を取り扱う作業者の安全性確保に課題があり、また、ブレーキ摩擦材の生産性も低下する。
 また、酸化鉄粉末の磁化が大きすぎると、酸化鉄粉末を含むブレーキ摩擦材は、ブレーキ鳴きの問題を生じやすいものとなる。これは、一般に、ディスクは主として鉄で構成されたものであり、酸化鉄粉末の磁化が大きすぎると、ブレーキ摺動時に発生する粉じんに含まれる酸化鉄粒子の保磁力と残留磁化がブレーキ摺動時のストレスにより大きくなり、磁気凝集してしまうことによると考えられる。
 前述したように、酸化鉄粉末の平均粒径は、40μm以上であればよいが、45μm以上500μm以下であるのが好ましく、50μm以上450μm以下であるのがより好ましく、55μm以上400μm以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材の制動性をさらに優れたものとすることができる。また、酸化鉄粉末の平均粒径が前記上限値以下であると、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをより効果的に防止することができる。また、酸化鉄粉末を含むブレーキ摩擦材の耐久性をより優れたものとすることができる。
 前述したように、酸化鉄粉末の磁化は、20emu/g以下であればよいが、10emu/g以下であるのが好ましく、5emu/g以下であるのがより好ましく、1emu/g以下であるのがさらに好ましい。
 これにより、ブレーキ鳴きの問題をより効果的に防止することができる。特に、ブレーキ摩擦材がより高い含有率で酸化鉄粉末を含む場合であっても、ブレーキ鳴きの問題を効果的に防止することができる。
 なお、本明細書において、平均粒径とは、特に断りのない限り、体積平均粒径のことを指す。
 体積平均粒径は、例えば、以下のような測定により求めることができる。すなわち、まず、試料としての酸化鉄粉末:10gと水:80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2~3滴添加する。次いで、超音波ホモジナイザー(例えば、SMT.Co.LTD.製UH-150型等)を用い分散を行う。超音波ホモジナイザーとして、SMT.Co.LTD.製UH-150型を用いる場合には、例えば、出力レベル4に設定し、20秒間分散を行ってもよい。その後、ビーカー表面にできた泡を取り除き、マイクロトラック粒度分析計(例えば、日機装株式会社製、Model9320-X100等)に導入し、測定を行うことができる。
 また、本明細書において、磁化とは、特に断りのない限り、5K・1000/4πA/mの磁場をかけたときの振動試料型磁気測定装置による測定(VSM測定)により求められる磁化のことを指す。
 より具体的には、例えば、以下のようにして求めることができる。すなわち、まず、内径5mm、高さ2mmのセルに酸化鉄粉末を詰めて振動試料型磁気測定装置にセットする。次に、印加磁場を加え、5K・1000/4π・A/mまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作成する。このカーブのデータより磁化(飽和磁化)を求めることができる。振動試料型磁気測定装置としては、例えば、VSM-C7-10A(東英工業社製)等を用いることができる。
 酸化鉄粉末は、主として酸化鉄で構成されたものであればよいが、主としてα-Feで構成されたものであるのが好ましい。
 これにより、より確実に酸化鉄粉末の磁化をより低いものとすることができる。また、飽和磁化が低い酸化鉄粉末は、酸素と反応しにくく、また温度に対する構造変化も小さいため、安定性が特に優れたものとなり、酸化鉄粉末を含むブレーキ摩擦材はより長期間にわたって優れた特性を安定的に発揮することができるものとなる。
 酸化鉄粉末中におけるα-Feの含有率は、90質量%以上であるのが好ましく、95質量%以上であるのがより好ましく、98質量%以上であるのがさらに好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 また、酸化鉄粉末は、主として、FeおよびOで構成されたものであるが、Fe、O以外の元素を含むものであってもよい。このような成分としては、例えば、Mn、Sr、Mg、Ti、Si、Cl、Ca、Al等が挙げられる。
 酸化鉄粉末がFe、O以外の元素を含むものである場合、酸化鉄粉末中におけるFe、O以外の元素の含有率(複数種の元素を含む場合、これらの含有率の和)は、2.0質量%以下であるのが好ましく、1.0質量%以下であるのがより好ましく、0.5質量%以下であるのがさらに好ましい。
 酸化鉄粉末を構成する粒子のうち、粒径が30μm以下の粒子の占める割合は、50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材の制動性をさらに優れたものとすることができる。また、微粒が少ないことにより、ブレーキ材を構成する樹脂と酸化鉄粉末との密着性が向上するため、酸化鉄粉末を含むブレーキ摩擦材の耐久性をさらに優れたものとすることができる。
 酸化鉄粉末の細孔容積は、10mm/g以上180mm/g以下であるのが好ましく、20mm/g以上150mm/g以下であるのがより好ましく、30mm/g以上100mm/g以下であるのがさらに好ましい。
 これにより、酸化鉄粉末を含むブレーキ摩擦材の制動性をより優れたものとしつつ、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをより効果的に防止することができ、ブレーキ摩擦材の耐久性をより優れたものとすることができる。また、ブレーキ摩擦材から比較的大きい酸化鉄粉末の粒子が不本意に脱落することをより効果的に防止することができる。
 これに対し、酸化鉄粉末の細孔容積が前記下限値未満であると、酸化鉄粉末の1粒子が硬すぎるため、ディスクの傷つけ、粒子の脱落が起きやすくなるため、ブレーキ摩擦材が接触するディスクに傷が付きやすくなる。また、ブレーキ摩擦材からの比較的大きい酸化鉄粉末の粒子の不本意な脱落が生じやすくなる。
 また、酸化鉄粉末の細孔容積が前記上限値を超えると、ブレーキ制動のストレスにより、粒子が割れやすいため、制動性、耐久性が悪くなるため、酸化鉄粉末を含むブレーキ摩擦材の制動性が低いものとなりやすい。また、ブレーキ摩擦材の耐久性が低いものとなりやすい。
 なお、酸化鉄粉末の細孔径および細孔容積は、例えば、水銀ポロシメーターPascal140とPascal240(ThermoFisher Scientific社製)を用いた測定により求めることができる。
 酸化鉄粉末のピーク細孔径は、0.2μm以上1.2μm以下であるのが好ましく、0.3μm以上1.0μm以下であるのがより好ましい。
 なお、ピーク細孔径とは、酸化鉄粉末の細孔径の分布において、最も存在頻度の高い細孔径のことである。
 これにより、ブレーキ摩擦材において、酸化鉄粉末の細孔中に、酸化鉄粉末と共にブレーキ摩擦材を構成し得る後述のバインダー(結合材)をより効率よく侵入させることができ、酸化鉄粉末とバインダーと密着性をより優れたものとすることができる。その結果、ブレーキ摩擦材の耐久性をより優れたものとすることができる。また、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをより効果的に防止することができ、ブレーキ摩擦材から比較的大きい酸化鉄粉末の粒子が不本意に脱落することをより効果的に防止することができる。また、ブレーキ摩擦材の制動性をより優れたものとすることができる。
 これに対し、酸化鉄粉末のピーク細孔径が前記下限値未満であると、ブレーキ材を構成する樹脂が酸化鉄粉末に浸み込みにくいため、酸化鉄粉末が脱落しやすく、ディスクの傷つけが起きやすくなるため、ブレーキ摩擦材の耐久性が低いものになりやすい。また、ブレーキ摩擦材が接触するディスクに傷が付きやすくなる。また、ブレーキ摩擦材からの比較的大きい酸化鉄粉末の粒子の不本意な脱落が生じやすくなる。
 また、酸化鉄粉末のピーク細孔径が前記上限値を超えると、ブレーキ制動によるストレスにより、ピーク細孔径の大きい箇所から酸化鉄粉末が割れやすいため、制動性、耐久性が悪くなるため、酸化鉄粉末を含むブレーキ摩擦材の制動性が低いものとなりやすい。また、ブレーキ摩擦材の耐久性が低いものとなりやすい。
 酸化鉄粉末のBET比表面積は、0.05m/g以上1.20m/g以下であるのが好ましく、0.10m/g以上1.0m/g以下であるのがより好ましく、0.15m/g以上0.80m/g以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材において、酸化鉄粉末と後述のバインダーとの密着性をより優れたものとすることができる。その結果、ブレーキ摩擦材の耐久性をより優れたものとすることができる。また、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをより効果的に防止することができ、ブレーキ摩擦材から比較的大きい酸化鉄粉末の粒子が不本意に脱落することをより効果的に防止することができる。また、ブレーキ摩擦材の制動性をより優れたものとすることができる。
 これに対し、酸化鉄粉末のBET比表面積が前記下限値未満であると、酸化鉄粉末へブレーキ材を構成する樹脂と密着しにくくなるため、酸化鉄粉末が脱落しやすく、ディスクの傷つけが起きやすくなるため、ブレーキ摩擦材が接触するディスクに傷が付きやすくなる。また、ブレーキ摩擦材からの比較的大きい酸化鉄粉末の粒子の不本意な脱落が生じやすくなる。
 また、酸化鉄粉末のBET比表面積が前記上限値を超えると、酸化鉄粉末へブレーキ材を構成する樹脂が浸み込みやすくなるため、ブレーキ材樹脂の弾性が失われ、制動性、耐久性が悪くなるため、酸化鉄粉末を含むブレーキ摩擦材の制動性が低いものとなりやすい。また、ブレーキ摩擦材の耐久性が低いものとなりやすい。
 なお、BET比表面積は、比表面積測定装置(例えば、型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めることができる。
 本発明の酸化鉄粉末を構成する粒子は、焼成により酸化鉄微粒子が凝集することにより形成された、適切な粒径の凝集体であるのが好ましい。
 本来α-Feに代表される酸化鉄は赤みが強い色味であるが、酸化鉄粉末を構成する粒子が酸化鉄微粒子の凝集体であると、α-Feで構成されたものであっても、黒色を呈するものとなる。
 このように、酸化鉄粉末の構成粒子が黒色を呈するものであると、ブレーキ摩擦材の外観をより優れたものとすることができる。
 酸化鉄粉末の黒色度(L*値)は、23以上31以下であるのが好ましく、25以上31以下であるのがより好ましく、27以上31以下であるのがさらに好ましい。
 これにより、酸化鉄粉末を含むブレーキ摩擦材の外観をさらに優れたものとすることができる。
 酸化鉄粉末の黒色度(L*値)は、23よりも小さい場合には酸化鉄粉末の粒径が小さすぎることを意味しているため好ましくない。31より大きい場合は酸化鉄粉末の粒径が大きすぎることを意味しているため好ましくない。
 L*a*b*色空間におけるa*値は、凝集体になる前の酸化鉄微粒子(造粒工程で形成される造粒物)の粒径が0.1μm程度であるため赤味及び黄色味が強く、焼成により凝集体になっても-0.2より小さくなることはない。a*値が6.0より大きい場合は酸化鉄微粒子が焼結により十分凝集していないことを意味しているため好ましくない。
 b*値は、凝集体になる前の酸化鉄微粒子(造粒工程で形成される造粒物)の粒径が0.1μm程度であるため赤味及び黄色味が強く、焼結により凝集体になっても-3.0より小さくなることはない。b*値が1.0より大きい場合は酸化鉄微粒子が焼成により十分凝集していないことを意味しているため好ましくない。
 なお、黒色度(L*値)、a*値及びb*値は、色差計(例えば、X-Rite社製、x-rite938等)を用いた測定により求めることができる。
 酸化鉄粉末を構成する粒子は、表面処理が施されたものであってもよい。
 粒子の表面処理に用いる表面処理剤としては、例えば、シランカップリング剤、リン酸系化合物、カルボン酸、フッ素系化合物等が挙げられる。
 シランカップリング剤としては、例えば、シリル基および炭化水素基を有するシラン化合物を用いることができる。
 リン酸系化合物としては、例えば、ラウリルリン酸エステル、ラウリル-2リン酸エステル、ステアレス-2リン酸、2-(パーフルオロヘキシル)エチルホスホン酸のリン酸エステル等を挙げることができる。
 カルボン酸としては、例えば、炭化水素基と、カルボキシル基とを有する化合物(脂肪酸)を用いることができる。このような化合物の具体例としては、デカン酸、テトラデカン酸、オクタデカン酸、cis-9-オクタデセン酸等を挙げることができる。
 フッ素系化合物としては、例えば、上述したようなシランカップリング剤、リン酸系化合物、カルボン酸が有する水素原子の少なくとも一部がフッ素原子で置換された構造を有する化合物(フッ素系シラン化合物、フッ素系リン酸化合物、フッ素置換脂肪酸)等が挙げられる。
 また、酸化鉄粉末についての塩素含有量は、重量基準で100ppm以下であるのが好ましく、20ppm以下であるのがより好ましい。
 これにより、ブレーキ摩擦材が接触するディスクの酸化、腐食等をより効果的に防止することができる。
 なお、本明細書において、塩素含有量とは、特に断りのない限り、燃焼法イオンクロマトグラフィーにより測定される塩素含有量のことを指す。
 また、酸化鉄粉末についての硫酸含有量は、重量基準で500ppm以下であるのが好ましく、200ppm以下であることがより好ましい。
 これにより、ブレーキ摩擦材が接触するディスクの酸化、腐食等をより効果的に防止することができる。
 なお、本明細書において、硫酸含有量とは、特に断りのない限り、燃焼法イオンクロマトグラフィーにより測定される硫酸イオンの含有量のことを指す。
 また、酸化鉄粉末中における塩素含有量及び硫黄イオン含有量は、燃焼法イオンクロマトグラフィーにて、酸化鉄粉末に含まれる陰イオン成分を定量分析することにより求めることができる。
 燃焼法イオンクロマトグラフィーは、例えば、以下のような条件で行うことができる。
‐ 燃焼装置:株式会社三菱化学アナリテック製 AQF-2100H
‐ 試料量:50mg
‐ 燃焼温度:1100℃
‐ 燃焼時間:10分
‐ Ar流量:400ml/min
‐ O流量:200ml/min
‐ 加湿Air流量:100ml/min
‐ 吸収液:下記溶離液に過酸化水素を1重量%溶解させた溶液
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Anion HS(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:1Lの水に対しNaHCO3.8mmolとNaCO3.0mmolを溶解させた溶液
‐ 流速:1.5mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:サプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陰イオン混合標準液
 また、酸化鉄粉末のpHは、6.0以上9.0以下であるのが好ましく、6.3以上8.0以下であるのがより好ましい。
 これにより、ブレーキ摩擦材が接触するディスクの酸化、腐食等をより効果的に防止することができる。
 なお、本明細書において、酸化鉄粉末のpHとは、JIS K0102に準じた手順にて溶液を調製し、ガラス電極法にて測定されるpHのことを指す。
 また、酸化鉄粉末の見かけ密度は、1.50g/cm以上2.50g/cm以下であるのが好ましく、1.60g/cm以上2.40g/cm以下であるのがより好ましい。
 これにより、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをより効果的に防止することができるとともに、ブレーキ摩擦材の耐久性をより優れたものとすることができる、特に、酸化鉄粉末の見かけ密度が上記のような範囲内の値であると、酸化鉄粉末中に適度な割合で空孔(細孔)を含ませることができる。その結果、空孔(細孔)内にバインダーをより好適に侵入させることができ、酸化鉄粉末を含むブレーキ摩擦材の制動性をより優れたものとしつつ、ブレーキ摩擦材の耐久性をより優れたものとすることができる。また、ブレーキ摩擦材から比較的大きい酸化鉄粉末の粒子が不本意に脱落することをより効果的に防止することができる。
 これに対し、酸化鉄粉末の見かけ密度が前記下限値未満であると、酸化鉄粉末を含むブレーキ摩擦材の制動性が低いものとなりやすい。また、ブレーキ摩擦材の耐久性が低いものとなりやすい。
 また、酸化鉄粉末の見かけ密度が前記上限値を超えると、ブレーキ摩擦材の耐久性が低いものになりやすい。また、ブレーキ摩擦材が接触するディスクに傷が付きやすくなる。また、ブレーキ摩擦材からの比較的大きい酸化鉄粉末の粒子の不本意な脱落が生じやすくなる。
 《酸化鉄粉末の製造方法》
 本発明の酸化鉄粉末は、いかなる方法で製造してもよいが、例えば、以下に述べるような方法により、好適に製造することができる。
 例えば、本発明の酸化鉄粉末は、原料となるFe粉末を含むスラリーを噴霧、乾燥して造粒する造粒工程と、得られた造粒物を焼成する焼成工程とを有する方法により製造することができる。
 このような方法を用いることにより、前述した条件を満足する酸化鉄粉末の中でも、粒径が比較的小さいもの(例えば、平均粒径が40μm以上100μm未満のもの)を好適に製造することができる。特に、製造過程において、酸やアルカリを用いる湿式の造粒法(例えば、特許第5760599号公報等に記載の方法)では、平均粒径が10μm以下のものしか製造できないのに対し、上記のような方法では、湿式の造粒法よりも大きい粒径の酸化鉄粉末を好適に製造することができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法とは異なり、最終的に得られる酸化鉄粉末に、酸やアルカリに由来する不純物等が残存することを効果的に防止することができ、酸化鉄粉末や酸化鉄粉末を含むブレーキ摩擦材の耐久性、信頼性をより優れたものとすることができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法では、酸化鉄粉末の磁化を十分に小さいものとすることが困難であるのに対し、上記のような方法では、温度又はガス雰囲気による焼成プロセスで磁化を制御可能であるため、磁化が十分に小さい酸化鉄粉末を容易に得ることができる。また、酸化鉄粉末の平均粒径を上記範囲内の値とすることにより、酸化鉄粉末を含むブレーキ摩擦材が接触するディスクに対する傷つけをさらに効果的に防止することができる。また、酸化鉄粉末を含むブレーキ摩擦材の耐久性をさらに優れたものとすることができる。
 スラリーの調製には、原料となるFe粉末に加えて、例えば、水、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等のバインダー、分散剤、カーボンブラック、木炭等を用いることができる。
 分散剤としては、ポリカルボン酸系分散剤等が好適に用いることができる。
 ただし、スラリー中における有機物の含有率は、スラリー全量に対して0.30質量%以下であるのが好ましく、0.20質量%以下であるのがより好ましい。
 これにより、酸化鉄粉末の磁化をより好適に制御することができる。
 また、スラリーの粘度は、0.3ポイズ以上5ポイズ以下であるのが好ましく、0.5ポイズ以上4ポイズ以下であるのがより好ましい。
 これにより、スラリーの取り扱いのしやすさをより優れたものとすることができ、スラリーの噴霧、乾燥をより好適に行うことができる。その結果、所望の大きさ、形状の造粒物をより優れた生産性で製造することができる。
 なお、本明細書中において、粘度とは、B型粘度計(例えば、リオン社製ビスコテスターVT-04等)を用いて25℃において測定される値をいう。
 スラリーの噴霧は、例えば、スプレードライにより好適に行うことができる。
 造粒工程で形成される造粒物の平均粒径は、40μm以上120μm以下であるのが好ましい。
 これにより、最終的に得られる酸化鉄粉末の構成粒子が前述したような大きさとなるように、より確実に制御することができる。
 焼成工程は、大気中で行うのが好ましい。
 これにより、酸化鉄粉末の生産性をより優れたものとすることができるとともに、酸化鉄粉末の磁化をより好適に制御することができる。
 焼成工程での加熱温度は、特に限定されないが、800℃以上1300℃以下であるのが好ましく、900℃以上1200℃以下であるのが好ましく、950℃以上1150℃以下であるのがさらに好ましい。
 これにより、酸化鉄粉末の磁化や形状(例えば、細孔容積、ピーク細孔径、BET比表面積)をより好適に調整することができ、ブレーキ摩擦材の制動性をより優れたものとしつつ、ブレーキ鳴きやブレーキ摩擦材が接触するディスクに対する傷つけ等の問題の発生をより効果的に防止することができる。
 なお、焼成工程では、条件の異なる2段階以上の加熱処理(焼成処理)を行ってもよい。
 また、本発明の酸化鉄粉末は、原料となるFe粉末を含む組成物をペレット化し、仮焼成して仮焼成体を得る仮焼成工程と、仮焼成体を粉砕した後、バインダー等を添加し、乾式混合装置を用いて造粒を行う造粒工程と、得られた造粒物に対して脱バインダー処理を行い、脱脂体を得る脱バインダー工程と、脱脂体を焼成(本焼成)する本焼成工程とを有する方法により製造することができる。
 これにより、前述した条件を満足する酸化鉄粉末の中でも、粒径が比較的大きいもの(例えば、平均粒径が100μm以上のもの)を好適に製造することができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法とは異なり、最終的に得られる酸化鉄粉末に、酸やアルカリに由来する不純物等が残存することを効果的に防止することができ、酸化鉄粉末や酸化鉄粉末を含むブレーキ摩擦材の耐久性、信頼性をより優れたものとすることができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法では、酸化鉄粉末の磁化を十分に小さいものとすることが困難であるのに対し、上記のような方法では、温度或いはガス雰囲気による焼成プロセスで磁化を制御可能であるため、磁化が十分に小さい酸化鉄粉末を容易に得ることができる。また、酸化鉄粉末の平均粒径を上記範囲内の値とすることにより、ブレーキ摩擦材の制動性をさらに優れたものとすることができる。また、酸化鉄粉末を含むブレーキ摩擦材の耐久性をより優れたものとすることができる。また、酸化鉄粉末の取り扱いのしやすさがさらに優れたものとなり、酸化鉄粉末の取り扱い時(例えば、ブレーキ摩擦材の製造時等)における作業者の安全性をさらに高いものとすることができる。また、酸化鉄粉末の流動性や他の成分との混合性を優れたものとすることができるため、例えば、ブレーキ摩擦材の生産性をさらに優れたものとすることができる。
 ペレットの作製は、加圧成型機を用いることにより好適に行うことができる。
 仮焼成工程での加熱温度は、特に限定されないが、600℃以上1200℃以下であるのが好ましく、650℃以上1000℃以下であるのがより好ましく、700℃以上900℃以下であるのがさらに好ましい。
 これにより、最終的に得られる酸化鉄粉末の磁化や形状(例えば、細孔容積、ピーク細孔径、BET比表面積)をより好適に調整することができ、ブレーキ摩擦材の制動性をより優れたものとしつつ、ブレーキ鳴きやブレーキ摩擦材が接触するディスクに対する傷つけ等の問題の発生をより効果的に防止することができる。
 また、仮焼成工程では、2段階以上の加熱処理(焼成処理)を行ってもよい。
 原料又は仮焼成体の粉砕物に添加するバインダーとしては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等を用いることができる。
 造粒工程で用いる乾式混合装置としては、例えば、ヘンシェルミキサー等が挙げられる。
 脱バインダー工程は、本焼成工程での処理温度よりも低い温度で加熱することにより好適に行うことができる。
 脱バインダー工程での加熱温度は、特に限定されないが、400℃以上1000℃以下であるのが好ましく、450℃以上900℃以下であるのがより好ましく、500℃以上800℃以下であるのがさらに好ましい。
 これにより、最終的に得られる酸化鉄粉末の磁化や形状(例えば、細孔容積、ピーク細孔径、BET比表面積)をより好適に調整することができ、ブレーキ摩擦材の制動性をより優れたものとしつつ、ブレーキ鳴きやブレーキ摩擦材が接触するディスクに対する傷つけ等の問題の発生をより効果的に防止することができる。
 本焼成工程は、大気中で行うのが好ましい。
 これにより、酸化鉄粉末の生産性をより優れたものとすることができるとともに、酸化鉄粉末の磁化をより好適に制御することができる。
 本焼成工程での加熱温度は、特に限定されないが、800℃以上1300℃以下であるのが好ましく、900℃以上1200℃以下であるのが好ましく、950℃以上1150℃以下であるのがさらに好ましい。
 本焼成工程での加熱時間は、特に限定されないが、1時間以上24時間以下であるのが好ましい。
 これにより、酸化鉄粉末の磁化や形状(例えば、細孔容積、ピーク細孔径、BET比表面積)をより好適に調整することができ、ブレーキ摩擦材の制動性をより優れたものとしつつ、ブレーキ鳴きやブレーキ摩擦材が接触するディスクに対する傷つけ等の問題の発生をより効果的に防止することができる。
 《ブレーキ摩擦材》
 次に、本発明の酸化鉄粉末を含むブレーキ摩擦材について説明する。
 ブレーキ摩擦材は、前述した本発明の酸化鉄粉末を含むものである。
 これにより、ブレーキ鳴きの問題を生じにくく、制動性に優れたブレーキ摩擦材を提供することができる。
 ブレーキ摩擦材中における酸化鉄粉末の含有量は、10質量%以上90質量%以下であるのが好ましく、20質量%以上80質量%以下であるのがより好ましい。
 ブレーキ摩擦材は、前述した本発明の酸化鉄粉末以外の成分を含むものであってもよい。
 このような成分としては、例えば、バインダー(結合材)、有機充填材、無機充填材、繊維基材等が挙げられる。
 (結合材)
 結合材は、ブレーキ摩擦材に含まれる酸化鉄粉末等を結合、一体化し、ブレーキ摩擦材としての強度を向上させる機能を有するものである。
 結合材は、特に限定されず、例えば、熱硬化性樹脂を用いることができる。
 上記熱硬化性樹脂としては、例えば、エポキシ樹脂;アクリル系樹脂;シリコーン樹脂;熱硬化性フッ素系樹脂;フェノール樹脂;アクリルエラストマー分散フェノール樹脂、シリコーンエラストマー分散フェノール樹脂等の各種エラストマー分散フェノール樹脂;アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 特に、良好な耐熱性、成形性、摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
 ブレーキ摩擦材中における結合材の含有量は、4質量%以上20質量%以下であるのが好ましく、5質量%以上10質量%以下であるのがより好ましい。
 これにより、ブレーキ摩擦材の強度を優れたものとしつつ、ブレーキ摩擦材の気孔率、弾性率をより適切なものとすることができ、ブレーキ鳴き等の音振性能の悪化をより効果的に防止、抑制することができる。
 (有機充填材)
 有機充填材は、例えば、ブレーキ摩擦材の音振性能や耐摩耗性等を向上させるための摩擦調整剤としての機能を有する。
 有機充填材としては、特に限定されないが、例えば、カシューダスト、ゴム成分等を用いることができる。
 カシューダストは、カシューナッツシェルオイルを硬化させたものを粉砕して得られるものである。
 上記ゴム成分としては、例えば、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)、塩素化ブチルゴム、ブチルゴム、シリコーンゴム等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 ブレーキ摩擦材中における有機充填材の含有量は、0.5質量%以上20質量%以下であるのが好ましく、1質量%以上10質量%以下であるのがより好ましく、3質量%以上8質量%以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材の弾性率が高くなり、ブレーキ鳴き等の音振性能の悪化をより効果的に防止、抑制することができ、また、耐熱性の悪化、熱履歴による強度低下をより効果的に防止、抑制することができる。
(無機充填材)
 無機充填材は、例えば、ブレーキ摩擦材の耐熱性の悪化を避けるため、耐摩耗性を向上させるため、摩擦係数を向上するため、潤滑性を向上させるため、pHを調整するため等の目的で添加されるものである。
 上記無機充填材としては、例えば、硫化錫、二硫化モリブデン、硫化鉄、三硫化アンチモン、硫化ビスマス、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、硫酸バリウム、コークス、黒鉛、マイカ、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ムライト、クロマイト、ウォラストナイト、セピオライト、酸化チタン、酸化マグネシウム、シリカ、ドロマイト、炭酸カルシウム、炭酸マグネシウム、珪酸カルシウム、珪酸ジルコニウム、γアルミナ、二酸化マンガン、酸化亜鉛、酸化セリウム、ジルコニア、チタン酸カリウム、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム、チタン酸ナトリウム等のチタン酸塩等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 ブレーキ摩擦材中における無機充填材の含有量は、20質量%以上80質量%以下であるのが好ましく、25質量%以上70質量%以下であるのがより好ましく、30質量%以上60質量%以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材の耐熱性をより優れたものとすることができ、ブレーキ摩擦材のその他の成分(結合材、有機充填剤、無機充填剤、繊維基材等、酸化鉄粉末以外の成分)の含有量バランスの点でも好ましい。
 (繊維基材)
 繊維基材は、ブレーキ摩擦材において補強作用を示すものである。
 繊維基材としては、金属材料やその他の無機材料で構成された無機繊維、有機材料で構成された有機繊維、これらの複合材料で構成された繊維等を用いることができ、これらから選択される1種または2種以上を組み合わせて使用することができる。
 金属材料で構成された金属繊維としては、例えば、Al、Fe、Zn、Sn、Ti、Ni、Mg、Si、Cu等の金属や、これらのうち少なくとも1種を含む合金を主成分とする繊維を用いることができる。また、これらの金属、合金は、繊維形状以外に、粉末の形状で含有してもよい。
 金属材料以外の無機材料で構成された無機繊維としては、例えば、セラミック繊維、鉱物繊維、ガラス繊維、シリケート繊維、バサルト繊維等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。当該無機繊維の中では、SiO、Al、CaO、MgO、FeO、NaO等を任意の組み合わせで含有した生分解性鉱物繊維が好ましく、市販品としては、例えば、LAPINUS FIBERS B.V製のRoxulシリーズ等が挙げられる。
 有機材料で構成された有機繊維としては、例えば、炭素系繊維、アラミド繊維、セルロース繊維、アクリル繊維、フェノール樹脂繊維、ポリ(パラフェニレンベンゾビスオキサゾール)繊維、生分解性セラミック繊維等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 炭素系繊維としては、例えば、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
 ブレーキ摩擦材中における繊維基材の含有量は、2質量%以上40質量%以下であるのが好ましく、2質量%以上20質量%以下であるのがより好ましく、2質量%以上15質量%以下であるのがさらに好ましい。
 これにより、ブレーキ摩擦材の強度を優れたものとしつつ、ブレーキ摩擦材の気孔率をより適切なものとすることができ、ブレーキ鳴き等の音振性能の悪化をより効果的に防止・抑制することができる。また、ブレーキ摩擦材の耐摩耗性をより優れたものとすることができる。また、ブレーキ摩擦材の製造時には、より優れた成形性を得ることができる。
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
 例えば、本発明の酸化鉄粉末の製造方法では、必要に応じて、前述した工程に加えて、他の工程(前処理工程、中間工程、後処理工程)を有していてもよい。より具体的には、例えば、分級処理を行う分級工程を有していてもよい。分級方法としては、例えば、風力分級、メッシュ濾過法、沈降法、各種篩を使った分級等が挙げられる。
 また、本発明の酸化鉄粉末は、前述したような方法で製造されたものに限定されず、いかなる方法で製造されたものであってもよい。
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
 《1》酸化鉄粉末の製造
 各実施例および各比較例の酸化鉄粉末を以下のようにして製造した。
(実施例1)
 まず、固形分が55質量%となるように、原料としてのFeにカーボンブラック、水、バインダー成分としてPVA、ポリカルボン酸系分散剤を加え、ビーズミルで混合し、混合により得られたスラリーをスプレードライヤーで噴霧、乾燥することにより造粒した。
 次に、電気炉を用いて、大気中、1000℃にて加熱することにより、焼成(本焼成)を行った。
 その後、解砕、分級を行うことにより、平均粒径が60μmの酸化鉄粉末を得た。
 酸化鉄粉末の平均粒径(体積平均粒径)は、以下のような測定により求めた。すなわち、まず、試料としての酸化鉄粉末:10gと水:80mlとを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加した。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行った。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、マイクロトラック粒度分析計(日機装株式会社製、Model9320-X100)に導入し、測定を行った。なお、後に述べる各実施例および各比較例についても同様にして求めた。ただし、平均粒径が100μm以上のものについては、倍率50倍のSEM像を30粒子撮影し、水平方向のフェレ径の平均値を平均粒径の値として採用した。
 また、得られた酸化鉄粉末について、振動試料型磁気測定装置を用いて飽和磁化測定を行ったところ、飽和磁化:0.2349emu/gであった。
 上記の磁気特性は以下のようにして求めた。すなわち、まず、内径5mm、高さ2mmのセルに酸化鉄粉末を詰めて振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)にセットした。次に、印加磁場を加え、5K・1000/4π・A/mまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作成した。その後、このカーブのデータより磁化を求めた。なお、後に述べる各実施例および各比較例についても同様にして求めた。
 また、得られた酸化鉄粉末の細孔容積は81mm/g、ピーク細孔径は0.51μm、BET比表面積は0.61m/g、黒色度(L*値)は29.088、a*値は3.73、b*値は-1.04、塩素含有量は検出下限未満(<2ppm)、硫酸イオンの含有量は13ppm、pHは8.62、見かけ密度は1.78g/cmであった。
 酸化鉄粉末の細孔容積、ピーク細孔径は、水銀ポロシメーターPascal140とPascal240(Thermo Fisher Scientific社製)を用いて求めた。より具体的には、ディラトメーターはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメーター内に入れた。Pascal140で脱気後、水銀を充填し低圧領域(0~400Kpa)を測定し、1st Runとした。次に再び脱気と低圧領域(0~400Kpa)の測定を行い、2nd Runとした。2nd Runの後、ディラトメーターと水銀とカプセルとサンプルを合わせた重量を測定した。次にPascal240で高圧領域(0.1Mpa~200Mpa)を測定した。この高圧部の測定で得られた水銀圧入量をもって、酸化鉄粉末の細孔容積、細孔径分布およびピーク細孔径を求めた。また、細孔径を求める際には水銀の表面張力を480dyn/cm(1dyn/cm=1×10-3N/m)、接触角を141.3°として計算した。
 また、BET比表面積は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めた。より具体的には、測定試料を比表面積測定装置専用の標準サンプルセルに約5g入れ、精密天秤で正確に秤量し、測定ポートに試料(酸化鉄粉末)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出された。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で-0.1MPaまで脱気し、-0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。測定環境は、温度;10~30℃、湿度;相対湿度で20~80%で、結露なしの条件とした。
 黒色度(L*値)、a*値及びb*値は、直径37mmのプラスチック製容器に試料(酸化鉄粉末)を充填した後、盛り上がった部分をほぼ平らになるようにすりきった後、表面にポリエチレンラップで密封した上から色差計(X-Rite社製、X-Rite938)を用いて測定した。
 なお、後に述べる各実施例および各比較例についても同様にして求めた。
 塩素含有量、硫黄含有量の測定は、燃焼法イオンクロマトグラフィーにて、酸化鉄粉末に含まれる陰イオン成分を下記条件で定量分析することにより行った。
‐ 燃焼装置:株式会社三菱化学アナリテック製 AQF-2100H
‐ 試料量:50mg
‐ 燃焼温度:1100℃
‐ 燃焼時間:10分
‐ Ar流量:400ml/min
‐ O流量:200ml/min
‐ 加湿Air流量:100ml/min
‐ 吸収液:下記溶離液に過酸化水素を1重量%溶解させた溶液
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Anion HS(4.6mmI.D.1cm+4.6mmI.D.10cm)
‐ 溶離液:1Lの水にNaHCO3.8mmolとNaCO3.0mmolを溶解させた溶液
‐ 流速:1.5mL/min
‐ カラム温度:40℃
‐ 注入量:30L
‐ 測定モード:サプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陰イオン混合標準液
 なお、後に述べる各実施例および各比較例についても、上記と同様にして、塩素含有量、硫黄含有量の測定を行った。
 pHの測定は、HM-20J(東亜ディーケーケー社製)を用いて、ガラス電極法で行った。酸化鉄粒子をビーカーに5gはかり取り、超純水100mLを加え、30秒攪拌した後、直ちにpH電極を投入し、pH値を読み取った。
 なお、後に述べる各実施例および各比較例についても同様にして求めた。
 見かけ密度はJIS Z 2504に準拠して測定した。詳細は次の通りである。
 1.装置
 粉末見かけ密度計は漏斗、コップ、漏斗支持器、支持棒及び支持台から構成されるものを用いる。天秤は、秤量200gで感量50mgのものを用いる。
 2.測定方法
 (1)試料は、少なくとも150g以上とする。
 (2)試料は孔径2.5+0.2/-0mmのオリフィスを持つ漏斗に注ぎ流れ出た試料が、コップ一杯になってあふれ出るまで流し込む。
 (3)あふれ始めたら直ちに試料の流入をやめ、振動を与えないようにコップの上に盛り上がった試料をへらでコップの上端に沿って平らにかきとる。
 (4)コップの側面を軽く叩いて、試料を沈ませコップの外側に付着した試料を除去して、コップ内の試料の重量を0.05gの精度で秤量する。
 3.計算
 前項2-(4)で得られた測定値に0.04を乗じた数値をJIS-Z8401(数値の丸め方)によって小数点以下第2位に丸め、「g/cm」の単位の見かけ密度とする。
 磁気特性は、振動試料型磁気測定装置(型式:VSM-C7-10A(東英工業社製))を用いて測定した。測定試料(フェライト粒子)は、内径5mm、高さ2mmのセルに詰めて上記装置にセットした。測定は、印加磁場を加え、5K・1000/4・A/mまで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このカーブのデータより印加磁場が5K・1000/4・A/mにおける磁化を読み取った。また、残留磁化及び保磁力も同様に算出した。
 真比重は、JIS R9301-2-1に準拠して、ピークメーターを用いて測定した。ここで溶媒としてメタノールを用い、温度25℃で測定を行った。
 Fe含有量は、下記によって測定される。
 酸化鉄粉末0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、酸化鉄粉末を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS-1000IV)を用いてFeの含有量を測定した。
(実施例2~6)
 スプレードライヤーでの造粒条件、焼成処理条件を調整することにより、酸化鉄粉末の条件を表1に示すようにした以外は、前記実施例1と同様に酸化鉄粉末を製造した。
(実施例7)
 まず、固形分55質量%となるように、原料としてのFeに、バインダー成分としてポリビニルアルコール(10質量%水溶液)を加え、ヘンシェルミキサーを用いて15分混合、造粒を行った。
 その後、得られた造粒物に対し、800℃で脱バインダー処理を施し、有機物を除去し、ついで、大気中で、電気炉にて1000℃で、4時間保持し、本焼成を行った。
 その後、解砕、分級を行うことにより、平均粒径が150μmの酸化鉄粉末を得た。
 また、得られた酸化鉄粉末について、振動試料型磁気測定装置を用いて測定を行ったところ、飽和磁化:0.1678emu/gであった。
 また、得られた酸化鉄粉末の細孔容積は88mm/g、ピーク細孔径は0.42μm、BET比表面積は0.38m/g、黒色度(L*値)は25.84、a*値は5.31、b*値は0.87、塩素含有量は35ppm、硫酸イオンの38ppm、pHは8.63、見かけ密度は1.61g/cmであった。
(実施例8、9)
 ヘンシェルミキサーでの造粒条件、本焼成処理条件を調整することにより、酸化鉄粉末の条件を表1に示すようにした以外は、前記実施例7と同様に酸化鉄粉末を製造した。
(比較例1)
 スプレードライヤーでの噴霧、乾燥条件を変更した以外は、前記実施例1と同様にして酸化鉄粉末を製造した。
(比較例2)
 造粒物の焼成を、非酸化性雰囲気中(窒素雰囲気中)で、加熱温度900℃という条件で行った以外は、前記実施例1と同様にして酸化鉄粉末を製造した。
(比較例3)
 Fe2+を1.9mol/Lの濃度で含む硫酸第一鉄水溶液:10Lと12Nの水酸化ナトリウム水溶液:4Lとを反応器に加え、95℃において攪拌機回転数5rpm、毎分1.5Lの酸素を通気させ反応を行った。このとき、反応鉄濃度は1.36mol/Lであった。反応終了後、濾過、水洗、乾燥、粉砕を行い、酸化鉄粉末を得た。
 得られた酸化鉄粉末は、平均粒径が0.6μmであった。
 また、得られた酸化鉄粉末について、振動試料型磁気測定装置を用いて飽和磁化測定を行ったところ、飽和磁化:83.1000emu/gであった。
 また、得られた酸化鉄粉末の細孔容積は157mm/g、ピーク細孔径は0.13μm、BET比表面積は3.90m/g、黒色度(L*値)は15.31、塩素含有量は検出下限未満(<2ppm)、硫酸イオンの含有量は750ppm、pHは8.44、見かけ密度は0.98g/cmであった。
 前述した各実施例および各比較例の酸化鉄粉末の製造条件を表1にまとめて示し、前述した各実施例および各比較例の酸化鉄粉末の特性等を表2にまとめて示す。なお、前記各実施例の酸化鉄粉末は、いずれも、酸化鉄粉末を構成する粒子のうち30μm以下のものの占める割合が5質量%以下であった。また、前記各実施例の酸化鉄粉末は、いずれも、酸化鉄粉末中におけるα-Feの含有率が99質量%以上であった。
 造粒物の粒径(平均粒径)は、酸化鉄粉末の平均粒径の測定と同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 《2》酸化鉄粒子を用いた成形体の製造および評価
 前記各実施例および各比較例について、それぞれ、得られた酸化鉄粉末4.5gと、フッ素系樹脂粉末0.5gとをボールミルで混合後、混合物1gを断面積1.13cmの金型に投入し、50kNで加圧し、混合物の成形体を作製した。得られた成形体の加圧方向に垂直な面をイオンミリングで加工し、FE-SEMにて断面観察をおこなった。
 イオンミリング装置は日立ハイテク社製IM-4000を使用し、以下の条件にて加工した。
DISCHARGE VOLTAG(放電電圧):1.5kV
ACCELERATION VOLTAGE(加速電圧):6kV
STAGE CONTROL加工モード:C3
DISCHARGE CURRENTイオンガン内部の放電電流:380~450μA
ION BEAM CURRENTイオンビーム電流:110~140μA
GAS FLOWアルゴンガス流量:0.07~0.10cm/min
加工時間:60分
 FE-SEMは、日立ハイテク社製SU-8020を使用し、加速電圧1kV、LAモード、倍率450倍にて撮影し、以下の基準に従い評価した。
  〇:粒子は変形しているものの、酸化鉄粒子が存在している部分と樹脂のみの部分が区別できる。
  △:視野中に酸化鉄の部分が多く含まれる。
  ×※1:粒子が変形し、成型物中樹脂と酸化鉄が一様に広がる。
  ×※2:粒子が破壊されているものと、形状を保ったままの状態で存在している(粒子は変形しない)ものが混在している。
  ×※3:成型物中樹脂と酸化鉄が一様に広がる。
 これらの結果を、前記各実施例および各比較例の酸化鉄粉末についてのサンプルミルによるストレス試験後の磁気特性とともに、表3にまとめて示す。
 サンプルミルによるストレス試験としては、サンプルミルSAM(奈良機械製作所社製)に試料100gを投入し、標準ローターを用いて16000rpm設定下、10秒間破砕処理を行なった。
 
Figure JPOXMLDOC01-appb-T000003
 
 前記各実施例では、酸化鉄粒子の不本意な脱離等は認められなかった。
 これに対し、酸化鉄粉末の平均粒径が小さすぎる比較例1及び3では、樹脂のみの部分と酸化鉄粒子の部分が均一に混合された状態となってしまうことで、酸化鉄粒子の局在がみられずブレーキ材として使用したときに摩耗量が従来の酸化鉄粒子と変わらず効果が得られない可能性が高い結果となった。
 また、酸化鉄粉末の磁化が大きすぎる比較例2、3では、飽和磁化が大きくブレーキ材として使用したときにブレーキ鳴きの発生が懸念される結果となった。
 実施例1、比較例2のブレーキ摩擦材用酸化鉄粉末を用いて製造された成形体の断面SEM写真を表す図を、それぞれ、図1、図2に示す。
 本発明のブレーキ摩擦材用酸化鉄粉末は、平均粒径が40μm以上で、かつ、飽和磁化が20emu/g以下である。そのため、ブレーキ鳴きの問題を生じにくく、制動性に優れたブレーキ摩擦材に好適に用いることができる酸化鉄粉末を提供することができる。従って、本発明のブレーキ摩擦材用酸化鉄粉末は、産業上の利用可能性を有する。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年12月12日出願の日本特許出願(特願2016-240077)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (5)

  1.  平均粒径が40μm以上で、かつ、飽和磁化が20emu/g以下であることを特徴とするブレーキ摩擦材用酸化鉄粉末。
  2.  細孔容積が10mm/g以上180mm/g以下である請求項1に記載のブレーキ摩擦材用酸化鉄粉末。
  3.  BET比表面積が0.05m/g以上1.20m/g以下である請求項1または2に記載のブレーキ摩擦材用酸化鉄粉末。
  4.  ピーク細孔径が0.2μm以上1.2μm以下である請求項1ないし3のいずれか1項に記載のブレーキ摩擦材用酸化鉄粉末。
  5.  黒色度(L*値)が23以上31以下である請求項1ないし4のいずれか1項に記載のブレーキ摩擦材用酸化鉄粉末。
PCT/JP2017/044609 2016-12-12 2017-12-12 ブレーキ摩擦材用酸化鉄粉末 WO2018110562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780075571.3A CN110062799B (zh) 2016-12-12 2017-12-12 制动器摩擦材料用氧化铁粉末
EP17880982.8A EP3553149B1 (en) 2016-12-12 2017-12-12 Iron oxide powder for brake friction material
JP2018556698A JP6893040B2 (ja) 2016-12-12 2017-12-12 ブレーキ摩擦材用酸化鉄粉末
US16/466,799 US10919779B2 (en) 2016-12-12 2017-12-12 Iron oxide powder for brake friction material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-240077 2016-12-12
JP2016240077 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110562A1 true WO2018110562A1 (ja) 2018-06-21

Family

ID=62558624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044609 WO2018110562A1 (ja) 2016-12-12 2017-12-12 ブレーキ摩擦材用酸化鉄粉末

Country Status (5)

Country Link
US (1) US10919779B2 (ja)
EP (1) EP3553149B1 (ja)
JP (1) JP6893040B2 (ja)
CN (1) CN110062799B (ja)
WO (1) WO2018110562A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031557A1 (ja) * 2017-08-08 2019-02-14 曙ブレーキ工業株式会社 摩擦材
US10996576B2 (en) * 2017-01-04 2021-05-04 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359689B2 (en) 2016-12-12 2022-06-14 Powdertech Co., Ltd. Iron oxide powder for brake friction material
CN112538588B (zh) * 2020-12-08 2022-06-03 沈阳鑫作粉末冶金制品有限公司 一种氧化铁环保材料及其制备方法和应用
CN115216160A (zh) * 2022-08-09 2022-10-21 佛山市顺德区鑫路材料技术有限公司 一种应用于改性沥青生产的增强剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760599B2 (ja) 1979-08-15 1982-12-20 Nippon Genshiryoku Kenkyusho
JP2007197533A (ja) * 2006-01-25 2007-08-09 Advics:Kk 摩擦材
JP2008291108A (ja) * 2007-05-24 2008-12-04 Advics:Kk 摩擦材
JP2015010015A (ja) * 2013-06-28 2015-01-19 三石耐火煉瓦株式会社 煉瓦、タイル、床板、天井パネル及び屋根材並びにこれらの製造方法
WO2017170532A1 (ja) * 2016-03-30 2017-10-05 戸田工業株式会社 摩擦材用酸化鉄粒子粉末

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350523A (en) 1979-04-12 1982-09-21 Kabushiki Kaisha Kobe Seiko Sho Porous iron ore pellets
JP3594513B2 (ja) * 1999-05-27 2004-12-02 三井金属鉱業株式会社 マグネタイト粒子
JP5760599B2 (ja) * 2011-03-31 2015-08-12 戸田工業株式会社 磁性酸化鉄粒子粉末
CN102641753B (zh) * 2012-03-02 2014-04-16 河海大学 一种用于去除水中有机物的磁性强碱性离子交换树脂的制备方法
KR20150134329A (ko) * 2013-03-29 2015-12-01 가부시키가이샤 엠티지 미용제용 자성분
CN106395913B (zh) * 2016-08-26 2018-01-09 天津大学 一种具有铁缺陷的铁磁性纳米α‑Fe2O3及其制备方法
US11359689B2 (en) * 2016-12-12 2022-06-14 Powdertech Co., Ltd. Iron oxide powder for brake friction material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760599B2 (ja) 1979-08-15 1982-12-20 Nippon Genshiryoku Kenkyusho
JP2007197533A (ja) * 2006-01-25 2007-08-09 Advics:Kk 摩擦材
JP2008291108A (ja) * 2007-05-24 2008-12-04 Advics:Kk 摩擦材
JP2015010015A (ja) * 2013-06-28 2015-01-19 三石耐火煉瓦株式会社 煉瓦、タイル、床板、天井パネル及び屋根材並びにこれらの製造方法
WO2017170532A1 (ja) * 2016-03-30 2017-10-05 戸田工業株式会社 摩擦材用酸化鉄粒子粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553149A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996576B2 (en) * 2017-01-04 2021-05-04 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2019031557A1 (ja) * 2017-08-08 2019-02-14 曙ブレーキ工業株式会社 摩擦材
JP2019031616A (ja) * 2017-08-08 2019-02-28 曙ブレーキ工業株式会社 摩擦材
JP7010623B2 (ja) 2017-08-08 2022-01-26 曙ブレーキ工業株式会社 摩擦材
US11905182B2 (en) 2017-08-08 2024-02-20 Akebono Brake Industry Co., Ltd. Friction material

Also Published As

Publication number Publication date
US20190337818A1 (en) 2019-11-07
JPWO2018110562A1 (ja) 2019-11-07
CN110062799A (zh) 2019-07-26
EP3553149A1 (en) 2019-10-16
JP6893040B2 (ja) 2021-06-23
EP3553149A4 (en) 2020-11-25
US10919779B2 (en) 2021-02-16
EP3553149B1 (en) 2024-01-31
CN110062799B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2018110562A1 (ja) ブレーキ摩擦材用酸化鉄粉末
US11572926B2 (en) Iron oxide powder for brake friction material
JP6591192B2 (ja) 摩擦材料、摩擦要素、ブレーキシステム
JP6563676B2 (ja) 摩擦材組成物および摩擦材とその製造方法
TWI631078B (zh) Porous titanate compound particle and method of producing the same
CN110300787B (zh) 摩擦材料组合物、摩擦材料和摩擦部件
JP6933853B2 (ja) ブレーキ摩擦材用酸化鉄粉末
CN108367347B (zh) 新型铁基复合粉末
WO2017051690A1 (ja) 多孔質チタン酸塩化合物粒子及びその製造方法
JP6966765B2 (ja) ブレーキ摩擦材用酸化鉄粉末
JP2020094115A (ja) 摩擦材組成物、摩擦材組成物を用いた摩擦材及び摩擦部材
JP6127324B2 (ja) 磁性フィラー
JP2016138189A5 (ja)
WO2022030164A1 (ja) 摩擦調整材、摩擦材組成物、摩擦材、及び摩擦部材
JP7016996B1 (ja) 摩擦調整材、摩擦材組成物、摩擦材、及び摩擦部材
KR102401686B1 (ko) 복합 티타늄산 화합물, 복합 티타늄산 화합물의 제조 방법 및 마찰재
JP2002097454A (ja) 摩擦材用造粒物および摩擦材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017880982

Country of ref document: EP