WO2018110058A1 - 細胞構造体製造装置 - Google Patents

細胞構造体製造装置 Download PDF

Info

Publication number
WO2018110058A1
WO2018110058A1 PCT/JP2017/036883 JP2017036883W WO2018110058A1 WO 2018110058 A1 WO2018110058 A1 WO 2018110058A1 JP 2017036883 W JP2017036883 W JP 2017036883W WO 2018110058 A1 WO2018110058 A1 WO 2018110058A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell mass
porous material
needle
light
Prior art date
Application number
PCT/JP2017/036883
Other languages
English (en)
French (fr)
Inventor
保人 岸井
周彦 徳永
Original Assignee
株式会社サイフューズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイフューズ filed Critical 株式会社サイフューズ
Priority to JP2018556213A priority Critical patent/JP6620251B2/ja
Publication of WO2018110058A1 publication Critical patent/WO2018110058A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • C12M25/04Membranes; Filters in combination with well or multiwell plates, i.e. culture inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion

Definitions

  • the present invention relates to a cell structure manufacturing apparatus used for manufacturing a three-dimensional structure of a cell.
  • Patent Document 1 discloses a technique in which a thin needle-like body is lowered in a vertical direction on a cell mass arranged so as not to move on a culture plate and pierced into the needle-like body.
  • the cell mass in order to place the cell mass before puncturing so as not to move, the cell mass is placed in a recess provided on the surface of the culture plate so that the cell mass can be individually stacked.
  • a technique is disclosed in which a needle-like body is lowered and pierced from directly above toward a cell mass.
  • Patent Document 1 is based on the premise that one cell mass is accommodated in one recess, and does not hold a plurality of cell masses. Moreover, in patent document 1, there exists a possibility that a cell mass may deform
  • Patent Document 1 discloses a method for accurately identifying the center of a cell mass by irradiating the cell mass with a laser beam and receiving the laser beam reflected by the cell tray and determining the position of the cell mass based on the brightness. Adopted. However, when the position is discriminated by the reflected light of the laser beam, there is a problem that the accuracy is low in identifying the center of the cell mass that is a portion to be punctured by the needle-like body.
  • the present invention has been made in view of these problems, and provides a cell structure manufacturing apparatus capable of appropriately piercing a cell mass.
  • a cell structure manufacturing apparatus comprising a puncture unit that penetrates the cell mass and a control unit that controls the position of the puncture unit based on the image.
  • the method is solved by a cell structure manufacturing method comprising the steps of obtaining mass information, a control step for controlling the position of the puncture portion based on the information, and a step of penetrating the puncture portion into the cell mass.
  • a cell mass can be appropriately stabbed with a needle-like object by the cell structure production apparatus.
  • FIG. 1 is a schematic view schematically showing a cell structure manufacturing apparatus according to Embodiment 1.
  • FIG. It is the figure which showed the process of piercing a cell mass. It is the figure which showed the process of piercing a cell mass. It is the figure which showed the process of piercing a cell mass. It is the figure which showed the cell cluster group image
  • FIG. 6 is a schematic diagram schematically showing a cell structure manufacturing apparatus according to a second embodiment.
  • the cell structure manufacturing apparatus has a puncture portion having a needle-like body that is attached so as to be elongated.
  • a cell tray is placed on the cell structure manufacturing apparatus.
  • a plurality of holes whose bottom surfaces are sealed with a porous material are arranged.
  • a cell mass is held in each of the plurality of holes of the cell tray.
  • the puncture unit can move the needle-like body toward the cell mass in the direction in which the needle-like body extends.
  • the puncture unit punctures the cell mass held in the hole of the cell tray with a needle-like body, and produces a needle-like body in which a plurality of cell masses are skewered into one needle-like body.
  • the cell structure manufacturing apparatus has an imaging unit capable of photographing the position of a cell mass to be punctured in each of a plurality of holes of the cell tray, and processes the photographed information to puncture the position of the cell mass. And a control unit that controls the puncture unit that identifies the position to be punctured and punctures the location.
  • the imaging unit acquires light information from the cell mass.
  • the imaging unit is, for example, an optical sensor or a camera having an image element, and the light information is original data as information acquired by the optical sensor, or original data of image information acquired by the camera. is there.
  • the imaging unit is arranged so as to face the placed cell tray and can photograph the cell mass on the cell tray.
  • the puncture unit moves the plurality of holes in a predetermined order, and punctures the cell mass with a needle-like body in each of the plurality of holes.
  • the imaging unit itself moves in accordance with the movement of the puncture unit, or changes the imaging direction, and the hole to be punctured by the puncture unit can be photographed before puncturing.
  • the cell structure manufacturing apparatus may have only the imaging unit.
  • a light emitting unit that irradiates light to the porous material may be disposed.
  • the light emitting part is arranged on one side of the porous material of the cell tray and irradiates light toward one surface of the porous material, and the imaging part is different from the light emitting part with the porous material as a boundary, It can be set such that the light emitted from the light emitting part is received by the imaging part on the other side corresponding to the opposite side of the porous material of the cell tray.
  • the light emitting part irradiates light toward one surface of the porous material of the cell tray, the light emitted from the light emitting part is reflected by the porous material, and the imaging part is bordered by the porous material. It can also be set to receive reflected light on the same side as the light emitting unit.
  • the control unit controls the position of the needle-like body based on information from the imaging unit.
  • the cell mass placed in each of the plurality of holes of the cell tray photographed by the imaging unit can be processed as information based on the electrical signal acquired by the light receiving element or based on the electrical signal acquired by the camera. Acquired by the control unit as information.
  • the control unit recognizes the outline of the cell mass of the cell tray from the acquired information, calculates the center position of each cell mass, and obtains it as a location to be punctured.
  • the control unit moves the needle-like body of the puncture unit onto the center position thereof and lowers the needle-like body to puncture the cell mass.
  • the cell mass to be punctured preferably has a shape close to a true sphere
  • the cell mass imaged by the imaging unit preferably has a shape close to a perfect circle as the cross-sectional shape of the true sphere. Therefore, the cross section of the cell mass imaged by the imaging unit has a shape close to a perfect circle, and the location to be punctured is the center position.
  • the center position to be punctured is calculated based on the outline of the cell cluster of the imaging unit. For example, it can be calculated based on the area of the cell mass. It can be the center of gravity calculated from the contour recognized from the cell mass.
  • a reference value is set in advance based on the area calculated from the longest distance and the shortest distance among the end-to-end distances of the outline of the cell mass, and the control unit Cell masses that do not reach the value can be excluded from the puncture target.
  • the porous material has a structure in which the needle-like body easily penetrates, and various materials can be used.
  • the porous material can be a material that easily transmits light, reflects light, or emits light when it contains a liquid. These materials can be set according to the position of the light emitting portion.
  • the porous material When the light emitting part is directed toward one surface of the porous material of the cell tray, and the imaging part is set to receive light on the side different from the light emitting part with the porous material as a boundary, the porous material
  • the material itself may have high light transmittance, and if the porous material has many connected holes, the light transmittance through the holes may be increased.
  • the porous material can transmit light irradiated from one surface side of the porous material, and can receive the transmitted light on the other surface side.
  • the light emitting part is directed toward one side of the porous material of the cell tray, and the light emitted from the light emitting part is reflected by the porous material, and reflected on the same side as the light emitting part.
  • the porous material In the case of setting to receive light, a material having high light reflectance is used as the porous material.
  • the needle-like body is an elongated material for puncturing a fine cell mass, deformation such as elastic deformation, plastic deformation, and destruction is likely to occur.
  • the porous material is a hard material, deformation is likely to occur when the cell mass held in the cell tray is punctured.
  • the needle-like body When the needle-like body is deformed, the needle-like body cannot be accurately directed to the position of the cell mass to be punctured. Therefore, the porous material has a structure in which the needle-like body is easy to penetrate.
  • the porous material is a material in which at least some of the plurality of holes are connected in the porous material, and the form is not limited. For example, various forms of materials such as foamed resin materials, fiber forms of non-woven fabrics, woven fabrics, knitted fabrics, and the like, or combinations thereof can be used.
  • the porous material is typically a sheet material, but may be any material that can be supported in the opening.
  • the opening is typically a through hole, and the porous material is attached so as to close the through hole.
  • the hole is a porous material such as a foam material, and the internal holes are connected to each other, so that the needle-shaped body easily penetrates through the holes connected to the needle-shaped body. .
  • this embodiment will be described.
  • FIG. 1 shows a state where the cell tray 100 is placed on the cell tray rack 200 of the cell structure manufacturing apparatus 300.
  • FIG. 2 shows the cell structure manufacturing apparatus 300 in a state where the cell tray 100 is placed on the cell tray rack 200.
  • the light emitting part is arranged on one side of the porous material of the cell tray and irradiates light toward one surface of the porous material, and the imaging part is on the side different from the light emitting part with the porous material as a boundary.
  • the light emitted from the light emitting part is received by the imaging part on the other side corresponding to the opposite side of the porous material of the cell tray.
  • the cell tray 100 includes a frame 110 and a porous material.
  • a frame 110 and a porous material.
  • the nonwoven fabric sheet 120 is selected as the porous material will be described.
  • the frame body 110 is a plate-like member, and includes a plurality of openings 111 penetrating in the thickness direction.
  • the frame 110 is made of a resin such as ABS, or a metal such as aluminum or stainless steel, and is manufactured by a manufacturing method such as cutting or die cutting.
  • the size of the frame 110 can be freely selected. For example, the width is 141 millimeters, the depth is 101 millimeters, and the thickness is 2 millimeters. When viewed from the thickness direction of the frame 110, the number and size of the openings 111 can be freely selected.
  • the opening 111 is a through hole formed in the thickness direction of the frame body 110.
  • cylindrical openings 111 forming a matrix of 8 rows ⁇ 12 columns, and the diameter of each can be freely set. For example, it can be set to about several millimeters to 8 millimeters, and the distance between the centers of the adjacent openings 111 is set in accordance with these.
  • the number of openings 111 is a matrix of 8 ⁇ 12 columns and each diameter is 6 millimeters, it can be 9 millimeters, for example.
  • the nonwoven fabric sheet 120 is a representative material as a porous material, but various materials can be used as described above. It is not limited to non-woven fabrics, and a wide variety of fiber members such as non-woven fabrics and woven fabrics can be selected. The diameter and material of the fibrous material constituting the fiber member can also be freely selected.
  • the nonwoven fabric sheet 120 is a nonwoven fabric formed by laminating one or a plurality of fibrous materials and then tying them together with an adhesive or an adhesive without forming them into a sheet to form a needle-like material to be described later.
  • the member is made of a mesh-like and / or porous material that can be easily penetrated without damage, can hold a buffer solution or a culture solution, and can resist a force applied from a needle-like member described later.
  • the size of the nonwoven fabric sheet 120 is, for example, a width of 123 mm, a depth of 89 mm, and a thickness of 0.2 mm.
  • the nonwoven fabric sheet 120 is white, for example, and when it contains moisture, it becomes transparent or nearly transparent and has translucency.
  • the buffer solution is a liquid composed of phosphate buffered saline
  • the culture solution is a liquid containing a physiologically active substance.
  • the nonwoven fabric sheet 120 is affixed to one side of the frame 110 and is supported inside the opening 111.
  • the location supported inside the opening 111 can be freely set, for example, it can be supported by being attached to one surface of the frame 110 so as to close the opening 111 as a through hole.
  • the through hole may be sealed inside the opening 111.
  • a bottomed cylindrical recess 112 having the bottom surface made of the nonwoven fabric sheet 120 is formed.
  • the nonwoven fabric sheet 120 When the cell mass is placed on the nonwoven fabric sheet 120, when the tip of a needle-shaped needle 332 described later pushes the cell mass from the side opposite to the nonwoven fabric sheet 120, the cell mass is deformed, rotated, And / or trying to move.
  • the nonwoven fabric sheet 120 has a characteristic that it can be bent and deformed slightly so as to support and wrap the cell mass against the pressure at the tip.
  • the nonwoven fabric sheet 120 is generally formed of independent fibers that are not woven and stacked or entangled with each other, the fiber density is generally lower than that of a fabric woven by bundling a plurality of fibers.
  • the non-solid portion due to the porosity of the nonwoven fabric sheet 120 works effectively, and the needle 332 enters the nonwoven fabric sheet 120 without stress, that is, without receiving a large reaction force from the nonwoven fabric sheet 120. it can.
  • the needle-like body is an elongated material for puncturing a fine cell mass, elastic deformation, plastic deformation, destruction, etc. are likely to occur with a slight load. Therefore, if the nonwoven fabric sheet 120 is hard, deformation is likely to occur when puncturing the cell mass held on the cell tray 100. When the needle-like body is deformed, the needle-like body cannot be accurately directed to the position of the cell mass to be punctured. Therefore, the porous material has a structure in which the needle-like body is easy to penetrate.
  • the cell tray rack 200 includes a box 210 and a light emitting unit 220 as a dark box, and is a pedestal on which the cell tray 100 is placed.
  • the box 210 is a rectangular parallelepiped box having no top surface.
  • the inside of the box 210 is surface-treated, for example, painted in matte black.
  • the box 210 is made of a resin such as ABS or a metal such as aluminum or stainless steel.
  • the light emitting unit 220 is a rectangular parallelepiped box smaller than the inside of the box 210, and mainly includes a white light transmitting plate 221 provided on the top surface and a plurality of LEDs 222 that are stored inside and emit white light.
  • the light emitted from the LED 222 is appropriately diffused by the translucent plate 221 and is emitted to the outside as uniform white light from the top surface of the light emitting unit 220.
  • the light emitting unit 220 is placed on the bottom surface of the box 210.
  • the top surface opening portion of the box 210 has a support portion on which the cell tray 100 can be placed.
  • the nonwoven fabric sheet 120 faces the inside of the box 210.
  • the bottomed cylindrical recessed part 112 which the bottom face consists of the nonwoven fabric sheet 120 is formed in the top face of the box 210.
  • FIG. When the light emitting unit 220 emits illumination light, part of the illumination light passes through the nonwoven fabric sheet 120 and the opening 111.
  • the illumination light is not irregularly reflected inside the box 210.
  • the nonwoven fabric sheet 120 has translucency when it contains moisture, the illumination light is hardly absorbed by the nonwoven fabric sheet 120 and is easily transmitted.
  • part of the illumination light that has passed through the nonwoven fabric sheet 120 is blocked or weakened by the cell mass. That is, when the cell mass and the recess 112 are photographed with a camera, the illumination light that is blocked or weakened by the cell mass becomes darker than the illumination light that passes only through the nonwoven fabric sheet 120, and the contrast between the cell mass and the surroundings is reduced. growing. Therefore, it becomes easy to recognize the cell cluster in the captured image.
  • the light irradiated from the lower side of the nonwoven fabric sheet 120 and passed therethrough is recognized as a white circle that is the shape of the opening 111 on the upper side of the nonwoven fabric sheet 120. Become.
  • This circular black outline can be determined as the outline of the cell mass.
  • the cell structure manufacturing apparatus 300 will be described with reference to FIG. 2 to 5, the left to right direction is the X-axis positive direction, the bottom to top direction is the Z-axis positive direction, and the front to back direction is the Y-axis positive direction.
  • the cell structure manufacturing apparatus 300 mainly includes a three-axis actuator 310, a camera (electronic camera) 320 including an image sensor serving as a light receiving unit, a puncture unit 330, and a control unit 340.
  • the triaxial actuator 310 mainly includes an X axis actuator 311, a Y axis actuator 312, a Z axis actuator 313, a fixed portion 314, and a base 315.
  • the light receiving unit is the electronic camera 320, but an optical sensor may be selected as the light receiving unit.
  • the puncture unit 330 mainly includes a chuck 331 and a needle 332 that is an elongated needle-like body.
  • the base 315 is a pedestal arranged so that the surface of the base 315 is positioned horizontally.
  • Two axes perpendicular to the in-plane direction of the base 315 are defined as an X axis and a Y axis.
  • the Y-axis actuator 312 is fixed to the base 315 and supports the X-axis actuator 311 so as to be movable in the Y-axis direction with respect to the base 315.
  • a vertical direction perpendicular to both the X axis and the Y axis is defined as the Z axis.
  • the needle 332 is attached such that the extending direction is the Z-axis direction.
  • the X-axis actuator 311 supports the Z-axis actuator 313 so as to be movable in the X-axis direction with respect to the base 315.
  • the Z-axis actuator 313 supports the fixed portion 314 so as to be movable in the Z-axis direction with respect to the base 315. Accordingly, the triaxial actuator 310 and the needle 332 of the puncture unit 330 can be moved in a total of three axial directions including two horizontal axes and one vertical axis.
  • the fixing unit 314 holds the electronic camera 320 and the puncture unit 330. With the above configuration, the electronic camera 320 and the puncture unit 330 can move in the X-axis, Y-axis, and Z-axis directions.
  • the electronic camera 320 mainly includes an electronic imaging device and an imaging lens, captures an image, and transmits the image to the control unit 340.
  • the chuck 331 acquires and holds the needle 332 from a needle feeder (not shown).
  • the needle feeder is a device that automatically supplies the needle 332 to the chuck 331. Thereby, the needle 332 is automatically attached to the chuck 331.
  • the needle 332 is a non-cell-adhesive, rust-proof, low-eluting material, for example, a conical elongated needle-like body made of stainless steel or tungsten, and has sufficient rigidity to pierce a cell mass.
  • the diameter of the cross-section of the needle 332 is an arbitrary value that does not destroy the cell mass when pierced, and does not hinder the fusion of the cell mass, and takes a value of, for example, a diameter of 50 to 300 micrometers.
  • the cell non-adhesive property means a property capable of preventing cells from attaching via an extracellular adhesion factor.
  • a low-eluting material has low cytotoxicity.
  • the control unit 340 is electrically connected to the triaxial actuator 310, the electronic camera 320, and the puncture unit 330, and controls these operations. In general, the control unit 340 drives the triaxial actuator 310 to move the electronic camera 320 onto the cell tray 100 and to image the cell mass placed in the recess 112.
  • the position of the cell mass is calculated using the image received from the electronic camera.
  • the needle 332 is driven according to the calculated position to puncture the cell mass. That is, the center position of the cell mass can be calculated from the outline of the black cell mass photographed on the upper side of the nonwoven fabric sheet 120, and the position can be determined as the position to be punctured.
  • FIGS. 3 to 5 are diagrams showing the needle 332 and the cell masses 30, 31, 32 when the needle 332 pierces a plurality of cell masses.
  • FIG. 6 is a schematic diagram showing a portion of the opening 111 of the frame 110 photographed by the electronic camera 320.
  • Cell masses 30, 31, and 32 are held on the nonwoven fabric sheet 120 of the opening 111.
  • the control unit 340 determines the center position 30a of the cell mass 30 so that the needle 332 punctures the central position 30a of the cell mass 30 to be punctured, determines the horizontal position of the needle 332, and moves the puncture unit 330.
  • the center position 30a can be selected in various forms. For example, the center of gravity Xg of the cross section of the cell mass 30 can be used. Or it is good also as an intersection of two arbitrary straight lines which connect between edge parts among the outlines of the cell mass 30,31,32.
  • the control unit 340 needs to exclude the cell mass 32 having a large shape distortion from the cell masses 30, 31, and 32 from the puncture target.
  • a reference value for exclusion from the puncture target is determined in advance, and the value calculated based on the information obtained from the contours of the photographed cell masses 30, 31, 32 is compared with the reference value, When it exceeds the value, it is set so as to be removed from the puncture target.
  • the reference value can be determined as follows, for example. In the cell masses 30, 31, 32, in each cell mass, the longest end-to-end distance of the portion where the end-to-end distance is the longest and the shortest end-to-end distance of the portion where the end-to-end distance is the shortest For example, the shortest end-to-end distance with respect to the longest end-to-end distance is used as the shape determination value.
  • a shape judgment value is calculated assuming a cell cluster having a shape that falls within the allowable range, and the value is used as a reference value.
  • a shape judgment value is calculated and compared with a reference value.
  • the control unit 340 removes the cell clump from the puncture target for the cell clump whose shape determination value does not reach the reference value.
  • the distance between the longest end portions and the shortest end portion distance can be obtained by drawing an inscribed circle and a circumscribed circle on the cell mass from the image processing for the contour of the photographed cell mass. For example, in FIG.
  • the cell mass is placed in the plurality of recesses 112 together with the buffer solution or the culture solution.
  • a plurality of cell masses are placed in one recess 112.
  • the nonwoven fabric sheet 120 is made of a material capable of holding a buffer solution or a culture solution, and the buffer solution or the culture solution has a surface tension. Therefore, the cell mass is wrapped in the buffer solution or the culture solution in the recess 112 by the surface tension of the buffer solution or the culture solution held by the nonwoven fabric sheet 120. Since the buffer solution or the culture solution contains nutrients, oxygen, and the like, the cell mass in the recess 112 is difficult to die.
  • the light emitting unit 220 emits illumination light to illuminate the nonwoven fabric sheet 120. That is, the light emitting unit 220 emits light toward the cell mass.
  • the control unit 340 drives the triaxial actuator 310 to move the electronic camera 320 onto the cell tray 100.
  • the nonwoven fabric sheet 120 holds the buffer solution or the culture solution, it has translucency. Therefore, the illumination light is easily transmitted through the nonwoven fabric sheet 120. A part of the illumination light that has passed through the nonwoven fabric sheet 120 is hindered or weakened by the cell mass. Therefore, as shown in FIGS. 6 and 7, when the electronic camera 320 images a plurality of cell masses 30, 31, and 32 placed in the recess 112, the contrast between the cell masses 30, 31, and 32 and the surroundings thereof.
  • a photographed image with a large is obtained.
  • the electronic camera 320 transmits the captured image to the control unit 340.
  • the control unit 340 detects each of a plurality of cell masses placed in the recess 112, and the needles at the positions of the plurality of cell masses, particularly the cell masses 30, 31, and 32, are detected.
  • Each position where 332 is desired to be punctured is detected.
  • the control unit 340 calculates a positional relationship between one specific cell mass 10a and the needle 332 based on the detected position, and obtains a driving amount of the needle 332 based on the calculated positional relationship. As shown in FIGS.
  • the triaxial actuator 310 drives the needle 332 based on the driving amount obtained by the control unit 340, and moves the needle 332 immediately above the cell mass 10 a in the recess 112.
  • the Z-axis actuator 313 lowers the needle 332 toward the cell mass 10a along the Z-axis.
  • the tip of the needle 332 contacts the cell mass 10a
  • the pressure at the tip tends to deform, rotate, and / or move the cell mass 10a so as to be crushed.
  • the nonwoven fabric sheet 120 is slightly bent and deformed so as to support and wrap up the bottom surface of the cell mass 10a against the pressure at the tip.
  • the tip of the needle 332 reliably captures the cell mass 10a, and the needle 332 is reliably stabbed into the cell mass 10a at a position where the needle 332 is to be punctured.
  • the tip of the needle 332 enters the nonwoven fabric sheet 120.
  • the nonwoven fabric sheet 120 is a material and a structure that can easily penetrate without damaging the needle 332, that is, a material and a structure with less mechanical stress on the needle 332. Therefore, the needle 332 can pierce the cell mass 10a over a desired length without being bent or bent when the tip of the needle 332 enters the nonwoven fabric sheet 120.
  • the Z-axis actuator 313 raises the needle 332 along the Z-axis. At this time, the needle 332 is stuck in the cell mass 10a. Then, the control unit 340 and the triaxial actuator 310 again perform the same processing as described above, thereby moving the needle 332 immediately above the next cell mass 10b and piercing the next cell mass 10b (see FIG. 4). . By repeating these processes as many times as the number of cell clusters in the recess 112, all the cell clusters in the recess 112 penetrate the needle 332 (see FIG. 5).
  • the amount by which the needle 332 is lowered toward the cell mass is determined according to the size of the cell mass and the number of cell masses to be pierced, in other words, the position of the cell mass on the needle 332. That is, when the first cell mass is pierced into the needle 332, the amount of descent becomes the longest, and in the next cell mass, the amount of descent is slightly shorter than the diameter of the cell mass. By making the amount of descent slightly shorter, the cell masses are in close contact with each other and can be easily fused. By repeating these processes for the plurality of recesses 112 and the plurality of cell clusters, a plurality of needles 332 in which the plurality of cell clusters are stuck are obtained.
  • the amount of lowering is determined so that the first cell mass is less than the amount of descent shown in FIG. 3, that is, the first cell mass is further moved by the second cell mass that is stabbed shallowly after that. May be.
  • the plurality of needles 332 that have pierced the cell mass are arranged so that the pierced cell mass forms a desired three-dimensional shape, and is placed in a post-processing module (not shown). Moved.
  • the post-processing module is a so-called perfusion culture container, holds a plurality of needles pierced with a cell mass, and perfuses the cell mass with a buffer solution or a culture solution. Since the buffer solution or the culture solution contains nutrients and oxygen, the cell mass can be fused without being killed.
  • the present invention it becomes possible to pierce the cell mass reliably with the needle-like body and pierce the cell mass, and as a result, a three-dimensional cell structure of an arbitrary shape can be obtained.
  • the three-axis actuator 310 moves the electronic camera 320 and the puncture unit 330 relative to the cell tray 100, but the cell tray 100 moves relative to the electronic camera 320 and the puncture unit 330. It is also possible to make it. As long as the cell tray 100 relatively moves between the electronic camera 320 and the puncture unit 330, the setting can be freely made.
  • the color of the nonwoven fabric sheet 120 is not limited to the above-mentioned color, and should just have translucency, when liquids, such as a buffer solution or a culture solution, are included. Moreover, the nonwoven fabric sheet 120 may have translucency in any state when it does not contain moisture and when it contains it.
  • the fibrous material of the nonwoven fabric sheet 120 is, for example, polypropylene, nylon, polyester, polyethylene (PE), polyacetal (POM), polycarbonate (PC), polyacrylonitrile (PAN), polyetheretherketone (PEEK), monomer casting nylon ( MCN), 6 nylon (6N), 66 nylon (66N) and other engineering plastics may be used.
  • the matrix by the opening 111 is not limited to 8 rows ⁇ 12 columns, and may be a matrix by other numbers.
  • the box 210 may be made of a black resin, and the inside of the box 210 may be blasted to be matt black.
  • the light emitted from the light emitting unit 220 and the LED 222 is not limited to white, and light having a wavelength suitable for detecting the position of the cell mass by image analysis may be emitted.
  • the light transmitting plate 221 is not limited to white, and may transmit light having a wavelength suitable for detecting the position of the cell mass by image analysis.
  • the inner surface when attached to the cell tray rack 200 may be painted with a matte black, or the frame 110 made of a black material may be blasted into a matte black.
  • the material of the frame body 110 and the box body 210 is not limited to those described above, and is a material that can prevent the irregular reflection of the illumination light by surface-treating to a matte black color or blasting the black material to a matte black color.
  • Engineering plastic can be used But it is not limited thereto.
  • the manufacturing method of the frame 110 and the box 210 is not limited to the above-mentioned method, and may be manufactured by other methods.
  • the material of the needle 332 is not limited to those described above, but may be other materials having cell non-adhesiveness, rust prevention, and low elution, but is not limited thereto. In addition to these materials, materials with reduced cell adhesion can be used.
  • the material of the needle 332 may be a material that does not have cell non-adhesiveness, rust prevention, and low elution, and has a rigidity sufficient to pierce a cell mass, and / or an extremely small diameter, for example, about 170 micrometers. It may be a material that can be processed.
  • the needle 332 may not penetrate through the entire length of the opening 111. That is, the tip of the needle 332 may enter the middle of the entire length of the opening 111.
  • a plurality of needles 332 may be used simultaneously. That is, each of the plurality of needles 332 pierces the cell mass at the same time. Thereby, the time required for the process of piercing all the cell masses can be shortened. At this time, the distance between the centers of the adjacent recesses 112 may be equal to the distance between the centers of the adjacent needle-like bodies.
  • the shape of the opening 111 is not limited to a cylindrical shape, and may be a rectangle, an ellipse, or other shapes.
  • the shapes of the two ends of the opening 111 do not have to be the same, and need only penetrate the frame 110.
  • the cell structure manufacturing apparatus 300 has been described as including the triaxial actuator 310, an actuator or robot that can be driven at least in the triaxial direction instead of the triaxial actuator 310, for example, a robot such as a scalar type or a vertical articulated robot. A robot having three or more axes may be used.
  • the chuck 331 does not need to acquire the needle 332 from the needle feeder, and may acquire the needle 332 from a holder that holds a plurality of needles 332 arranged at equal intervals or other members. Further, the tip of the chuck 331 is configured to automatically open and close, the needle feeder passes the needle one by one to the chuck 331 at a fixed position, and the chuck 331 automatically opens the tip and receives the needle at the fixed position. It may be configured to close the tip.
  • the light emitting portion is placed on the side opposite to the imaging portion with the porous material as a boundary.
  • the following examples are examples in which the light emitting unit, the imaging unit, and the porous material are placed on the same side as a boundary.
  • the light emitting unit 350 in this embodiment is disposed on the same side as the puncture unit 330.
  • it may be arranged near the puncture unit 330 so that the opening 111 of the cell tray 100 is illuminated.
  • the porous material 121 reflects the light from the light emitting portion 350.
  • each member shown in this specification and a figure is an illustration, Comprising: It is not limited to these magnitude
  • material of each member is an illustration, Comprising: It is not limited to these materials.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞塊を適切に突き刺すことのできる細胞構造体製造装置が求められる。開口部を有する枠体と、前記枠体に取り付けられた多孔質部材とを備え、前記多孔質部材上に細胞塊を保持する細胞トレイと、前記細胞塊からの光の情報を取得する撮像部と、前記細胞塊に貫通する穿刺部と、前記画像に基づいて前記穿刺部の位置を制御する制御部とを備える細胞構造体製造装置により解決する。

Description

細胞構造体製造装置
 本発明は、細胞の立体構造体を製造するために用いられる細胞構造体製造装置に関する。
 従来、隣接するように接触した細胞塊同士が融合する性質を利用し、複数の細胞塊が隣接するように細胞塊を立体的に積層して立体構造体を作製する手法が知られている。この手法では、培養プレート上に並べられた細胞塊を取り出して、支持体から伸びるように移動しないように固定された複数の針状体の各々に、吸引等で把持した複数の細胞塊のそれぞれを複数の針状体のそれぞれに突き刺して細胞塊の串刺しを製作し、密着させ、細胞塊が互いに融合した後に針状体から細胞塊を引き抜くことによって、細胞の立体構造体を得るものである。これに対し、培養プレート上に移動しないように並べられた細胞塊に細い針状体を鉛直方向に降下させて、針状体に突き刺す手法が特許文献1に開示されている。特許文献1では、穿刺前の細胞塊を移動しないように載置するために、細胞塊を個別に積置可能なように培養プレートの表面に設けられた凹部内に細胞塊を置き、凹部の直上から細胞塊に向けて針状体を降下させて突き刺す手法が開示されている。
国際公開第2016/047737号パンフレット
 しかし、特許文献1では、一の細胞塊が一の凹部に収容されていることが前提となっていて、複数の細胞塊を保持するものではない。また、特許文献1では、細胞塊の種類によっては、針状体先端からの圧力により、凹部内で細胞塊が変形、回転、及び/又は移動するおそれがある。細胞塊が変形、回転、及び/又は移動すると、針状体が細胞塊に対して適切な位置に刺さらないことがある。適切な位置に刺さっていない細胞塊を培養すると、複数の細胞塊による立体構造体が所望の立体形状にならないおそれがある。さらに、このような立体構造体を培養して得られる組織は、適切な形状でないおそれがある。また、特許文献1では、細胞塊の中心の正確な特定に、細胞塊にレーザ光を照射して細胞トレイが反射したレーザ光を受光して、その輝度による細胞塊の位置を判別する手法を採用している。しかし、レーザ光の反射光によって位置を判別すると、針状体により穿刺すべき箇所である細胞塊の中心を特定するには精度が低い問題がある。
 本発明はこれらの課題に鑑みてなされたものであり、細胞塊を適切に突き刺すことのできる細胞構造体製造装置を提供するものである。
 開口部を有する枠体と、前記枠体に取り付けられた多孔質部材とを備え、前記多孔質部材の上に細胞塊を保持する細胞トレイと、前記細胞塊の情報を取得する撮像部と、前記細胞塊に貫通する穿刺部と、前記画像に基づいて前記穿刺部の位置を制御する制御部と、を備える細胞構造体製造装置により解決する。
 開口部を有する枠体と、前記枠体に取り付けられた多孔質材とを備える細胞トレイの前記多孔質材の上に細胞塊を保持するステップと、撮像部により細胞塊を撮像して前記細胞塊の情報を取得するステップと、前記情報に基づいて穿刺部の位置を制御する制御ステップと、前記穿刺部を前記細胞塊に貫通させるステップと、を備える細胞構造体作製方法により解決する。
 本発明の細胞構造体製造装置によれば、細胞構造体製造装置で細胞塊を針状体で適切に突き刺すことができる。
細胞トレイ及び暗箱を概略的に示した斜視断面図である。 実施の形態1の細胞構造体製造装置を概略的に示した概略図である。 細胞塊を突き刺す工程を示した図である。 細胞塊を突き刺す工程を示した図である。 細胞塊を突き刺す工程を示した図である。 カメラで撮影した細胞塊群を示した図である。 細胞塊群から細胞の中心を求める概念図である。 実施の形態2の細胞構造体製造装置を概略的に示した概略図である。
 細胞構造体製造装置は、細長く延在するように取り付けられる針状体を有する穿刺部を有している。細胞構造体製造装置には細胞トレイが載置される。細胞トレイには、多孔質材で底面が封鎖されている複数の孔が配置されている。細胞トレイの複数の孔のそれぞれには細胞塊が保持されている。穿刺部は、針状体が延在する方向に、細胞塊に向けて針状体を移動可能である。穿刺部は、細胞トレイの孔に保持されている細胞塊を針状体で穿刺して、1本の針状体に複数の細胞塊が串刺しになった状態の針状体を作製する。細胞構造体製造装置は、細胞トレイの複数の孔のそれぞれにおける穿刺すべき細胞塊の位置を撮影することが可能な撮像部と、その撮影された情報を処理して細胞塊の位置と穿刺すべき位置とを特定し、その箇所を穿刺する穿刺部を制御する制御部と、を有している。撮像部は細胞塊からの光の情報を取得する。撮像部は、たとえば、光センサ、または画像素子を有するカメラであって、光の情報とは光センサにより取得される情報としての元データであり、またはカメラによって取得される画像情報の元データである。撮像部は載置された細胞トレイに向けられて配置され、細胞トレイ上の細胞塊を撮影可能である。穿刺部は、複数の孔を所定の順番に移動して、複数の孔のそれぞれにおいて細胞塊を針状体で穿刺する。撮像部はそれ自体が穿刺部の移動に応じて移動するか、または撮影方向を変更するようになっていて、穿刺部が穿刺しようとする孔を穿刺前に予め撮影可能である。細胞構造体製造装置は撮像部だけを有していてもよい。また、細胞トレイの複数の孔を明るく照らすために、多孔質材に光を照射する発光部を配置してもよい。たとえば、発光部を細胞トレイの多孔質材の一方の側に配置して多孔質材の一方の面に向けて光を照射し、撮像部が多孔質材を境として発光部と異なる側で、その発光部から照射された光を撮像部が細胞トレイの多孔質材の反対側にあたる他方の面の側で受光するように設定することができる。または、発光部は細胞トレイの多孔質材の一方の側の面に向けて光を照射し、その発光部から照射された光が多孔質材で反射し、撮像部が多孔質材を境として発光部と同じ側で、反射光を受光するように設定することもできる。制御部は、撮像部からの情報に基づいて、穿刺部は針状体の位置を制御する。
 撮像部が撮影した細胞トレイの複数の孔のそれぞれに載置された細胞塊は、受光素子により取得される電気信号に基づく情報として、またはカメラによって取得された電気信号に基づく画像処理が可能な情報として制御部に取得される。制御部では、取り込まれた情報から細胞トレイの細胞塊の輪郭を認識し、それぞれの細胞塊の中心位置を計算して、穿刺すべき箇所として取得する。制御部は、穿刺部の針状体をその中心位置の上に移動させて、針状体を降下させて細胞塊を穿刺する。穿刺すべき細胞塊は真球に近い形状が好ましいので、撮像部によって撮影される細胞塊は真球の断面形状として真円に近い形状が好ましい。したがって、撮像部によって撮影された細胞塊の断面が真円に近い形状であって、穿刺すべき箇所はその中心位置となる。穿刺すべき中心位置は、撮像部の細胞塊の輪郭に基づいて計算される。たとえば、細胞塊の面積に基づいて計算することができる。細胞塊から認識された輪郭から計算される重心とすることができる。また、歪な穿細胞塊を排除するため、細胞塊の輪郭の端部間距離のうち最長の距離および最短の距離から計算される面積に基づいて予め基準値を定め、制御部は、その基準値に達しない細胞塊は穿刺対象から排除することができる。
 多孔質材は、針状体が貫通しやすい構造であって、さまざまな材料を使用することができる。多孔質材は、液体を含むと光を透過しやすいか、または光を反射しやすいか、または発光する材料とすることができるこれらは、発光部の位置に応じて設定することができる。発光部を細胞トレイの多孔質材の一方の側の面に向けて光を照射し、撮像部が多孔質材を境として発光部と異なる側で受光する設定の場合には、多孔質材の素材自体の光の透過性を高くてもよく、また、連結している孔が多い多孔質材であればその孔を通しての光の透過性を高くしてもよい。これにより、多孔質材は、多孔質材の一方の面の側から照射された光を透過し、その透過光をその他方の面の側で受光することが可能となる。一方、発光部を細胞トレイの多孔質材の一方の側の面に向けて光を照射し、その発光部から照射された光を多孔質材で反射させて、発光部と同じ側で反射光を受光する設定の場合には、光の反射率を高い素材を多孔質材として用いる。
 また、針状体は細かい細胞塊を穿刺するための細長い材料であるため、弾性変形、塑性変形、破壊などの変形が起こりやすい。そのため、多孔質材が硬い材料であると、細胞トレイに保持されている細胞塊を穿刺する際に、変形を起こしやすい。針状体が変形すると、穿刺すべき細胞塊の位置に正確に針状体を向けることができなくなる。そのため、多孔質材は、針状体が貫通しやすい構造である。多孔質材は、多孔質材内で複数の孔の少なくとも一部のそれぞれが連結しているような材料であって、その形態は問わない。たとえば発泡樹脂材料や、不織布、織物、編物など、またはその組み合わせの繊維形態など、さまざまな形態の材料を使用することができる。また、多孔質材は代表的にはシート材であるが、開口部において支持可能なものであればよい。開口部は代表的には貫通孔であって、多孔質材は貫通孔を閉鎖するように取り付けられる。ここで、孔とは、発泡材のように多孔質材であって、内部の孔が互いに連結していることで、針状体が連結している孔をくぐって針状体が貫通しやすい。以下、この実施例について説明する。
 まず、本発明の一実施形態として細胞トレイ100およびそれが使用される細胞構造体製造装置300について図1及び2を用いて説明する。図1は、細胞構造体製造装置300の細胞トレイラック200に細胞トレイ100が載置された状態を示している。図2は、細胞トレイラック200に細胞トレイ100が載置された状態の細胞構造体製造装置300を示している。これは、発光部を細胞トレイの多孔質材の一方の側に配置して多孔質材の一方の面に向けて光を照射し、撮像部が多孔質材を境として発光部と異なる側で、その発光部から照射された光を撮像部が細胞トレイの多孔質材の反対側にあたる他方の面の側で受光する形態の実施例である。
 細胞トレイ100は、枠体110と多孔質材とを備える。この実施例では、多孔質材として不織布シート120を選択した例として説明する。
 枠体110は、板状の部材であって、厚さ方向に貫通する複数の開口部111を備える。枠体110は、例えばABS等の樹脂、又は例えばアルミニウムやステンレス等の金属から成り、例えば切削加工や金型抜き等の製法により作製される。枠体110の大きさは自由に選択可能であり、例えば幅141ミリメートル、奥行き101ミリメートル、厚さ2ミリメートルである。枠体110の厚さ方向から見たとき、開口部111の個数および大きさも自由に選択できる。開口部111は、枠体110の厚さ方向に穿設される貫通孔である。例えば8行×12列の行列を成す96個の円筒形の開口部111であって、それぞれの直径は、自由に設定できる。例えば数ミリメートルから8ミリメートル程度とすることができ、これらにあわせて隣り合う開口部111との中心間距離を設定する。開口部111の個数が8×12列の行列で、それぞれの直径が6ミリメートルの場合には、例えば9ミリメートルとすることができる。
 不織布シート120は、多孔質材としての代表的材料であるが、前記のとおり、さまざまな材料が使用できる。不織布に限られず、不織布、織物などの繊維部材を広く選択することができる。繊維部材を構成する繊維状素材の径および材料も自由に選択が可能である。たとえば、不織布シート120では、単数又は複数の繊維状素材を積層した後、織らずに絡め合わせ又は接着剤により繊維同士を接着し、シート状に形成して成る不織布であり、後述する針状の部材が損なわれずに容易に貫通可能、かつ緩衝液又は培養液を保持可能、かつ後述する針状の部材から加えられる力に対抗可能な、メッシュ状及び/又はポーラスな素材から成る。不織布シート120の大きさは、例えば幅123ミリメートル、奥行き89ミリメートル、厚さ0.2ミリメートルである。また、不織布シート120は、例えば白色であって、水分を含むと透明又は透明に近くなって、透光性を有する。緩衝液は、リン酸緩衝生理食塩水等から成る液体であり、培養液は、生理活性物質を含む液体である。不織布シート120は、枠体110の片面に貼り付けられ、開口部111の内部で支持される。開口部111の内部で支持される箇所は自由に設定できるが、たとえば、貫通孔である開口部111を閉鎖するように、枠体110の一の面に貼り付けて支持することができる。ただし、開口部111の内部で貫通孔を封止する形態でもよい。貫通孔と、それを封止する枠体110において不織布シート120が貼り付けられない面を見ると、底面が不織布シート120から成る有底筒状の凹部112が形成される。細胞塊が不織布シート120上に置かれているときに、後述する針状のニードル332の先端が不織布シート120とは反対側から細胞塊を押すと、細胞塊は潰されるように変形、回転、及び/又は移動しようとする。これに対し、不織布シート120は、先端の圧力に対抗して細胞塊を支え、かつ包み込むようにわずかに撓み、変形可能な特性を有する。また、不織布シート120は、概ねここに独立した繊維が織られず重ねられた又は絡み合わされたものであるため、複数の繊維を束ねて織られた布に比べ、一般に繊維密度は低い。このため、不織布シート120の多孔質に起因するソリッドでない部分、つまり詰まっていない部分が有効に働いて、ニードル332がストレスなく、つまり不織布シート120から大きな反力を受けずに不織布シート120に進入できる。針状体は細かい細胞塊を穿刺するための細長い材料であるため、僅かな荷重で、弾性変形、塑性変形、破壊などが起こりやすい。そのため、不織布シート120が硬いと、細胞トレイ100に保持されている細胞塊を穿刺する際に、変形を起こしやすい。針状体が変形すると、穿刺すべき細胞塊の位置に正確に針状体を向けることができなくなる。そのため、多孔質材は、針状体が貫通しやすい構造である。
 細胞トレイラック200は、暗箱として、箱体210と発光部220とを備え、細胞トレイ100を載置する台座である。箱体210は、頂面がない直方体の箱である。箱体210の内部は、つや消し黒色に表面処理、例えば塗装される。箱体210は、例えばABS等の樹脂、又は例えばアルミニウムやステンレス等の金属から成る。発光部220は、箱体210の内部よりも小さい直方体の箱であって、頂面に設けられる白色の透光板221と、内部に格納され白色発光する複数のLED222を主に備える。LED222が発光した光は透光板221により適切に拡散され、発光部220の頂面から一様の白色光として外部に射出される。発光部220は、箱体210の底面に置かれる。箱体210の頂面開口部分には、細胞トレイ100が載置可能な支持部を有している。このとき、不織布シート120が箱体210の内側に面する。そして、箱体210の頂面に、底面が不織布シート120から成る有底筒状の凹部112が形成される。発光部220が照明光を発すると、照明光の一部は不織布シート120及び開口部111を通過する。また、箱体210の内部はつや消し黒色であるため、照明光は箱体210の内部で乱反射しない。前述のように、不織布シート120は、水分を含んでいるとき透光性を有するため、照明光は不織布シート120によって殆ど吸収されず容易に透過する。細胞塊が凹部112に置かれているとき、不織布シート120を通過した照明光の一部は、細胞塊に妨げられ、あるいは弱められる。つまり、細胞塊及び凹部112をカメラで撮影すると、細胞塊に妨げられ、あるいは弱められた照明光は、不織布シート120のみを通過する照明光よりも暗くなって、細胞塊と周囲とのコントラストが大きくなる。そのため、撮影画像において細胞塊を認識しやすくなる。すなわち、不織布シート120の下側から照射されて通過した光は開口部111の形状である白色の円形として不織布シート120の上側で認識されるところ、細胞塊は影になるので黒色のほぼ円形となる。この円形の黒色の輪郭が細胞塊の輪郭と判断することができる。
 次に、図2を用いて細胞構造体製造装置300について説明する。以下、図2から5において、左から右方向をX軸正方向とし、下から上方向をZ軸正方向とし、手前から奥方向をY軸正方向とする。
 細胞構造体製造装置300は、三軸アクチュエータ310、受光部たる撮像素子を備えるカメラ(電子カメラ)320、穿刺部330、及び制御部340を主に備える。三軸アクチュエータ310は、X軸アクチュエータ311、Y軸アクチュエータ312、Z軸アクチュエータ313、固定部314、及びベース315を主に備える。ここでは受光部は電子カメラ320としているが、受光部として光センサを選定してもよい。穿刺部330は、チャック331と、細長く延在する針状体たるニードル332とを主に備える。ベース315は、ベース315の面が水平に位置するように配置される台座である。ベース315の面内方向で直行する2軸をX軸とY軸と定義する。Y軸アクチュエータ312はベース315に固定されるとともに、X軸アクチュエータ311をベース315に対してY軸方向に移動可能となるように支持する。また、X軸とY軸との両方に垂直な鉛直方向をZ軸と定義する。穿刺部330において、ニードル332はその延在する方向がZ軸方向となるように取り付けられている。X軸アクチュエータ311は、Z軸アクチュエータ313をベース315に対してX軸方向に移動可能となるように支持する。Z軸アクチュエータ313は、固定部314をベース315に対してZ軸方向に移動可能となるように支持する。これにより、三軸アクチュエータ310、穿刺部330のニードル332を水平方向二軸と、鉛直方向一軸の計三軸方向に移動可能である。固定部314は、電子カメラ320及び穿刺部330を保持する。以上の構成により、電子カメラ320及び穿刺部330は、X軸、Y軸、及びZ軸方向に移動可能となる。電子カメラ320は、電子撮像素子と撮像レンズとを主に備え、画像を撮像して制御部340に送信する。チャック331は、図示されないニードルフィーダからニードル332を取得し、保持する。ニードルフィーダとは、チャック331にニードル332を自動的に供給する装置である。これにより、チャック331にニードル332が自動的に取り付けられる。ニードル332は、細胞非接着性、防錆性、低溶出性の材質、例えばステンレス又はタングステンから成る先端がたとえば円錐形状の細長い針状体であって、細胞塊を突き刺すに足る剛性を有する。ニードル332の断面の直径は、細胞塊を突き刺したときに細胞塊を破壊せず、そして細胞塊の融合を妨げない任意の値であり、例えば直径50マイクロメートルから300マイクロメートルの値をとる。細胞非接着性とは、細胞が細胞外接着因子を介して付着することを阻止できる性質を意味する。低溶出性の材質は、細胞毒性が低い。制御部340は、三軸アクチュエータ310、電子カメラ320、及び穿刺部330と電気的に接続され、これらの動作を制御する。概説すると、制御部340は、三軸アクチュエータ310を駆動して、電子カメラ320を細胞トレイ100の上に移動させ、凹部112に置かれている細胞塊を撮像させる。そして、電子カメラから受信した画像を用いて、細胞塊の位置を算出する。算出された位置に応じて、ニードル332を駆動し、細胞塊を穿刺させる。すなわち、不織布シート120の上側で撮影された黒色の細胞塊の輪郭から細胞塊の中心位置を計算して、その位置を穿刺すべき位置と判断することができる。
 次に、図3から7を用いて、ニードル332が複数の細胞塊を突き刺す処理について詳細に説明する。図3から5は、ニードル332が複数の細胞塊を突き刺すときのニードル332と細胞塊30,31,32を示した図である。図6は電子カメラ320により撮影された枠体110の開口部111の部分を示した模式図である。開口部111の不織布シート120には、細胞塊30,31,32が保持されている。たとえば、細胞塊30,31,32の中には、細胞塊の断面が真円に近い細胞塊30から、細胞塊の歪みが小さい細胞塊31や細胞塊の歪みが非常に大きな細胞塊31が含まれる。ニードル332は細胞塊30の穿刺すべき中心位置30aを穿刺するように、制御部340が細胞塊30の中心位置30aを決定し、ニードル332の水平位置を決定して穿刺部330を移動させる。中心位置30aはさまざまな形態で選定できる。たとえば、細胞塊30の断面の重心Xgとすることができる。または、細胞塊30,31,32の輪郭のうち、端部間を結ぶ2つの任意の直線の交点としてもよい。また、制御部340は細胞塊30,31,32のうち形状の歪が大きい細胞塊32を穿刺対象から排除することも必要になる。このとき、穿刺対象から排除するための基準値を予め決定し、撮影された細胞塊30,31,32の輪郭から得られる情報に基づいて計算した値とその基準値とを比較して、基準値を超えている場合には穿刺対象からはずすように設定する。基準値は、たとえば、以下のように決定することができる。細胞塊30,31,32において、一つ一つの細胞塊において、端部間距離が最長となる部分の最長端部間距離と端部間距離が最短になる部分の最短端部間距離とを獲得し、たとえば最長端部間距離に対する最短端部間距離を形状判断値とする。そして、許容範囲となる形状の細胞塊を仮定して形状判断値を計算して、その値を基準値とする。細胞塊ごとに、形状判断値を計算して、基準値と比較する。形状判断値を最長端部間距離に対する最短端部間距離と定義した場合には、形状判断値が基準値に達しない細胞塊につき、制御部340はその細胞塊を穿刺対象からはずす。最長端部間距離と最短端部距離とは、撮影された細胞塊の輪郭につき、画像処理から細胞塊に内接円と外接円とを描いて求めることができる。たとえば、図7において、細胞塊31と細胞塊32において、外接円31b,32bと内接円31c,32cとを描き、外接円31b,32bの直径を最長端部間距離とし、内接円31c,32cの直径を最短端部間距離とすればよい。そして、細胞塊31と細胞塊32のそれぞれにおいて形状判断値を計算して、それぞれを基準値と比較する。その結果、たとえば細胞塊32が基準値に達しないような場合には細胞塊32を穿刺対象からはずす。
 まず、図示されないピペッタを用いて、緩衝液又は培養液とともに細胞塊を複数の凹部112内に配置する。このとき、1つの凹部112内に複数の細胞塊が置かれる。前述のように、不織布シート120は、緩衝液又は培養液を保持可能な素材から成り、緩衝液又は培養液は表面張力を有する。そのため、細胞塊は、不織布シート120により保持される緩衝液又は培養液の表面張力によって、凹部112内において緩衝液又は培養液に包まれる。緩衝液又は培養液は栄養分や酸素などを含んでいるため、凹部112内の細胞塊は死滅しにくくなる。
 次に、発光部220が照明光を発光し、不織布シート120を照らす。すなわち、発光部220が細胞塊に向けて光を照射する。そして、制御部340が、三軸アクチュエータ310を駆動して、電子カメラ320を細胞トレイ100の上に移動させる。このとき、不織布シート120は緩衝液又は培養液を保持しているため、透光性を有する。そのため、照明光は不織布シート120を容易に透過する。そして、不織布シート120を通過した照明光の一部は、細胞塊に妨げられ、あるいは弱められる。そのため、図6および図7に示すように、電子カメラ320が、凹部112に置かれている複数の細胞塊30,31,32を撮像すると、細胞塊30,31,32とその周囲とのコントラストが大きくなっている撮影画像を得る。電子カメラ320は撮影画像を制御部340に送信する。制御部340は、この撮影画像を用いて、凹部112内に置かれている複数の細胞塊の1つ1つを検出し、複数の細胞塊の位置、特に細胞塊30,31,32においてニードル332を穿刺したい位置を各々検出する。制御部340は、検出した位置に基づいて、特定の1つの細胞塊10aとニードル332との位置関係を算出し、算出した位置関係に基づいてニードル332の駆動量を求める。図3から図5で示すように、三軸アクチュエータ310は、制御部340が求めた駆動量に基づいてニードル332を駆動し、凹部112内の細胞塊10aの直上にニードル332を移動させる。次に、Z軸アクチュエータ313は、ニードル332を細胞塊10aに向けてZ軸に沿って降下させる。
 ニードル332の先端が細胞塊10aに接触すると、先端の圧力により、細胞塊10aが潰されるように変形、回転、及び/又は移動しようとする。このとき、不織布シート120は、先端の圧力に対抗して細胞塊10aの底面を支え、かつ包み込むようにわずかに撓み、変形する。これにより、ニードル332の先端が細胞塊10aを確実に捕らえるとともに、細胞塊10aにおいてニードル332を穿刺したい位置にニードル332を確実に突き刺す。さらに所定の長さだけニードル332を降下させると、ニードル332の先端が不織布シート120に進入する。前述のように、不織布シート120は、ニードル332が損なわれずに容易に貫通可能な素材、つまりニードル332に対する機械的ストレスが少ない素材および構造である。そのため、ニードル332は、その先端が不織布シート120に進入したときに折れたり曲がったりすることなく、所望の長さに渡って細胞塊10aを突き刺すことができる。
 所定の長さだけニードル332を降下させた後、Z軸アクチュエータ313はニードル332をZ軸に沿って上昇させる。このとき、ニードル332が細胞塊10aに刺さった状態となっている。そして、再度、制御部340及び三軸アクチュエータ310が前述と同様の処理を行い、これにより、次の細胞塊10bの直上にニードル332を移動させ、次の細胞塊10bを突き刺す(図4参照)。凹部112内の細胞塊の数だけこれらの処理を反復することにより、凹部112内の全ての細胞塊をニードル332に貫通させる(図5参照)。ニードル332を細胞塊に向けて降下させる降下量は、細胞塊の大きさ及び突き刺す細胞塊の数、言い換えると、ニードル332上における細胞塊の位置に応じて決定される。すなわち、ニードル332に1つめの細胞塊を突き刺すとき、降下量は最も長くなり、次の細胞塊においては、細胞塊の直径よりもわずかに短い降下量となる。降下量をわずかに短くすることにより、細胞塊どうしが密着し、融合しやすくなる。これらの処理を複数の凹部112及び複数の細胞塊に対して反復することにより、複数の細胞塊が刺さったニードル332を複数得る。なお、1つめの細胞塊を図3に示す降下量よりも少ない降下量、すなわち浅く刺し、その後に刺した2つめの細胞塊が1つめの細胞塊をさらに移動させるように降下量を決定してもよい。所望の数の細胞塊をニードル332に貫通させた後、細胞塊を突き刺した複数のニードル332は、突き刺さっている細胞塊が所望の立体形状を形成するように並べられ、図示されない後処理モジュールに移される。後処理モジュールは、いわゆる灌流培養容器であって、細胞塊を突き刺した複数のニードルを保持し、緩衝液又は培養液を細胞塊に灌流する。緩衝液又は培養液は栄養分や酸素などを含んでいるため、細胞塊は死滅せずに融合することができる。所定時間経過後にニードル332を細胞塊から引き抜くと、細胞立体構造体を得る。
 本願発明によれば、針状体により細胞塊を確実に突き刺して、細胞塊を突き刺すことが可能となり、ひいては任意の形状の細胞立体構造体を得ることができる。上記実施例において、三軸アクチュエータ310により電子カメラ320と穿刺部330とを細胞トレイ100に対して移動させるようにしているが、電子カメラ320と穿刺部330に対して細胞トレイ100を移動させるようにすることも可能である。電子カメラ320と穿刺部330とを細胞トレイ100とが相対的に移動する限り、自由に設定可能である。
 なお、不織布シート120の色は前述の色に限定されず、緩衝液又は培養液などの液体を含んでいるときに透光性を有していればよい。また、不織布シート120は、水分を含んでいないとき、含んでいるとき、いずれの状態においても透光性を有してもよい。不織布シート120の繊維状素材は、例えばポリプロピレン、ナイロン、ポリエステル、ポリエチレン(PE)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリアクリロニトル(PAN)、ポリエーテルエーテルケトン(PEEK)、モノマーキャステイングナイロン(MCN)、6ナイロン(6N)、66ナイロン(66N)等のエンジニアリングプラスティックから成るものであってもよい。
 開口部111による行列は、8行×12列に限定されず、他の数による行列であってもよい。
 箱体210は黒色の樹脂から成り、箱体210の内部はブラスト処理されてつや消し黒色とされてもよい。
 発光部220及びLED222が射出する光は白色に限定されず、画像解析により細胞塊の位置を検出するに適した波長の光が射出されてもよい。また、透光板221は、白色に限定されず、画像解析により細胞塊の位置を検出するに適した波長の光を透過するものであってもよい。
 枠体110において、細胞トレイラック200に取り付けられたときに内側となる面は、つや消し黒色に塗装されてもよく、黒色の材料から成る枠体110をブラスト処理してつや消し黒色とされてもよい。また、枠体110及び箱体210の素材は、前述のものに限定されず、つや消し黒色に表面処理し、又は黒色の素材にブラスト等を施してつや消し黒色として、照明光の乱反射を防げる素材であれば、ポリプロピレン、ナイロン、表面がフッ素で覆われた素材、テフロン(登録商標)、poly-HEMA、アクリル板、塩化ビニール板、ポリエステル系樹脂板、ポリカーボネート板等の樹脂、ポリプロピレン(PP)、アクリルニトリルブタジエンスチレン(ABS)、ポリエチレン(PE)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、モノマーキャステイングナイロン(MCN)、6ナイロン(6N)、66ナイロン(66N)等のエンジニアリングプラスティックでもよいが、これらに限定されるものではない。また、枠体110及び箱体210の製法は、前述のものに限定されず、他の方法により作製されてもよい。
 ニードル332の素材は、前述のものに限定されず、細胞非接着性、防錆性、低溶出性を有する他の素材でもよいが、これらに限定されるものではない。これらの素材以外にも、細胞接着性を低下させた素材が使用され得る。また、ニードル332の素材は、細胞非接着性、防錆性、低溶出性を有さないものでもよく、細胞塊を突き刺すに足る剛性を有する素材、及び/又は極細径、例えば170マイクロメートル程度に加工可能な素材であってもよい。
 また、ニードル332は、開口部111の全長に渡って貫通しなくてもよい。すなわち、ニードル332の先端が開口部111の全長半ばまで進入してもよい。
 複数のニードル332を同時に用いてもよい。すなわち、複数のニードル332の各々が同時に細胞塊を突き刺す。これにより、全ての細胞塊を突き刺す工程に要する時間を短縮できる。このとき、隣り合う凹部112の中心どうしの間隔は、隣り合う針状体の中心どうしの間隔と等しくてもよい。
 開口部111の形状は円筒形に限定されず、矩形、楕円、又はその他の形状であってもよい。開口部111の2つの端部の形状は同じでなくてもよく、枠体110を貫通していればよい。 
 細胞構造体製造装置300は三軸アクチュエータ310を備えるとして説明したが、三軸アクチュエータ310でなく、少なくとも三軸方向に駆動可能なアクチュエータ又はロボット、例えばスカラー型のようなロボット、垂直多関節ロボットのような三軸以上の軸数を持つロボットであってもよい。
 チャック331は、ニードルフィーダからニードル332を取得しなくてもよく、複数のニードル332を等間隔で並べて保持するホルダーや、その他の部材からニードル332を取得してもよい。また、チャック331の先端を自動的に開閉するように構成し、ニードルフィーダがニードルを1本ずつ定位置でチャック331に渡し、チャック331が自動的に先端を開いて定位置でニードルを受け取って先端を閉じるように構成されてもよい。
 別の実施例として図8を用いて説明する。前記の実施例は、多孔質材を境として、発光部を撮像部と反対の側に置いた例であった。以下の実施例は、発光部と撮像部と多孔質材を境として、同じ側に置く例である。図8は、この実施例における発光部350は、穿刺部330と同じ側に配置される。たとえば、穿刺部330の近くに配置して、細胞トレイ100の開口部111を照らすようにしてもよい。この場合の多孔質材121は発光部350の光に対して反射するものである。
 なお、本明細書および図中に示した各部材の大きさは例示であって、これらの大きさに限定されない。また、各部材の素材は例示であって、これらの素材に限定されない。
 ここに付随する図面を参照して本発明の複数の実施形態が説明されたが、記載された発明の範囲と精神から逸脱することなく、変形が各部の構造と関係に施されることは、当業者にとって自明である。
 この出願は2016年12月13日に出願された日本国特許出願第2016-241454号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
100 細胞トレイ
110 枠体
111 開口部
112 凹部
120 不織布シート
200 細胞トレイラック
210 箱体
220 350 発光部
300 細胞構造体製造装置
310 三軸アクチュエータ
311 X軸アクチュエータ
312 Y軸アクチュエータ
313 Z軸アクチュエータ
314 固定部
315 ベース
320 電子カメラ
330 穿刺部
340 制御部

Claims (12)

  1.  開口部を有する枠体と、前記枠体に取り付けられた多孔質材とを備え、前記多孔質材の上に細胞塊を保持する細胞トレイと、
     前記細胞塊からの情報を取得する撮像部と、
     前記細胞塊に貫通する穿刺部と、
     前記情報に基づいて前記穿刺部の位置を制御する制御部と、を備える細胞構造体製造装置。
  2.  前記制御部は、撮像部が取得した細胞塊の前記情報から、細胞塊の中心位置を計算し、前記穿刺部を細胞塊の中心位置に移動させる請求項1に記載の細胞構造体製造装置。
  3.  前記細胞トレイに向けて光を照射する発光部を更に備える請求項1または2に記載の細胞構造体製造装置。
  4.  前記発光部は、前記多孔質材を境に前記撮像部と反対側に配置され、前記多孔質材に光を照射する請求項3に記載の細胞構造体製造装置。
  5.  前記発光部は、前記多孔質材を境に前記撮像部と同じ側に配置され、前記多孔質材に光を照射する請求項3に記載の細胞構造体製造装置。
  6.  前記制御部は、前記撮像部が撮影した細胞塊の最長端部間距離と最短端部間距離とを取得し、最長端部間距離と最短端部間距離とから形状判断値を計算し、その形状判断値と予め決定した基準値とを比較して、穿刺すべき細胞塊を決定する請求項1から5のいずれかに記載の細胞構造体製造装置。
  7.  開口部を有する枠体と、前記枠体に取り付けられた多孔質材とを備える細胞トレイの前記多孔質材の上に細胞塊を保持するステップと、
     撮像部により細胞塊を撮像して前記細胞塊の情報を取得するステップと、
     前記情報に基づいて穿刺部の位置を制御する制御ステップと、
     前記穿刺部を前記細胞塊に貫通させるステップと、を備える細胞構造体作製方法。
  8.  前記制御ステップでは、前記撮像部により取得した細胞塊の前記情報から、細胞塊の中心位置を計算し、前記穿刺部を細胞塊の中心位置に移動させる請求項7に記載の細胞構造体作製方法。
  9.  前記多孔質材において前記細胞塊に向けて光を照射する照射ステップをさらに備える請求項8に記載の細胞構造体作製方法。
  10.  前記照射ステップは、前記多孔質材を境に前記撮像部と反対側に配置され、前記多孔質材に光を照射する請求項9に記載の細胞構造体作製方法。
  11.  前記照射ステップは、前記多孔質材を境に前記撮像部と同じ側に配置され、前記多孔質材に光を照射する請求項9に記載の細胞構造体作製方法。
  12.  前記制御ステップでは、前記撮像部が撮影した細胞塊の最長端部間距離と最短端部間距離とを取得し、最長端部間距離と最短端部間距離とから形状判断値を計算し、その形状判断値と予め決定した基準値とを比較して、穿刺すべき細胞塊を決定する請求項7から11のいずれかに記載の細胞構造体作製方法。
PCT/JP2017/036883 2016-12-13 2017-10-11 細胞構造体製造装置 WO2018110058A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556213A JP6620251B2 (ja) 2016-12-13 2017-10-11 細胞構造体製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-241454 2016-12-13
JP2016241454 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018110058A1 true WO2018110058A1 (ja) 2018-06-21

Family

ID=62558416

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/036668 WO2018110053A1 (ja) 2016-12-13 2017-10-10 細胞構造体製造装置および細胞トレイ
PCT/JP2017/036883 WO2018110058A1 (ja) 2016-12-13 2017-10-11 細胞構造体製造装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036668 WO2018110053A1 (ja) 2016-12-13 2017-10-10 細胞構造体製造装置および細胞トレイ

Country Status (4)

Country Link
US (1) US20200095530A1 (ja)
EP (1) EP3556838A4 (ja)
JP (2) JP6552756B2 (ja)
WO (2) WO2018110053A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188717A (ja) * 2019-05-21 2020-11-26 株式会社ニコン 細胞の数、形態又は形状を測定する方法及び装置
CN113714241A (zh) * 2021-07-19 2021-11-30 广东嘉尚新能源科技有限公司 一种高安全性的软包锂电芯生产研发用泄压防爆式穿刺检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210324319A1 (en) * 2019-02-01 2021-10-21 Cyfuse Biomedical K.K. Cell structure manufacturing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006571A (ja) * 2003-06-19 2005-01-13 Rheon Autom Mach Co Ltd 串団子製造方法および装置
WO2005061693A1 (ja) * 2003-12-19 2005-07-07 Hitachi Medical Corporation 細胞培養装置
JP2005295818A (ja) * 2004-04-07 2005-10-27 Hitachi Medical Corp 細胞培養装置
WO2008123614A1 (ja) * 2007-03-30 2008-10-16 Kyushu University, National University Corporation 細胞の立体構造体の製造方法
WO2016047737A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
WO2016068279A1 (ja) * 2014-10-31 2016-05-06 東レ株式会社 細胞足場材料となる繊維構造体
WO2016158719A1 (ja) * 2015-03-31 2016-10-06 株式会社Screenホールディングス 画像処理方法、制御プログラムおよび画像処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366893A (en) * 1993-01-13 1994-11-22 Becton, Dickinson And Company Culture vessel
US20050112030A1 (en) * 2003-08-21 2005-05-26 Gaus Stephanie E. Meshwell plates
EP1626278A3 (en) * 2004-08-03 2006-06-21 OnChip Cellomics Consortium Cellomics system
WO2012043820A1 (ja) * 2010-09-30 2012-04-05 国立大学法人東京医科歯科大学 心筋毒性検査および心筋細胞評価のための方法および装置
JP5896104B2 (ja) * 2011-06-24 2016-03-30 国立大学法人佐賀大学 細胞の立体構造体製造装置
WO2013126556A1 (en) * 2012-02-21 2013-08-29 Indiana University Research And Technology Corporation Ultrahigh throughput microinjection device
US20140363883A1 (en) * 2013-06-11 2014-12-11 BellBrook Labs Device for cell culture and direct imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006571A (ja) * 2003-06-19 2005-01-13 Rheon Autom Mach Co Ltd 串団子製造方法および装置
WO2005061693A1 (ja) * 2003-12-19 2005-07-07 Hitachi Medical Corporation 細胞培養装置
JP2005295818A (ja) * 2004-04-07 2005-10-27 Hitachi Medical Corp 細胞培養装置
WO2008123614A1 (ja) * 2007-03-30 2008-10-16 Kyushu University, National University Corporation 細胞の立体構造体の製造方法
WO2016047737A1 (ja) * 2014-09-25 2016-03-31 株式会社サイフューズ 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
WO2016068279A1 (ja) * 2014-10-31 2016-05-06 東レ株式会社 細胞足場材料となる繊維構造体
WO2016158719A1 (ja) * 2015-03-31 2016-10-06 株式会社Screenホールディングス 画像処理方法、制御プログラムおよび画像処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188717A (ja) * 2019-05-21 2020-11-26 株式会社ニコン 細胞の数、形態又は形状を測定する方法及び装置
JP7275849B2 (ja) 2019-05-21 2023-05-18 株式会社ニコン 細胞の数、形態又は形状を測定する方法及び装置
CN113714241A (zh) * 2021-07-19 2021-11-30 广东嘉尚新能源科技有限公司 一种高安全性的软包锂电芯生产研发用泄压防爆式穿刺检测装置
CN113714241B (zh) * 2021-07-19 2022-08-02 广东嘉尚新能源科技有限公司 一种高安全性的软包锂电芯生产研发用泄压防爆式穿刺检测装置

Also Published As

Publication number Publication date
JPWO2018110053A1 (ja) 2019-03-28
EP3556838A4 (en) 2020-05-20
WO2018110053A1 (ja) 2018-06-21
JPWO2018110058A1 (ja) 2019-10-24
US20200095530A1 (en) 2020-03-26
JP6552756B2 (ja) 2019-07-31
EP3556838A1 (en) 2019-10-23
JP6620251B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6620251B2 (ja) 細胞構造体製造装置
US20200229544A1 (en) Automated Identification And Assembly Of Shoe Parts
JP5931310B1 (ja) 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
EP1873232B1 (en) Microinjection apparatus and automatic focal point adjustment method
KR20140039259A (ko) 세포의 입체 구조체 제조 장치
KR20180107089A (ko) 미세 중공 돌기구의 제조 방법
JP6334837B1 (ja) 細胞構造体製造装置
EP3150696A1 (en) Apparatus for producing cell mass sheet and method for producing cell mass sheet
EP2269027B1 (en) Optical method and apparatus for determining the area to be removed of a sample card containing a biological sample
EP3162890A1 (en) Method and apparatus for producing cell mass structure
US20060177812A1 (en) Method and device for manipulating samples
JP3636357B2 (ja) 異常球検出装置及び異常球検出方法
WO2017134787A1 (ja) 細胞トレイ、並びに細胞構造体製造装置、方法、及びシステム
CN112762864B (zh) 一种基于通用bga植球球板快速对位检测装置及方法
JP6880384B2 (ja) 細胞塊シート製造装置
EP2136334A3 (en) System, apparatus, method, and computer program product for optical position recognition
US9739658B2 (en) Cell peeling identification device and cell peeling identification method
CN202661370U (zh) 一次性casa计算机扫描专用精子计数板
EP4231001A1 (en) Testing device and testing method
JP7385352B2 (ja) 微細突起具の検査方法及び製造方法
JP6982231B2 (ja) 細胞の集合構造体の作製装置
JP6735207B2 (ja) 細胞の撮像方法
CN109804058A (zh) 细胞移动装置及细胞移动方法
JP5053615B2 (ja) ゴム成形体のスリット加工方法及びゴム成形体のスリット加工装置
WO2017077573A1 (ja) 生体組織加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881363

Country of ref document: EP

Kind code of ref document: A1