WO2018109990A1 - 塗装用乾燥設備 - Google Patents

塗装用乾燥設備 Download PDF

Info

Publication number
WO2018109990A1
WO2018109990A1 PCT/JP2017/031402 JP2017031402W WO2018109990A1 WO 2018109990 A1 WO2018109990 A1 WO 2018109990A1 JP 2017031402 W JP2017031402 W JP 2017031402W WO 2018109990 A1 WO2018109990 A1 WO 2018109990A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
dehumidification
processing chamber
adsorption
desorption
Prior art date
Application number
PCT/JP2017/031402
Other languages
English (en)
French (fr)
Inventor
石田浩三
小松富士夫
米田弘和
Original Assignee
株式会社大気社
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大気社, 株式会社前川製作所 filed Critical 株式会社大気社
Priority to EP17879844.3A priority Critical patent/EP3527292B1/en
Priority to US16/342,332 priority patent/US11185881B2/en
Priority to MX2019005620A priority patent/MX2019005620A/es
Priority to CN201780069807.2A priority patent/CN109922893B/zh
Publication of WO2018109990A1 publication Critical patent/WO2018109990A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/20Arrangements for spraying in combination with other operations, e.g. drying; Arrangements enabling a combination of spraying operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C15/00Enclosures for apparatus; Booths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity

Definitions

  • the present invention relates to a painting drying facility such as a flash-off facility provided in a painting booth.
  • the present invention supplies the air heated by the heating means and the air dehumidified by the dehumidifying means to the processing chamber, thereby evaporating the liquid content in the undried coating film of the object disposed in the processing chamber. It relates to the drying equipment for painting to promote.
  • the outside air (OA) introduced into the processing chamber is dehumidified by the dehumidifying means (the first air heat exchanger 19 of the outside air adjusting unit 14). Then, by supplying the dehumidified air to the processing chamber together with the heated air, the evaporation of the liquid component in the undried coating film of the object disposed in the processing chamber is promoted also from the humidity aspect.
  • the processing chamber in which the outside air dehumidified by the dehumidifying means is supplied to the processing chamber as the dehumidified air supplied to the processing chamber, the processing chamber is kept in a required low humidity state against moisture generation in the processing chamber. Therefore, it is necessary to introduce the outside air having the required air volume into the processing chamber through the dehumidifying means. Therefore, a larger amount of outside air is introduced into the processing chamber than the amount of outside air introduced for ventilation in order to keep the indoor concentration of the solvent that evaporates with moisture from the undried coating film below the allowable upper limit. .
  • the air taken out from the processing chamber is dehumidified by the dehumidifying means, and the dehumidified air is supplied to the processing chamber (that is, between the processing chamber and the dehumidifying means). It is conceivable to adopt a form in which air is circulated. However, regardless of whether the cooling dehumidification method or the adsorption dehumidification method is adopted as the dehumidifying means, it is possible to dehumidify the high-temperature and low-humidity air taken out from the processing chamber directly by the dehumidifying means in terms of technology and cost. Difficult, this is the root cause of the above problems.
  • the main problem of the present invention is to provide a drying equipment for coating that is more advantageous in terms of energy saving and cost by eliminating a rational dehumidification mode to solve the above problems.
  • the first characteristic configuration of the present invention relates to a coating drying facility, This is a coating drying facility that promotes the evaporation of liquid in the undried coating film of the object placed in the processing chamber by supplying air heated by the heating means and air dehumidified by the dehumidifying means to the processing chamber. And As the dehumidifying means, each part of the rotor in the rotation direction of the breathable adsorption rotor carrying the adsorbent is divided into an adsorption area that is a ventilation area of the air to be dehumidified and a desorption area that is a ventilation area of the desorption air.
  • An adsorption / desorption type dehumidifier that is positioned alternately with rotation is provided, A dehumidification outbound path that guides the air taken out from the processing chamber to the adsorption area as dehumidification target air, and a dehumidification return path that guides the dehumidified air that has passed through the adsorption area to the processing chamber, While providing a desorption heat pump that heats desorption air that passes through the desorption region, using the air after dehumidification that passes through the adsorption region and is sent to the dehumidification return path as a heat absorption source, A sensible heat exchanger is provided that cools the air to be dehumidified in the dehumidification outbound path by heat exchange with the air after dehumidification in the dehumidification return path that has been cooled by the heat of the desorption heat pump.
  • the air taken out from the processing chamber 4 is supplied to the adsorption area 13 of the adsorption / desorption type dehumidifying apparatus 11 through the dehumidifying outbound path 20a as the dehumidifying target air A ′′. Then, by passing the dehumidification target air A ′′ through the rotor portion located in the adsorption zone 13 of the breathable adsorption rotor 12, the moisture in the dehumidification target air A ′′ is adsorbed by the adsorbent X in the rotor portion. Dehumidification target air A ′′ is dehumidified.
  • the dehumidified air A ′′ (that is, dehumidified air) delivered from the adsorption zone 13 is returned to the processing chamber 4 through the dehumidifying return path 20b.
  • the liquid content in the undried coating film of the object W disposed in the processing chamber 4. Effectively promotes evaporation.
  • dehumidified air A ′′ is generated in a form in which air is basically circulated between the processing chamber 4 and the adsorption / desorption type dehumidifying device 11 as dehumidifying means.
  • the air A ′′ after dehumidification sent from the adsorption zone 13 is heated by so-called adsorption heat.
  • the desorption air HA passing through the desorption area 14 of the adsorption / desorption type dehumidifier 11 is heated by the desorption heat pump 15 using the dehumidified air A ′′ delivered from the adsorption area 13 as a heat absorption source. . That is, the adsorbed water adsorbed by the adsorbent X in the rotor portion located in the desorption zone 14 (ie, the tip of the adsorbent X) while effectively utilizing the amount of heat retained in the air A ′′ after dehumidification sent out in a state of being heated from the adsorption zone 13.
  • the moisture adsorbed from the dehumidification target air A ′′ in the adsorption area 13 is desorbed to the desorption air HA.
  • the adsorbent X can be regenerated in preparation for moisture adsorption in the next adsorption zone 13.
  • the desorption air HA is heated using the retained heat amount of the air A ′′ after dehumidification sent out in a state where the temperature is raised from the adsorption zone 13, the operating cost of the adsorption / desorption type dehumidifying device 11 which is a dehumidifying means. Can be further reduced.
  • the dehumidifying target air A ′′ (that is, high-temperature and low-humidity air taken out from the processing chamber 4) sent to the adsorption zone 13 of the adsorption / desorption dehumidifier 11 through the dehumidification outbound path 20a is removed.
  • Heat is exchanged with the air A ′′ after dehumidification that has been absorbed by the air 15 and cooled down (that is, dehumidified air that is returned to the treatment chamber 4 through the dehumidification return path 20b) and cooled.
  • the processing chamber 4 is circulated between the processing chamber 4 and the adsorption / desorption type dehumidifier 11 while the high-temperature and low-humidity air A in the processing chamber 4 is circulated. It is possible to directly dehumidify the air A in the high-temperature and low-humidity state 4 in the adsorption / desorption type dehumidifier 11.
  • the heat exchange in the sensible heat exchanger 21 causes the retained heat amount of the dehumidification target air A ′′ to be sent to the adsorption / desorption / dehumidification device 11 through the dehumidification outbound path 20a to be returned to the processing chamber 4 through the dehumidification return path 20b. It can be recovered in air A ′′. Thereby, the energy waste which discards the heat amount of the air A in the high temperature and low humidity state in the processing chamber 4 can be avoided.
  • the dehumidified air A ′′ delivered from the exchanger 21 is supplied to the processing chamber 4 separately from the air A ′ heated by the heating means 6 or mixed with the air A ′ heated by the heating means 6 and processed. Any of the forms supplied to the chamber 4 may be adopted.
  • the air A ′′ after dehumidification sent from the sensible heat exchanger 21 is further heated by the heating means 6 and the heated air is supplied to the processing chamber 4 or sent from the sensible heat exchanger 21.
  • the dehumidified air A ′′ is mixed with the air taken out from the processing chamber 4 and the mixed air is heated by the heating means 6 and supplied to the processing chamber 4.
  • the heating means 6 it is supplied to the adsorption zone 13 of the adsorption / desorption dehumidifier 11 through the dehumidification outbound path 20 a and the sensible heat exchanger 21 to dehumidify.
  • the dehumidified air A ′′ is again supplied to the processing chamber 4 through the sensible heat exchanger 21, or the air A ′ heated by the heating means 6 is mixed with the air taken out from the processing chamber 4 and mixed.
  • Air is supplied to the adsorption zone 13 of the adsorption / desorption type dehumidifier 11 through the dehumidification outbound path 20a and the sensible heat exchanger 21 to dehumidify, and the dehumidified air A ′′ is again passed through the sensible heat exchanger 21 to the processing chamber 4.
  • a form to be supplied may be adopted.
  • the second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
  • an outside air introduction path is provided at the upstream side of the sensible heat exchanger to join the outside air for processing chamber ventilation to the dehumidification target air in the dehumidification outbound path.
  • the outside air OA for processing chamber ventilation joined to the dehumidification target air A ′′ in the dehumidification outgoing path 20a through the outside air introduction path 25 is absorbed and desorbed together with the dehumidification target air A ′′.
  • the processing chamber 4 can be ventilated in such a form that the air A in the processing chamber 4 is discharged to the outside by the amount of air corresponding to the amount of air introduced into the outside air OA.
  • the third feature configuration of the present invention specifies an embodiment suitable for the implementation of the first or second feature configuration.
  • a post-stage cooler is provided that cools the air to be dehumidified in the dehumidification outbound path cooled by the sensible heat exchanger by heat exchange with cooling water or outside air supplied from a cooling tower.
  • the air A ′′ that has been dehumidified by the sensible heat exchanger 21 and heat-cooled by the heat exchange is further cooled by the rear cooler 22.
  • the efficiency of moisture adsorption by the adsorbent X can be increased. Therefore, the dehumidifying ability of the adsorption / desorption type dehumidifying apparatus 11 can be increased, and the adsorption / desorption / dehumidifying apparatus 11 can be made smaller by that amount.
  • the post-stage cooler 22 heat-exchanges the dehumidification target air A ′′ with the cooling water CW supplied from the cooling tower 23 to cool it, or heat-exchanges the dehumidification target air A ′′ with the outside air. Any of the air-cooled coolers to cool may be used.
  • the rear stage cooler 22 is configured to cool the dehumidification target air A ′′ by exchanging heat with a low-temperature refrigerant in the refrigerator, or cold water or brine that has cooled the dehumidification target air A ′′ by the refrigerator. You may make it the structure etc. which are made to heat-exchange and cool.
  • the fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third feature configurations.
  • the dehumidifying outbound path is branched from the heating outbound path and connected to the adsorption zone,
  • the dehumidifying return path extends from the adsorption zone and is connected to the heating return path.
  • a part of the air A taken out from the processing chamber 4 to the heating outward path 7a is adsorbed by the adsorption / desorption type dehumidifying device 11 through the dehumidifying outbound path 20a as the dehumidifying target air A ′′. Lead to area 13 to dehumidify.
  • the remaining part of the air A taken out from the processing chamber 4 to the heating forward path 7a is led to the heating means 6 as the heating target air A ′ and heated.
  • the dehumidified air A ′′ sent from the adsorption zone 13 of the adsorption / desorption type dehumidifier 11 to the dehumidifying return path 20b is joined to the heated air A ′ guided from the heating means 6 through the heating return path 7b,
  • the mixed air FA of the heated air A ′ and the dehumidified air A ′′ is supplied to the processing chamber 4 through the heating return path 7b.
  • the heated air A ′ and the dehumidified air A ′′ can be mixed and homogenized in the heating return path 7 b and supplied to the processing chamber 4. Therefore, compared with supplying the heated air A ′ and the dehumidified air A ′′ separately to the processing chamber 4, an undried coating film of the article W placed in the processing chamber 4 is transferred into the coating film.
  • the liquid component can be uniformly evaporated without unevenness, and thereby the finish quality of the article W to be coated can be improved.
  • FIG. 1 is a diagram showing a flash-off facility in a painting booth.
  • FIG. 1 shows a part of a painting booth for sequentially spraying a workpiece W (in this example, an automobile body) conveyed at a predetermined conveyance tact.
  • a workpiece W in this example, an automobile body
  • reference numeral 1 denotes a first booth that performs top coating on the workpiece W
  • reference numeral 2 denotes a second booth that performs clear coating on the top coating.
  • a flash-off processing chamber 4 is provided between the front booth 1 and the rear booth 2.
  • the workpiece W that has been overcoated in the front booth 1 is left in the processing chamber 4 for a predetermined time prior to the clear coating in the rear booth 2.
  • a large number of air outlets 5 directed toward the interior of the processing chamber 4 are distributed throughout the interior of the processing chamber 4 on the side wall and the ceiling. That is, in the processing chamber 4, high-temperature and low-humidity processing air FA is blown into the room from the large number of air outlets 5, so that the temperature and humidity state suitable for evaporation of moisture, solvent, etc. in the processing room 4 (for example, The temperature is kept at 50 ° C. and the absolute humidity is 10 g / kg ′), thereby promoting the evaporation of the liquid in the undried coating film of the article W placed indoors.
  • An air heating device 6 is installed outside the processing chamber 4 as a heating means for heating the air A ′ supplied to the processing chamber 4.
  • a number of air outlets 5 in the processing chamber 4 communicate with the air outlet of the air heating device 6 through the heating return path 7b.
  • the air heating device 6 is equipped with a heat exchanger 9 for heating that allows hot steam s to flow through the heat transfer tube as a heat medium.
  • the air A ′ to be heated introduced into the air heating device 6 through the heating forward path 7 a is heated by heat exchange with the high-temperature steam s in the heating heat exchanger 9. Then, the heated air A ′ is sent from the air outlet of the air heating device 6 to the heating return path 7b.
  • the air heating device 6 is not limited to a device that heats the air A ′ to be heated by exchanging heat with the high-temperature steam s, but a device that heats the air A ′ to be heated by a burner or an electric heater. Various heating methods can be employed.
  • a filter 10 is provided on the downstream side of the heat exchanger 9 for heating.
  • the air A ′ heated by the heating heat exchanger 9 is passed through the filter 10 to remove dust and then sent to the heating return path 7b.
  • an adsorption / desorption type dehumidifying device 11 is installed outside the processing chamber 4 as a dehumidifying means for dehumidifying the air A ′′ supplied to the processing chamber 4.
  • the adsorption / desorption type dehumidifying apparatus 11 includes a breathable adsorption rotor 12 on which an adsorbent X is supported.
  • the rotation area of the adsorption rotor 12 is divided into a plurality of sections in the rotation direction of the rotor, the adsorption area 13 for passing the dehumidification target air A ′′, and the desorption air HA.
  • a desorption region 14 for ventilating is formed.
  • each part of the rotor in the rotation direction of the adsorption rotor 12 is alternately and repeatedly positioned in the adsorption area 13 and the desorption area 14 as the adsorption rotor 12 rotates.
  • the moisture in the dehumidification target air A "is adsorbed by the adsorbent X in the rotor portion by passing the dehumidification target air A" through the rotor portion located in the zone. That is, the air A ′′ to be dehumidified is dehumidified by this moisture adsorption.
  • the high-temperature desorption air HA is passed through the rotor portion located in the region, so that the adsorbent X in the rotor portion has previously been adsorbed in the adsorption region 13. Is desorbed to the desorption air HA. That is, the moisture desorption regenerates the adsorbent X in the rotor portion in preparation for moisture adsorption in the next adsorption zone 13.
  • the adsorption / desorption type dehumidifier 11 is equipped with a desorption heat pump 15.
  • the desorption heat pump 15 heats the desorption air HA that passes through the desorption region 14 using the dehumidified air A ′′ delivered from the adsorption region 13 as a heat absorption source.
  • a desorption-side heat exchanger 16 that exchanges heat between the desorption air HA that passes through the desorption region 14 and the refrigerant r is disposed at the air inlet portion of the desorption region 14. Further, an adsorption side heat exchanger 17 for exchanging heat of the dehumidified air A ′′ that has passed through the adsorption zone 13 with the refrigerant r is disposed at the air outlet portion of the adsorption zone 13.
  • the refrigerant r discharged from the compressor 18 is circulated in the order of the desorption side heat exchanger 16, the expansion valve 19, the adsorption side heat exchanger 17, and the compressor 18.
  • the exchanger 17 is caused to function as a refrigerant evaporator. That is, heat is absorbed from the dehumidified air A ′′ by taking away the heat of vaporization accompanying the evaporation of the refrigerant r in the adsorption side heat exchanger 17.
  • the desorption side heat exchanger 16 is caused to function as a refrigerant condenser. That is, the desorption air HA is heated by the generation of condensation heat accompanying the condensation of the refrigerant r in the desorption side heat exchanger 16.
  • the air A ′′ after dehumidification that has passed through the adsorption zone 13 is sent out from the adsorption zone 13 while being heated by the generation of so-called adsorption heat.
  • the desorption air HA supplied to the desorption region 14 is heated using the heat amount held in the dehumidified air A ′′ after the temperature rise (in other words, the adsorption is performed using the heat amount held in the air A ′′ after dehumidification). In this way, the operating cost of the adsorption / desorption dehumidifier 11 is reduced.
  • the desorption heat pump 15 is not limited to a supercritical vapor compression heat pump using carbon dioxide as a refrigerant, and various types of heat pumps can be employed.
  • the dehumidification outbound path 20 a that guides the dehumidification target air A ′′ to the adsorption zone 13 of the adsorption / desorption type dehumidifying apparatus 11 is a heating outbound path that guides the air A in the processing chamber 4 sucked from the plurality of air suction ports 8 to the air heating apparatus 6. Branched from 7a.
  • a part of the air A in the processing chamber 4 sucked from the plurality of air suction ports 8 is guided to the adsorption area 13 of the adsorption / desorption type dehumidifier 11 through the dehumidification outbound path 20a as the dehumidification target air A ′′.
  • the remaining part of the air A in the processing chamber 4 sucked from the plurality of air suction ports 8 is guided to the air heating device 6 as the heating target air A ′.
  • the dehumidification return path 20b for guiding the air A ′′ after dehumidification sent from the adsorption zone 13 of the adsorption / desorption type dehumidifier 11 through the adsorption side heat exchanger 17 is a treatment chamber for the air A ′ heated by the air heating device 6. 4 is connected to a heating return path 7 b that leads to a number of air outlets 5.
  • the mixed air (A ′ + A ′′) is supplied into the processing chamber 4 from a number of air outlets 5 as the high-temperature, low-humidity air FA for the flash-off process described above.
  • the dehumidifying outbound path 20a and the dehumidifying return path 20b are provided with a sensible heat exchanger 21 straddling both the paths 20a and 20b.
  • the sensible heat exchanger 21 exchanges heat between the dehumidification target air A "passing through the dehumidification outbound path 20a and the dehumidified air A" passing through the dehumidification return path 20b.
  • the dehumidified air A ′′ that has been cooled in the adsorption-side heat exchanger 17 due to heat absorption by the desorption heat pump 15 and the dehumidification target air A ′′ that is sent to the adsorption zone 13 of the adsorption / desorption type dehumidifier 11 are converted into this sensible heat.
  • Heat is exchanged in the exchanger 21. That is, by this heat exchange, the amount of heat held in the high temperature and low humidity dehumidification target air A ′′ taken out of the processing chamber 4 is recovered in the dehumidified air A ′′ supplied to the processing chamber 4.
  • the high temperature and low humidity dehumidification target air A ′′ taken out of the processing chamber 4 is cooled to a temperature at which dehumidification by the moisture adsorption in the adsorption region 13 in the adsorption / desorption dehumidifier 11 can be performed.
  • a downstream cooler 22 is interposed on the downstream side of the sensible heat exchanger 21 in the dehumidifying outbound path 20a. Then, the cooling water CW radiated from the cooling tower 23 to the outside air OA is supplied to the rear-stage cooler 22 through the cooling water circulation path 24 as a cooling heat medium.
  • the dehumidification target air A ′′ cooled by heat recovery in the sensible heat exchanger 21 is further cooled by exchanging heat with the cooling water CW supplied from the cooling tower 23 in the subsequent stage cooler 22.
  • the efficiency of dehumidification due to moisture adsorption in the adsorption zone 13 is increased.
  • an outside air introduction path 25 for introducing the outside air OA for processing chamber ventilation to the dehumidification target air A ′′ to be sent to the sensible heat exchanger 21 is connected. It is.
  • the outside air OA introduced into the dehumidifying outbound path 20a through the outside air introduction path 25 is dehumidified by the adsorption / desorption type dehumidifier 11 in a mixed state with the dehumidifying target air A ′′. Then, the outside air OA is dehumidified. ′′ Is supplied to the processing chamber 4 as a part of “,” thereby ventilating the processing chamber 4.
  • the air volume of the outside air OA introduced from the outside air introduction path 25 is not dried together with moisture by ventilation in such a manner that the air A in the processing chamber 4 is discharged to the outside by an amount corresponding to the outside air introduction air volume in parallel with the introduction of the outside air.
  • the amount of air that can keep the concentration of the solvent evaporating from the coating film in the processing chamber 4 below the allowable upper limit is limited.
  • the amount of heat held in the high temperature and low humidity dehumidification target air A ′′ taken out from the processing chamber 4 is converted into the dehumidified air A ′′ supplied to the processing chamber 4 by the sensible heat exchanger 21. to recover.
  • the dehumidification target air A ′′ is cooled by this heat recovery, so that the dehumidification target air A ′′ can be directly dehumidified by the adsorption / desorption dehumidifier 11, and thereby the processing chamber 4 and the adsorption / desorption dehumidifier 11.
  • Dehumidification treatment is possible in the form of circulating air between the two.
  • heat recovery by the sensible heat exchanger 21 avoids energy loss in terms of temperature, and the air heating device 6 as a heating means can be small in capacity.
  • FIG. 1 a table showing an example of air temperature (° C.) and absolute humidity (g / kg ′) at each location indicated by a to h is appended.
  • the dehumidification target air A ′′ is cooled by exchanging heat with the cooling water CW supplied from the cooling tower 23 in the rear stage cooler 22 is shown.
  • the dehumidifying target air A ′′ may be cooled by exchanging heat with the outside air via a heat transfer wall.
  • the post-cooler 22 cools the dehumidification target air A ′′ by exchanging heat with the river water, well water, or drainage at an appropriate temperature. You may make it.
  • the rear stage cooler 22 may be omitted.
  • the dehumidification target air A ′′ may be cooled stepwise by a plurality of subsequent coolers 22 having different cooling heat media.
  • the outside air introduction path 25 for introducing the outside air OA into the dehumidifying outbound path 20a may be omitted.
  • the sensible heat exchanger 21 An example has been shown in which the dehumidified air A ′′ delivered is supplied to the processing chamber 4 in a state of being mixed with the air A ′ heated by the air heating device 6 as a heating means.
  • the air A ′′ after dehumidification sent from the sensible heat exchanger 21 and the air A ′ heated by the heating means may be supplied to the processing chamber 4 separately.
  • the dehumidified air A ′′ delivered from the sensible heat exchanger 21 is heated by a heating means and the heated air is supplied to the processing chamber 4 may be adopted.
  • the dehumidified air A ′′ sent from the sensible heat exchanger 21 is mixed with the air A taken out from the processing chamber 4, and the mixed air is heated by the heating means and then supplied to the processing chamber 4. It may be adopted.
  • the air heated by the heating means or the mixed air of the air heated by the heating means and the air taken out from the processing chamber 4 is cooled in the sensible heat exchanger 21 and then adsorbed / desorbed dehumidifying apparatus. 11 may be dehumidified, and the dehumidified air may be supplied to the processing chamber 4 through cooling in the adsorption side heat exchanger 17 and heating in the sensible heat exchanger 21.
  • the processing chamber 4 may be a chamber space for processing an undried coating film of the article W in any painting stage, and a chamber space provided separately from the coating booth. It may be.
  • the present invention is not limited to a coating film, but can dry various substances in various fields as long as it is a substance that needs to promote the evaporation of the contained liquid, as in the case of the undried coating film in the article W to be coated. It can be applied to processing.
  • the present invention can be used particularly preferably in the drying treatment of an object to be coated.
  • Air heating device heating means
  • Adsorption / desorption type dehumidifier dehumidification means
  • Work object X
  • Adsorbent 12
  • Adsorption rotor 13
  • Adsorption zone HA
  • Desorption air 14
  • Desorption region 20a
  • Dehumidification outbound path 20b
  • Dehumidification return path 15
  • Desorption heat pump 21 Sensible heat exchanger OA Outside air 25 Outside air introduction path 23 Cooling tower CW Cooling water 22 Subsequent cooler 7a Heating path 7b Heating return path

Abstract

処理室4から取り出した空気を除湿対象空気A"として吸脱着除湿装置11の吸着域13に導く除湿用往路20aと、吸着域13を通過した除湿後の空気A"を処理室4に導く除湿用復路20bとを設け、吸着域13を通過して除湿用復路7bに送出される除湿後の空気A"を吸熱源として、吸脱着除湿装置11の脱着域14に通過させる脱着用空気HAを加熱する脱着用ヒートポンプ15を設けるとともに、除湿用往路7aにおける除湿対象空気A"を、脱着用ヒートポンプ15により吸熱されて降温した除湿用復路7bにおける除湿後の空気A"と熱交換させて冷却する顕熱熱交換器21を設ける。

Description

塗装用乾燥設備
 本発明は、塗装ブースに設けられるフラッシュオフ設備などの塗装用乾燥設備に関する。
 さらに詳しくは、本発明は、加熱手段により加熱した空気及び除湿手段により除湿した空気を処理室に供給することで、その処理室内に配置した被塗物の未乾燥塗膜における液分の蒸発を促進する塗装用乾燥設備に関する。
 従来、この種の塗装用乾燥設備では、下記の特許文献1に見られるように、処理室(フラッシュオフ・ブース3)から取り出した空気を加熱手段(蒸気コイルなどの空気加熱器21)により加熱している。
 そして、その加熱空気を処理室に供給することで、処理室に配置した被塗物(自動車ボディW)の未乾燥塗膜における液分の蒸発を温度面から促進している。
 また、この加熱による蒸発促進に併行して、処理室に導入する外気(OA)を除湿手段(外気調整部14の第1空気熱交換器19)により冷却除湿している。
 そして、その除湿空気を上記加熱空気とともに処理室に供給することで、処理室に配置した被塗物の未乾燥塗膜における液分の蒸発を湿度面からも促進している。
 なお、括弧内の呼称及び参照符号は、特許文献1において用いられているものである。
特開2009-18286号公報(特に図1)
 しかし、処理室に供給する除湿空気として、除湿手段により除湿した外気を処理室に供給する上記の如き従来設備では、処理室内での水分発生に対して処理室内を所要の低湿度状態に保つのに要する風量の外気を、除湿手段を通じて処理室に導入する必要がある。
 したがって、未乾燥塗膜から水分とともに蒸発する溶剤等の室内濃度を許容上限値以下に保つための換気に要する外気の導入風量に比べて、より大風量の外気を処理室に導入することになる。
 また、この外気導入に伴い、外気の導入風量に相当する風量の空気を処理室から外部に排気するため、換気に要する排気風量に比べて、より大風量の空気を処理室から外部に排気することになる。
 この為、処理室における高温低湿状態の空気(即ち、その生成にエネルギを要した空気)を大量に処理室から外部に排出することになり、これにより、大きなエネルギロスを招く問題があった
 また、それに伴い加熱手段及び除湿手段に大出力のものが必要になり、これにより、設備コストや運転コストも大きくなる問題があった。
 ちなみに、この問題を解消するには、加熱手段と同様、処理室から取り出した空気を除湿手段により除湿し、その除湿空気を処理室に供給する形態(即ち、処理室と除湿手段との間で空気循環させる形態)を採ることが考えられる。
 しかし、除湿手段に冷却除湿方式あるいは吸着除湿方式のいずれを採用するにしても、処理室から取り出した高温低湿状態の空気を除湿手段により直接に除湿することは、技術面やコスト面で実現が難しく、このことが上記の問題を招く根本的な原因になっている。
 この実情に鑑み、本発明の主たる課題は、合理的な除湿形態を採ることで、上記問題を解消して、省エネルギ面及びコスト面で一層有利な塗装用乾燥設備を提供する点にある。
 本発明の第1特徴構成は塗装用乾燥設備に係り、その特徴は、
 加熱手段により加熱した空気及び除湿手段により除湿した空気を処理室に供給することで、その処理室内に配置した被塗物の未乾燥塗膜における液分の蒸発を促進する塗装用乾燥設備であって、
 前記除湿手段として、吸着剤を担持した通気性吸着ロータの回転方向におけるロータ各部を、除湿対象空気の通風域である吸着域と脱着用空気の通風域である脱着域とに、前記吸着ロータの回転に伴い交互に位置させる吸脱着式除湿装置を設け、
 前記処理室から取り出した空気を除湿対象空気として前記吸着域に導く除湿用往路と、前記吸着域を通過した除湿後の空気を前記処理室に導く除湿用復路とを設け、
 前記吸着域を通過して前記除湿用復路に送出される除湿後の空気を吸熱源として、前記脱着域に通過させる脱着用空気を加熱する脱着用ヒートポンプを設けるとともに、
 前記除湿用往路における除湿対象空気を、前記脱着用ヒートポンプにより吸熱されて降温した前記除湿用復路における除湿後の空気と熱交換させて冷却する顕熱熱交換器を設けてある点にある。
 つまり、この構成の設備では(図1参照)、処理室4から取り出した空気を除湿対象空気A″として除湿用往路20aを通じ吸脱着式除湿装置11の吸着域13に供給する。
 そして、その除湿対象空気A″を通気性吸着ロータ12のうち吸着域13に位置するロータ部分に通過させることで、そのロータ部分における吸着剤Xにより除湿対象空気A″中の水分を吸着して除湿対象空気A″を除湿する。
 また、吸着域13から送出される除湿後の空気A″(即ち、除湿空気)を、除湿用復路20bを通じ処理室4に戻す。
 これにより、加熱手段6により加熱した空気A′(即ち、加熱空気)を処理室4に供給することとも相俟って、処理室4に配置した被塗物Wの未乾燥塗膜における液分の蒸発を効果的に促進する。
 即ち、この構成の設備では、基本的に処理室4と除湿手段である吸脱着式除湿装置11との間で空気循環させる形態で、除湿空気A″を生成する。
 吸着域13から送出される除湿後の空気A″は所謂吸着熱により昇温している。
 これを利用して、吸着域13から送出される除湿後の空気A″を吸熱源とする脱着用ヒートポンプ15により、吸脱着式除湿装置11の脱着域14に通過させる脱着用空気HAを加熱する。
 即ち、吸着域13から昇温した状態で送出される除湿後の空気A″の保有熱量を有効に利用した状態で、脱着域14に位置するロータ部分における吸着剤Xの吸着水分(即ち、先の吸着域13において除湿対象空気A″から吸着した水分)を脱着用空気HAに脱着させる。
 これにより、その吸着剤Xを次の吸着域13での水分吸着に備えて再生することができる。 
 このように吸着域13から昇温した状態で送出される除湿後の空気A″の保有熱量を利用して脱着用空気HAを加熱するから、除湿手段である吸脱着式除湿装置11の運転コストをさらに低減することができる。
 顕熱熱交換器21では、除湿用往路20aを通じて吸脱着式除湿装置11の吸着域13に送る除湿対象空気A″(つまり、処理室4から取り出した高温低湿状態の空気)を、脱着用ヒートポンプ15により吸熱されて降温した除湿後の空気A″(つまり、除湿用復路20bを通じて処理室4に戻す除湿空気)と熱交換させて冷却する。
 即ち、このように除湿対象空気A″を冷却することで、処理室4における高温低湿状態の空気Aを処理室4と吸脱着式除湿装置11との間で循環させる形態を採りながら、処理室4における高温低湿状態の空気Aを、吸脱着式除湿装置11において直接に除湿することが可能になる。
 また、この顕熱熱交換器21での熱交換により、除湿用往路20aを通じて吸脱着除湿装置11に送る除湿対象空気A″の保有熱量を、除湿用復路20bを通じて処理室4に戻す除湿後の空気A″に回収することができる。
 これにより、処理室4における高温低湿状態の空気Aの保有熱量を外部に廃棄してしまうエネルギ的な無駄も回避することができる。
 即ち、これらのことにより、外気を除湿して処理室4に供給する先述の従来設備に比べ、処理室4における高温低湿状態の空気Aを大量に処理室4から排出することによる大きなエネルギロス(つまり、加熱や除湿で費やしたエネルギのロス)を回避することができる。
 また、それに伴い加熱手段及び除湿手段の必要出力を小さくすることができて、設備コストや運転コストも効果的に低減することができる。
 なお、この第1特徴構成の実施にあたっては、加熱手段6により加熱した空気A′及び除湿手段としての吸脱着除湿装置11により除湿した空気A″を処理室4に供給することに関して、顕熱熱交換器21から送出される除湿後の空気A″は、加熱手段6により加熱した空気A′と別に処理室4に供給する形態、あるいは、加熱手段6により加熱した空気A′と混合して処理室4に供給する形態のいずれを採用してもよい。
 また、顕熱熱交換器21から送出される除湿後の空気A″をさらに加熱手段6により加熱して、その加熱空気を処理室4に供給する形態や、顕熱熱交換器21から送出される除湿後の空気A″を、処理室4から取り出した空気と混合し、その混合空気を加熱手段6により加熱して処理室4に供給する形態、
  あるいは逆に、処理室4から取り出した空気を、加熱手段6により加熱した上で、除湿用往路20a及び顕熱熱交換器21を通じ吸脱着式除湿装置11の吸着域13に供給して除湿し、その除湿後の空気A″を再び顕熱熱交換器21を通じて処理室4に供給する形態や、加熱手段6により加熱した空気A′を処理室4から取り出した空気と混合して、その混合空気を除湿用往路20a及び顕熱熱交換器21を通じ吸脱着式除湿装置11の吸着域13に供給して除湿し、その除湿後の空気A″を再び顕熱熱交換器21を通じて処理室4に供給する形態などを採用してもよい。
 本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記除湿用往路における前記顕熱熱交換器よりも上流側の箇所で、前記除湿用往路における除湿対象空気に対して処理室換気用の外気を合流させる外気導入路を設けてある点にある。
 つまり、この構成の設備では(図1参照)、外気導入路25を通じて除湿用往路20aにおける除湿対象空気A″に合流させた処理室換気用の外気OAを、除湿対象空気A″とともに吸脱着式除湿装置11の吸着域13において除湿した上で、除湿用復路20bを通じて処理室4に導入することができる。
 これにより、その外気OAの導入風量に相当する風量だけ処理室4における空気Aを室外に排出する形態にして、処理室4を換気することができる。
 また、この場合、処理室4内を所要の低湿度状態に保つのに要する風量を確保するのは、処理室4と吸脱着式除湿装置1との間で循環させる空気A″の風量であるから、外気OAの導入風量は、処理室4における溶剤の室内濃度を許容上限値以下に保つための換気などで要求されるだけの風量に制限することができる。
 本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
 前記顕熱熱交換器で冷却した前記除湿用往路における除湿対象空気を、冷却塔から供給される冷却水又は外気と熱交換させて冷却する後段冷却器を設けてある点にある。
 つまり、この構成の設備では(図1参照)、顕熱熱交換器21において除湿後の空気A″と熱交換させて冷却した除湿対象空気A″を、後段冷却器22においてさらに冷却することで、吸着剤Xによる水分吸着の効率を高めることができる。
 したがって、吸脱着式除湿装置11の除湿能力を高めることができ、その分、吸脱着除湿装置11を一層小型なもので済ませることができる。
 なお、後段冷却器22は、除湿対象空気A″を冷却塔23から供給される冷却水CWと熱交換させて冷却する水冷式冷却器、あるいは、除湿対象空気A″を外気と熱交換させて冷却する空冷式冷却器のいずれであってもよい。
 また、別の構成として、後段冷却器22は、除湿対象空気A″を冷凍機における低温冷媒と熱交換させて冷却する構成、あるいは、除湿対象空気A″を冷凍機により冷却した冷水やブラインと熱交換させて冷却する構成などにしてもよい。
 本発明の第4特徴構成は、第1~第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
 前記処理室から取り出した空気を前記加熱手段に導く加熱用往路と、前記加熱手段で加熱した空気を前記処理室に導く加熱用復路とを設け、
 前記除湿用往路は、前記加熱用往路から分岐して前記吸着域に接続し、
 前記除湿用復路は、前記吸着域から延出させて前記加熱用復路に接続してある点にある。
 つまり、この構成の設備では(図1参照)、処理室4から加熱用往路7aに取り出した空気Aの一部を、除湿対象空気A″として除湿用往路20aを通じ吸脱着式除湿装置11の吸着域13に導いて除湿する。
 これに対して、処理室4から加熱用往路7aに取り出した空気Aの残部を、加熱対象空気A′として加熱手段6に導いて加熱する。
 そして、吸脱着式除湿装置11の吸着域13から除湿用復路20bに送出される除湿後の空気A″を、加熱用復路7bにより加熱手段6から導かれる加熱後の空気A′に合流させ、それら加熱後の空気A′と除湿後の空気A″との混合空気FAを加熱用復路7bを通じて処理室4に供給する。
 即ち、この構成の設備では、加熱後の空気A′と除湿後の空気A″とを加熱用復路7bで混合して均質化した状態で処理室4に供給することができる。
 したがって、加熱後の空気A′と除湿後の空気A″とを各別に処理室4に供給するのに比べて、処理室4に配置した被塗物Wの未乾燥塗膜からその塗膜中の液分をムラなく均等に蒸発させることができ、これにより、被塗物Wの塗装仕上がり品質を高めることができる。
図1は、塗装ブースにおけるフラッシュオフ設備を示す図である。
 図1は、所定の搬送タクトで搬送される被塗物W(本例では自動車ボディ)を順次にスプレー塗装する塗装ブースの一部を示す。そして同図1において、1は被塗物Wに対する上塗り塗装を行う前段ブース、2は上塗り塗装した被塗物Wに対するクリア塗装を行う後段ブースである。
 これら前段ブース1及び後段ブース2の夫々では、温湿度調整した清浄な調整空気SAを各ブースにおける天井部の全面から天井フィルタ3を通じて下向きに吹き出す。これにより、スプレー塗装に伴いブース内に生じる浮遊状態のオーバースプレー塗料を各ブースにおける格子床を通じてブース内から迅速に排出する。
 前段ブース1と後段ブース2との間には、フラッシュオフ用の処理室4を設けてある。
 前段ブース1で上塗り塗装した被塗物Wは、後段ブース2でのクリア塗装に先立ち、所定時間だけ、この処理室4の室内に静置する。
 処理室4の側壁部及び天井部には、処理室4の室内に向けた多数の空気吹出口5を室内全体に分散させて設けてある。即ち、処理室4では、これら多数の空気吹出口5から高温低湿の処理用空気FAを室内に吹き出すことで、処理室4の室内を水分や溶剤などの蒸発に適した温湿度状態(例えば、温度50℃、絶対湿度10g/kg′)に保ち、これにより、室内に配置した被塗物Wの未乾燥塗膜における液分の蒸発を促進する。
 そして、この蒸発促進により、直前の上塗り塗装で被塗物Wに形成した未乾燥塗膜における固形分率を、後続のクリア塗装に備えて所定値まで高めておくフラッシュオフ処理を効率的に行う。
 処理室4の外部には、処理室4に供給する空気A′を加熱する加熱手段として、空気加熱装置6を設置してある。処理室4における多数の空気吹出口5は、加熱用復路7bを通じて空気加熱装置6の空気出口に連通させてある。
 処理室4における床の近傍には、多数の空気吸込口8を処理室4の全長にわたり分散させて設けてある。これら空気吸込口8は、加熱用往路7aを通じて空気加熱装置6の空気入口に連通させてある。
 空気加熱装置6には、高温の水蒸気sを熱媒として伝熱管内に通流させる加熱用熱交換器9を装備してある。加熱用往路7aを通じて空気加熱装置6に導入した加熱対象の空気A′は、加熱用熱交換器9において高温の水蒸気sと熱交換させることで加熱する。そして、この加熱後の空気A′を空気加熱装置6の空気出口から加熱用復路7bに送出する。
 なお、空気加熱装置6としては、加熱対象の空気A′を高温水蒸気sと熱交換させて加熱するものに限らず、加熱対象の空気A′をバーナーや電気ヒータなどにより加熱する形式のものなど、種々の加熱方式のものを採用することができる。
 空気加熱装置6において加熱用熱交換器9の下流側にはフィルタ10を装備してある。加熱用熱交換器9で加熱した空気A′は、このフィルタ10に通過させて除塵した上で加熱用復路7bに送出する。
 また、処理室4の外部には、処理室4に供給する空気A″を除湿する除湿手段として、吸脱着式除湿装置11を設置してある。
 この吸脱着式除湿装置11は、吸着剤Xを担持させた通気性の吸着ロータ12を備えている。この吸脱着式除湿装置11において吸着ロータ12の回転域には、その回転域をロータ回転方向において複数区画に分割する形態で、除湿対象空気A″を通風する吸着域13と、脱着用空気HAを通風する脱着域14とを形成してある。
 即ち、この吸脱着式除湿装置11では、吸着ロータ12の回転方向におけるロータ各部を、吸着ロータ12の回転に伴い吸着域13と脱着域14とに交互に繰り返して位置させる。
 そして、吸着域13では、その域内に位置するロータ部分に除湿対象空気A″を通風することで、そのロータ部分における吸着剤Xに除湿対象空気A″中の水分を吸着させる。即ち、この水分吸着により除湿対象空気A″を除湿する。
 また、これに併行して、脱着域14では、その域内に位置するロータ部分に高温の脱着用空気HAを通風することで、そのロータ部分における吸着剤Xが先に吸着域13において吸着した水分を脱着用空気HAに脱着させる。即ち、この水分脱着により、そのロータ部分における吸着剤Xを次の吸着域13での水分吸着に備えて再生する。
 この吸脱着式除湿装置11には脱着用ヒートポンプ15を装備してある。この脱着用ヒートポンプ15は、吸着域13から送出される除湿後の空気A″を吸熱源として、脱着域14に通過させる脱着用空気HAを加熱する。
 具体的には、脱着域14に通過させる脱着用空気HAを冷媒rと熱交換させる脱着側熱交換器16を脱着域14の空気入口部に配置してある。また、吸着域13の空気出口部には、吸着域13を通過した除湿後の空気A″を冷媒rと熱交換させる吸着側熱交換器17を配置してある。
 そして、この脱着用ヒートポンプ15では、圧縮機18から吐出する冷媒rを、脱着側熱交換器16-膨張弁19-吸着側熱交換器17-圧縮機18の順に循環させることで、吸着側熱交換器17を冷媒蒸発器として機能させる。即ち、吸着側熱交換器17での冷媒rの蒸発に伴う気化熱の奪取により除湿後の空気A″から吸熱する。
 また、この吸熱に併行して、脱着側熱交換器16を冷媒凝縮器として機能させる。即ち、脱着側熱交換器16での冷媒rの凝縮に伴う凝縮熱の発生により脱着用空気HAを加熱する。
 つまり、吸着域13を通過した除湿後の空気A″は、いわゆる吸着熱の発生により昇温した状態で吸着域13から送出される。これに対し、上記の脱着用ヒートポンプ15を設けることで、昇温した除湿後の空気A″が保有する熱量を利用して、脱着域14に供給する脱着用空気HAを加熱する(換言すれば、除湿後の空気A″の保有熱量を利用して吸着剤Xを再生する)ようにし、これにより、吸脱着式除湿装置11の運転コストを低減する。
 なお、ここでは脱着用ヒートポンプ15に、冷媒rとして二酸化炭素を使用する超臨界型の蒸気圧縮式ヒートポンプを採用する。これにより、脱着側熱交換器16での脱着用空気HAの加熱による昇温幅を大きく確保する。
 しかし、脱着用ヒートポンプ15には、二酸化炭素を冷媒とする超臨界型の蒸気圧縮式ヒートポンプに限らず、種々の形式のヒートポンプを採用することができる。
 吸脱着式除湿装置11の吸着域13に除湿対象空気A″を導く除湿用往路20aは、複数の空気吸込口8から吸入した処理室4内の空気Aを空気加熱装置6に導く加熱用往路7aから分岐してある。
 即ち、複数の空気吸込口8から吸入した処理室4内の空気Aのうちの一部を、除湿対象空気A″として除湿用往路20aを通じ吸脱着式除湿装置11の吸着域13に導いて除湿する。一方、空気加熱装置6には、複数の空気吸込口8から吸入した処理室4内の空気Aのうちの残部を加熱対象空気A′として導く。
 また、吸脱着式除湿装置11の吸着域13から吸着側熱交換器17を通じて送出される除湿後の空気A″を導く除湿用復路20bは、空気加熱装置6で加熱した空気A′を処理室4における多数の空気吹出口5に導く加熱用復路7bに接続してある。
 即ち、吸脱着式除湿装置11の吸着域13から吸着側熱交換器17を通じて送出される除湿後の空気A″と、空気加熱装置6で加熱した空気A′とは、加熱用復路7bで合流させて混合する。そして、この混合空気(A′+A″)を前記したフラッシュオフ処理用の高温低湿空気FAとして多数の空気吹出口5から処理室4内に供給する。
 除湿用往路20aと除湿用復路20bとには、それら両路20a,20bに跨る顕熱熱交換器21を介装してある。この顕熱熱交換器21により、除湿用往路20aを通過する除湿対象空気A″と、除湿用復路20bを通過する除湿後の空気A″とを熱交換させる。
 即ち、脱着用ヒートポンプ15による吸熱により吸着側熱交換器17において降温した除湿後の空気A″と、吸脱着式除湿装置11の吸着域13に送る除湿対象空気A″とを、この顕熱熱交換器21において熱交換させる。即ち、この熱交換により、処理室4から取り出した高温低湿状態の除湿対象空気A″が保有する熱量を、処理室4に供給する除湿後の空気A″に回収する。
 また、この熱回収により、処理室4から取り出した高温低湿状態の除湿対象空気A″を、吸脱着除湿装置11における吸着域13での水分吸着による除湿が可能になる温度まで冷却する。
 除湿用往路20aにおいて顕熱熱交換器21の下流側には後段冷却器22を介装してある。そして、この後段冷却器22には、冷却用熱媒として、冷却塔23で外気OAに対して放熱させた冷却水CWを冷却水循環路24を通じて供給する。
 即ち、顕熱熱交換器21での熱回収により冷却した除湿対象空気A″を、この後段冷却器22において冷却塔23から供給される冷却水CWと熱交換させることでさらに冷却する。これにより、吸着域13での水分吸着による除湿の効率を高める。
 さらに、除湿用往路20aにおいて顕熱熱交換器21の上流側には、顕熱熱交換器21に送る除湿対象空気A″に処理室換気用の外気OAを導入する外気導入路25を接続してある。
 即ち、この外気導入路25を通じて除湿用往路20aに導入した外気OAを、除湿対象空気A″との混合状態で吸脱着式除湿装置11により除湿する。そして、その外気OAを除湿後の空気A″の一部として処理室4に供給し、これにより、処理室4を換気する。
 外気導入路25から導入する外気OAの風量は、その外気導入に併行して処理室4内の空気Aを外気導入風量に相当する風量だけ室外に排出する形態での換気により、水分とともに未乾燥塗膜から蒸発する溶剤等の処理室4における濃度を許容上限値以下に保ち得るだけの風量に制限してある。
 要するに、このフラッシュオフ設備では、処理室4から取り出した高温低湿状態の除湿対象空気A″が保有する熱量を、顕熱熱交換器21により、処理室4に供給する除湿後の空気A″に回収する。そして、この熱回収により除湿対象空気A″を冷却することで、その除湿対象空気A″を吸脱着除湿装置11により直接に除湿処理できるようにし、これにより、処理室4と吸脱着除湿装置11との間で空気循環させる形態での除湿処理を可能している。
 そして、このことにより、処理室4における高温低湿状態の空気Aを大量に外部に排出することによる湿度面でのエネルギロスを回避して、除湿手段としての吸脱着式除湿装置11が能力的に小型なもので済むようにしてある。
 また、顕熱熱交換器21での熱回収により、温度面でのエネルギロスも回避して、加熱手段としての空気加熱装置6も能力的に小型なもので済むようにしてある。
 なお、図1には、a~hで示す各箇所での空気の温度(℃)及び絶対湿度(g/kg′)の一例を示す表を付記してある。
 〔別実施形態〕
 次に本発明の別実施形態を列記する。
 前述の実施形態では、後段冷却器22において除湿対象空気A″を、冷却塔23から供給される冷却水CWと熱交換させて冷却する例を示した。しかし、これに代えて、後段冷却器22は、除湿対象空気A″を、伝熱壁を介し外気と熱交換させて冷却するものにしてもよい。
 また、河川水や井水あるいは適当な温度の排水が存在する場合、後段冷却器22は、除湿対象空気A″を、それら河川水や井水あるいは適当温度の排水と熱交換させることで冷却するものにしてもよい。
 除湿対象空気A″を前段の顕熱熱交換器21だけで必要温度まで冷却できる場合は、後段冷却器22を省略してしてもよい。
 また逆に、冷却用熱媒が異なる複数の後段冷却器22により、除湿対象空気A″を段階的に冷却するようにしてもよい。
 処理室4内を強制的に換気する必要が特に無い場合は、除湿用往路20aに外気OAを導入する外気導入路25を省略してもよい。
 顕熱熱交換器21での回収熱により加熱した除湿後の空気A″、及び、加熱手段としての空気加熱装置6により加熱した空気A′の夫々を処理室4に供給する具体的な風路構造や吹出口構造は、前述の実施形態で示した構造に限らず、種々の変更が可能である。
 前述の実施形態では、顕熱熱交換器21から送出される除湿後の空気A″と、加熱手段により加熱した空気A′とを処理室4に供給することに関して、顕熱熱交換器21から送出される除湿後の空気A″を、加熱手段としての空気加熱装置6により加熱した空気A′と混合した状態で処理室4に供給する例を示した。しかし、これに代えて、顕熱熱交換器21から送出される除湿後の空気A″と、加熱手段により加熱した空気A′とを、各別に処理室4に供給するようにしてもよい。
 また、顕熱熱交換器21から送出される除湿後の空気A″を加熱手段で加熱し、その加熱空気を処理室4に供給する形態を採用してもよい。
 あるいは、顕熱熱交換器21から送出される除湿後の空気A″を処理室4から取り出した空気Aと混合し、その混合空気を加熱手段により加熱した上で処理室4に供給する形態を採用してもよい。
 さらに場合によっては、加熱手段により加熱した空気、又は、加熱手段により加熱した空気と処理室4から取り出した空気との混合空気を、顕熱熱交換器21において冷却した上で吸脱着式除湿装置11により除湿し、この除湿後の空気を、吸着側熱交換器17での冷却及び顕熱熱交換器21での加熱を経て処理室4に供給するようにしてもよい。
 前述の実施形態では、前段ブース1で塗装した被塗物Wの未乾燥塗膜における液分を、後段ブース2での塗装に先立ち、処理室4において蒸発させる例を示した。しかし、これに限らず、処理室4は、どのような塗装段階にある被塗物Wの未乾燥塗膜を処理する室空間であってもよく、また、塗装ブースとは切り離して設ける室空間であってもよい。
 本発明は、実質的に被塗物Wにおける未乾燥塗膜と同様に、含有液分の蒸発を促進する必要がある物質であれば、塗膜に限らず、各種分野における種々の物質の乾燥処理に適用することができる。
 本発明は、被塗物の乾燥処理において特に好適に利用することができる。
 6        空気加熱装置(加熱手段)
 11       吸脱着式除湿装置(除湿手段)
 A,A′,A″  空気
 4        処理室
 W        被塗物
 X        吸着剤
 12       吸着ロータ
 13       吸着域
 HA       脱着用空気
 14       脱着域
 20a      除湿用往路
 20b      除湿用復路
 15       脱着用ヒートポンプ
 21       顕熱熱交換器
 OA       外気
 25       外気導入路
 23       冷却塔
 CW       冷却水
 22       後段冷却器
 7a       加熱用往路
 7b       加熱用復路

Claims (4)

  1.  加熱手段により加熱した空気及び除湿手段により除湿した空気を処理室に供給することで、その処理室内に配置した被塗物の未乾燥塗膜における液分の蒸発を促進する塗装用乾燥設備であって、
     前記除湿手段として、吸着剤を担持した通気性吸着ロータの回転方向におけるロータ各部を、除湿対象空気の通風域である吸着域と脱着用空気の通風域である脱着域とに、前記吸着ロータの回転に伴い交互に位置させる吸脱着式除湿装置を設け、
     前記処理室から取り出した空気を除湿対象空気として前記吸着域に導く除湿用往路と、前記吸着域を通過した除湿後の空気を前記処理室に導く除湿用復路とを設け、
     前記吸着域を通過して前記除湿用復路に送出される除湿後の空気を吸熱源として、前記脱着域に通過させる脱着用空気を加熱する脱着用ヒートポンプを設けるとともに、
     前記除湿用往路における除湿対象空気を、前記脱着用ヒートポンプにより吸熱されて降温した前記除湿用復路における除湿後の空気と熱交換させて冷却する顕熱熱交換器を設けてある塗装用乾燥設備。
  2.  前記除湿用往路における前記顕熱熱交換器よりも上流側の箇所で、前記除湿用往路における除湿対象空気に対して処理室換気用の外気を合流させる外気導入路を設けてある請求項1に記載の塗装用乾燥設備。
  3.  前記顕熱熱交換器で冷却した前記除湿用往路における除湿対象空気を、冷却塔から供給される冷却水又は外気と熱交換させて冷却する後段冷却器を設けてある請求項1又は2に記載の塗装用乾燥設備。
  4.  前記処理室から取り出した空気を前記加熱手段に導く加熱用往路と、前記加熱手段で加熱した空気を前記処理室に導く加熱用復路とを設け、
     前記除湿用往路は、前記加熱用往路から分岐して前記吸着域に接続し、
     前記除湿用復路は、前記吸着域から延出させて前記加熱用復路に接続してある請求項1~3のいずれか1項に記載の塗装用乾燥設備。
     
     
PCT/JP2017/031402 2016-12-14 2017-08-31 塗装用乾燥設備 WO2018109990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17879844.3A EP3527292B1 (en) 2016-12-14 2017-08-31 Drying facility for painting
US16/342,332 US11185881B2 (en) 2016-12-14 2017-08-31 Drying facility for painting
MX2019005620A MX2019005620A (es) 2016-12-14 2017-08-31 Instalacion de secado para pintar.
CN201780069807.2A CN109922893B (zh) 2016-12-14 2017-08-31 涂装用干燥设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242201 2016-12-14
JP2016242201A JP6576323B2 (ja) 2016-12-14 2016-12-14 塗装用乾燥設備

Publications (1)

Publication Number Publication Date
WO2018109990A1 true WO2018109990A1 (ja) 2018-06-21

Family

ID=62558151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031402 WO2018109990A1 (ja) 2016-12-14 2017-08-31 塗装用乾燥設備

Country Status (6)

Country Link
US (1) US11185881B2 (ja)
EP (1) EP3527292B1 (ja)
JP (1) JP6576323B2 (ja)
CN (1) CN109922893B (ja)
MX (1) MX2019005620A (ja)
WO (1) WO2018109990A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895807A (zh) * 2018-07-06 2018-11-27 许春燕 一种带散热功能的菊花烘干机
CN112902570B (zh) * 2021-01-22 2023-03-28 机械工业第九设计研究院股份有限公司 一种烘干炉智能节能减排系统
CN114184025A (zh) * 2021-12-01 2022-03-15 中国科学院理化技术研究所 热泵草捆的干燥系统
CN114184023A (zh) * 2021-12-01 2022-03-15 中国科学院理化技术研究所 一种基于多级热泵串联的物料干燥系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987537U (ja) * 1983-09-01 1984-06-13 株式会社 大気社 塗装設備における有機溶剤含有排気の再利用装置
WO2000000774A1 (fr) * 1998-06-30 2000-01-06 Ebara Corporation Echangeur de chaleur, pompe a chaleur, deshumidificateur et procede de deshumidification
JP2012075824A (ja) * 2010-10-06 2012-04-19 Chuden Plant Co Ltd 洗濯乾燥機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076401B2 (ja) * 1991-06-21 2000-08-14 株式会社大氣社 塗装設備
TW536578B (en) * 2000-09-26 2003-06-11 Seibu Giken Kk Co-generation system and dehumidification air-conditioner
JP5044316B2 (ja) 2007-07-13 2012-10-10 株式会社大気社 塗装用フラッシュオフ装置
JP2013036705A (ja) * 2011-08-10 2013-02-21 E's Inc 外気処理装置
BR112015013250A2 (pt) * 2012-12-28 2017-07-11 Daikin Applied Systems Co Ltd sistema de desumidificação
ITUB20153320A1 (it) * 2015-09-01 2017-03-01 Geico Spa Cabina di verniciatura con sistema di cambio filtri
ITUB20153323A1 (it) * 2015-09-01 2017-03-01 Geico Spa Cabina di verniciatura con sistema di filtraggio automatizzato

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987537U (ja) * 1983-09-01 1984-06-13 株式会社 大気社 塗装設備における有機溶剤含有排気の再利用装置
WO2000000774A1 (fr) * 1998-06-30 2000-01-06 Ebara Corporation Echangeur de chaleur, pompe a chaleur, deshumidificateur et procede de deshumidification
JP2012075824A (ja) * 2010-10-06 2012-04-19 Chuden Plant Co Ltd 洗濯乾燥機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527292A4 *

Also Published As

Publication number Publication date
CN109922893B (zh) 2021-06-08
JP6576323B2 (ja) 2019-09-18
JP2018096626A (ja) 2018-06-21
EP3527292A1 (en) 2019-08-21
EP3527292A4 (en) 2020-06-10
EP3527292B1 (en) 2021-09-22
CN109922893A (zh) 2019-06-21
US20190283065A1 (en) 2019-09-19
MX2019005620A (es) 2019-07-04
US11185881B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2018109990A1 (ja) 塗装用乾燥設備
KR102528072B1 (ko) 건조 장치
CN103075770B (zh) 一种利用室内排风蒸发冷却的转轮除湿装置及其使用方法
US10775059B2 (en) Air conditioning capable of controlling ventilation and humidity, and control method therefor
JP2005525528A (ja) 収着式熱交換器及び関連する冷却収着方法
JP2017517395A5 (ja)
KR101071350B1 (ko) 클린룸용 하이브리드 제습냉방 외조기 시스템
US20090044555A1 (en) Desiccant dehumidifier
US9303885B1 (en) Desiccant dehumidification system and method
JP2012122718A (ja) 除湿用装置及び方法
JP4827906B2 (ja) パージゾーンのない超低露点温度の乾燥空気を供給するデシカント空調機。
JP5351707B2 (ja) 塗装設備
CN107003078A (zh) 除湿系统及除湿方法
JP2012159272A (ja) 超低露点温度の乾燥空気を供給するデシカント空調機
JP6612575B2 (ja) 除湿方法及び除湿装置
US20100281893A1 (en) Desiccant dehumidifier utilizing hot water for reactivation, and related method
WO2010044392A1 (ja) 塗装設備
JP6018938B2 (ja) 外気処理用空調システム
JP2011089665A (ja) 調湿装置
JP2004092956A (ja) デシカント空調方法およびデシカント空調機
EP3136022B1 (en) Hybrid heat pump apparatus
JP4947739B2 (ja) 超低露点温度の乾燥空気を供給するデシカント空調機
JP2008020139A (ja) 冷凍機レス空調システム
WO2004081462A1 (en) Air conditioning method using liquid desiccant
KR102597628B1 (ko) 재생배기 없는 하이브리드 데시칸트 제습기 및 제습방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017879844

Country of ref document: EP

Effective date: 20190514

NENP Non-entry into the national phase

Ref country code: DE