WO2018109913A1 - 配管異常検知システム、配管異常検知方法及びプログラム - Google Patents

配管異常検知システム、配管異常検知方法及びプログラム Download PDF

Info

Publication number
WO2018109913A1
WO2018109913A1 PCT/JP2016/087434 JP2016087434W WO2018109913A1 WO 2018109913 A1 WO2018109913 A1 WO 2018109913A1 JP 2016087434 W JP2016087434 W JP 2016087434W WO 2018109913 A1 WO2018109913 A1 WO 2018109913A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
piping
pump
pressure
pipe
Prior art date
Application number
PCT/JP2016/087434
Other languages
English (en)
French (fr)
Inventor
赳弘 古谷野
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018556132A priority Critical patent/JP6785879B2/ja
Priority to EP16923903.5A priority patent/EP3557154B1/en
Priority to PCT/JP2016/087434 priority patent/WO2018109913A1/ja
Publication of WO2018109913A1 publication Critical patent/WO2018109913A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/209Sanitary water taps

Definitions

  • the present invention relates to a piping abnormality detection system, a piping abnormality detection method, and a program.
  • hot water supply devices have become more sophisticated, and it has become possible not only to generate hot water, but also to adjust the hot water temperature to an appropriate temperature and to fill the bathtub with an appropriate amount of hot water.
  • the hot water in the bathtub can be replenished and heat can be recovered from the hot water in the bathtub.
  • a hot water supply system has also appeared.
  • a water level sensor that detects the water level in the bathtub is used to achieve an appropriate amount of hot water filling the bathtub.
  • a flow switch is used to detect hot water conveyed by the pump when the pump is operated.
  • Patent Document 1 proposes proposals to make the hot water supply apparatus have a simple configuration.
  • Patent Document 1 it has been determined whether or not there is hot water in the bathtub using a flow switch.
  • Patent Document 1 the above determination is performed using a water level sensor. Thereby, even if the hot water supply apparatus is configured without the flow switch, the above determination can be performed.
  • the flow switch may be used to detect an abnormality occurring in the piping.
  • the technique described in Patent Document 1 since no consideration is given to detecting an abnormality in a pipe with a hot water supply apparatus configured without a flow switch, it is difficult to detect an abnormality in the pipe without using a flow switch. There was a risk of becoming.
  • the present invention has been made in view of the above circumstances, and an object thereof is to detect an abnormality in piping without using a flow switch.
  • the piping abnormality detection system of the present invention circulates water between a pipe having an inlet for allowing water in the bathtub and an outlet for discharging water to the bathtub, and between the pipe and the bathtub.
  • At least one of the difference between the pressure inside the pipe when the pump is stopped and the pressure inside the pipe when the pump is operating and the rate of change of this difference are If it is out of the defined range, a signal indicating that an abnormality of the pipe has been detected is output. Thereby, the abnormality of piping can be detected without using a flow switch.
  • FIG. The figure which shows the structure of the piping abnormality detection system which concerns on Embodiment 1.
  • FIG. The figure which shows the hardware constitutions of the control device
  • the figure which shows the functional structure of a control apparatus The figure which shows the relationship between the rotation speed of the pump which concerns on Embodiment 1, and detected pressure.
  • the flowchart which shows the piping abnormality detection process which concerns on Embodiment 1.
  • Flow chart showing piping abnormality detection processing according to Embodiment 2 The figure which shows the relationship between the rotation speed of the pump which concerns on Embodiment 2, and a pressure difference.
  • Flow chart showing piping abnormality detection processing according to Embodiment 3 The figure for demonstrating the case where it replaces with the pressure difference which concerns on Embodiment 3, and uses the change rate
  • Hot water, hot water and hot water are, for example, water obtained by heating city water, or water having a temperature higher than 36 ° C., which is a standard body temperature of a person.
  • the low-temperature water and the cold water are, for example, water obtained without heating city water or water having a temperature of 36 ° C. or less.
  • FIG. 1 shows a piping abnormality detection system 100 according to the first embodiment.
  • the piping abnormality detection system 100 is a heat pump hot water supply system that supplies hot water obtained by heating city water supplied from a water supply port 101 from a hot water supply port 102 to replenish water in the bathtub 200.
  • a thick solid line indicates a water pipe.
  • the water supply port 101 is supplied with, for example, city water, clean water, well water, or water uniquely prepared by the user of the piping abnormality detection system 100.
  • the hot water outlet 102 is, for example, a faucet, a currant, or a shower head installed in a kitchen or a bathroom.
  • FIG. 1 shows a shower head as an example of the hot water supply port 102.
  • the hot water supplied from the hot water supply port 102 is also used for hot water supply to the bathtub 200.
  • the piping abnormality detection system 100 detects an abnormality in the water distribution pipe by using the pressure detection sensor 122 instead of the flow switch.
  • the abnormality of the water distribution pipe detected by the pipe abnormality detection system 100 is, for example, an abnormality caused by crushing of the water distribution pipe or clogging by a blocking object, and the narrowing of the pipe 110 connecting the pipe abnormality detection system 100 and the bathtub 200. And obstruction.
  • abnormalities in the water distribution pipe may include clogging of a filter disposed inside the water distribution pipe, precipitation or precipitation of components dissolved in water, and corrosion of the water distribution pipe.
  • the piping abnormality detection system 100 includes a piping 110 for circulating water in the bathtub 200, a pump 121 that transports water in the piping 110, a pressure detection sensor 122 that detects the pressure inside the piping 110, and the bathtub 200.
  • a heat exchanger 123 that exchanges heat between water and the water in the hot water storage tank 130, a hot water storage tank 130 for storing high-temperature water, a three-way valve 131 that switches a flow path connected to the bottom of the hot water storage tank 130,
  • the mixing valve 135 that mixes the high-temperature water taken from the water and the water supplied from the water supply port 101 and the configuration of the piping abnormality detection system 100
  • a control unit 140 for controlling an output device 150 for
  • the pipe 110 has an inflow port 111 through which water of the bathtub 200 flows in and an outflow port 112 through which water flows out of the bathtub 200, and forms a circulation path for circulating the water of the bathtub 200.
  • the pipe 110 may be configured using a tube or a pipe.
  • the pump 121 is a spiral pump or a diffuser pump configured to include a motor and a gear, for example.
  • the pump 121 is disposed at a predetermined position of the pipe 110.
  • the pump 121 according to the present embodiment is disposed between the inlet 111 and the pressure detection sensor 122. That is, the pump 121 is arranged on the upstream side of the pressure detection sensor 122.
  • the pump 121 circulates water between the pipe 110 and the bathtub 200 by operating at the number of revolutions instructed from the control device 140.
  • the pump 121 has an inverter circuit as a drive device, and changes the drive rotation speed in accordance with the control value instructed by the control signal transmitted from the control device 140, so that the water when the water is transported is changed. Change the flow rate.
  • the direction of the water flow generated when the pump 121 is operated is indicated by white arrows.
  • the pressure detection sensor 122 is disposed at a specific position of the pipe 110.
  • the pressure detection sensor 122 according to the present embodiment is disposed between the pump 121 and the heat exchanger 123. That is, the pressure detection sensor 122 is disposed downstream of the pump 121 and upstream of the heat exchanger 123.
  • the pressure detection sensor 122 is used as a water level sensor that detects the water level of the water stored in the bathtub 200 by detecting the pressure of the water in the pipe 110. Further, the pressure detection sensor 122 is used to detect an abnormality in the pipe 110.
  • the pressure detection sensor 122 has a gauge pressure detection area on both the positive pressure side and the negative pressure side, but in the present embodiment, the positive pressure detection area is wider.
  • the first pipe portion 113 is from the inlet 111 to a specific position where the pressure detection sensor 122 is disposed, and the second pipe portion is from the specific position to the outlet 112 in the pipe 110.
  • the 1st piping part 113 is a return piping which returns water from a bathtub
  • the 2nd piping part 114 is an outward piping which sends out the water which goes to a bathtub.
  • the heat exchanger 123 is disposed at a predetermined position of the pipe 110.
  • the heat exchanger 123 according to the present embodiment is disposed between the pressure detection sensor 122 and the outlet 112. That is, the heat exchanger 123 is arranged on the downstream side of the pressure detection sensor 122.
  • a water distribution pipe for circulating the water in the hot water storage tank 130 passes through the primary side of the heat exchanger 123, and a pipe 110 passes through the secondary side of the heat exchanger 123.
  • the heat exchanger 123 performs heat exchange between the water in the bathtub 200 and the high-temperature water in the hot water storage tank 130 and is used to refill the water in the bathtub 200.
  • the heat exchanger 123 may recover the heat from the hot water in the bathtub 200 and heat the water in the hot water storage tank 130.
  • the hot water storage tank 130 is formed of a metal typified by stainless steel or a resin.
  • the hot water storage tank 130 stores high-temperature water generated by the heat pump unit 134.
  • the surface of the hot water storage tank 130 is covered with a heat insulating material, and the hot water in the hot water storage tank 130 is kept warm for a long time.
  • the lower part of the hot water storage tank 130 is connected to the water supply port 101 through a water distribution pipe, and low temperature water is appropriately supplied from this water distribution pipe.
  • the lower part of the hot water storage tank 130 is connected to the three-way valve 131 through a water pipe.
  • the three-way valve 131 switches the flow path connected to the suction port of the pump 132 to either one of the lower part of the hot water storage tank 130 and the primary side outlet of the heat exchanger 123 according to the instruction of the control device 140. More specifically, when a boiling operation for boiling water in the hot water storage tank 130 is executed, the three-way valve 131 includes a suction port of the pump 132 and a lower portion of the hot water storage tank 130 as indicated by a solid line arrow in FIG. To form a flow path connecting the two.
  • the three-way valve 131 connects the suction port of the pump 132 and the primary side outlet of the heat exchanger 123 as indicated by the broken line arrow in FIG. A flow path to be connected is formed.
  • the lower part of the hot water storage tank 130 is connected to the four-way valve 133 via a water pipe.
  • the four-way valve 133 forms a first flow path that connects the discharge port of the heat pump unit 134 and the upper part of the hot water storage tank 130 according to the instruction of the control device 140, and the discharge port of the pump 132 and the lower part of the hot water storage tank 130. Or a second flow path connecting the two.
  • the four-way valve 133 forms a first flow path as indicated by the solid line arrow when the boiling operation is performed, and a broken line arrow when the reheating operation is performed.
  • a second flow path is formed as shown. When the first flow path is formed, the second flow path is not closed, and when the second flow path is formed, the first flow path is closed. Not formed.
  • the heat pump unit 134 is a device that heats water by circulating a refrigerant typified by CO2 or HFC (Hydro Fluoro Carbons) in accordance with an instruction from the control device 140.
  • the heat pump unit 134 includes a compressor, a first heat exchanger that exchanges heat between the refrigerant and water, an expansion valve, and a second heat exchanger that exchanges heat between outside air and the refrigerant.
  • a refrigerant circuit that is connected in order, a blower that blows air to the second heat exchanger, a temperature sensor that measures the temperature of the refrigerant, water, or outside air, and a control board that controls the components of the heat pump unit 134 Have.
  • the rotation speed of the compressor, the opening degree of the expansion valve, and the rotation speed of the blower are in accordance with control values indicated by the control signal transmitted from the control device 140.
  • the mixing valve 135 is connected to the water supply port 101, the upper part of the hot water storage tank 130, and the hot water supply port 102.
  • the mixing valve 135 mixes the high temperature water taken from the upper part of the hot water storage tank 130 and the low temperature water supplied from the water supply port 101 at a mixing ratio according to the instruction of the control device 140, and mixes the mixed water with the hot water supply port. 102.
  • the control device 140 is a computer built in the piping abnormality detection system 100.
  • the control device 140 is communicably connected to a terminal 210 outside the piping abnormality detection system 100, and controls each component of the piping abnormality detection system 100 as a hot water supply system in accordance with the user operation received by the terminal 210. To do. Then, the control device 140 performs a boiling operation and a reheating operation. In addition, the control device 140 adjusts the mixing ratio of the mixing valve 135 so that hot water having a temperature desired by the user is discharged from the hot water supply port 102, and fills the bathtub 200 with an appropriate amount of hot water from the hot water supply port 102. Execute.
  • control device 140 causes the terminal 210 to display an operation state or an operation screen of the piping abnormality detection system 100 as a hot water supply system. Further, when the control device 140 detects an abnormality in the pipe 110, the control device 140 outputs a detection result to the output device 150.
  • the control device 140 has a processor 141, a RAM (Random Access Memory) 142, a ROM (Read Only Memory) 143, a data storage unit 144, and a communication unit 145 as shown in FIG. 2. And have.
  • the RAM 142, ROM 143, data storage unit 144, and communication unit 145 are connected to the processor 141 via the internal bus 146.
  • the processor 141 includes a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the processor 141 exhibits various functions by executing a program 149 stored in the data storage unit 144.
  • RAM 142 loads program 149 from data storage unit 144.
  • the RAM 142 is used as a work area for the processor 141.
  • the ROM 143 stores a plurality of firmware or data used when executing these firmwares.
  • the data storage unit 144 is a non-volatile non-transitory recording medium represented by an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), a flash memory, and a hard disk drive.
  • the data storage unit 144 stores a program 149 for controlling the operation of the piping abnormality detection system 100 and data used by the processor 141 when the program 149 is executed. Data used when executing the program 149 is switched by the operation mode of the piping abnormality detection system 100, the start / stop and rotation speed of the pumps 121 and 132, the operation state of the heat pump unit 134, and the three-way valve 131 and the four-way valve 133. Data indicating a correspondence relationship between the flow path and the mixing ratio by the mixing valve 135, and a threshold value as a parameter used for processing to be described later are included.
  • the communication unit 145 includes a NIC (Network Interface Card Controller) for performing wired communication or wireless communication.
  • the communication unit 145 is communicably connected to the terminal 210, the pumps 121 and 132, the heat pump unit 134, the three-way valve 131, the four-way valve 133, and the mixing valve 135.
  • FIG. 3 shows a functional configuration of the control device 140.
  • the control device 140 has a UI (User ⁇ Interface) module 31 for receiving information from the user and presenting information to the user, and each configuration of the piping abnormality detection system 100 as functions thereof.
  • An acquisition module 32 that acquires data from the elements
  • an execution module 33 that executes each operation mode of the pipe abnormality detection system 100 as a hot water supply system
  • a determination module 34 that determines whether or not an abnormality has occurred in the pipe 110.
  • the UI module 31 executes user interface processing via the terminal 210 and the output device 150. That is, the UI module 31 receives a user operation input to the terminal 210. Also, the UI module 31 transmits information to the terminal 210 and the output device 150, and displays the information on the terminal 210 or informs the notification device 160. This information includes, for example, information indicating the operation state of the hot water supply system.
  • the acquisition module 32 acquires the operation state of the heat pump unit 134, the measurement value by a temperature sensor (not shown), and the detection value of the pressure detection sensor 122 at regular intervals, and the pumps 121 and 132 from the drive devices of the pumps 121 and 132. Data indicating the driving state is acquired.
  • the fixed time is, for example, 5 seconds, 30 seconds, or 1 minute.
  • Various data acquired by the acquisition module 32 is accumulated in the data storage unit 144 (see FIG. 2).
  • the execution module 33 reads the control target value corresponding to the operation mode selected by the user from the data storage unit 144 (see FIG. 2), and executes the boiling operation, the reheating operation, or the hot water operation.
  • FIG. 1 the direction of water flow when the boiling operation is performed is indicated by solid arrows.
  • a boiling circuit is formed between the hot water storage tank 130 and the heat pump unit 134. That is, the low temperature water flowing out from the lower part of the hot water storage tank 130 is transported by the pump 132 and heated by the heat pump unit 134 to become high temperature water and returned to the upper part of the hot water storage tank 130.
  • the direction of water flow when the reheating operation is executed is indicated by a broken line arrow.
  • a circulation path is formed between the hot water storage tank 130 and the heat exchanger 123 in the reheating operation. That is, the hot water flowing out from the upper part of the hot water storage tank 130 when the pump 132 is operated passes through the primary side of the heat exchanger 123 and passes through the three-way valve 131, the pump 132, and the four-way valve 133 in this order. Return to the bottom of 130.
  • the pump 121 circulates water between the pipe 110 and the bathtub 200 as indicated by the white arrow. Thereby, the heat exchanger 123 moves the heat stored in the hot water storage tank 130 to the bathtub 200.
  • the determination module 34 determines whether or not an abnormality has occurred in the pipe 110 based on the detection value of the pressure detection sensor 122 obtained while controlling the pump 121, and outputs the determination result to the output device 150 ( (See FIG. 1). Details of the determination process executed by the determination module 34 will be described later.
  • the output device 150 includes a NIC (Network Interface Card controller) for performing wired communication or wireless communication, and is communicably connected to the control device 140, the notification device 160, and the terminal 210.
  • NIC Network Interface Card controller
  • the output device 150 outputs a signal indicating that this abnormality has been detected to the notification device 160 and the terminal 210.
  • the output device 150 may be built in the control device 140 as a hardware component or a software module of the control device 140, or may be formed integrally with the control device 140.
  • the notification device 160 includes, for example, an LED (Light Emitting Diode), an LCD (Liquid Cristal Display), or a speaker.
  • the output device 150 presents information indicated by the signal output from the output device 150 to the user.
  • the notification device 160 may be built in the control device 140 or may be formed integrally with the control device 140.
  • the pump 121 when the pump 121 is operated, the water drawn from the bathtub 200 flows into the first piping unit 113 and is pressurized by the pump 121, and then the pressure detection sensor 122 is activated. It passes through and flows into the secondary side inlet of the heat exchanger 123. Then, this water passes through the second piping part 114 and flows out into the bathtub 200.
  • FIG. 4 shows a line Lm0 indicating the pressure that increases due to the water flow when the piping 110 is normal.
  • the pressure detected when the pump 121 is stopped is Ps, and the detected pressure increases as the rotational speed of the pump 121 increases.
  • the pressure detected when there is an abnormality in the second piping section 114 is indicated by a line Lm2.
  • the pressure detected when the pump 121 is stopped is Ps equal to the pressure detected when there is no abnormality.
  • the detected pressure increases.
  • the degree of increase when there is an abnormality in the second piping unit 114 is greater than when there is no abnormality.
  • the pressure detected when there is an abnormality in the first piping section 113 is indicated by a line Lm1.
  • the pressure detected when the pump 121 is stopped is Ps equal to the pressure detected when there is no abnormality.
  • the detected pressure increases.
  • the degree of increase when there is an abnormality in the first piping unit 113 is smaller than when there is no abnormality.
  • the pressure detected by the pressure detection sensor 122 when the pump 121 is operating varies depending on whether there is an abnormality occurring in the pipe 110 and where the abnormality has occurred. Therefore, it is possible to detect the presence or absence of an abnormality that has occurred in the first piping part 113 and the second piping part 114.
  • the pressure detected by the pressure detection sensor 122 may change depending on the water level in the bathtub 200 and the atmospheric pressure. Therefore, the piping 110 is utilized by utilizing the pressure difference between the pressure detected by the pressure detection sensor 122 when the pump 121 is stopped and the pressure detected by the pressure detection sensor 122 when the pump 121 is operating. By determining the abnormality that has occurred, the influence of the water level in the bathtub 200 and the atmospheric pressure can be reduced, and the abnormality detection accuracy can be improved. For example, as shown in FIG. 4, when there is an abnormality in the second piping section 114, the pressure Pm detected when the rotation speed of the pump 121 is R1 and the pressure Pm detected when the pump 121 is stopped. If the pressure difference ⁇ P with respect to the pressure Ps is used, abnormality detection accuracy can be improved.
  • the piping abnormality detection process executed by the control device 140 and the output device 150 will be described with reference to FIG.
  • the piping abnormality detection process shown in FIG. 5 is executed after, for example, a hot water filling operation to the bathtub 200 is executed.
  • the determination module 34 of the control device 140 first stops the pump 121 (step S101). Specifically, the determination module 34 instructs the pump 121 to stop and confirms that the pump 121 is stopped.
  • the determination module 34 determines whether or not there is water in the bathtub 200 (step S102). Specifically, the determination module 34 determines whether or not the pressure detected by the pressure detection sensor 122 exceeds a predetermined value. Further, the determination module 34 stores the pressure detected by the pressure detection sensor 122 in the data storage unit 144 as the pressure Ps detected by the pressure detection sensor 122 when the pump 121 is stopped.
  • step S102 When it determines with there being no water in the bathtub 200 (step S102; No), the determination module 34 repeats determination of step S102. Thereby, detection of the abnormality which arose in piping is postponed until it determines with there being water in bathtub 200.
  • the determination module 34 operates the pump 121 by the rotation speed prescribed
  • the predetermined rotation speed is preferably larger in order to make a pressure difference, which will be described later, caused by an abnormality remarkable, and is, for example, the maximum rotation speed of the pump 121.
  • the determination module 34 acquires the pressure Pm detected by the pressure detection sensor 122 when the pump 121 is operating at the specified rotational speed, and the pressure Ps detected when the pump 121 is stopped. And a pressure difference ⁇ P between the pressure Pm detected when the pump 121 is operating is calculated (step S104). Specifically, the determination module 34 calculates a pressure difference ⁇ P obtained by subtracting the pressure Ps from the pressure Pm.
  • the determination module 34 compares the pressure difference ⁇ P with a predetermined threshold value T1, and determines whether or not the pressure difference ⁇ P is lower than the threshold value T1 (step S105).
  • the threshold T1 is stored in advance in the data storage unit 144.
  • step S105 When it is determined that the pressure difference ⁇ P is less than the threshold value T1 (step S105; Yes), the determination module 34 determines that there is an abnormality in the first piping unit 113 (step S106).
  • the determination module 34 compares the pressure difference ⁇ P with a predetermined threshold value T2, and the pressure difference ⁇ P is equal to the threshold value T2. It is determined whether or not (step S107).
  • the threshold T2 is stored in advance in the data storage unit 144. Note that the threshold value T2 is larger than the threshold value T1.
  • the determination module 34 determines that there is an abnormality in the second piping unit 114 (step S108).
  • the determination module 34 determines that there is no abnormality in the pipe 110 (step S109). That is, the determination module 34 determines that there is no abnormality in the pipe 110 when the pressure difference ⁇ P falls within the normal range defined by setting the lower limit as the threshold value T1 and the upper limit as the threshold value T2, and the pressure difference ⁇ P deviates from this range. Then, it is determined that the piping 110 has an abnormality.
  • the determination module 34 notifies the output device 150 of the determination result, and the output device 150 outputs a signal indicating the detection result to the terminal 210 and the notification device 160 (step S110). . Specifically, in step S110 following step S106, the output device 150 outputs a signal indicating that an abnormality in the first piping unit 113 has been detected. In step S110 following step S108, the output device 150 outputs a signal indicating that an abnormality in the second piping unit 114 has been detected. In step S110 following step S109, the output device 150 outputs a signal indicating that no abnormality has been detected in the pipe 110. Thereafter, the piping abnormality detection process ends.
  • the piping abnormality detection system 100 detects the pressure detected by the pressure detection sensor 122 when the pump 121 is stopped and the pressure detected when the pump 121 is operating.
  • a signal indicating that an abnormality of the pipe 110 was detected was output.
  • the piping abnormality detection system 100 outputs a signal by distinguishing between the abnormality of the first piping portion 113 and the abnormality of the second piping portion 114 based on the magnitude of the pressure difference ⁇ P. Thereby, it is possible to easily identify the place where the abnormality has occurred.
  • the pressure detection sensor 122 was disposed between the pump 121 and the heat exchanger 123. Thereby, the pressure change due to the occurrence of an abnormality in the pipe 110 can be made remarkable, and the abnormality detection accuracy can be improved.
  • the piping abnormality detection process shown in FIG. 5 was executed after the hot water filling operation to the bathtub 200 was executed. Thereby, the abnormality of the piping 110 can be detected in a situation where water is surely present in the bathtub 200. That is, it is possible to reliably determine whether there is an abnormality in the piping.
  • Embodiment 2 the second embodiment will be described focusing on the differences from the first embodiment.
  • the description is abbreviate
  • the piping abnormality detection system 100 according to the present embodiment is different from the pressure difference ⁇ P in that the abnormality of the piping 110 is detected based on the rate of change of the pressure difference ⁇ P with respect to the rotation speed of the pump 121. It is different from the one concerned.
  • FIG. 6 shows a piping abnormality detection process according to the present embodiment.
  • the determination module 34 operates the pump 121 at a predetermined rotation speed F1 (step S201).
  • the rotation speed F1 is, for example, a value obtained by halving the maximum rotation speed of the pump 121.
  • the determination module 34 obtains the pressure Pm1 detected by the pressure detection sensor 122 when the pump 121 is operating at the rotation speed F1, and the pressure Ps detected when the pump 121 is stopped. And a pressure difference ⁇ P1 between the pressure Pm1 detected when the pump 121 is operating is calculated (step S202). Specifically, the determination module 34 calculates a pressure difference ⁇ P1 obtained by subtracting the pressure Ps from the pressure Pm1.
  • the determination module 34 operates the pump 121 at a predetermined rotation speed F2 (step S203).
  • the rotation speed F2 is larger than the rotation speed F1, and is, for example, the maximum rotation speed of the pump 121.
  • the determination module 34 acquires the pressure Pm2 detected by the pressure detection sensor 122 when the pump 121 is operating at the rotation speed F2, and the pressure Ps detected when the pump 121 is stopped. And a pressure difference ⁇ P2 between the pressure Pm2 detected when the pump 121 is operating is calculated (step S204). Specifically, the determination module 34 calculates a pressure difference ⁇ P2 obtained by subtracting the pressure Ps from the pressure Pm2.
  • the determination module 34 compares the change rate D with a predetermined threshold value T3, and determines whether or not the change rate D is lower than the threshold value T3 (step S206).
  • the threshold value T3 is stored in advance in the data storage unit 144.
  • the determination module 34 determines that there is an abnormality in the first piping unit 113 (step S106).
  • the determination module 34 compares the change rate D with a predetermined threshold value T4, so that the change rate D is equal to the threshold value T4. It is determined whether or not (step S207).
  • the threshold value T4 is stored in the data storage unit 144 in advance. Note that the threshold value T4 is larger than the threshold value T3.
  • the determination module 34 determines that there is an abnormality in the second piping unit 114 (step S108).
  • the determination module 34 determines that there is no abnormality in the pipe 110 (step S109). That is, the determination module 34 determines that there is no abnormality in the pipe 110 when the change rate D falls within the normal range defined by the lower limit as the threshold value T3 and the upper limit as the threshold value T4, and the change rate D deviates from this range. Then, it is determined that the piping 110 has an abnormality.
  • the relationship between the pressure difference ⁇ P and the rotation speed of the pump 121 is indicated by lines Lm10, Lm11, and Lm12.
  • the line Lm10 corresponds to the case where there is no abnormality in the pipe 110
  • the line Lm11 corresponds to the case where there is an abnormality in the first piping part 113
  • the line Lm12 corresponds to the case where there is an abnormality in the second piping part 114.
  • the pressure difference ⁇ P can be obtained by subtracting the pressure Ps from the detected pressure. Therefore, it can be said that the lines Lm10, Lm11, and Lm12 are equal to the lines Lm0, Lm1, and Lm2 when Ps shown in FIG. 4 is changed to the origin of the vertical axis.
  • the change rate D0 when there is no abnormality in the pipe 110, the change rate D1 when there is an abnormality in the first piping part 113, and the change rate D2 when there is an abnormality in the second piping part 114. are shown respectively.
  • the rate of change D1 is smaller than the rate of change D0. That is, when there is an abnormality in the first piping part 113, the rate of change of the pressure difference ⁇ P is smaller than when there is no abnormality, like the pressure difference ⁇ P.
  • the change rate D2 is larger than the change rate D0.
  • the rate of change of the pressure difference ⁇ P is larger than that when there is no abnormality, like the pressure difference ⁇ P. Therefore, even if the change rate D is used instead of the pressure difference ⁇ P according to the first embodiment, it is possible to detect the presence / absence of an abnormality in the pipe 110 as in the first embodiment.
  • the piping abnormality detection system 100 detects the abnormality of the piping 110 based on the rate of change D of the pressure difference with respect to the rotation speed of the pump 121.
  • the change rate D when the abnormality occurs in the pipe 110 deviates from the change rate D when there is no abnormality. For this reason, as in the first embodiment, in the hot water supply system configured by omitting the flow switch that has been conventionally arranged in the pipe 110, an abnormality of the pipe 110 can be detected.
  • the piping abnormality detection system 100 outputs a signal by distinguishing between the abnormality of the first piping portion 113 and the abnormality of the second piping portion 114 based on the magnitude of the change rate D. Thereby, it is possible to easily identify the place where the abnormality has occurred.
  • Embodiment 3 the third embodiment will be described focusing on the differences from the first embodiment.
  • the description is abbreviate
  • the piping abnormality detection system 100 according to the present embodiment is implemented in that the heat exchanger 123, the pressure detection sensor 122, and the pump 121 are arranged in this order from the upstream side of the piping 110, as shown in FIG. This is different from that according to the first embodiment.
  • the pump 121 is disposed between the pressure detection sensor 122 and the outlet 112. That is, the pump 121 is disposed on the downstream side of the pressure detection sensor 122.
  • the pressure detection sensor 122 is disposed between the pump 121 and the heat exchanger 123. That is, the pressure detection sensor 122 is disposed upstream of the pump 121 and downstream of the heat exchanger 123. Regarding the detection range of the gauge pressure by the pressure detection sensor 122 according to the present embodiment, it is assumed that the detection area on the negative pressure side is wider than the detection area on the positive pressure side.
  • the heat exchanger 123 is disposed between the inlet 111 and the pressure detection sensor 122. That is, the heat exchanger 123 is arranged on the upstream side of the pressure detection sensor 122.
  • the pump 121 when the pump 121 is operated, the water drawn from the bathtub 200 flows into the first piping part 113 and passes through the heat exchanger 123 and the pressure detection sensor 122. The pressure is increased by the pump 121. Then, this water passes through the second piping part 114 and flows out into the bathtub 200.
  • the pressure that decreases due to the water flow when there is no abnormality is indicated by a line Lm20.
  • the pressure detected when the pump 121 is stopped is Ps, and the detected pressure decreases as the rotational speed of the pump 121 increases.
  • the pressure detected when there is an abnormality in the first piping section 113 is indicated by a line Lm21.
  • the pressure detected when the pump 121 is stopped is Ps equal to the pressure detected when there is no abnormality.
  • the detected pressure decreases, but the degree of decrease when there is an abnormality in the first piping unit 113 is greater than when there is no abnormality.
  • the pressure detected when there is an abnormality in the second piping unit 114 is indicated by a line Lm22.
  • the pressure detected when the pump 121 is stopped is Ps equal to the pressure detected when there is no abnormality.
  • the detected pressure decreases, but the degree of decrease when there is an abnormality in the second piping unit 114 is smaller than when there is no abnormality.
  • the pressure detected by the pressure detection sensor 122 when the pump 121 is operating varies depending on whether there is an abnormality occurring in the pipe 110 and where the abnormality has occurred. Therefore, it is possible to detect the presence or absence of an abnormality that has occurred in the first piping part 113 and the second piping part 114.
  • the effect of the water level of the bathtub 200 and the atmospheric pressure is reduced by using the pressure difference between the pressure when the pump 121 is stopped and the pressure when the pump 121 is operating.
  • the pressure difference between the pressure when the pump 121 is stopped and the pressure when the pump 121 is operating it is possible to detect the presence or absence of an abnormality that has occurred in the pipe 110.
  • FIG. 9 when there is an abnormality in the first piping part 113, it is detected when the pump 121 is stopped from the pressure Pm detected when the rotational speed of the pump 121 is R2. If a negative pressure difference ⁇ P obtained by reducing the pressure Ps is detected, an abnormality that has occurred in the first piping section 113 can be detected with high accuracy.
  • FIG. 10 shows piping abnormality detection processing according to the present embodiment.
  • the determination module 34 compares the pressure difference ⁇ P with a predetermined threshold T5 to determine whether or not the pressure difference ⁇ P is less than the threshold T5 ( Step S301).
  • the threshold T5 is a negative value and is stored in the data storage unit 144 in advance.
  • the determination module 34 determines that there is an abnormality in the first piping unit 113 (step S106).
  • the determination module 34 compares the pressure difference ⁇ P with a predetermined threshold T6, and the pressure difference ⁇ P is equal to the threshold T6. It is determined whether or not (step S302).
  • the threshold value T6 is a negative value and is stored in the data storage unit 144 in advance. Note that the threshold value T6 is larger than the threshold value T5.
  • the determination module 34 determines that there is an abnormality in the second piping unit 114 (step S108).
  • the determination module 34 determines that there is no abnormality in the pipe 110 (step S109). That is, the determination module 34 determines that there is no abnormality in the pipe 110 when the pressure difference ⁇ P falls within the normal range defined by the lower limit as the threshold T5 and the upper limit as the threshold T6, and the pressure difference ⁇ P deviates from this range. Then, it is determined that the piping 110 has an abnormality.
  • the piping abnormality detection system 100 is similar to the first embodiment in the hot water supply system configured by omitting the flow switch that has been conventionally arranged in the piping 110. Can be detected.
  • the abnormality of the pipe 110 may be detected based on the rate of change of the pressure difference ⁇ P with respect to the rotation speed of the pump 121 instead of the pressure difference ⁇ P.
  • FIG. 11 shows the relationship between the pressure difference ⁇ P and the rotational speed of the pump 121 by lines Lm30, Lm31, and Lm32.
  • the line Lm30 corresponds to the case where there is no abnormality in the pipe 110
  • the line Lm31 corresponds to the case where there is an abnormality in the first piping part 113
  • the line Lm32 corresponds to the case where there is an abnormality in the second piping part 114.
  • the pressure difference ⁇ P can be obtained by subtracting the pressure Ps from the detected pressure. Therefore, it can be said that the lines Lm30, Lm31, and Lm32 are equal to the lines Lm20, Lm21, and Lm22, respectively, when Ps shown in FIG. 9 is changed to the origin of the vertical axis.
  • the negative change rate D10 when there is no abnormality in the piping 110 the negative change rate D11 when there is an abnormality in the first piping portion 113, and the abnormality when the second piping portion 114 is abnormal.
  • a negative change rate D12 is shown respectively.
  • these change rates are: F4 larger than the predetermined pump rotation speeds F3 and F3, pressure difference ⁇ P3 when the rotation speed of the pump 121 is F3, and F4 where the rotation speed of the pump 121 is larger than F3. From the pressure difference ⁇ P4 at the time, it is calculated according to an arithmetic expression of ( ⁇ P4- ⁇ P3) / (F4-F3).
  • the rate of change D11 is larger than the rate of change D10, but since the rates of change D10 and D11 are both negative values, the rate of change D11 is smaller than the rate of change D10. That is, when there is an abnormality in the first piping part 113, the rate of change of the pressure difference ⁇ P is smaller than when there is no abnormality, like the pressure difference ⁇ P. Further, although the rate of change D12 is smaller than the rate of change rate D10, the rate of change D12 is larger than the rate of change D10 because both the rates of change D10 and D12 are negative values.
  • the rate of change of the pressure difference ⁇ P is larger than that when there is no abnormality, like the pressure difference ⁇ P. Therefore, even if the change rate D is used in place of the pressure difference ⁇ P according to the third embodiment, the presence or absence of an abnormality in the pipe 110 can be detected as in the third embodiment.
  • the heat pump unit 134 is used as a heat source for performing the boiling operation, but an electric heater or a gas combustion device may be used as the heat source.
  • the piping abnormality detection system 100 may be configured by omitting the hot water storage tank 130. Further, the piping abnormality detection system 100 may be configured by omitting the heat exchanger 123. For example, instead of the heat exchanger 123, the piping abnormality detection system 100 may be configured using a heat source for replenishing water in the bathtub 200. Further, this circulation path may be used for cleaning the water in the bathtub 200 instead of a reheating operation without providing a heat source in the circulation path formed between the pipe 110 and the bathtub 200.
  • the number of water supply ports 101 and hot water supply ports 102 is not limited to that shown in FIG. 1 and is arbitrary. Moreover, in the said embodiment, although the water pipe connected to the hot water supply port 102 and the piping 110 were independent, it is good also as a structure which connects this water pipe and the piping 110. FIG. 1
  • the threshold values T1 to T6 may be determined based on the pressure detected by the pressure detection sensor 122 in the past. Thereby, the threshold suitable for the use environment of the actual piping abnormality detection system 100 can be set. For example, in the past fixed period, from the fluctuation of the pressure difference between the pressure detected when the pump 121 is stopped and the pressure detected when the pump 121 is operating at a specified rotational speed, Threshold values T1 and T2 may be determined.
  • the configuration for the user to input information is limited to the terminal 210, but the control device 140 may include such a configuration.
  • the program 149 stored in the data storage unit 144 can be read by a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
  • a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
  • the program 149 may be stored in a disk device included in a server device on a communication network represented by the Internet, and may be downloaded onto a computer while being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing the program 149 while transferring it via a network typified by the Internet.
  • processing can also be achieved by executing all or part of the program 149 on the server device and executing the program 149 while the computer transmits and receives information regarding the processing via the communication network. .
  • means for realizing the function of the piping abnormality detection system 100 is not limited to software, and part or all of the means may be realized by dedicated hardware. For example, if each module shown in FIG. 3 is configured using a circuit typified by FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), power saving of the control device 140 can be achieved. .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the present invention is suitable for detecting an abnormality occurring in a pipe.
  • 100 piping abnormality detection system 101 water supply port, 102 hot water supply port, 110 piping, 111 inflow port, 112 outflow port, 113 first piping unit, 114 second piping unit, 121 pump, 122 pressure detection sensor, 123 heat exchanger, 130 hot water storage tank, 131 three-way valve, 132 pump, 133 four-way valve, 134 heat pump unit, 135 mixing valve, 140 controller, 141 processor, 142 RAM, 143 ROM, 144 data storage unit, 145 communication unit, 146 internal bus, 147 Communication unit, 149 program, 150 output device, 160 notification device, 200 bathtub, 210 terminal, 31 UI module, 32 acquisition module, 33 execution Joule, 34 determination module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control For Baths (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

配管異常検知システム(100)は、浴槽(200)の水を流入させる流入口(111)と浴槽(200)に水を流出させる流出口(112)とを有する配管(110)と、配管(110)と浴槽(200)との間で水を循環させるポンプ(121)と、配管(110)の内部の圧力を検出する圧力検出センサ(122)と、ポンプ(121)が停止しているときに圧力検出センサ(122)によって検出される圧力とポンプ(121)が稼働しているときに圧力検出センサ(122)によって検出される圧力との差と、ポンプ(121)の回転数に対する差の変化率と、の少なくとも一方が予め定められた範囲から外れると、配管(110)の異常を検知したことを示す信号を出力する出力装置(150)と、を備える。

Description

配管異常検知システム、配管異常検知方法及びプログラム
 本発明は、配管異常検知システム、配管異常検知方法及びプログラムに関する。
 近年、給湯装置の高機能化が進み、単に温水を生成するだけでなく、給湯温度を適温に調整したり、浴槽に適量の湯張りをしたりすることが可能になっている。また、浴槽内の湯水をポンプで搬送して、予め貯えておいた湯水との間で熱交換を行うことにより、浴槽内の湯水の追い焚きをしたり浴槽内の湯水から熱を回収したりする給湯装置も登場している。
 上述のような給湯装置の高機能化に伴って、給湯装置を構成する機能部品が増加し、コストが増加している。例えば、浴槽への適量の湯張りを実現するために、浴槽内の水位を検出する水位センサが用いられる。また、ポンプが稼働したときにポンプによって搬送される湯水を検知するためにフロースイッチが利用される。
 そこで、給湯装置を簡素な構成とするための提案がなされている(例えば、特許文献1を参照)。従来は、フロースイッチを利用して浴槽内に湯水があるか否かの判定がなされていたが、特許文献1では、水位センサを流用して上記の判定を実行している。これにより、フロースイッチを省いて給湯装置を構成しても、上記の判定を実行することができる。
特開平9-49659号公報
 しかしながら、フロースイッチは、上記の判定に加え、配管に生じた異常の検知に用いられることがある。特許文献1に記載の技術では、フロースイッチを省いて構成した給湯装置で配管の異常を検知することについては何ら考慮されていないため、フロースイッチを用いることなく配管の異常を検知することが困難となるおそれがあった。
 本発明は、上記の事情に鑑みてなされたもので、フロースイッチを用いることなく配管の異常を検知することを目的とする。
 上記目的を達成するため、本発明の配管異常検知システムは、浴槽の水を流入させる流入口と浴槽に水を流出させる流出口とを有する配管と、配管と浴槽との間で水を循環させるポンプと、配管の内部の圧力を検出する検出手段と、ポンプが停止しているときに検出手段によって検出される圧力とポンプが稼働しているときに検出手段によって検出される圧力との差と、ポンプの回転数に対する差の変化率と、の少なくとも一方が予め定められた範囲から外れると、配管の異常を検知したことを示す信号を出力する出力手段と、を備える。
 本発明によれば、ポンプが停止しているときの配管の内部の圧力とポンプが稼働しているときの配管の内部の圧力との差と、この差の変化率と、の少なくとも一方が予め定められた範囲から外れると、配管の異常を検知したことを示す信号が出力される。これにより、フロースイッチを用いることなく配管の異常を検知することができる。
実施の形態1に係る配管異常検知システムの構成を示す図 制御装置のハードウェア構成を示す図 制御装置の機能的な構成を示す図 実施の形態1に係るポンプの回転数と検出圧力との関係を示す図 実施の形態1に係る配管異常検知処理を示すフロー図 実施の形態2に係る配管異常検知処理を示すフロー図 実施の形態2に係るポンプの回転数と圧力差との関係を示す図 実施の形態3に係る配管異常検知システムの構成を示す図 実施の形態3に係るポンプの回転数と検出圧力との関係を示す図 実施の形態3に係る配管異常検知処理を示すフロー図 実施の形態3に係る圧力差に代えてその変化率を用いる場合について説明するための図
 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。なお、以下では、湯、高温水及び温水と、低温水及び冷水と、を総称して水という。湯、高温水及び温水は、例えば、市水を加熱することで得る水、又は、温度が人の標準的な体温である36℃より高い水である。低温水及び冷水は、例えば、市水を加熱することなく得る水、又は温度が36℃以下の水である。
 実施の形態1.
 図1には、実施の形態1に係る配管異常検知システム100が示されている。この配管異常検知システム100は、給水口101から供給される市水を加熱して得た高温水を給湯口102から供給し、浴槽200の水の追い焚きを行うヒートポンプ式給湯システムである。なお、図1において太い実線は、配水管を示している。
 給水口101には、例えば、市水、上水、井戸水、又は、配管異常検知システム100のユーザが独自に準備した水が供給される。給湯口102は、例えば、調理場又は風呂場に設置される蛇口、カラン、又はシャワーヘッドである。図1には、給湯口102の一例としてシャワーヘッドが示されている。この給湯口102から供給される湯は、浴槽200への給湯にも利用される。
 また、配管異常検知システム100は、フロースイッチに代えて圧力検出センサ122を利用することで、配水管の異常を検知する。配管異常検知システム100によって検知される配水管の異常は、例えば、配水管の潰れ又は遮蔽物による詰まりに起因する異常であって、配管異常検知システム100と浴槽200とを接続する配管110の狭窄及び閉塞である。また、配水管の異常には、配水管の内部に配置されたフィルタの目詰まり、水に溶けた成分の析出或いは沈殿、及び、配水管の腐食によるものが含まれ得る。
 配管異常検知システム100は、浴槽200の水を循環させるための配管110と、配管110内の水を搬送するポンプ121と、配管110の内部の圧力を検出する圧力検出センサ122と、浴槽200の水と貯湯タンク130の水との間で熱交換を行う熱交換器123と、高温水を貯えるための貯湯タンク130と、貯湯タンク130の底部に接続される流路を切り替える三方弁131と、貯湯タンク130の水を循環させるためのポンプ132と、ポンプ132の吐出口に接続される流路を切り替える四方弁133と、貯湯タンク130の水を加熱するヒートポンプユニット134と、貯湯タンク130の上部から取水した高温水と給水口101から供給される水とを混合する混合弁135と、配管異常検知システム100の構成要素を制御する制御装置140と、配管110の異常を検知したことを示す信号を出力する出力装置150と、配管110の異常をユーザに報知する報知装置160と、を有している。
 配管110は、浴槽200の水を流入させる流入口111と浴槽200に水を流出させる流出口112とを有し、浴槽200の水を循環させる循環路を形成する。配管110は、チューブを用いて構成してもよいし、パイプを用いて構成してもよい。
 ポンプ121は、例えばモータ及びギアを含んで構成される渦巻きポンプ又はディフューザポンプである。ポンプ121は、配管110の予め定められた位置に配置される。本実施の形態に係るポンプ121は、流入口111と圧力検出センサ122との間に配置される。すなわち、ポンプ121は、圧力検出センサ122の上流側に配置される。ポンプ121は、制御装置140から指示された回転数で稼働することにより、配管110と浴槽200との間で水を循環させる。詳細には、ポンプ121は、駆動装置としてのインバータ回路を有し、制御装置140から送信された制御信号により指示された制御値に従って駆動回転数を変更することにより、水を搬送する際の水流量を変化させる。なお、図1には、ポンプ121が稼働することで生じる水流の方向が、白抜き矢印で示されている。
 圧力検出センサ122は、配管110の特定の位置に配置される。本実施の形態に係る圧力検出センサ122は、ポンプ121と熱交換器123との間に配置される。すなわち、圧力検出センサ122は、ポンプ121の下流側であって、熱交換器123の上流側に配置される。圧力検出センサ122は、配管110内の水の圧力を検出することで、浴槽200に貯えられた水の水位を検出する水位センサとして用いられる。さらに、圧力検出センサ122は、配管110の異常を検知するために用いられる。圧力検出センサ122は、ゲージ圧の検出域を正圧側及び負圧側ともに有するが、本実施の形態では、正圧の検出域の方が広いものとする。
 なお、配管110のうち、流入口111から圧力検出センサ122が配置される特定の位置までを第1配管部113として、配管110のうち、この特定の位置から流出口112までを第2配管部114とする。第1配管部113は、浴槽から水を戻す戻り配管であって、第2配管部114は、浴槽に往く水を送出する往き配管である。
 熱交換器123は、配管110の予め定められた位置に配置される。本実施の形態に係る熱交換器123は、圧力検出センサ122と流出口112との間に配置される。すなわち、熱交換器123は、圧力検出センサ122の下流側に配置される。熱交換器123の1次側には、貯湯タンク130の水を循環させるための配水管が通り、熱交換器123の2次側には、配管110が通る。熱交換器123は、浴槽200の水と貯湯タンク130の高温水との間で熱交換を行い、浴槽200の水の追い焚きに用いられる。なお、熱交換器123は、浴槽200の高温水から熱を回収して貯湯タンク130の水を加熱してもよい。
 貯湯タンク130は、ステンレスに代表される金属、又は樹脂によって形成されている。貯湯タンク130は、ヒートポンプユニット134によって生成された高温水を貯留する。貯湯タンク130の表面は断熱材で覆われ、貯湯タンク130内の高温水は、長時間にわたって保温される。貯湯タンク130の下部は、配水管を介して給水口101に接続され、この配水管から低温水が適宜供給される。
 また、貯湯タンク130の下部は、配水管を介して三方弁131に接続される。三方弁131は、制御装置140の指示に従って、ポンプ132の吸込口に接続される流路を、貯湯タンク130の下部と熱交換器123の1次側出口とのいずれか一方に切り替える。詳細には、貯湯タンク130の水を沸き上げる沸き上げ運転が実行される際に、三方弁131は、図1中の実線矢印で示されるようにポンプ132の吸込口と貯湯タンク130の下部とを接続する流路を形成する。また、浴槽200の水の追い焚き運転が実行される際に、三方弁131は、図1中の破線矢印で示されるようにポンプ132の吸込口と熱交換器123の1次側出口とを接続する流路を形成する。
 また、貯湯タンク130の下部は、配水管を介して四方弁133に接続される。四方弁133は、制御装置140の指示に従って、ヒートポンプユニット134の吐出口と貯湯タンク130の上部とを接続する第1の流路を形成したり、ポンプ132の吐出口と貯湯タンク130の下部とを接続する第2の流路を形成したりする。詳細には、四方弁133は、沸き上げ運転が実行される際には、実線矢印で示されるように第1の流路を形成し、追い焚き運転が実行される際には、破線矢印で示されるように第2の流路を形成する。なお、第1の流路が形成される際には、第2の流路は閉じられて形成されず、第2の流路が形成される際には、第1の流路は閉じられて形成されない。
 ヒートポンプユニット134は、制御装置140の指示に従って、CO2又はHFC(Hydro Fluoro Carbons)に代表される冷媒を循環させることで水を加熱する装置である。ヒートポンプユニット134は、圧縮機、冷媒と水との間で熱交換を行う第1の熱交換器、膨張弁、及び、外気と冷媒との間で熱交換を行う第2の熱交換器がこの順で接続されてなる冷媒回路と、第2の熱交換器に送風する送風機と、冷媒、水又は外気の温度を計測する温度センサと、ヒートポンプユニット134の構成要素を制御する制御基板と、を有している。圧縮機の回転数、膨張弁の開度、及び送風機の回転数は、制御装置140から送信された制御信号により指示される制御値に従う。
 混合弁135は、給水口101、貯湯タンク130の上部、及び給湯口102に接続される。混合弁135は、制御装置140の指示に従った混合比で、貯湯タンク130の上部から取水した高温水と、給水口101から供給される低温水とを混合して、混合した水を給湯口102に送出する。
 制御装置140は、配管異常検知システム100が内蔵するコンピュータである。制御装置140は、配管異常検知システム100の外部の端末210と通信可能に接続され、端末210が受け付けたユーザの操作内容に応じて、給湯システムとしての配管異常検知システム100の各構成要素を制御する。そして、制御装置140は、沸き上げ運転及び追い焚き運転を実行する。また、制御装置140は、ユーザが所望する温度の湯が給湯口102から出水されるように混合弁135の混合比を調整し、給湯口102から適量の湯を浴槽200に供給する湯張り運転を実行する。さらに、制御装置140は、給湯システムとしての配管異常検知システム100の運転状態或いは操作画面を端末210に表示させる。また、制御装置140は、配管110の異常を検知すると、検知結果を出力装置150に出力する。
 制御装置140は、そのハードウェア構成として、図2に示されるように、プロセッサ141と、RAM(Random Access Memory)142と、ROM(Read Only Memory)143と、データ記憶部144と、通信部145と、を有している。RAM142、ROM143、データ記憶部144、及び通信部145は、内部バス146を介してプロセッサ141に接続されている。
 プロセッサ141は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)を含んで構成される。プロセッサ141は、データ記憶部144に記憶されるプログラム149を実行することで種々の機能を発揮する。
 RAM142は、データ記憶部144からプログラム149をロードする。そして、RAM142は、プロセッサ141の作業領域として用いられる。ROM143は、複数のファームウェア或いはこれらのファームウェアの実行の際に使用されるデータを記憶する。
 データ記憶部144は、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ及びハードディスクドライブに代表される不揮発性の非一時的な記録媒体である。データ記憶部144は、配管異常検知システム100の動作を制御するためのプログラム149と、このプログラム149の実行時にプロセッサ141によって利用されるデータを記憶する。プログラム149の実行時に利用されるデータには、配管異常検知システム100の運転モードと、ポンプ121,132の発停及び回転数、ヒートポンプユニット134の運転状態、三方弁131及び四方弁133によって切り替えられる流路、並びに、混合弁135による混合比と、の対応関係を示すデータ、及び、後述の処理に用いられるパラメータとしての閾値が含まれる。
 通信部145は、有線通信又は無線通信を行うためのNIC(Network Interface Card controller)を含んで構成される。通信部145は、端末210、ポンプ121,132、ヒートポンプユニット134、三方弁131、四方弁133、及び混合弁135と通信可能に接続される。
 制御装置140の以上のハードウェア構成が協働することで、制御装置140の種々の機能が実現される。図3には、制御装置140の機能的な構成が示されている。図3に示されるように、制御装置140は、その機能として、ユーザから情報を受け付けたりユーザに情報を提示したりするためのUI(User Interface)モジュール31と、配管異常検知システム100の各構成要素からデータを取得する取得モジュール32と、給湯システムとしての配管異常検知システム100の各運転モードを実行する実行モジュール33と、配管110に異常が生じたか否かを判定する判定モジュール34と、を有している。
 UIモジュール31は、端末210及び出力装置150を介したユーザインタフェース処理を実行する。すなわち、UIモジュール31は、端末210に入力されたユーザの操作を受け付ける。また、UIモジュール31は、端末210及び出力装置150に情報を送信して、その情報を端末210に表示させたり報知装置160に報知させたりする。この情報には、例えば、給湯システムの運転状態を示す情報が含まれる。
 取得モジュール32は、一定時間毎に、ヒートポンプユニット134の運転状態、不図示の温度センサによる計測値、及び圧力検出センサ122の検出値を取得し、ポンプ121,132の駆動装置からポンプ121,132の駆動状態を示すデータを取得する。一定時間は、例えば5秒間、30秒間、又は1分間である。取得モジュール32によって取得された各種データは、データ記憶部144(図2参照)に蓄積される。
 実行モジュール33は、ユーザによって選択された運転モードに対応する制御目標値をデータ記憶部144(図2参照)から読み出して、沸き上げ運転、追い焚き運転又は湯張り運転を実行する。
 図1には、沸き上げ運転が実行される際の水流方向が実線矢印で示されている。実線矢印で示されるように、沸き上げ運転では、貯湯タンク130とヒートポンプユニット134との間で沸き上げ回路が形成される。すなわち、貯湯タンク130の下部から流出した低温水が、ポンプ132によって搬送されて、ヒートポンプユニット134によって加熱されることで高温水となり、貯湯タンク130の上部に戻される。
 また、図1には、追い焚き運転が実行される際の水流方向が破線矢印で示されている。破線矢印で示されるように、追い焚き運転では、貯湯タンク130と熱交換器123との間で循環路が形成される。すなわち、ポンプ132が稼働することで貯湯タンク130の上部から流出した高温水が、熱交換器123の1次側を通り、三方弁131、ポンプ132、四方弁133をこの順で通って貯湯タンク130の下部に戻る。また、追い焚き運転では、白抜き矢印で示されるように、ポンプ121が配管110と浴槽200との間で水を循環させる。これにより、熱交換器123が、貯湯タンク130に蓄えられた熱を浴槽200へ移動させることとなる。
 図3に戻り、判定モジュール34は、ポンプ121を制御しつつ得られた圧力検出センサ122の検出値に基づいて、配管110に異常が生じたか否かを判定し、判定結果を出力装置150(図1参照)に通知する。判定モジュール34によって実行される判定処理の詳細については、後述する。
 図1に戻り、出力装置150は、有線通信又は無線通信を行うためのNIC(Network Interface Card controller)を含んで構成され、制御装置140、報知装置160及び端末210と通信可能に接続される。出力装置150は、判定モジュール34によって配管110に異常が生じたと判定された場合に、この異常を検知したことを示す信号を、報知装置160及び端末210に出力する。これにより、配管110の異常を検知したことがユーザに報知される。なお、出力装置150は、制御装置140のハードウェア部品或いはソフトウェアモジュールとして制御装置140に内蔵されていてもよいし、制御装置140と一体的に形成されてもよい。
 報知装置160は、例えばLED(Light Emitting Diode)、LCD(Liquid Cristal Display)又はスピーカを含んで構成される。出力装置150は、出力装置150から出力された信号により示される情報をユーザに対して提示する。なお、報知装置160は、制御装置140に内蔵されていてもよいし、制御装置140と一体的に形成されてもよい。
 続いて、制御装置140が配管110の異常の有無を検知する手法の概要について説明する。
 図1中の白抜き矢印で示されるように、ポンプ121が稼働すると、浴槽200から引かれた水は、第1配管部113に流入してポンプ121で昇圧された後に、圧力検出センサ122を通過して熱交換器123の2次側入口に流入する。そして、この水は、第2配管部114を通過して浴槽200内に流出する。
 このように配管110と浴槽200との間で循環する水流があるときには、熱交換器123及び第2配管部114における圧力損失が生じるため、圧力検出センサ122によって検出される圧力は、水流がないときと比較して、高くなる。ここで、熱交換器123のように水抵抗が大きな流路を圧力検出センサ122の下流側に配置することで、水流がない時に検出される圧力から水流がある時に検出される圧力の上昇を、より顕著にすることができる。
 図4には、配管110に異常がない場合において水流によって増加する圧力が線Lm0で示されている。図4からわかるように、ポンプ121が停止しているときに検出される圧力はPsであって、ポンプ121の回転数が増加すると検出圧力も増加する。
 ここで、第2配管部114に異常がある場合について考察する。第2配管部114に異常が生じると、第2配管部114における圧力損失が増大する。このため、ポンプ121の回転数が同一であるという条件下において、第2配管部114に異常が生じると、第2配管部114に異常がない場合と比較して、圧力検出センサ122によって検出される圧力が高くなる。
 図4には、第2配管部114に異常がある場合に検出される圧力が、線Lm2で示されている。図4からわかるように、ポンプ121が停止しているときに検出される圧力は、異常がない場合に検出される圧力に等しいPsである。ポンプ121の回転数が増加すると検出圧力も増加するが、第2配管部114に異常がある場合における増加の度合いは、異常がない場合より大きくなる。
 また、第1配管部113に異常がある場合について考察する。第1配管部113に異常が生じると、第1配管部113における圧力損失が増大する。このため、ポンプ121の回転数が同一であるという条件下において、第1配管部113に異常が生じると、第1配管部113に異常がない場合と比較して、配管110と浴槽200との間で循環する水流量が減少する。この水流量が減少すると、熱交換器123及び第2配管部114における圧力損失が減少する。したがって、ポンプ121の回転数が同一であるという条件下において、第1配管部113に異常が生じると、異常がない場合と比較して、圧力検出センサ122によって検出される圧力が低くなる。
 図4には、第1配管部113に異常がある場合に検出される圧力が、線Lm1で示されている。図4からわかるように、ポンプ121が停止しているときに検出される圧力は、異常がない場合に検出される圧力に等しいPsである。ポンプ121の回転数が増加すると検出圧力も増加するが、第1配管部113に異常がある場合における増加の度合いは、異常がない場合より小さくなる。
 このように、ポンプ121が稼働しているときに圧力検出センサ122によって検出される圧力は、配管110に生じた異常の有無及び異常が生じた場所に応じて変化する。したがって、第1配管部113及び第2配管部114に生じた異常の有無を検知することが可能になる。
 なお、圧力検出センサ122によって検出される圧力は、浴槽200内の水位及び大気圧によって変化し得る。そこで、ポンプ121が停止しているときに圧力検出センサ122によって検出される圧力とポンプ121が稼働しているときに圧力検出センサ122によって検出される圧力との圧力差を利用して、配管110に生じた異常を判定することで、浴槽200内の水位や大気圧の影響を軽減して、異常の検知精度を向上させることができる。例えば、図4に示されるように、第2配管部114に異常がある場合において、ポンプ121の回転数がR1であるときに検出される圧力Pmとポンプ121が停止しているときに検出される圧力Psとの圧力差ΔPを利用すれば、異常の検知精度を向上させることができる。
 続いて、制御装置140及び出力装置150によって実行される配管異常検知処理について、図5を用いて説明する。図5に示される配管異常検知処理は、例えば、浴槽200への湯張り運転が実行された後に実行される。
 配管異常検知処理において、制御装置140の判定モジュール34は、まず、ポンプ121を停止する(ステップS101)。具体的には、判定モジュール34は、ポンプ121の停止を指示して、ポンプ121が停止していることを確認する。
 次に、判定モジュール34は、浴槽200内に水があるか否かを判定する(ステップS102)。具体的には、判定モジュール34は、圧力検出センサ122によって検出されている圧力が、予め定められた規定値を超えているか否かを判定する。また、判定モジュール34は、圧力検出センサ122によって検出されている圧力を、ポンプ121が停止しているときに圧力検出センサ122によって検出される圧力Psとして、データ記憶部144に格納する。
 浴槽200内に水がないと判定した場合(ステップS102;No)、判定モジュール34は、ステップS102の判定を繰り返す。これにより、浴槽200に水があると判定されるまで、配管に生じた異常の検知が延期される。
 一方、浴槽200内に水があると判定した場合(ステップS102;Yes)、判定モジュール34は、予め規定された回転数でポンプ121を稼働させる(ステップS103)。予め規定された回転数は、異常によって生じる後述の圧力差を顕著にするため、大きい方が望ましく、例えば、ポンプ121の最大回転数である。
 次に、判定モジュール34は、ポンプ121が規定回転数で稼働しているときに圧力検出センサ122によって検出される圧力Pmを取得して、ポンプ121が停止しているときに検出された圧力Psとポンプ121が稼働しているときに検出された圧力Pmとの圧力差ΔPを算出する(ステップS104)。具体的には、判定モジュール34は、圧力Pmから圧力Psを減じて得る圧力差ΔPを算出する。
 次に、判定モジュール34は、圧力差ΔPと予め定められた閾値T1とを比較して、圧力差ΔPが閾値T1を下回るか否かを判定する(ステップS105)。閾値T1は、データ記憶部144に予め格納される。
 圧力差ΔPが閾値T1を下回ると判定した場合(ステップS105;Yes)、判定モジュール34は、第1配管部113に異常があると判断する(ステップS106)。
 一方、圧力差ΔPが閾値T1を下回っていないと判定した場合(ステップS105;No)、判定モジュール34は、圧力差ΔPと予め定められた閾値T2とを比較して、圧力差ΔPが閾値T2を超えるか否かを判定する(ステップS107)。閾値T2は、データ記憶部144に予め格納される。なお、閾値T2は、閾値T1より大きい値である。
 圧力差ΔPが閾値T2を超えると判定した場合(ステップS107;Yes)、判定モジュール34は、第2配管部114に異常があると判断する(ステップS108)。
 一方、圧力差ΔPが閾値T2を超えないと判定した場合(ステップS107;No)、判定モジュール34は、配管110に異常がないと判断する(ステップS109)。すなわち、判定モジュール34は、下限を閾値T1として上限を閾値T2として規定される正常の範囲に圧力差ΔPが収まる場合に、配管110に異常がないと判断し、圧力差ΔPがこの範囲から外れると、配管110に異常があると判断することとなる。
 ステップS106,S108,S109の後に、判定モジュール34は、判定の結果を出力装置150に通知して、出力装置150は、検知結果を示す信号を端末210及び報知装置160に出力する(ステップS110)。具体的には、ステップS106に続くステップS110で、出力装置150は、第1配管部113の異常を検知したことを示す信号を出力する。また、ステップS108に続くステップS110で、出力装置150は、第2配管部114の異常を検知したことを示す信号を出力する。また、ステップS109に続くステップS110で、出力装置150は、配管110に異常が検知されなかったことを示す信号を出力する。その後、配管異常検知処理が終了する。
 以上、説明したように、本実施の形態に係る配管異常検知システム100は、ポンプ121が停止しているときに圧力検出センサ122によって検出される圧力とポンプ121が稼働しているときに圧力検出センサ122によって検出される圧力との差が予め定められた範囲から外れると、配管110の異常を検知したことを示す信号を出力した。これにより、従来は配管110に配置されていたフロースイッチを省いて構成した給湯システムにおいて、配管110の異常を検知することができる。
 また、配管異常検知システム100は、配管110に異常が生じると、圧力差ΔPの大小に基づいて第1配管部113の異常と第2配管部114の異常とを区別して信号を出力した。これにより、異常が生じた場所を容易に特定することができる。
 また、圧力検出センサ122は、ポンプ121と熱交換器123との間に配置された。これにより、配管110に異常が生じたことによる圧力変化を顕著にして、異常の検知精度を向上させることができる。
 また、図5に示された配管異常検知処理は、浴槽200への湯張り運転が実行された後に実行された。これにより、浴槽200に確実に水がある状況で、配管110の異常を検知することができる。すなわち、配管の異常の有無を確実に判別することができる。
 実施の形態2.
 続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る配管異常検知システム100は、圧力差ΔPに代えて、ポンプ121の回転数に対する圧力差ΔPの変化率に基づいて配管110の異常を検出する点で、実施の形態1に係るものと異なっている。
 図6には、本実施の形態に係る配管異常検知処理が示されている。図6に示されるように、ステップS102の判定が肯定されると(ステップS102;Yes)、判定モジュール34は、予め定められた回転数F1でポンプ121を稼働させる(ステップS201)。回転数F1は、例えば、ポンプ121の最大回転数を1/2倍したものである。
 次に、判定モジュール34は、ポンプ121が回転数F1で稼働しているときに圧力検出センサ122によって検出される圧力Pm1を取得して、ポンプ121が停止しているときに検出された圧力Psとポンプ121が稼働しているときに検出された圧力Pm1との圧力差ΔP1を算出する(ステップS202)。具体的には、判定モジュール34は、圧力Pm1から圧力Psを減じて得る圧力差ΔP1を算出する。
 次に、判定モジュール34は、予め定められた回転数F2でポンプ121を稼働させる(ステップS203)。回転数F2は、回転数F1より大きな値であって、例えば、ポンプ121の最大回転数である。
 次に、判定モジュール34は、ポンプ121が回転数F2で稼働しているときに圧力検出センサ122によって検出される圧力Pm2を取得して、ポンプ121が停止しているときに検出された圧力Psとポンプ121が稼働しているときに検出された圧力Pm2との圧力差ΔP2を算出する(ステップS204)。具体的には、判定モジュール34は、圧力Pm2から圧力Psを減じて得る圧力差ΔP2を算出する。
 次に、判定モジュール34は、圧力差の変化率Dを算出する(ステップS205)。具体的には、判定モジュール34は、D=(ΔP2-ΔP1)/(F2-F1)の演算式に従って、ポンプ121の回転数に対する圧力差の変化率Dを算出する。
 次に、判定モジュール34は、変化率Dと予め定められた閾値T3とを比較して、変化率Dが閾値T3を下回るか否かを判定する(ステップS206)。閾値T3は、データ記憶部144に予め格納される。
 変化率Dが閾値T3を下回ると判定した場合(ステップS206;Yes)、判定モジュール34は、第1配管部113に異常があると判断する(ステップS106)。
 一方、変化率Dが閾値T3を下回っていないと判定した場合(ステップS206;No)、判定モジュール34は、変化率Dと予め定められた閾値T4とを比較して、変化率Dが閾値T4を超えるか否かを判定する(ステップS207)。閾値T4は、データ記憶部144に予め格納される。なお、閾値T4は、閾値T3より大きい値である。
 変化率Dが閾値T4を超えると判定した場合(ステップS207;Yes)、判定モジュール34は、第2配管部114に異常があると判断する(ステップS108)。
 一方、変化率Dが閾値T4を超えないと判定した場合(ステップS207;No)、判定モジュール34は、配管110に異常がないと判断する(ステップS109)。すなわち、判定モジュール34は、下限を閾値T3として上限を閾値T4として規定される正常の範囲に変化率Dが収まる場合に、配管110に異常がないと判断し、変化率Dがこの範囲から外れると、配管110に異常があると判断することとなる。
 ここで、実施の形態1に係る圧力差ΔPに代えて変化率Dを用いることについて、図7を用いて説明する。図7には、圧力差ΔPとポンプ121の回転数との関係が線Lm10,Lm11,Lm12で示されている。線Lm10は、配管110に異常がない場合に対応し、線Lm11は、第1配管部113に異常がある場合に対応し、線Lm12は、第2配管部114に異常がある場合に対応する。図4で示されたように、圧力差ΔPは、検出圧力から圧力Psを減じて得ることができる。このため、線Lm10,Lm11,Lm12はそれぞれ、図4に示されるPsを縦軸の原点に変更したときの線Lm0,Lm1,Lm2に等しいといえる。
 また、図7では、配管110に異常がない場合における変化率D0と、第1配管部113に異常がある場合における変化率D1と、第2配管部114に異常がある場合における変化率D2とが、それぞれ示されている。図7からわかるように、変化率D1は、変化率D0より小さい。すなわち、第1配管部113に異常がある場合には、圧力差ΔPの変化率は、圧力差ΔPと同様に、異常がない場合と比較して小さくなる。また、変化率D2は、変化率D0より大きい。すなわち、第2配管部114に異常がある場合には、圧力差ΔPの変化率は、圧力差ΔPと同様に、異常がない場合と比較して大きくなる。したがって、実施の形態1に係る圧力差ΔPに代えて変化率Dを用いても、実施の形態1と同様に配管110の異常の有無を検出することができる。
 以上、説明したように、本実施の形態に係る配管異常検知システム100は、ポンプ121の回転数に対する圧力差の変化率Dに基づいて配管110の異常を検出した。配管110に異常が生じた場合の変化率Dは、異常がない場合の変化率Dから乖離する。このため、実施の形態1と同様に、従来は配管110に配置されていたフロースイッチを省いて構成した給湯システムにおいて、配管110の異常を検知することができる。
 また、配管異常検知システム100は、配管110に異常が生じると、変化率Dの大小に基づいて第1配管部113の異常と第2配管部114の異常とを区別して信号を出力する。これにより、異常が生じた場所を容易に特定することができる。
 実施の形態3.
 続いて、実施の形態3について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る配管異常検知システム100は、図8に示されるように、配管110の上流側から熱交換器123、圧力検出センサ122及びポンプ121がこの順で配置される点で、実施の形態1に係るものと異なっている。
 ポンプ121は、圧力検出センサ122と流出口112の間に配置される。すなわち、ポンプ121は、圧力検出センサ122の下流側に配置される。圧力検出センサ122は、ポンプ121と熱交換器123との間に配置される。すなわち、圧力検出センサ122は、ポンプ121の上流側であって、熱交換器123の下流側に配置される。本実施の形態に係る圧力検出センサ122によるゲージ圧の検出域については、負圧側の検出域の方が正圧側の検出域より広いものとする。熱交換器123は、流入口111と圧力検出センサ122との間に配置される。すなわち、熱交換器123は、圧力検出センサ122の上流側に配置される。
 続いて、本実施の形態に係る制御装置140が配管110の異常の有無を検知する手法の概要について説明する。
 図8中の白抜き矢印で示されるように、ポンプ121が稼働すると、浴槽200から引かれた水は、第1配管部113に流入して熱交換器123及び圧力検出センサ122を通過した後に、ポンプ121で昇圧される。そして、この水は、第2配管部114を通過して浴槽200内に流出する。
 このように配管110と浴槽200との間で循環する水流があるときには、熱交換器123及び第1配管部113における圧力損失が生じるため、圧力検出センサ122によって検出される圧力は、水流がないときと比較して、低くなる。ここで、熱交換器123のように水抵抗が大きな流路を圧力検出センサ122の上流側に配置することで、水流がない時に検出される圧力から水流がある時に検出される圧力の低下を、より顕著にすることができる。
 図9には、異常がない場合において水流によって減少する圧力が線Lm20で示されている。図9からわかるように、ポンプ121が停止しているときに検出される圧力はPsであって、ポンプ121の回転数が増加すると検出圧力は減少する。
 ここで、第1配管部113に異常がある場合について考察する。第1配管部113に異常が生じると、第1配管部113における圧力損失が増大する。このため、ポンプ121の回転数が同一であるという条件下において、第1配管部113に異常が生じると、第1配管部113に異常がない場合と比較して、圧力検出センサ122によって検出される圧力が低くなる。
 図9には、第1配管部113に異常がある場合に検出される圧力が、線Lm21で示されている。図9からわかるように、ポンプ121が停止しているときに検出される圧力は、異常がない場合に検出される圧力に等しいPsである。ポンプ121の回転数が増加すると検出圧力は減少するが、第1配管部113に異常がある場合における減少の度合いは、異常がない場合より大きくなる。
 また、第2配管部114に異常がある場合について考察する。第2配管部114に異常が生じると、第2配管部114における圧力損失が増大する。このため、ポンプ121の回転数が同一であるという条件下において、第2配管部114に異常が生じると、第2配管部114に異常がない場合と比較して、配管110と浴槽200との間で循環する水流量が減少する。この水流量が減少すると、熱交換器123及び第1配管部113における圧力損失が減少する。したがって、ポンプ121の回転数が同一であるという条件下において、第2配管部114に異常が生じると、異常がない場合と比較して、圧力検出センサ122によって検出される圧力が高くなる。
 図9には、第2配管部114に異常がある場合に検出される圧力が、線Lm22で示されている。図9からわかるように、ポンプ121が停止しているときに検出される圧力は、異常がない場合に検出される圧力に等しいPsである。ポンプ121の回転数が増加すると検出圧力は減少するが、第2配管部114に異常がある場合における減少の度合いは、異常がない場合より小さくなる。
 このように、ポンプ121が稼働しているときに圧力検出センサ122によって検出される圧力は、配管110に生じた異常の有無及び異常が生じた場所に応じて変化する。したがって、第1配管部113及び第2配管部114に生じた異常の有無を検知することが可能になる。
 なお、実施の形態1と同様に、ポンプ121が停止しているときの圧力と稼働しているときの圧力との圧力差を利用することで、浴槽200の水位及び大気圧の影響を軽減して配管110に生じた異常の有無を検知することができる。例えば、図9に示されるように、第1配管部113に異常がある場合において、ポンプ121の回転数がR2であるときに検出される圧力Pmからポンプ121が停止しているときに検出される圧力Psを減じて得る負値の圧力差ΔPを利用すれば、第1配管部113に生じた異常を精度よく検知することができる。
 図10には、本実施の形態に係る配管異常検知処理が示されている。図10に示されるように、ステップS104に続いて、判定モジュール34は、圧力差ΔPと予め定められた閾値T5とを比較して、圧力差ΔPが閾値T5を下回るか否かを判定する(ステップS301)。閾値T5は、負の値であって、データ記憶部144に予め格納される。
 圧力差ΔPが閾値T5を下回ると判定した場合(ステップS301;Yes)、判定モジュール34は、第1配管部113に異常があると判断する(ステップS106)。
 一方、圧力差ΔPが閾値T5を下回っていないと判定した場合(ステップS301;No)、判定モジュール34は、圧力差ΔPと予め定められた閾値T6とを比較して、圧力差ΔPが閾値T6を超えるか否かを判定する(ステップS302)。閾値T6は、負の値であって、データ記憶部144に予め格納される。なお、閾値T6は、閾値T5より大きい値である。
 圧力差ΔPが閾値T6を超えると判定した場合(ステップS302;Yes)、判定モジュール34は、第2配管部114に異常があると判断する(ステップS108)。
 一方、圧力差ΔPが閾値T6を超えないと判定した場合(ステップS302;No)、判定モジュール34は、配管110に異常がないと判断する(ステップS109)。すなわち、判定モジュール34は、下限を閾値T5として上限を閾値T6として規定される正常の範囲に圧力差ΔPが収まる場合に、配管110に異常がないと判断し、圧力差ΔPがこの範囲から外れると、配管110に異常があると判断することとなる。
 以上、説明したように、本実施の形態に係る配管異常検知システム100は、実施の形態1と同様に、従来は配管110に配置されていたフロースイッチを省いて構成した給湯システムにおいて、配管110の異常を検知することができる。
 なお、本実施の形態において、実施の形態2と同様に、圧力差ΔPに代えて、ポンプ121の回転数に対する圧力差ΔPの変化率に基づいて、配管110の異常を検知してもよい。
 図11には、圧力差ΔPとポンプ121の回転数との関係が線Lm30,Lm31,Lm32で示されている。線Lm30は、配管110に異常がない場合に対応し、線Lm31は、第1配管部113に異常がある場合に対応し、線Lm32は、第2配管部114に異常がある場合に対応する。図9で示されたように、圧力差ΔPは、検出圧力から圧力Psを減じて得ることができる。このため、線Lm30,Lm31,Lm32はそれぞれ、図9に示されるPsを縦軸の原点に変更したときの線Lm20,Lm21,Lm22に等しいといえる。
 また、図11では、配管110に異常がない場合における負の変化率D10と、第1配管部113に異常がある場合における負の変化率D11と、第2配管部114に異常がある場合における負の変化率D12とが、それぞれ示されている。ただし、これらの変化率は、予め定められたポンプの回転数F3及びF3より大きいF4と、ポンプ121の回転数がF3のときの圧力差ΔP3と、ポンプ121の回転数がF3より大きいF4のときの圧力差ΔP4とから、(ΔP4-ΔP3)/(F4-F3)の演算式に従って算出される。
 図11からわかるように、変化率D11の大きさは、変化率D10の大きさより大きいが、変化率D10,D11がいずれも負値であるため、変化率D11は変化率D10より小さい。すなわち、第1配管部113に異常がある場合には、圧力差ΔPの変化率は、圧力差ΔPと同様に、異常がない場合と比較して小さくなる。また、変化率D12の大きさは、変化率D10の大きさより小さいが、変化率D10,D12がいずれも負値であるため、変化率D12は変化率D10より大きい。すなわち、第2配管部114に異常がある場合には、圧力差ΔPの変化率は、圧力差ΔPと同様に、異常がない場合と比較して大きくなる。したがって、実施の形態3に係る圧力差ΔPに代えて変化率Dを用いても、実施の形態3と同様に配管110の異常の有無を検知することができる。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。
 例えば、上記実施の形態では、沸き上げ運転を実行するための熱源としてヒートポンプユニット134が用いられたが、電気ヒータ或いはガス燃焼装置を熱源として用いてもよい。
 また、貯湯タンク130を省いて、配管異常検知システム100を構成してもよい。さらに、熱交換器123を省いて、配管異常検知システム100を構成してもよい。例えば、熱交換器123に代えて、浴槽200の水の追い焚きを行うための熱源を用いて、配管異常検知システム100を構成してもよい。また、配管110と浴槽200との間で形成される循環路に熱源を設けることなく、この循環路を、追い焚き運転に代えて、浴槽200の水の清浄化のために用いてもよい。
 また、給水口101及び給湯口102の数は図1に示されたものに限られず、任意である。また、上記実施の形態において、給湯口102につながる配水管と配管110とは独立していたが、この配水管と配管110とを接続する構成としてもよい。
 また、閾値T1~T6は、過去に圧力検出センサ122によって検出された圧力に基づいて定められてもよい。これにより、実際の配管異常検知システム100の使用環境に適した閾値を設定することができる。例えば、過去の一定期間において、ポンプ121が停止しているときに検出された圧力と、ポンプ121が規定の回転数で稼働しているときに検出された圧力と、の圧力差の変動から、閾値T1,T2を定めてもよい。
 また、上記実施の形態において、ユーザが情報を入力するための構成は、端末210に限られていたが、制御装置140が、このような構成を備えていてもよい。
 また、データ記憶部144に記憶されているプログラム149を、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラム149をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。
 また、プログラム149をインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。
 また、インターネットに代表されるネットワークを介してプログラム149を転送しながら起動実行することによっても、上述の処理を達成することができる。
 さらに、プログラム149の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラム149を実行することによっても、上述の処理を達成することができる。
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。
 また、配管異常検知システム100の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェアによって実現してもよい。例えば、図3に示される各モジュールを、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)に代表される回路を用いて構成すれば、制御装置140の省電力化を図ることができる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、配管に生じた異常の検知に適している。
 100 配管異常検知システム、 101 給水口、 102 給湯口、 110 配管、 111 流入口、 112 流出口、 113 第1配管部、 114 第2配管部、 121 ポンプ、 122 圧力検出センサ、 123 熱交換器、 130 貯湯タンク、 131 三方弁、 132 ポンプ、 133 四方弁、 134 ヒートポンプユニット、 135 混合弁、 140 制御装置、 141 プロセッサ、 142 RAM、 143 ROM、 144 データ記憶部、 145 通信部、 146 内部バス、 147 通信部、 149 プログラム、 150 出力装置、 160 報知装置、 200 浴槽、 210 端末、 31 UIモジュール、 32 取得モジュール、 33 実行モジュール、 34 判定モジュール。

Claims (7)

  1.  浴槽の水を流入させる流入口と前記浴槽に水を流出させる流出口とを有する配管と、
     前記配管と前記浴槽との間で水を循環させるポンプと、
     前記配管の内部の圧力を検出する検出手段と、
     前記ポンプが停止しているときに前記検出手段によって検出される圧力と前記ポンプが稼働しているときに前記検出手段によって検出される圧力との差と、前記ポンプの回転数に対する前記差の変化率と、の少なくとも一方が予め定められた範囲から外れると、前記配管の異常を検知したことを示す信号を出力する出力手段と、
     を備える配管異常検知システム。
  2.  前記検出手段は、前記配管の特定の位置に配置された圧力センサであって、
     前記配管は、前記流入口から前記特定の位置までの第1配管部と、前記特定の位置から前記流出口までの第2配管部と、を有し、
     前記出力手段は、前記ポンプが稼働しているときに前記検出手段によって検出される圧力から前記ポンプが停止しているときに前記検出手段によって検出される圧力を減じて得る前記差が第1閾値を下回ると、前記第1配管部の異常を検知したことを示す信号を出力し、前記差が第2閾値を超えると、前記第2配管部の異常を検知したことを示す信号を出力する、
     請求項1に記載の配管異常検知システム。
  3.  前記検出手段は、前記配管の特定の位置に配置された圧力センサであって、
     前記配管は、前記流入口から前記特定の位置までの第1配管部と、前記特定の位置から前記流出口までの第2配管部と、を有し、
     前記出力手段は、前記ポンプが稼働しているときに前記検出手段によって検出される圧力から前記ポンプが停止しているときに前記検出手段によって検出される圧力を減じて得る前記差の前記変化率が第3閾値を下回ると、前記第1配管部の異常を検知したことを示す信号を出力し、前記変化率が第4閾値を超えると、前記第2配管部の異常を検知したことを示す信号を出力する、
     請求項1又は2に記載の配管異常検知システム。
  4.  前記範囲は、過去に前記検出手段によって検出された圧力から定められる、
     請求項1から3のいずれか一項に記載の配管異常検知システム。
  5.  前記検出手段は、前記配管に配置された前記ポンプ及び熱交換器の間に配置された圧力センサである、
     請求項1から4のいずれか一項に記載の配管異常検知システム。
  6.  浴槽の水を流入させる流入口と前記浴槽に水を流出させる流出口とを有する配管と、前記浴槽と、の間で水を循環させるポンプが停止しているときに、前記配管の内部の圧力を検出する第1検出ステップと、
     前記ポンプが稼働しているときに前記配管の内部の圧力を検出する第2検出ステップと、
     前記第1検出ステップにおいて検出された圧力と前記第2検出ステップにおいて検出された圧力との差と、前記ポンプの回転数に対する前記差の変化率と、の少なくとも一方が予め定められた範囲から外れると、前記配管の異常を検知したことを示す信号を出力する出力ステップと、
     を含む配管異常検知方法。
  7.  コンピュータに、
     浴槽の水を流入させる流入口と前記浴槽に水を流出させる流出口とを有する配管と、前記浴槽と、の間で水を循環させるポンプが停止しているときに検出した前記配管の内部の圧力を示す第1検出値を取得し、
     前記ポンプが稼働しているときに検出した前記配管の内部の圧力を示す第2検出値を取得し、
     前記第1検出値と前記第2検出値との差と、前記ポンプの回転数に対する前記差の変化率と、の少なくとも一方が予め定められた範囲から外れると、前記配管の異常を検知したことを示す信号を出力する、
     ことを実行させるためのプログラム。
PCT/JP2016/087434 2016-12-15 2016-12-15 配管異常検知システム、配管異常検知方法及びプログラム WO2018109913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018556132A JP6785879B2 (ja) 2016-12-15 2016-12-15 配管異常検知システム、配管異常検知方法及びプログラム
EP16923903.5A EP3557154B1 (en) 2016-12-15 2016-12-15 Pipe abnormality detection system, pipe abnormality detection method and program
PCT/JP2016/087434 WO2018109913A1 (ja) 2016-12-15 2016-12-15 配管異常検知システム、配管異常検知方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087434 WO2018109913A1 (ja) 2016-12-15 2016-12-15 配管異常検知システム、配管異常検知方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2018109913A1 true WO2018109913A1 (ja) 2018-06-21

Family

ID=62558187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087434 WO2018109913A1 (ja) 2016-12-15 2016-12-15 配管異常検知システム、配管異常検知方法及びプログラム

Country Status (3)

Country Link
EP (1) EP3557154B1 (ja)
JP (1) JP6785879B2 (ja)
WO (1) WO2018109913A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165555A (ja) * 2019-03-28 2020-10-08 株式会社ハウステック 燃焼機器
CN115060007A (zh) * 2022-04-28 2022-09-16 深圳市合信达控制系统有限公司 一种壁挂炉的控制方法及壁挂炉

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120117B4 (de) * 2019-07-25 2021-08-19 Straub Kg Einstellvorrichtung und Verfahren zur verbesserten Feinregulierung eines Ventilspalts
JP7484753B2 (ja) * 2021-02-03 2024-05-16 株式会社デンソー 燃料フィルタの異常検出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125155U (ja) * 1991-04-26 1992-11-16 株式会社ガスター 風呂装置
JPH058339U (ja) * 1991-07-10 1993-02-05 コロナ工業株式会社 水流センサーを備えた浴槽水の循環装置
JPH0949659A (ja) 1995-08-07 1997-02-18 Mitsubishi Electric Corp 風呂給湯ユニット
JPH11294845A (ja) * 1998-04-14 1999-10-29 Toshiba Electric Appliance Co Ltd 自動湯張り装置
JP2001133038A (ja) * 1999-10-29 2001-05-18 Toshiba Electric Appliance Co Ltd 浴槽用給湯装置
JP2001324216A (ja) * 2000-05-12 2001-11-22 Tokyo Gas Co Ltd 風呂湯沸し器
JP2004044902A (ja) * 2002-07-11 2004-02-12 Matsushita Electric Ind Co Ltd 強制循環式ふろ釜
JP2012180972A (ja) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp 給湯装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875243A (ja) * 1994-08-31 1996-03-19 Matsushita Electric Ind Co Ltd ふろ釜の安全装置
JPH11248242A (ja) * 1998-02-27 1999-09-14 Toyotomi Co Ltd 給湯機付風呂釜の安全装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125155U (ja) * 1991-04-26 1992-11-16 株式会社ガスター 風呂装置
JPH058339U (ja) * 1991-07-10 1993-02-05 コロナ工業株式会社 水流センサーを備えた浴槽水の循環装置
JPH0949659A (ja) 1995-08-07 1997-02-18 Mitsubishi Electric Corp 風呂給湯ユニット
JPH11294845A (ja) * 1998-04-14 1999-10-29 Toshiba Electric Appliance Co Ltd 自動湯張り装置
JP2001133038A (ja) * 1999-10-29 2001-05-18 Toshiba Electric Appliance Co Ltd 浴槽用給湯装置
JP2001324216A (ja) * 2000-05-12 2001-11-22 Tokyo Gas Co Ltd 風呂湯沸し器
JP2004044902A (ja) * 2002-07-11 2004-02-12 Matsushita Electric Ind Co Ltd 強制循環式ふろ釜
JP2012180972A (ja) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp 給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557154A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165555A (ja) * 2019-03-28 2020-10-08 株式会社ハウステック 燃焼機器
JP7301574B2 (ja) 2019-03-28 2023-07-03 株式会社ハウステック 燃焼機器
CN115060007A (zh) * 2022-04-28 2022-09-16 深圳市合信达控制系统有限公司 一种壁挂炉的控制方法及壁挂炉
CN115060007B (zh) * 2022-04-28 2023-11-24 深圳市合信达控制系统有限公司 一种壁挂炉的控制方法及壁挂炉

Also Published As

Publication number Publication date
EP3557154A1 (en) 2019-10-23
JP6785879B2 (ja) 2020-11-18
EP3557154A4 (en) 2020-01-15
EP3557154B1 (en) 2021-12-01
JPWO2018109913A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6370136B2 (ja) 温水装置及び温水装置における異常通知方法
WO2018109913A1 (ja) 配管異常検知システム、配管異常検知方法及びプログラム
JP6925455B2 (ja) 空調システム及び空調制御方法
EP2950017B1 (en) Water heating apparatus
JP5034367B2 (ja) ヒートポンプ式給湯機
JP6168958B2 (ja) 温水装置及び温水装置における異常通知方法
JP2005055124A (ja) 貯湯式給湯装置
EP2784402B1 (en) Heat pump water heater
JP4513760B2 (ja) ヒートポンプ式給湯装置およびヒートポンプ式給湯装置用制御装置
EP3608603B1 (en) Heating medium circulation system
JP5975956B2 (ja) 給湯器及び給湯器における異常通知方法
JP6192610B2 (ja) 温水装置及び温水装置における異常通知方法
JP2014001911A (ja) 貯湯タンクの加熱方法
KR101465572B1 (ko) 히트 펌프식 급탕기
JP6229589B2 (ja) ヒートポンプ式給湯機
KR20130139768A (ko) 난방 장치
JP4144577B2 (ja) 給湯装置
JP6094363B2 (ja) 給湯装置
JP2016156523A (ja) 蓄熱装置
JP5050775B2 (ja) 貯湯式給湯機
JP6072659B2 (ja) 温水装置及び温水装置における異常通知方法
JP2007205673A (ja) 給湯装置
JP5085225B2 (ja) 熱交換装置
JP2016008805A (ja) ヒートポンプ装置
JP2010101548A (ja) 貯湯式給湯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016923903

Country of ref document: EP

Effective date: 20190715