WO2018108747A1 - Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques - Google Patents

Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques Download PDF

Info

Publication number
WO2018108747A1
WO2018108747A1 PCT/EP2017/082073 EP2017082073W WO2018108747A1 WO 2018108747 A1 WO2018108747 A1 WO 2018108747A1 EP 2017082073 W EP2017082073 W EP 2017082073W WO 2018108747 A1 WO2018108747 A1 WO 2018108747A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
strip
jets
row
cooling
Prior art date
Application number
PCT/EP2017/082073
Other languages
English (en)
Inventor
Florent CODE
Eric MAGADOUX
Miroslav RAUDENSKI
Jaroslav HORSKI
Original Assignee
Fives Stein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Stein filed Critical Fives Stein
Priority to PL17829617.4T priority Critical patent/PL3555324T3/pl
Priority to EP17829617.4A priority patent/EP3555324B1/fr
Priority to FIEP17829617.4T priority patent/FI3555324T3/fr
Priority to US16/468,847 priority patent/US11230748B2/en
Priority to KR1020197018461A priority patent/KR102431023B1/ko
Priority to JP2019531791A priority patent/JP7021219B2/ja
Priority to CN201780077051.6A priority patent/CN110168117A/zh
Priority to ES17829617T priority patent/ES2934248T3/es
Publication of WO2018108747A1 publication Critical patent/WO2018108747A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/06Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in annular, tubular or hollow conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details

Definitions

  • the invention relates to continuous lines for producing metal strips. It relates more particularly to the rapid cooling sections of the annealing or galvanizing lines of a steel strip, wherein the strip is cooled at a speed between 400 ° C / sec and 1200 ° C / s.
  • the strip enters a temperature around 800 ° C and comes out at a temperature close to room temperature, or at an intermediate temperature.
  • This cooling step is essential to obtain the desired metallurgical and mechanical properties.
  • very fast cooling rates are necessary, of the order of 1000 ° C./s. These speeds are particularly necessary at high temperature to form martensite, especially when the band is between 800 and 500 ° C. Due to the so-called Leidenfrost phenomenon, it is in this temperature range that it is particularly difficult to reach significant cooling slopes during cooling with water.
  • the principle of the so-called Leidenfrost phenomenon is that a thin film of vapor is created on the surface of the strip, which constitutes a brake on the heat exchange between the cooling fluid and the strip.
  • the strips concerned are often thick and can be up to 2 mm thick or more.
  • the difficulty lies in the fact of being able to cool very fast relatively fast strips while ensuring great flexibility and ease of operation of the line, in order to be able to produce on the same installation other types of steel that do not require fast cooling speeds.
  • gas cooling and water cooling There are two main types of technologies for cooling steel strips in a continuous line: gas cooling and water cooling.
  • Spray cooling of a water mist using bi-fluid nozzles provides a great deal of flexibility but is limited in performance. Indeed, the maximum performance peaks at about 500 ° C / s for a strip of thickness 2 mm with a usual water pressure of the order of 5 bars. This cooling rate is also lower when the band is above Leidenfrost temperature.
  • the advantage of this technology is to have a very high flexibility. By adjusting the gas and water pressures, it is indeed possible to cover the entire cooling range up to the maximum value.
  • Water spray cooling using single-fluid nozzles has substantially the same characteristics.
  • the cooling limit is also 500 ° C / s in the usual pressure range, that is to say up to about 5 bar.
  • the major difference comes from the fact that this cooling offers less flexibility, especially for low cooling speeds. Indeed, for proper operation, the water pressure at the nozzles can not fall below a certain value, of the order of 0.5 bar. At this pressure, the cooling is already above 100 ° C / s for a strip of thickness 2 mm. Thus, this technology is not able to offer slow cooling with speeds comparable to cooling by gas.
  • Cooling by quenching in a tank can, under certain stirring conditions, achieve cooling performance of the order of 1000 ° C / s for strips of 2 mm thick.
  • the main flaw of this technology is its lack of flexibility. Indeed, the band entering a water tank, it is very difficult to control the cooling rate and the final temperature of the band. It is possible to adjust the tank agitation, the water temperature, or the length of the submerged band, but this has a moderate effect on the cooling rate of the band. It is also not possible to adjust the cooling transversely. In addition, this technology requires the use of a rather expensive submerged roll. Finally, for bands requiring slow cooling, it is then necessary to purge the tank, or the bypass, which requires a rather heavy process.
  • the invention enables a 2 mm thick strip to be cooled in a wide range of cooling rates up to 1000 ° C / s in the temperature range 800-500 ° C, allowing the transverse adjustment of the strip. cooling efficiency for good homogeneity over the bandwidth.
  • a rapid cooling section of a continuous line of treatment of metal strips arranged to cool the strip by projection thereon of a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling section comprises at least one minus one row of flat jet nozzles, followed by at least one row of conical jet nozzles, the rows of nozzles being arranged transversely to the strip traveling plane.
  • the at least one row of flat jet nozzles may be single-fluid.
  • the at least one row of conical jet nozzles may be single-fluid.
  • the rapid cooling section may further comprise at least one row of bi-fluid jet nozzles and which may follow, in the direction of scrolling the strip, the at least one row of conical jets.
  • the row of nozzles may be arranged transversely to the strip travel plane.
  • the single fluid nozzles can be arranged to project a liquid on the strip.
  • the bi-fluid nozzles can be arranged to project on the band a mist composed of a mixture of gas and liquid.
  • the cooling section according to the invention is arranged so that the strip travels vertically from bottom to top.
  • the cooling section can comprise, upstream of the row of flat jet nozzles in the direction of travel of the strip, another row of jet nozzles whose flat jets are inclined longitudinally with respect to a transverse plane and perpendicular to the strip of an angle B greater than 15 °.
  • the rapid cooling section may furthermore comprise, upstream of the other flat jet nozzles, in the running direction of the strip, a further row of flat jet nozzles whose flat jets are longitudinally inclined by angle C with respect to the transverse plane and perpendicular to the strip, the angle C being greater than the angle B.
  • the flat jet nozzles and more precisely those of the row and / or the other row and / or the still row, can be inclined transversely with respect to a transverse plane and perpendicular to the strip so that the flat jets are inclined at an angle A with respect to the upper plane at 5 ° and less than 15 °.
  • the liquid, or the mixture of a gas and a liquid are non-oxidizing for the strip.
  • the cooling section does not comprise, in the running direction of the strip, conical jet nozzles arranged upstream of jet nozzles.
  • each of the conical jet nozzles of the cooling section according to the invention is arranged, in the direction of travel of the strip, downstream of each of the flat jet nozzles.
  • the cooling section does not have, in the run direction of the web, jet nozzles arranged downstream of nozzles conical jets.
  • each of the flat jet nozzles of the cooling section according to the invention is arranged, in the direction of travel of the strip, in mount of each of the conical jet nozzles.
  • a method of rapidly cooling a continuous line of metal strip processing arranged to cool the strip by projection thereon of a liquid, or a mixture of a gas and a liquid, by means of nozzles arranged on either side of the strip with respect to its running plane, characterized in that, in the running direction of the strip, the cooling method comprises at least one projection from a row of flat jet nozzles, followed, temporally, by at least one projection from a row of conical jet nozzles, the rows of nozzles being arranged transverse to the tape plane of travel .
  • the ultra-fast cooling of a strip 2 mm thick to more than 1000 ° C / s between 800 and 500 ° C is done in two successive stages: First the band passes in front of first rows of single-fluid jets with flat jets, supplied with water at high pressure of the order of 10 bars. These jet jets allow a strong and narrow impact on the band and therefore a rapid decrease in temperature. The impact of these nozzles on the band being narrow, that is to say on a small band surface, this involves the use of a high flow of water to cover the target band surface and therefore large energy consumption at the water pumps.
  • the Leindenfrost temperature Once the Leindenfrost temperature has been exceeded, it is easier to cool the band. That's why cooling is continues with mono-fluid conical jets at substantially the same pressure.
  • the use of conical jet nozzles is preferred from this intermediate temperature to ensure a better distribution and water coverage on the band.
  • the conical jet nozzles are more efficient in terms of performance / flow injected water, especially when the band is at lower temperature, they reduce the flow of water and therefore the energy consumption at the pumps to water.
  • the cooling rate of the web can be kept constant along the rapid cooling section according to the invention, with an identical cooling slope with the flat jet nozzles and the cone jet nozzles, or it can be different according to the nature of the steel and the mechanical properties
  • the cooling to room temperature or to a desired intermediate temperature can then be accomplished by spraying a water mist with the aid of bi-fluid nozzles projecting a mixture of gas and water on the strip.
  • this combination of cooling will allow total flexibility.
  • the single-fluid nozzles with flat jets and monofluid nozzles with conical jets it will then be possible to extinguish the single-fluid nozzles with flat jets and monofluid nozzles with conical jets and to use only the bi-fluid nozzles projecting a mixture of gas and water.
  • the cooling zone comprising the single-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets being short (1 to 2 meters maximum), it is quite possible to extinguish this section and to realize all cooling with bi-fluid nozzles throwing a mixture of water and gas.
  • the nozzles according to the invention are point nozzles, that is to say that they cover only a portion of the bandwidth. It is thus possible to have a transverse fine adjustment of the cooling of the band which is not possible when the cooling is carried out by means of nozzles covering the entire width of the band, or a large bandwidth, for example half the bandwidth. For narrow bands, the use of spot nozzles also helps to stop those beyond the bandwidth, thus limiting the projected flow and power consumption of the pump.
  • the nozzles are advantageously placed staggered transversely so as to increase the homogeneity of the cooling.
  • the quincunx between the nozzles is shifted on each side of the strip so as not to have two nozzles facing each other.
  • FIG. 1 is a schematic cross-sectional view of the strip in a cooling section according to an exemplary embodiment of the invention
  • Fig. 2 is a schematic view in longitudinal section of the strip in the cooling section according to the embodiment of the invention of FIG. 1, and,
  • FIG. 3 is a schematic longitudinal view of the cooling section according to the embodiment of the invention of FIGS. 1 and 2.
  • FIG. 1 of the accompanying drawings there can be seen schematically a cross section of a strip 1 during cooling by spraying a liquid by means of nozzles 2 disposed on either side of the band, according to an exemplary embodiment of the invention.
  • the transverse pitch between the nozzles and the distance between the nozzles and the strip are adjusted according to the opening angle of the jets 3 so as to cover the entire surface of the strip and to obtain homogeneous transverse cooling.
  • we have a transverse overlap of the jets on the bandwidth The importance of this overlap is limited to that necessary to ensure that the entire width of the band is well covered by the jets while having a homogeneous transverse cooling of the band.
  • FIG. 2 of the appended drawings a longitudinal view on a face of a portion of a strip 1 running in a cooling section by spraying a liquid according to an example can be seen schematically.
  • the band runs from bottom to top.
  • the strip On entering the cooling section, the strip first encounters two rows 4, 5 of nozzles 9, 10 with flat jets 14, 15 with a high flow velocity whose function is to expel the liquid present on the strip because of runoff. This results from the flow along the strip of a portion of the liquid sprayed onto the strip by the nozzles located above these two rows 4, 5 of flat jets.
  • These two rows of flat jets are inclined longitudinally in the running direction of the strip relative to a transverse plane and perpendicular to the strip.
  • the inclination of the first row 4 of flat jets 14 is greater than that of the second row 5 so as to promote the detachment of the liquid from the strip.
  • the second row of flat jets is inclined at an angle B of 15 ° and the first row is inclined at an angle C of 45 °.
  • the strip then meets, in the tape direction F, four successive rows 6 of 16 flat jets.
  • These jets ensure rapid cooling of the band. They are perpendicular to the surface of the strip and slightly inclined transversely to the transverse plane and perpendicular to the strip of an angle A so as to limit the interaction between the jets while ensuring that the entire width of the strip is well covered by the jets.
  • This inclination is limited so as not to increase the number of nozzles over the bandwidth and not to increase the transverse distance between two rows of nozzles necessary to avoid the interaction between the jets of the two rows. This inclination is between 5 ° and 15 ° and is preferably 8 °.
  • the number of successive rows 6 of nozzles 1 1 with 16 flat jets is a function of the cooling profile of the desired band, the characteristics of the band, in particular its maximum thickness, the maximum speed of the band and the characteristics of the bands. jets, in particular the flow rate and the speed of the liquid.
  • the strip then meets four successive rows 7 of 17 conical jets. These jets are perpendicular to the surface of the strip. Again, the number of successive rows 7 of flat jet nozzles 12 is a function of the desired band cooling profile, band characteristics, maximum bandwidth and jet characteristics. Similarly, the density of the jets on the surface of the strip, in particular the distance between the rows 7 of nozzles in the longitudinal direction of the strip, is determined according to the cooling profile of the desired strip and the heat exchange performance of the stripes. jets.
  • Nozzle supply pressure and coolant temperature are parameters that can be adjusted to achieve the desired cooling gradient. These parameters can be kept constant along the cooling section or they can be variable, depending on the target thermal objective.
  • the supply pressure of the nozzles 9, 10 may be higher so as to facilitate the evacuation of the runoff water.
  • the distance between the band and the nozzles is defined by taking into account several parameters, in particular the characteristics of the jets, the floating of the band and the access necessary for the maintenance. This distance is for example between 150 and 300 mm. It is obviously taken into account to define the pitch between the nozzles and the supply pressure of the nozzles.
  • FIG. 3 of the appended drawings a longitudinal and lateral view of the portion of a strip 1 running in the cooling section shown in FIG. 2 can be diagrammatically shown. This figure shows more clearly the longitudinal inclination of the first two rows of nozzles in the tape direction F, the other nozzles being perpendicular to the strip.
  • cooling to room temperature can then be carried out by spraying a water mist with the aid of rows 8 of bi-fluid nozzles 13 with conical jets 18 projecting a mixture 20 of gas, for example nitrogen, and water on the strip. So, this combination of cooling allows total flexibility.
  • the single-fluid nozzles with flat jets and the single-fluid nozzles with conical jets it will then be possible to stop the single-fluid nozzles with flat jets and the single-fluid nozzles with conical jets and to use only the two-fluid nozzles projecting a mixture of gas and liquid .
  • the cooling zone comprising the single-fluid nozzles with flat jets and the mono-fluid nozzles with conical jets being short (1 to 2 meters maximum), it is quite possible to stop this section and to realize all cooling with the bi-fluid nozzles projecting a mixture of liquid and gas.
  • the bi-fluid nozzles are point-shaped and the jets obtained are conical. Since the cooling conditions are less critical for the slower cooling achieved by these bi-fluid nozzles, slit nozzles spanning the full width of the web, or a portion thereof, may also be used.
  • This system of water knives is not essential for descending bands. For these, however, it is advantageous to place a water knife system after the last row of nozzles, at the outlet of the cooling section, in order to stop the cooling in a clean way avoiding that which would result from the runoff of water. the water.
  • a water knife system for cooling a band flowing from bottom to top. The cooling system is as follows:
  • the longitudinal distance from the first row of nozzles is taken at the median axis of impact of the jet on the strip.
  • the distance between the nozzles and the band is 250 mm for all nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Section de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, dans laquelle la bande est refroidie par projection sur celle- ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande, caractérisée en ce que, dans le sens de défilement de la bande, elle comprend au moins une rangée de buses à jet plat sur la largeur de bande, suivie d'au moins une rangée de buses à jets coniques sur la largeur de bande.

Description

PROCEDE ET SECTION DE REFROIDISSEMENT RAPIDE D'UNE LIGNE CONTINUE DE TRAITEMENT DE BANDES METALLIQUES
L'invention est relative aux lignes continues de production de bandes métalliques. Elle concerne plus particulièrement les sections de refroidissement rapide des lignes de recuit ou de galvanisation d'une bande d'acier, dans lesquelles la bande est refroidie à une vitesse comprise entre 400 °C/sec et 1200 °C/s.
Dans ces sections de refroidissement, la bande entre à une température aux alentours de 800°C et ressort à une température proche de la température ambiante, ou à une température intermédiaire. Cette étape de refroidissement est primordiale pour obtenir les propriétés métallurgiques et mécaniques voulues. Pour obtenir des aciers ayant des propriétés mécaniques élevées tout en réduisant les quantités d'éléments d'addition, notamment pour réduire le coût des aciers, des vitesses de refroidissement très rapides sont nécessaires, de l'ordre de 1000 °C/s. Ces vitesses sont en particulier nécessaires à haute température pour former de la martensite, notamment quand la bande est entre 800 et 500 °C environ. En raison du phénomène dit de Leidenfrost, c'est dans cette plage de température qu'il est particulièrement difficile d'atteindre des pentes de refroidissement importantes lors d'un refroidissement à l'eau. Le principe du phénomène dit de Leidenfrost est qu'une fine pellicule de vapeur se crée à la surface de la bande, ce qui constitue un frein à l'échange thermique entre le fluide de refroidissement et la bande.
Ces aciers à très hautes propriétés mécaniques étant utilisés le plus souvent pour réaliser des pièces de structures, les bandes concernées sont souvent épaisses et peuvent atteindre jusqu'à 2 mm d'épaisseur, voire plus.
La difficulté réside donc dans le fait de pouvoir refroidir très rapidement des bandes relativement épaisses tout en assurant une grande flexibilité et une facilité d'opération de la ligne, afin de pouvoir produire sur la même installation d'autres types d'acier ne nécessitant pas des vitesses rapides de refroidissement. En plus des critères de flexibilité, il est aussi important que le refroidissement soit homogène afin de garantir des propriétés mécaniques et métallurgiques homogènes sur la largeur de la bande. Il existe deux grands types de technologies pour refroidir les bandes d'acier dans une ligne continue : le refroidissement par gaz et le refroidissement par eau.
Le refroidissement par gaz ne permet pas d'atteindre de telles pentes de refroidissement. En effet, même à très haute teneur en hydrogène et même avec des vitesses de soufflage très élevées, la limitation de cette technologie se situe aux environs de 100 °C/s pour une bande d'épaisseur 2mm.
Pour le refroidissement par eau, il y a trois types de technologies :
. le refroidissement par pulvérisation d'un brouillard d'eau à l'aide de buses bi- fluides projetant un mélange de gaz et d'eau sur la bande,
. le refroidissement par pulvérisation d'eau à l'aide de buses mono-fluides projetant uniquement de l'eau sur la bande.
. la trempe par immersion dans de l'eau contenue dans un bac, avec agitation ou non de celle-ci.
Le refroidissement par pulvérisation d'un brouillard d'eau à l'aide de buses bi-fluides permet une large flexibilité, mais est limité en performance. En effet, les performances maximales plafonnent à environ 500 °C/s pour une bande d'épaisseur 2 mm avec une pression d'eau usuelle de l'ordre de 5 bars. Cette vitesse de refroidissement est également moindre quand la bande se trouve au-dessus de la température de Leidenfrost. L'avantage de cette technologie est d'avoir une très grande flexibilité. En ajustant les pressions de gaz et d'eau, il est en effet possible de couvrir toute la plage de refroidissement, jusqu'à la valeur maximale.
Le refroidissement par pulvérisation d'eau à l'aide de buses mono-fluide a sensiblement les mêmes caractéristiques. La limite de refroidissement se situe aussi à 500 °C/s dans la gamme de pression usuelle, c'est-à-dire jusqu'à environ 5 bars. La différence majeure vient du fait que ce refroidissement offre moins de flexibilité, notamment pour les faibles vitesses de refroidissement. En effet, pour un bon fonctionnement, la pression d'eau aux buses ne peut pas descendre en dessous d'une certaine valeur, de l'ordre de 0,5 bar. A cette pression, le refroidissement est déjà au-delà de 100 °C/s pour une bande d'épaisseur 2 mm. Ainsi, cette technologie n'est pas capable d'offrir des refroidissements lents avec des vitesses comparables au refroidissement par gaz.
Le refroidissement par trempe dans un bac peut permettre, sous certaines conditions d'agitation, d'atteindre des performances de refroidissement de l'ordre de 1000 °C/s pour des bandes de 2 mm d'épaisseur. Cependant, le défaut principal de cette technologie est son manque de flexibilité. En effet, la bande entrant dans un bac d'eau, il est très difficile de contrôler la vitesse de refroidissement et la température finale de la bande. Il est possible d'ajuster l'agitation du bac, la température de l'eau, ou la longueur de la bande immergée, mais cela a un effet modéré sur la vitesse de refroidissement de la bande. Il n'est par ailleurs pas possible de régler transversalement le refroidissement. De plus, cette technologie nécessite l'utilisation d'un rouleau immergé assez coûteux. Enfin, pour des bandes nécessitant des refroidissements lents, il faut alors purger le bac, ou le bipasser, ce qui nécessite un processus assez lourd.
L'invention permet de refroidir une bande de 2 mm d'épaisseur dans une grande gamme de vitesses de refroidissement allant jusqu'à 1000 °C/s dans la plage de température 800 - 500 °C, en permettant d'ajuster transversalement l'efficacité du refroidissement pour une bonne homogénéité sur la largeur de bande.
Selon un aspect de l'invention, il est proposé une section de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande par projection sur celle-ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement de la bande, la section de refroidissement comprend au moins une rangée de buses à jet plat, suivie d'au moins une rangée de buses à jets coniques, les rangées de buses étant disposées transversalement au plan de défilement de la bande.
Avantageusement, dans le sens de défilement de la bande, l'au moins une rangée de buses à jet plat peut être mono-fluide.
L'au moins une rangée de buses à jets coniques peut être mono-fluide. La section de refroidissement rapide peut en outre comprendre au moins une rangée de buses à jets bi-fluides et qui peut suivre, dans le sens de défilement de la bande, l'au moins une rangée de buses à jets coniques. La rangée de buses peut être disposée transversalement au plan de défilement de la bande.
Les buses mono-fluide peuvent être agencées pour projeter un liquide sur la bande.
Les buses bi-fluide peuvent être agencées pour projeter sur la bande un brouillard composé d'un mélange de gaz et de liquide.
Selon un mode de réalisation, la section de refroidissement selon l'invention est agencée pour que la bande circule verticalement de bas en haut, La section de refroidissement peut comprendre, en amont de la rangée de buses à jets plats dans le sens de défilement de la bande, une autre rangée de buses à jets plats dont les jets plats sont inclinés longitudinalement par rapport à un plan transversal et perpendiculaire à la bande d'un angle B supérieur à 15°.
Avantageusement, la section de refroidissement rapide peut comprendre, en outre, en amont des autres buses à jets plats, dans le sens de défilement de la bande, une encore autre rangée de buses à jets plats dont les jets plats sont inclinés longitudinalement d'un angle C par rapport au plan transversal et perpendiculaire à la bande, l'angle C étant supérieur à l'angle B.
Les buses à jet plat, et plus précisément celles de la rangée et/ou l'autre rangée et/ou l'encore rangée, peuvent être inclinées transversalement par rapport à un plan transversal et perpendiculaire à la bande de sorte que les jets plats soient inclinés d'un angle A par rapport au plan supérieur à 5° et inférieur à 15°.
Selon une caractéristique de l'invention, le liquide, ou le mélange d'un gaz et d'un liquide, sont non oxydants pour la bande.
De préférence, la section de refroidissement ne comporte pas, dans le sens de défilement de la bande, de buses à jets coniques disposées en amont de buses à jets plats.
De préférence, chacune des buses à jets coniques de la section de refroidissement selon l'invention est disposée, selon le sens de défilement de la bande, en aval de chacune des buses à jets plats.
De préférence, la section de refroidissement ne comporte pas, dans le sens de défilement de la bande, de buses à jets plats disposées en aval de buses à jets coniques.
De préférence, chacune des buses à jets plats de la section de refroidissement selon l'invention est disposée, selon le sens de défilement de la bande, en mont de chacune des buses à jets conique.
Selon un autre aspect de l'invention, il est proposé un procédé de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande par projection sur celle-ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement de la bande, le procédé de refroidissement comprend au moins une projection provenant d'une rangée de buses à jet plat, suivie, temporellement, d'au moins une projection provenant d'une rangée de buses à jets coniques, les rangées de buses étant disposées transversalement au plan de défilement de la bande.
De préférence, il n'y a pas, sur une partie longitudinale de la bande, de projection provenant d'une rangée de buses à jets coniques, préalablement, à une projection provenant d'une rangée de buses à jets plats.
De préférence, il n'y a pas, sur une partie longitudinale de la bande, de projection provenant d'une rangée de buses à jets plats, postérieurement, à une projection provenant d'une rangée de buses à jets coniques.
Selon l'invention, le refroidissement ultra rapide d'une bande de 2mm d'épaisseur à plus de 1000°C/s entre 800 et 500°C se fait en deux étapes successives : D'abord la bande passe devant des premières rangées de buses mono-fluides à jets plats, alimentées en eau à forte pression de l'ordre de 10 bars. Ces buses à jets plats permettent un fort et étroit impact sur la bande et donc une décroissance rapide de la température. L'impact de ces buses sur la bande étant étroit, c'est-à-dire sur une faible surface de bande, cela entraîne l'utilisation d'un fort débit d'eau pour couvrir la surface de bande visée et donc de grosses consommations énergétiques au niveau des pompes à eau.
Une fois que la température de Leindenfrost a été dépassée, il est plus facile de refroidir la bande. C'est la raison pour laquelle le refroidissement se poursuit par des buses à jets coniques mono-fluides sensiblement à la même pression. L'utilisation des buses à jets coniques est à privilégier à partir de cette température intermédiaire afin de garantir une meilleure répartition et couverture d'eau sur la bande. De plus, les buses à jets coniques étant plus efficaces en termes de performance/débit injecté d'eau, surtout lorsque la bande est à plus basse température, elles permettent de réduire le débit d'eau et donc les consommations énergétiques au niveau des pompes à eau.
La vitesse de refroidissement de la bande peut être maintenue constante le long de la section de refroidissement rapide selon l'invention, avec une pente de refroidissement identique avec les buses à jet plat et les buses à jet conique, ou elle peut être différente selon la nature de l'acier et des propriétés mécaniques visées.
Une fois la température de la bande descendue à 500 °C ou moins, le refroidissement jusqu'à la température ambiante ou jusqu'à une température intermédiaire voulue peut alors s'effectuer par pulvérisation d'un brouillard d'eau à l'aide de buses bi-fluides projetant un mélange de gaz et d'eau sur la bande. Ainsi, cette association de refroidissements permettra une totale flexibilité.
Pour des bandes plus fines, mais nécessitant des refroidissements ultra rapides, il suffira d'adapter la vitesse de la ligne et/ou la pression d'eau dans les buses mono-fluides à jets plats et à jets coniques.
Pour des bandes nécessitant un refroidissement lent, il sera alors possible d'éteindre les buses mono-fluides à jets plats et les buses monofluides à jets coniques et d'utiliser seulement les buses bi-fluides projetant un mélange de gaz et d'eau. En effet, la zone de refroidissement comportant les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques étant courte (1 à 2 mètres maximum), il est tout à fait possible d'éteindre cette section et de réaliser tout le refroidissement avec les buses bi-fluides projetant un mélange d'eau et de gaz.
Les buses selon l'invention sont des buses ponctuelles, c'est-à-dire qu'elles ne couvrent qu'une portion de la largeur de bande. Il est ainsi possible d'avoir un réglage transversal fin du refroidissement de la bande ce qui n'est pas possible lorsque le refroidissement est réalisé au moyen de buses couvrant toute la largeur de la bande, ou une grande largeur de bande, par exemple la moitié de la largeur de bande. Pour les bandes étroites, l'utilisation de buses ponctuelles permet également d'arrêter celles qui se trouvent au-delà de la largeur de bande, limitant ainsi le débit projeté et la consommation électrique de la pompe.
Entre deux rangées successives, les buses sont avantageusement placées en quinconce transversalement de sorte d'augmenter l'homogénéité du refroidissement. De même, le quinconce entre les buses est décalé de chaque côté de la bande de sorte de ne pas avoir deux buses en vis-à-vis.
Pour une bande montante, il sera important de rajouter un système de couteaux d'eau en amont des premières buses mono-fluides à jets plats pour que le refroidissement commence de manière nette et ne soit pas perturbé par le ruissellement d'eau provenant des buses situées au-dessus. En effet, s'il y a ruissellement, ce ruissellement entraînera un refroidissement lent et hétérogène avant que la bande soit en vis-à-vis des premières buses. Cela pourrait conduire à des propriétés mécaniques et métallurgiques dégradées de la bande. Pour les bandes descendantes, il est avantageux de placer un système de couteaux d'eau après la dernière rangée de buses, en sortie de la section de refroidissement, afin d'arrêter le refroidissement de manière nette en évitant celui qui résulterait du ruissellement de l'eau.
L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'un exemple de réalisation décrit avec référence aux dessins annexés, mais qui n'est nullement limitatif. Sur ces dessins :
- Fig. 1 est une vue schématique en coupe transversale de la bande dans une section de refroidissement selon un exemple de réalisation de l'invention,
Fig. 2 est une vue schématique en coupe longitudinale de la bande dans la section de refroidissement selon l'exemple de réalisation de l'invention de la figure 1 , et,
- Fig. 3 est une vue schématique longitudinale de la section de refroidissement selon l'exemple de réalisation de l'invention des figures 1 et 2.
Ce mode de réalisation n'étant nullement limitatif, on pourra notamment réaliser des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, telles que décrites ou généralisées, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique.
En se reportant au schéma de la figure 1 des dessins annexés, on peut voir schématiquement représentée une coupe transversale d'une bande 1 en cours de refroidissement par projection d'un liquide au moyen de buses 2 disposées de part et d'autre de la bande, selon un exemple de réalisation de l'invention. Pour faciliter la lecture des dessins, nous avons représenté un nombre limité de buses sur la largeur de bande. Le pas transversal entre les buses et la distance entre les buses et la bande sont ajustés en fonction de l'angle d'ouverture des jets 3 de sorte de couvrir toute la surface de la bande et d'obtenir un refroidissement transversal homogène. Comme on peut le voir sur cette figure, nous avons un recouvrement transversal des jets sur la largeur de bande. L'importance de ce recouvrement est limitée à celle nécessaire pour assurer que toute la largeur de la bande est bien couverte par les jets tout en ayant un refroidissement transversal homogène de la bande.
En se reportant au schéma de la figure 2 des dessins annexés, on peut voir schématiquement représentée, une vue longitudinale sur une face d'une portion d'une bande 1 en défilement dans une section de refroidissement par pulvérisation d'un liquide selon un exemple de réalisation de l'invention. Dans cet exemple, la bande circule de bas en haut. En entrant dans la section de refroidissement, la bande rencontre d'abord deux rangées 4, 5 de buses 9, 10 à jets plats 14, 15 à forte vitesse d'écoulement dont la fonction est de chasser le liquide présent sur la bande du fait d'un ruissellement. Celui-ci résulte de l'écoulement le long de la bande d'une partie du liquide projeté sur la bande par les buses situées au-dessus de ces deux rangées 4, 5 de jets plats. Il est nécessaire de supprimer le liquide présent sur la bande car celui-ci aurait pour effet de limiter l'impact sur la bande de jets de rangées de buses de refroidissement disposées en aval dans le sens F de refroidissement. De plus, le liquide présent sur la bande par ruissellement conduirait à un début de refroidissement de la bande avant qu'elle n'atteigne la première rangée de buses. Il en résulterait un début de refroidissement moins intense alors qu'il est souvent nécessaire que celui-ci soit très rapide, notamment pour éviter la formation de phases métallurgiques à moindres propriétés mécaniques, comme de la perlite, lors du début du refroidissement. Dans les sections de refroidissement dans lesquelles la bande circule de haut en bas, ces rangées de buses ne sont pas nécessaires puisque la bande n'est pas recouverte de liquide lors de son entrée dans la section de refroidissement. Ces deux rangées de jets plats sont inclinées longitudinalement dans la direction de défilement de la bande par rapport à un plan transversal et perpendiculaire à la bande. L'inclinaison de la première rangée 4 de jets plats 14 est plus importante que celle de la seconde rangée 5 de sorte de favoriser le décollement du liquide de la bande. Par exemple, la seconde rangée 5 de jets plats est inclinée d'un angle B de 15° et la première rangée est inclinée d'un angle C de 45°.
La bande rencontre ensuite, dans le sens F de défilement de la bande, quatre rangées 6 successives de jets 16 plats. Ces jets assurent un refroidissement rapide de la bande. Ils sont perpendiculaires à la surface de la bande et légèrement inclinés transversalement par rapport au plan transversal et perpendiculaire à la bande d'un angle A de sorte de limiter l'interaction entre les jets tout en assurant que toute la largeur de la bande est bien couverte par les jets. Cette inclinaison reste limitée pour ne pas augmenter le nombre de buses sur la largeur de bande et ne pas accroître la distance transversale entre deux rangées de buses nécessaire pour éviter l'interaction entre les jets des deux rangées. Cette inclinaison est comprise entre 5° et 15° et est avantageusement de 8°. Le nombre de rangées 6 successives de buses 1 1 à jets 16 plats est fonction du profil de refroidissement de la bande souhaité, des caractéristiques de la bande, notamment de son épaisseur maximale, de la vitesse maximale de défilement de la bande et des caractéristiques des jets, notamment le débit et la vitesse du liquide.
La bande rencontre ensuite quatre rangées 7 successives de jets 17 coniques. Ces jets sont perpendiculaires à la surface de la bande. De nouveau, le nombre de rangées 7 successives de buses 12 à jets 17 plats est fonction du profil de refroidissement de la bande souhaité, des caractéristiques de la bande, de la vitesse maximale de défilement de la bande et des caractéristiques des jets. De même, la densité des jets sur la surface de la bande, notamment la distance entre les rangées 7 de buses dans le sens longitudinal de la bande, est déterminée selon le profil de refroidissement de la bande souhaité et des performances d'échange thermique des jets.
La pression d'alimentation des buses et la température du fluide de refroidissement sont des paramètres qui peuvent être ajustés pour obtenir la pente de refroidissement souhaitée. Ces paramètres peuvent être maintenus constants le long de la section de refroidissement ou ils peuvent être variables, selon l'objectif thermique visé. La pression d'alimentation des buses 9, 10 peut être plus élevée de sorte de faciliter l'évacuation de l'eau de ruissellement.
La distance entre la bande et les buses est définie en prenant en compte plusieurs paramètres, notamment les caractéristiques des jets, du flottement de la bande et des accès nécessaires pour la maintenance. Cette distance est par exemple comprise entre 150 et 300 mm. Elle est évidemment prise en compte pour définir le pas entre les buses et la pression d'alimentation des buses.
En se reportant au schéma de la figure 3 des dessins annexés, on peut voir schématiquement représentée une vue longitudinale et latérale de la portion d'une bande 1 en défilement dans la section de refroidissement représentée en figure 2. Cette figure montre plus clairement l'inclinaison longitudinale des deux premières rangées de buses dans le sens F de défilement de la bande, les autres buses étant perpendiculaires à la bande.
Nous décrivons à présent un exemple de réalisation de l'invention, pour une bande circulant de bas en haut dans une section de refroidissement rapide. Le refroidissement ultra rapide de cette bande à plus de 1000°C/s entre 800 et 500°C se fait en deux étapes successives : D'abord la bande passe devant des rangées 6 de buses mono-fluides 1 1 à jets plats 16, alimentées en eau 19 à une pression de l'ordre de 10 bars. A partir d'une température d'environ 500 °C, le refroidissement de la bande se poursuit par des buses 12 à jets coniques 17 à la même pression. Une fois la température de la bande descendue à 300 °C, le refroidissement jusqu'à la température ambiante, ou jusqu'à une température intermédiaire voulue, peut alors s'effectuer par pulvérisation d'un brouillard d'eau à l'aide de rangées 8 de buses bi-fluides 13 à jets coniques 18 projetant un mélange 20 de gaz, par exemple de l'azote, et d'eau sur la bande. Ainsi, cette association de refroidissements permet une totale flexibilité.
. pour des bandes plus fines, mais nécessitant des refroidissements ultra rapides, il suffit d'adapter la vitesse de la ligne et/ou la pression d'eau dans les buses mono-fluides à jets plats et à jets coniques,
. pour des bandes nécessitant un refroidissement lent, il sera alors possible d'arrêter les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques et d'utiliser uniquement les buses bi-fluides projetant un mélange de gaz et de liquide. En effet, la zone de refroidissement comportant les buses mono-fluides à jets plats et les buses mono-fluides à jets coniques étant courte (1 à 2 mètres maximum), il est tout à fait possible d'arrêter cette section et de réaliser tout le refroidissement avec les buses bi-fluides projetant un mélange de liquide et de gaz.
Dans l'exemple de réalisation représenté aux figures 2 et 3, les buses bi- fluides sont ponctuelles et les jets obtenus sont coniques. Les conditions de refroidissement étant moins critiques pour le refroidissement moins rapide obtenu par ces buses bi-fluides, des buses à fente couvrant toute la largeur de la bande, ou une partie de celle-ci, peuvent également être utilisées.
Dans cet exemple de réalisation avec une bande montante, il est important de rajouter un système de couteaux d'eau en amont des premières buses mono-fluides à jets plats pour que le refroidissement commence de manière nette et ne soit pas perturbé par le ruissellement d'eau provenant des buses situées au-dessus. En effet, s'il y a ruissellement, ce ruissellement entraînera un refroidissant lent et inhomogène avant que la bande soit en vis-à- vis des premières buses. Cela pourrait conduire à des propriétés mécaniques et métallurgiques dégradées de la bande. Les jets plats 14, 15 du système de couteaux d'eau sont légèrement inclinés transversalement de sorte de limiter l'interaction entre les jets tout en assurant que toute la largeur de la bande est bien couverte par les jets.
Ce système de couteaux d'eau n'est pas indispensable pour des bandes descendantes. Pour celles-ci, il est cependant avantageux de placer un système de couteaux d'eau après la dernière rangée de buses, en sortie de la section de refroidissement, afin d'arrêter le refroidissement de manière nette en évitant celui qui résulterait du ruissellement de l'eau. Pour notre exemple de réalisation de l'invention pour le refroidissement d'une bande circulant de bas en haut. Le système de refroidissement se présente de la manière suivante :
. deux rangées 4, 5 de buses mono-fluides 9, 10 à jets plats 14, 15 servant de couteaux d'eau,
. quatre rangées 6 de buses mono-fluides 1 1 à jets plats 16,
. quatre rangées 7 de buses mono-fluides 12 à jets coniques 17.
De manière plus précise, les pas entre chaque rangée, les pas entre chaque buse sur une même rangée et les différents angles sont présentés dans le tableau suivant :
Inclinaison
Distance Distance
Rangées de longitudinale des
longitudinale Inclinaison transversale buses depuis jets par rapport à
Nature depuis la transversale des entre les l'entrée de la un plan
première rangée jets buses d'une bande perpendiculaire à
de buses même rangée la bande
Couteau d'eau à
1 jets plats mono0 mm 8° 50° 100 mm fluide
Couteau d'eau à
2 jets plats mono75 mm 8° 30° 100 mm fluide
Jets plats mono¬
3 130 mm 8° 0° 100 mm fluide
Jets plats mono¬
4 180 mm 8° 0° 100 mm fluide
Jets plats mono¬
5 230 mm 8° 0° 100 mm fluide
Jets plats mono¬
6 280 mm 8° 0° 100 mm fluide
Jets coniques
7 355 mm NA 0° 100 mm mono-fluide
Jets coniques
8 480 mm NA 0° 100 mm mono-fluide
Jets coniques
9 605 mm NA 0° 100 mm mono-fluide
Jets coniques
10 730 mm NA 0° 100 mm mono-fluide
Sur ce tableau, la distance longitudinale depuis la première rangée de buses est prise au niveau de l'axe médian d'impact du jet sur la bande. La distance entre les buses et la bande est de 250 mm pour l'ensemble des buses.
Avec cette configuration, avec de l'eau comme fluide de refroidissement, il est possible d'atteindre les pentes de refroidissement suivantes entre 800 et 500 °C :
- pour une bande de 2 mm d'épaisseur défilant à une vitesse entre 90 et 130 m/min, avec une pression de 10 bars aux buses : 1400 °C/s.
- pour une bande de 1 mm d'épaisseur défilant à une vitesse de 240 m/min, avec une pression de 10 bars aux buses : 1500 °C/s.
- pour une bande de 1 mm d'épaisseur défilant à une vitesse de 240 m/min, avec une pression de 7 bars aux buses : 1300 °C/s. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. De plus, les différentes caractéristiques, formes, variantes et modes de réalisation de l'invention peuvent être associés les uns avec les autres selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres.

Claims

REVENDICATIONS
Section de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande (1 ) par projection sur celle-ci d'un liquide (19), ou d'un mélange (20) d'un gaz et d'un liquide, au moyen de buses (2) disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement (F) de la bande, la section de refroidissement comprend au moins une rangée (6) de buses (1 1 ) à jet plat (16), suivie d'au moins une rangée (7) de buses (12) à jets coniques (17) , les rangées (6, 7) de buses étant disposées transversalement au plan de défilement de la bande.
Section de refroidissement rapide selon la revendication 1 , dans laquelle, dans le sens de défilement de la bande, l'au moins une rangée (6) de buses (1 1 ) à jet plat (16) est mono-fluide, l'au moins une rangée (7) de buses (12) à jets coniques (17) est mono-fluide, la section de refroidissement rapide comprenant en outre au moins une rangée (8) de buses (13) à jets (18) qui est bi-fluide et suit, dans le sens de défilement (F) de la bande, l'au moins une rangée (7) de buses (12) à jets coniques (17), la rangée (8) de buses (13) étant disposée transversalement au plan de défilement de la bande, les buses (1 1 , 12) mono-fluide étant agencées pour projeter un liquide sur la bande et les buses (13) bi-fluide étant agencées pour projeter sur la bande un brouillard composé d'un mélange de gaz et de liquide.
Section de refroidissement rapide selon la revendication 1 ou 2, agencée pour que la bande (1 ) circule verticalement de bas en haut, comprenant, en amont de la rangée (6) de buses (1 1 ) à jets plats dans le sens de défilement (F) de la bande, une rangée (5) de buses (10) à jets plats (15) dont les jets plats (15) sont inclinés longitudinalement par rapport à un plan transversal et perpendiculaire à la bande (1 ) d'un angle B supérieur à 15°.
4. Section de refroidissement rapide selon la revendication précédente, comprenant en outre, en amont des buses (10) à jets plats, dans le sens de défilement (F) de la bande, une rangée (4) de buses (9) à jets plats (14) dont les jets plats (14) sont inclinés longitudinalement d'un angle C par rapport au plan transversal et perpendiculaire à la bande (1 ), l'angle C étant supérieur à l'angle B.
Section de refroidissement rapide selon l'une quelconque des revendications précédentes, dans laquelle les buses (9, 10, 1 1 ) à jet plat sont inclinées transversalement par rapport à un plan transversal et perpendiculaire à la bande (1 ) de sorte que les jets plats (14, 15, 16) soient inclinés d'un angle A par rapport au plan supérieur à 5° et inférieur à 15°.
Section de refroidissement rapide selon l'une quelconque des revendications précédentes, dans laquelle que le liquide (19), ou le mélange (20) d'un gaz et d'un liquide, sont non oxydant pour la bande (1 ).
Procédé de refroidissement rapide d'une ligne continue de traitement de bandes métalliques, agencée pour refroidir la bande par projection sur celle-ci d'un liquide, ou d'un mélange d'un gaz et d'un liquide, au moyen de buses disposées de part et d'autre de la bande par rapport à son plan de défilement, caractérisée en ce que, dans le sens de défilement de la bande, le procédé de refroidissement comprend au moins une projection provenant d'une rangée de buses à jet plat, suivie, temporellement, d'au moins une projection provenant d'une rangée de buses à jets coniques, les rangées de buses étant disposées transversalement au plan de défilement de la bande.
PCT/EP2017/082073 2016-12-14 2017-12-08 Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques WO2018108747A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL17829617.4T PL3555324T3 (pl) 2016-12-14 2017-12-08 Sposób i sekcja do szybkiego schładzania linii ciągłej do obróbki taśm metalowych
EP17829617.4A EP3555324B1 (fr) 2016-12-14 2017-12-08 Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques
FIEP17829617.4T FI3555324T3 (en) 2016-12-14 2017-12-08 Method and section for quick cooling of a continuous line for treating metal belts
US16/468,847 US11230748B2 (en) 2016-12-14 2017-12-08 Method and section for quick cooling of a continuous line for treating metal belts
KR1020197018461A KR102431023B1 (ko) 2016-12-14 2017-12-08 금속 시트를 처리하기 위한 연속 라인의 급속 냉각을 위한 방법 및 섹션
JP2019531791A JP7021219B2 (ja) 2016-12-14 2017-12-08 金属ストリップの連続処理ラインの急速冷却方法及び急速冷却部
CN201780077051.6A CN110168117A (zh) 2016-12-14 2017-12-08 用于金属带材处理的连续生产线的快速冷却方法和部分
ES17829617T ES2934248T3 (es) 2016-12-14 2017-12-08 Procedimiento y sección para el enfriamiento rápido de una línea continua para el tratamiento de cintas metálicas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662421 2016-12-14
FR1662421A FR3060021B1 (fr) 2016-12-14 2016-12-14 Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques

Publications (1)

Publication Number Publication Date
WO2018108747A1 true WO2018108747A1 (fr) 2018-06-21

Family

ID=57909758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/082073 WO2018108747A1 (fr) 2016-12-14 2017-12-08 Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques

Country Status (11)

Country Link
US (1) US11230748B2 (fr)
EP (1) EP3555324B1 (fr)
JP (1) JP7021219B2 (fr)
KR (1) KR102431023B1 (fr)
CN (1) CN110168117A (fr)
ES (1) ES2934248T3 (fr)
FI (1) FI3555324T3 (fr)
FR (1) FR3060021B1 (fr)
PL (1) PL3555324T3 (fr)
PT (1) PT3555324T (fr)
WO (1) WO2018108747A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127470A1 (de) * 2017-11-21 2019-05-23 Sms Group Gmbh Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche
SE543963C2 (en) * 2020-02-28 2021-10-12 Baldwin Jimek Ab Spray applicator and spray unit comprising two groups of spray nozzles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300198A (en) * 1963-12-27 1967-01-24 Olin Mathieson Apparatus for quenching metal
JPS60121229A (ja) * 1983-12-01 1985-06-28 Nippon Steel Corp 高温鋼板の冷却方法
JPS60184635A (ja) * 1984-02-29 1985-09-20 Ishikawajima Harima Heavy Ind Co Ltd 金属板冷却装置
JPS61153236A (ja) * 1984-12-26 1986-07-11 Kobe Steel Ltd 厚鋼板のオンライン冷却設備
EP1634657A1 (fr) * 2003-06-13 2006-03-15 JFE Steel Corporation Procede et dispositif de refroidissement controle pour plaque en acier epaisse, et plaque en acier epaisse ainsi obtenue
US20090045557A1 (en) * 2006-09-12 2009-02-19 Ryuji Yamamoto Method of Arranging and Setting Spray Cooling Nozzles and Hot Steel Plate Cooling Apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997376A (en) * 1974-06-19 1976-12-14 Midland-Ross Corporation Spray mist cooling method
US4407487A (en) * 1980-01-15 1983-10-04 Heurtey Metallurgie Device for cooling metal articles
US5640872A (en) * 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips
AT414102B (de) * 2004-08-04 2006-09-15 Ebner Ind Ofenbau Vorrichtung zum kühlen eines blechbandes
WO2007014406A1 (fr) * 2005-08-01 2007-02-08 Ebner Industrieofenbau Gesellschaft M.B.H. Dispositif pour refroidir une bande de metal
WO2011001934A1 (fr) * 2009-06-30 2011-01-06 住友金属工業株式会社 Dispositif de refroidissement, procédé de refroidissement, dispositif de fabrication et procédé de fabrication de tôles d'acier laminées à chaud

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300198A (en) * 1963-12-27 1967-01-24 Olin Mathieson Apparatus for quenching metal
JPS60121229A (ja) * 1983-12-01 1985-06-28 Nippon Steel Corp 高温鋼板の冷却方法
JPS60184635A (ja) * 1984-02-29 1985-09-20 Ishikawajima Harima Heavy Ind Co Ltd 金属板冷却装置
JPS61153236A (ja) * 1984-12-26 1986-07-11 Kobe Steel Ltd 厚鋼板のオンライン冷却設備
EP1634657A1 (fr) * 2003-06-13 2006-03-15 JFE Steel Corporation Procede et dispositif de refroidissement controle pour plaque en acier epaisse, et plaque en acier epaisse ainsi obtenue
US20090045557A1 (en) * 2006-09-12 2009-02-19 Ryuji Yamamoto Method of Arranging and Setting Spray Cooling Nozzles and Hot Steel Plate Cooling Apparatus

Also Published As

Publication number Publication date
US11230748B2 (en) 2022-01-25
ES2934248T3 (es) 2023-02-20
JP2020513480A (ja) 2020-05-14
FR3060021A1 (fr) 2018-06-15
KR20190094384A (ko) 2019-08-13
PT3555324T (pt) 2023-01-02
CN110168117A (zh) 2019-08-23
FI3555324T3 (en) 2023-01-13
US20200071788A1 (en) 2020-03-05
KR102431023B1 (ko) 2022-08-11
PL3555324T3 (pl) 2023-01-23
EP3555324B1 (fr) 2022-10-05
JP7021219B2 (ja) 2022-02-16
EP3555324A1 (fr) 2019-10-23
FR3060021B1 (fr) 2018-11-16

Similar Documents

Publication Publication Date Title
EP2376662B1 (fr) Procédé et section de refroidissement d'une bande métallique en défilement par projection d'un liquide
EP2100673B1 (fr) Procédé et dispositif de soufflage de gaz sur une bande en défilement.
EP3555324B1 (fr) Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques
EP1655383B1 (fr) Procédé et dispositif de limitation de la vibration de bandes d'acier ou d'aluminium dans des zones de refroidissement par soufflage de gaz ou d'air
FR2566688A1 (fr) Procede et dispositif pour la coulee en continu de bain de fusion de metal, notamment de bain de fusion d'acier
EP0761829B1 (fr) Dispositif de refroidissement d'un produit laminé
BE1014868A3 (fr) Procede et dispositif de patentage de fils d'acier
FR2797277A1 (fr) Procede et dispositif de realisation en continu d'un revetement de surface metallique sur une tole en defilement
FR2833871A1 (fr) Procede et installation de fabrication de bandes metalliques a partir de bandes coulees directement a partir de metal liquide
EP3601624B1 (fr) Section et procédé de refroidissement d'une ligne continue combinant un refroidissement sec et un refroidissement humide.
EP0686209B1 (fr) Procede et installation de traitement continu d'une bande d'acier galvanisee
WO2005054524A1 (fr) Procede et dispositif de refroidissement d'une bande d'acier
FR2460333A1 (fr) Procede et appareil pour refroidir des bandes d'acier au cours d'un traitement de recuit en continu
BE1014869A3 (fr) Dispositif de refroidissement et/ou de rincage de fils et/ou
EP0031772B1 (fr) Procédé et dispositif pour la fabrication de verre par flottage
FR2479795A1 (fr) Procede d'amincissement de verre produit par flottage
EP1029933B1 (fr) Dispositif d'échange de chaleur avec un produit plat
EP4370719A1 (fr) Refroidissement liquide d'une bande en defilement dans une ligne continue
WO1996038599A1 (fr) Procede et dispositif pour revetir une bande metallique d'un metal ou d'un alliage a plus bas point de fusion ou de liquide que celui du materiau constituant la bande
FR2485569A1 (fr) Appareil de metallisation par immersion a chaud d'une face d'une bande
EP2173918B1 (fr) Installation de revetement d'une bande metallique
BE850801A (fr) Procede et dispositif de refroidissement d'elements continus
BE898291A (fr) Procédé et dispositif pour le refroidissement accéléré d'une bande métallique mince.
BE338349A (fr)
BE419364A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17829617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017829617

Country of ref document: EP

Effective date: 20190715