EP1029933B1 - Dispositif d'échange de chaleur avec un produit plat - Google Patents

Dispositif d'échange de chaleur avec un produit plat Download PDF

Info

Publication number
EP1029933B1
EP1029933B1 EP00400353A EP00400353A EP1029933B1 EP 1029933 B1 EP1029933 B1 EP 1029933B1 EP 00400353 A EP00400353 A EP 00400353A EP 00400353 A EP00400353 A EP 00400353A EP 1029933 B1 EP1029933 B1 EP 1029933B1
Authority
EP
European Patent Office
Prior art keywords
gas
blades
width
heat exchange
flat product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00400353A
Other languages
German (de)
English (en)
Other versions
EP1029933A1 (fr
Inventor
Philippe Paulus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Technology and Asset Management GmbH
Selas SA
Original Assignee
Selas SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selas SA filed Critical Selas SA
Publication of EP1029933A1 publication Critical patent/EP1029933A1/fr
Application granted granted Critical
Publication of EP1029933B1 publication Critical patent/EP1029933B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material

Definitions

  • the present invention relates to a heat exchange device with a flat product.
  • This device includes gas pressurization means at least one plenum chamber, the caisson comprising on a front face several blades forming a conduit for the ejection of the gas direction of a surface of the rolled product, the blades being superimposed to others according to the direction of travel of the rolled product and constituting a gas outlet opening extending across the width of the rolled product.
  • Each space separating two superimposed blades has a depth in a direction perpendicular to the surface of the rolled product and a width in the longitudinal direction of the rolled product sufficient to allow gas evacuation without disturbing the gas outlet of the adjacent blades.
  • the space provided between the blades facilitates the evacuation of gas at level of the surface of the rolled product and does not interfere with the emission of gas in outlet of the blade opening.
  • the present invention aims to improve such a device for exchanging heat, and in particular to facilitate the evacuation of gas from the device after its impact on a flat product.
  • the invention thus relates to a heat exchange device with a flat product as defined in claim 1.
  • the evacuation of gases after impact on the surface of the flat product can be made on both sides of the box, opposite the blades forming gas pipe on the front of the box.
  • the outgoing gas flow is therefore directed towards the rear of the flat product, without interfering with the emission of gas through the orifices of the blades. All risk of gas stagnation on the surface of the treated product is thus carefully avoided, as well as any gas flow parallel to the surface to treat both in the width direction and in that of the scrolling of the product.
  • each blade flares towards the flat product of so that the gas, after impact on the flat product, can return to the back of the device, on each side of the box.
  • the device heat exchange comprises gas outlet openings after ejection, located in a plane defined by a rear face opposite to said front face of the caisson.
  • the evacuation from the back of the box avoids any movement of gas along the surface of the flat product as happens in conventional devices in which the boxes are continuous or arranged side by side and prevent the return of the cooling gases to the rear.
  • the gas can be evacuated from the device heat exchange according to the invention without generating cooling preferential from the edges of the flat product.
  • the device heat exchanger comprises at least two boxes arranged in the width of the flat product, the spacing between said boxes being such that the gas is evacuated between said boxes at a lower speed or equal to 20 m / s.
  • the ratio of half the gas flow rate in m 3 / s at the outlet of two adjacent strips along the width of the product over the section in m 2 of the space separating said boxes comprising said blades is less than 20, said section extending in a plane parallel to the flat product and to the running direction of the flat product.
  • the ratio of the speed of the gas in a box over the speed of the gas leaving the blades integral with said box is less than 0.2.
  • the box forms a gas tank under pressure almost without circulation, ensuring a uniform speed for ejection of gases.
  • the means gas pressurization systems have several fans adapted to supply gas to one or more boxes.
  • each box can thus be regulated independently or by sub-group of boxes, allowing to adjust, in the width of the flat product, the cooling rate depending on the profile desired thermal.
  • the invention may also apply to a device for heating a flat product.
  • an installation of continuous cooling of a flat product such as a rolled product 1 can include several cooling devices 10, here four in number, distributed over the path of the rolled product moving between rolls of transport 2.
  • the laminated product scrolls vertically between the cooling devices 10 generally arranged two by two, on each side of the rolled product in order to simultaneously cool the product by its two faces.
  • the transport rollers 2 stabilize the rolled product 1. They can cause a slight deflection to the rolled product 1, lower or equal to 15 ° in order to limit the vibration of the rolled product 1.
  • Such a cooling installation can be used by example in a continuous annealing line for strip processing steel, in which the rolled product passes by vertical passes in different treatment chambers.
  • These steel strips have a thickness of between 0.15 and 2.3 mm and their width can reach up to 2 m.
  • the cooling device 10 includes boxes 11 which are adapted to contain a pressurized gas.
  • Each box 11 comprises several blades 12 which form conduits for the ejection of gas towards the rolled product 1 to be cooled.
  • blades 12 are superimposed on each other as illustrated in FIG. 1, in the direction of travel of the rolled product 1, so as to cool the surface of the product as it travels through the exchange device heat 10.
  • the height of the stack of blades 12 over the height of a box It is preferably less than or equal to 6 m.
  • These blades 12 have at least one outlet 13 as shown in Figure 2, which extends across the width of the rolled product 1. This outlet orifice 13 thus opens at the end of the conduit formed by the blade 12 which extends from the box 11 in the direction of the rolled product 1.
  • the cross section of the blades 12, in a plane perpendicular to the rolled product 1, decreases from the box 11.
  • the outlet orifices 13 may be circular holes, rectangular, oblong, etc., or small slits made at the end of each blade 12.
  • the blade 12 could also have only one orifice for outlet 13 forming a slit opposite the rolled product 1.
  • Each space separating two superimposed strips 12 has a depth in a direction perpendicular to the product laminate 1 and a width in the longitudinal direction of the laminate product 1 sufficient to prevent the accumulation of cooling gas near the surface of the rolled product 1.
  • the depth of the separation spaces of the blades 12 is greater than 200 mm, and preferably greater than 300 mm.
  • the number of blades 12 of the device 10 and the number of openings 13 are such that the total section formed by the openings 13 is between 1% and 5% of the surface covered by all of the blades 12, and preferably between 2 and 4% of this area.
  • the blades 12 of a box 11 are dimensioned such that so that the evacuation of the gas in the section S between these blades 12 is carried out at a speed less than or equal to 20 m / s at any point.
  • the section corresponds to the section of space taken in the plane of Figure 2, perpendicular to the rolled product 1 and parallel to the direction of scrolling of the rolled product 1.
  • the depth P can be constant in the width of the blade 12, or variable, as illustrated in FIGS. 3A and 3B, if we want to give the gas flow back a speed more directed towards the rear of the device.
  • a partition 12a thus extends between the superimposed blades 12, at from the casing 11, so that the depth P at the center of the blade 12 is weaker than at its ends.
  • depth is a continuous function P (x) which varies along the distance x from the axis of symmetry of the blade 12 (in the case of FIG. 3A where a symmetrical return of the gas is produced by the two sides) or from one end of the blade 12 (in the case of FIG. 3B where gas return is only carried out on one side of the blade).
  • the flow between two blades 12 at a distance x from the axis of symmetry is equal to qx / l where q is the flow per blade (m3 / s) and I the width of the end of the blade 12 parallel to the width of the product with x ⁇ I / 2.
  • the cross-section for the return gas at the same distance x is equal to wP (x).
  • Limiting the return speed to 20 m / s therefore implies that, for any value of x between 0 and I / 2, we have: P (x) ⁇ qx / 20.Iw, x, I and w being expressed in meters.
  • the condition is also: P (x) ⁇ qx / 20.Iw, x varying this time between 0 and I.
  • the cooling device comprises at least one box 11, here in number of five. These boxes 11 are distributed across the width of the rolled product 1 and extend in the longitudinal direction of the moving laminated product, parallel to each other.
  • each box 11 and the distance between the boxes 11 allow the evacuation of gas between boxes 11 without disturb the gas outlet of the blades 12.
  • This distance denoted D 1-2 or D 2-3 in FIG. 4, may have a different value from one pair of boxes 11 to another pair.
  • the boxes 11 have a cross section which is substantially parallelepiped, the distance between the boxes 11 corresponding to the distance separating their flanks placed opposite.
  • Gas outlet openings 14 after ejection are thus located between the boxes 11, in a plane defined by the rear faces opposite to the front panels 11.
  • the gas can thus be recovered on a rear face of the device heat exchange 10, opposite the rolled product 1, which avoids gas circulation along the surface of the rolled product 1 and a greater cooling of the edges of the rolled product 1 than at its center.
  • the ratio of half the gas flow rate in m 3 / s at the outlet of two adjacent strips 12 along the width of the product over the section in m 2 of the space separating the boxes 11 comprising these strips 12 is less than 20.
  • This section taken in the plane of Figure 3, extends in a plane parallel to the rolled product 1 and to the direction of travel of the rolled product 1.
  • the device comprises, as here, several boxes 11 arranged parallel in the width of the rolled product 1, the section of the space separating the boxes 11 is equal to the sum of the sections of the spaces separating the boxes 11 two by two.
  • this section would be equal to the sum of the sections, taken from left to right in FIG. 4, L x (D 3-4 + D 2-3 + D 1-2 + D 1 -2 + D 2-3 + D 3-4 ).
  • the distance L is less than or equal to 300 mm, and preferably less than or equal to 150 mm.
  • each box 11 is further distributed regularly on a front face of the box 11 in the direction of scrolling of the laminated product, each blade 12 of a first box 11 being adjacent to a blade 12 of a second box 11 in the plane defined by the gas outlet ports 13 (see in particular Figure 6).
  • the blades 12 have a profile substantially divergent in the transverse plane of the rolled product so as to constitute at their ends, all adjacent in this transverse plane, a uniform gas outlet orifice 13 over the entire width of the rolled product 1.
  • This port 13 may be formed of a single slot or a series of small ports evenly distributed over the entire width of the device.
  • the width of the gas outlet 13 in the width of the product laminated is thus greater than the width of the box 11.
  • the ratio of the speed of the gas in a box 11 on the speed of the gas leaving the blades 12 secured to the box 11 remains less than 0.2.
  • the speed of the gas in each box 11 can be of the order 10 m / s while the speed at the output of the blades 12 can reach and exceed 150 m / s.
  • the boxes 11 thus form reservoirs of pressurized gas practically without circulation, which allows a regular flow gas leaving the blades 12.
  • Each box 11 has a gas supply opening 15 under pressure which can be connected to pressurizing means gas such as a fan 16 (see Figure 1) or a compressor.
  • pressurizing means gas such as a fan 16 (see Figure 1) or a compressor.
  • the fan 16 is intended to introduce a large flow of gas pressure cooling in each box 11.
  • feed openings 15 are arranged in this example in staggered in the rear faces of the boxes 11.
  • the gas pressurizing means include in this example several fans 16 (see FIG. 1) adapted to supply gas to a or more boxes 11.
  • the means of putting under gas pressure include a fan 16 adapted to supply the casing central 11 and at least one other fan 16 adapted to supply boxes 11 arranged symmetrically on either side of the central box 11.
  • the cooling device can include three fans, a first fan being connected to the central box, a second fan being connected to the intermediate boxes and a third fan being connected to the banks of the banks.
  • these fans are driven by motors variable speed.
  • the fan supplying the banks of the banks can be stopped or idle to save energy.
  • the cooling device 10 is incorporated in a gas-tight enclosure 17, a discharge orifice gases 18 being provided in a rear wall 17a of the enclosure 17, opposite to the front face of the boxes 11.
  • the gas outlet 18 is preferably located in the center of the rear wall 17a of the enclosure 17, halfway up the cooling 10 and has substantially the same width as this (fig. 5).
  • This sealed enclosure 17 can be used in cases where, for avoid oxidizing the rolled product 1 during its cooling, it is necessary to cool under a protective atmosphere.
  • a cooling gas is used instead of air.
  • the proportion of hydrogen is preferably less than or equal to 5%. This gas could also be pure nitrogen.
  • the gas can possibly be recovered at the outlet of the orifice evacuation 18 to be continuously recycled in the means of placing under gas pressure.
  • recycling includes a step of gas recovery, a step of cooling it and a step of reinjection through the feed openings 15 into the boxes 11.
  • the cooling 10 preferably comprises adjustment means 19 adapted moving the device 10 in a direction perpendicular to the rolled product 1.
  • the device as a whole can be brought together, in a working position illustrated in Figure 7, or away from the rolled product 1 as illustrated in figure 6.
  • This remote position makes it possible in particular to separate the device from cooling of the moving product 1 in the event of an incident, for example when the rolled product is deformed and forms extra thicknesses which could damage the blades 12 of the cooling device 10.
  • the adjustment means 19 may comprise axes 20 integral of the frame 21 of the device on which the boxes are mounted.
  • the cooling device 10 comprises four axes 20, arranged in pairs at the top and bottom of the device 10, each side of this device.
  • Actuating means allow conventionally to move these axes back and forth, in a direction perpendicular to these axes, between the two positions defined above.
  • These actuating means can be, for example, motors for preferably step by step, provided with coders allowing to know with precision the distance from the orifices to the rolled product and actuating screw jacks.
  • a steel strip 1 passes between the cooling 10 arranged in pairs on each side of the steel strip.
  • a 1300 mm wide steel sheet was cooled from 650 to 400 ° C, with a gas formed from a mixture of 95% nitrogen and 5% hydrogen, 45 ° C.
  • the device in this test includes blades 12 pierced with holes of diameter equal to 9.2 mm forming outlet orifices 13 spaced 50 mm apart in-width of the blade 12.
  • the pitch of the blades 12 or distance L is equal to 50 mm and the distance orifices - strip to be cooled is set to 50 mm.
  • a central box has blades with a width of 750 mm at level of the orifices, each blade having 15 holes.
  • the side boxes have blades with a width of 300 mm and having 6 holes.
  • the depth P of the blades is uniform and equal to 0.35 m, the section S of passage between the blades being equal to 7.3510 -3 m 2 .
  • the passage width between the central box and the D 1-2 side boxes is 150 mm.
  • the gas flow rate per m 2 of exchange surface on the sheet to be cooled reaches 250 m 3 / m 2 .min. x face.
  • the device according to the invention allows achieve significantly higher flow rates per unit area than in conventional devices, without observing saturation and with higher yields high.
  • the gas flow rates return are considered equal to the gas flow rates injected, whereas, the gas, which heats up on contact with the product to be cooled, expands.
  • the velocities can therefore be calculated by dividing the flow rates in m 3 / s on the return, which are equal to the flow rates injected in m 3 / s, by the section in m 2 .
  • the number of boxes, equal to five, can be different while preferably remaining odd.
  • the heat exchange device could be a device heating instead of a cooling device.

Description

La présente invention concerne un dispositif d'échange de chaleur avec un produit plat.
Elle s'applique de manière plus particulière à tout produit plat, en bande ou en feuilles, voire formé d'une nappe de fils parallèles.
Elle concerne de manière plus particulière le domaine du traitement thermique de produits laminés, tels qu'un métal laminé, qui défilent sur des rouleaux et traversent successivement des chambres de traitement. On utilise de telles lignes de recuit ou de galvanisation en continu par exemple dans la fabrication de tôles d'acier pour carrosserie de voiture. L'acier peut être porté à des températures pouvant atteindre 600-900°C. Un refroidissement rapide et uniforme de ces produits est alors nécessaire afin de ramener la température du produit à une température inférieure à 500°C selon la qualité désirée.
On connaít un dispositif d'échange de chaleur tel que décrit dans le brevet français FR 2 738 577 au nom de la Demanderesse, qui permet de refroidir en continu un produit laminé défilant devant une série de lames qui forment des conduits d'éjection d'un gaz de refroidissement.
Ce dispositif comprend des moyens de mise sous pression gazeuse d'au moins un caisson (plenum chamber en anglais), le caisson comprenant sur une face avant plusieurs lames formant conduit pour l'éjection du gaz en direction d'une surface du produit laminé, les lames étant superposées les unes aux autres suivant la direction de défilement du produit laminé et constituant un orifice de sortie du gaz s'étendant dans la largeur du produit laminé.
Chaque espace séparant deux lames superposées a une profondeur dans une direction perpendiculaire à la surface du produit laminé et une largeur dans la direction longitudinale du produit laminé suffisantes pour permettre l'évacuation des gaz sans perturber la sortie de gaz des lames adjacentes.
Ainsi, l'espace prévu entre les lames facilite l'évacuation du gaz au niveau de la surface du produit laminé et ne gène pas l'émission de gaz en sortie de l'orifice des lames.
En effet, si aucune précaution n'est prise pour évacuer les gaz chauds après leur impact sur le produit, au fur et à mesure que l'on augmente le débit de gaz, le coefficient de transfert de chaleur, donc la vitesse de refroidissement, cesse de croítre et on assiste à un effet de "saturation". Ce phénomène est décrit par exemple dans l'article de C. Brugnera et AL., Revue de Métallurgie, December 1992, page 1098, fig. 8, où l'on voit qu'au delà de 500 mm de colonne d'eau (CE) de pression à l'orifice, la vitesse de refroidissement n'augmente plus, même en augmentant la pression à 800 mm CE.
Dans le cas du brevet français FR2738577, pour éviter totalement la formation d'un matelas de gaz chaud à la surface du produit laminé, l'espace entre les lames doit être dimensionné de telle façon que la vitesse de retour des gaz soit inférieure à 20 m/s, ce qui oblige, si le gaz est repris latéralement par un seul côté, que le rapport de la somme des demi-débits de deux lames superposées (c'est-à-dire le débit d'une lame) à la section de passage entre deux lames soit inférieure à 20. Si le produit à traiter est large et la lame d'une seule pièce dans le sens de la largeur du produit, et qu'en plus le coefficient de transfert requis est élevé, des profondeurs de lames excessives et difficiles à installer doivent être prévues.
La présente invention vise à améliorer un tel dispositif d'échange de chaleur, et notamment à faciliter l'évacuation du gaz hors du dispositif après son impact sur un produit plat.
L'invention vise ainsi un dispositif d'échange de chaleur avec un produit plat tel que défini dans la revendication 1.
Grâce à la largeur réduite du caisson de mise sous pression gazeuse, l'évacuation des gaz après impact sur la surface de produit plat, peut être réalisée de part et d'autre du caisson, à l'opposé des lames formant conduit de gaz sur la face avant du caisson.
Le flux du gaz sortant est par conséquent dirigé vers l'arrière du produit plat, sans gêner l'émission du gaz par les orifices des lames. Tout risque de stagnation du gaz à la surface du produit traité est ainsi soigneusement évité, de même que tout courant de gaz parallèle à la surface à traíter tant dans le sens de la largeur que dans celui du défilement du produit.
De préférence, chaque lame s'évase en direction du produit plat de telle sorte que le gaz, après impact sur le produit plat, peut retourner vers l'arrière du dispositif, de chaque côté du caisson.
Selon une caractéristique préférée de l'invention, le dispositif d'échange de chaleur comporte des ouvertures de sortie du gaz après éjection, situées dans un plan défini par une face arrière opposée à ladite face avant du caisson.
L'évacuation par l'arrière du caisson permet d'éviter tout mouvement de gaz le long de la surface du produit plat comme cela se produit dans les dispositifs classiques dans lesquels les caissons sont continus ou disposés côte à côte et empêchent le retour vers l'arrière des gaz de refroidissement. Contrairement aux dispositifs antérieurs dans lesquels l'évacuation des gaz est réalisée sur les cotés du dispositif, le gaz peut être évacué du dispositif d'échange de chaleur conforme à l'invention sans générer de refroidissement préférentiel des rives du produit plat.
Selon une caractéristique préférée de l'évacuation, le dispositif d'échange de chaleur comporte au moins deux caissons disposés dans la largeur du produit plat, l'espacement entre lesdits caissons étant tel que l'évacuation du gaz entre lesdits caissons est réalisée à une vitesse inférieure ou égale à 20 m/s.
On assure ainsi une évacuation régulière du gaz vers l'arrière du dispositif, sans risque de formation de turbulences qui pourraient nuire à l'homogénéité des échanges de chaleur.
Selon une caractéristique avantageuse et pratique de l'invention, le rapport de la moitié du débit de gaz en m3/s en sortie de deux lames adjacentes suivant la largeur du produit sur la section en m2 de l'espace séparant lesdits caissons comprenant lesdites lames est inférieur à 20, ladite section s'étendant dans un plan parallèle au produit plat et à la direction de défilement du produit plat.
Selon une autre caractéristique préférée de l'invention, le rapport de la vitesse du gaz dans un caisson sur la vitesse du gaz en sortie des lames solidaires dudit caisson est inférieur à 0,2.
Grâce à cette différence importante des vitesses du gaz dans le caisson et à la sortie des lames, le caisson forme un réservoir de gaz sous pression quasiment sans circulation, assurant une vitesse uniforme pour l'éjection des gaz.
Selon une autre caractéristique préférée de l'invention, les moyens de mise sous pression gazeuse comportent plusieurs ventilateurs adaptés à alimenter en gaz un ou plusieurs caissons.
La pression de chaque caisson peut ainsi être régulée indépendamment ou par sous-groupe de caissons, permettant d'ajuster, dans la largeur du produit plat, le taux de refroidissement en fonction du profil thermique désiré.
D'autres particularités et avantages de l'invention apparaítront encore dans la description ci-après.
Aux dessins annexés, donnés à titre d'exemples non limitatifs :
  • la figure 1 est une vue schématique d'une installation de refroidissement comprenant des dispositifs de refroidissement conformes à l'invention ;
  • la figure 2 est une vue schématique de coté de deux lames superposées d'un dispositif d'échange de chaleur conforme à l'invention ;
  • les figures 3A et 3B sont des coupes schématiques d'exemples de lames, selon la ligne III-III à la figure 2 ;
  • la figure 4 est une vue de derrière d'un dispositif d'échange de chaleur conforme à un mode de réalisation de l'invention;
  • la figure 5 est une vue analogue à la figure 4 d'un dispositif échange de chaleur placé dans une enceinte étanche aux gaz ;
  • la figure 6 est une vue en coupe suivant la ligne VI-VI à la figure 5 ; et
  • la figure 7 est une vue en coupe suivant la ligne VII-VII à la figure 5.
On va décrire ci-après à titre d'exemple un dispositif de refroidissement d'un produit plat qui est formé d'un dispositif d'échange de chaleur conforme à l'invention.
Bien entendu, l'invention pourra s'appliquer également à un dispositif de chauffage d'un produit plat.
En référence tout d'abord à la figure 1, une installation de refroidissement en continu d'un produit plat tel qu'un produit laminé 1 peut comporter plusieurs dispositifs de refroidissement 10, ici au nombre de quatre, répartis sur le parcours du produit laminé défilant entre des rouleaux de transport 2. De manière non limitative, le produit laminé défile verticalement entre les dispositifs de refroidissement 10 disposés généralement deux à deux, de chaque coté du produit laminé afin de refroidir simultanément le produit par ses deux faces.
Les rouleaux de transport 2 permettent de stabiliser le produit laminé 1. Ils peuvent provoquer une légère déflexion au produit laminé 1, inférieure ou égale à 15° afin de limiter la vibration du produit laminé 1.
Une telle installation de refroidissement peut être utilisée par exemple dans une ligne de recuit en continu pour le traitement de bandes d'acier, dans laquelle le produit laminé défile par passes verticales dans différentes chambres de traitement.
Ces bandes d'acier ont une épaisseur comprise entre 0,15 et 2,3 mm et leur largeur peut atteindre jusqu'à 2 m.
Il est important lors du traitement thermique de l'acier de refroidir très rapidement les bandes, de manière homogène afin d'éviter toute déformation de la bande.
Pour cela, le dispositif de refroidissement 10 comporte des caissons 11 qui sont adaptés à contenir un gaz sous pression.
Chaque caisson 11 comporte plusieurs lames 12 qui forment des conduits pour l'éjection du gaz en direction du produit laminé 1 à refroidir.
Ces lames 12 sont superposées les unes aux autres comme illustré à la figure 1, dans la direction de défilement du produit laminé 1, de manière à refroidir la surface du produit lors de son parcours dans le dispositif d'échange de chaleur 10.
La hauteur de l'empilement des lames 12 sur la hauteur d'un caisson 11 est de préférence inférieure ou égale à 6 m.
Ces lames 12 comportent au moins un orifice de sortie 13 comme représenté à la figure 2, qui s'étend dans la largeur du produit laminé 1. Cet orifice de sortie 13 débouche ainsi à l'extrémité du conduit formé par la lame 12 qui s'étend à partir du caisson 11 en direction du produit laminé 1.
De préférence, la section transversale des lames 12, dans un plan perpendiculaire au produit laminé 1, décroít à partir du caisson 11.
Les orifices de sortie 13 peuvent être des trous circulaires, rectangulaires, oblongs, etc., ou des petites fentes réalisées à l'extrémité de chaque lame 12. La lame 12 pourrait également n'avoir qu'un seul orifice de sortie 13 formant une fente en regard du produit laminé 1.
Chaque espace séparant deux lames superposées 12 (hachuré sur la figure 2) a une profondeur dans une direction perpendiculaire au produit laminé 1 et une largeur suivant la direction longitudinale du produit laminé 1 suffisantes pour éviter l'accumulation du gaz de refroidissement à proximité de la surface du produit laminé 1.
Ainsi, la profondeur des espaces de séparation des lames 12 est supérieure à 200 mm, et de préférence supérieure à 300 mm.
L'agencement de ces lames 12 et de leurs orifices 13 est décrit notamment dans le brevet français FR 2738577.
De manière générale, le nombre de lames 12 du dispositif 10 et le nombre d'ouvertures 13 sont tels que la section totale formée par les ouvertures 13 soit comprise entre 1% et 5% de la surface couverte par l'ensemble des lames 12, et de préférence comprise entre 2 et 4% de cette surface.
En outre, les lames 12 d'un caisson 11 sont dimensionnées de telle sorte que l'évacuation du gaz dans la section S entre ces lames 12 est réalisée à une vitesse inférieure ou égale à 20 m/s en tout point.
La section correspond à la section de l'espace prise dans le plan de la figure 2, perpendiculaire au produit laminé 1 et parallèle à la direction de défilement du produit laminé 1.
La vitesse du gaz après son impact sur le produit est ainsi maintenue, dans les espaces entre les lames 12, sous une valeur critique de 20 m/s afin de limiter les phénomènes de turbulences dans ces espaces qui perturberaient l'évacuation du gaz.
Plus précisément, la section de passage entre deux lames superposées 12 est égale au produit de la profondeur P de cet espace entre deux lames 12 par la hauteur libre moyenne W entre deux lames 12 : W = (a + b)/2    où a est égale à la distance séparant les lames 12 au niveau de la face avant du caisson 11, et
   b est égale à la distance séparant les lames 12 au niveau des orifices de sortie 13.
La profondeur P peut être constante dans la largeur de la lame 12, ou variable, comme illustré aux figures 3A et 3B, si l'on veut conférer au courant gazeux de retour une vitesse davantage dirigée vers l'arrière du dispositif.
Une cloison 12a s'étend ainsi entre les lames superposées 12, à partir du caisson 11, de telle sorte que la profondeur P au centre de la lame 12 est plus faible qu'à ses extrémités.
De manière générale, la profondeur est une fonction continue P(x) qui varie suivant la distance x à partir de l'axe de symétrie de la lame 12 (dans le cas de la figure 3A où un retour symétrique du gaz est réalisé par les deux côtés) ou à partir d'une extrémité de la lame 12 (dans le cas de la figure 3B où le retour du gaz n'est réalisé que d'un seul côté de la lame).
Dans le cas de la figure 3A, le débit entre deux lames 12 à une distance x de l'axe de symétrie est égal à q.x/l où q est le débit par lame (m3/s) et I la largeur de l'extrémité de la lame 12 parallèlement à la largeur du produit avec x≤I/2. La section de passage pour le gaz de retour à la même distance x est égale à w.P(x). La limitation de la vitesse de retour à 20 m/s implique donc que, pour toute valeur de x comprise entre 0 et I/2, on ait : P(x)≥q.x/20.I.w,    x,I et w étant exprimés en mètres.
De même, dans le cas de la fig. 3B, la condition est aussi : P(x)≥q.x/20.I.w,    x variant cette fois entre 0 et I.
De la sorte, le gaz s'échappant entre les lames peut être évacué aux deux extrémités de celles-ci dans le cas de la figure 3A, ce qui fait que la vitesse limite d'extraction n'est atteinte que lorsque le débit q/2 d'une demi-largeur de lame divisé par la section S de passage entre deux lames est égal à 20, soit q/S = 40.
Par rapport au brevet français FR 2738577, le fait d'extraire le gaz par les deux côtés de la lame permet donc de réduire la section à S = q/40 au lieu de S = q/20.
Comme illustré à la figure 4, et conformément à l'invention, le dispositif de refroidissement comporte au moins un caisson 11, ici au nombre de cinq. Ces caissons 11 sont répartis dans la largeur du produit laminé 1 et s'étendent dans la direction longitudinale du produit laminé défilant, parallèlement les uns aux autres.
La largeur de chaque caisson 11 et la distance séparant les caissons 11 permettent l'évacuation du gaz entre les caissons 11 sans perturber la sortie de gaz des lames 12.
Cette distance, notée D1-2 ou D2-3 à la figure 4, peut avoir une valeur différente d'une paire de caissons 11 à une autre paire.
Dans cet exemple, les caissons 11 ont une section sensiblement parallélépipédique, la distance entre les caissons 11 correspondant à la distance séparant leurs flancs placés en vis-à-vis.
Des ouvertures de sortie 14 du gaz après éjection sont ainsi situées entre les caissons 11, dans un plan défini par les faces arrière opposées aux faces avant des caissons 11.
Le gaz peut ainsi être récupéré sur une face arrière du dispositif d'échange de chaleur 10, à l'opposé du produit laminé 1, ce qui permet d'éviter la circulation du gaz le long de la surface du produit laminé 1 et un refroidissement plus important des rives du produit laminé 1 que en son centre.
De préférence, le rapport de la moitié du débit de gaz en m3/s en sortie de deux lames adjacentes 12 suivant la largeur du produit sur la section en m2 de l'espace séparant les caissons 11 comprenant ces lames 12 est inférieur à 20.
Cette section, prise dans le plan de la figure 3, s'étend dans un plan parallèle au produit laminé 1 et à la direction de défilement du produit laminé 1.
Elle correspond, dans le plan des faces avant des caissons 11, au produit de la distance L (pas, ou entraxe) séparant deux lames superposées 12 par la distance D1-2 ou D2-3 séparant deux caissons voisins 11.
Ainsi, sur l'exemple de la figure 6, (q1/2 + q2/2) / L.D1-2 ≤ 20 et (q2/2 + q3/2) / L.D2-3 ≤ 20.
Lorsque le dispositif comporte comme ici plusieurs caissons 11 disposés parallèlement dans la largeur du produit laminé 1, la section de l'espace séparant les caissons 11 est égale à la somme des sections des espaces séparant les caissons 11 deux à deux.
lci, à titre d'exemple non limitatif, cette section serait égale à la somme des sections, prises de gauche à droite sur la figure 4, L x (D3-4 + D2-3 + D1-2 + D1-2 + D2-3 + D3-4).
A titre d'exemple, la distance L est inférieure ou égale à 300 mm, et de préférence inférieure ou égale à 150 mm.
Dans le cas où les lames sont symétriques dans leur plan (fig. 3A), la relation du type (q1/2 + q2/2) / D1-2.L ≤ 20 ou (q1 + q2) / D1-2.L ≤ 40 est respectée, ce qui permet de fixer les espaces entre les caissons : Dij ≥ (qi + qj) / 40 L où qi et qj représentent respectivement les débits (m3/s) d'une lame du caisson i et du caisson j adjacents, et Dij la largeur (m) de l'espace libre entre les caissons i et j.
Les lames 12 de chaque caisson 11 sont en outre réparties régulièrement sur une face avant du caisson 11 suivant la direction de défilement du produit laminé, chaque lame 12 d'un premier caisson 11 étant adjacente à une lame 12 d'un deuxième caisson 11 dans le plan défini par les orifices 13 de sortie du gaz (voir en particulier la figure 6).
Ainsi, bien que les caissons 11 soient espacés les uns des autres pour faciliter l'évacuation des gaz de refroidissement, les lames 12 ont un profil sensiblement divergent dans le plan transversal du produit laminé de manière à constituer à leurs extrémités, toutes adjacentes dans ce plan transversal, un orifice 13 de sortie de gaz uniforme sur toute la largeur du produit laminé 1. Cet orifice 13 peut être formé d'une fente unique ou d'une série de petits orifices répartis régulièrement sur toute la largeur du dispositif.
La largeur de l'orifice de sortie 13 du gaz, dans la largeur du produit laminé, est ainsi supérieure à la largeur du caisson 11.
Par ailleurs, il est préférable que le rapport de la vitesse du gaz dans un caisson 11 sur la vitesse du gaz en sortie des lames 12 solidaires du caisson 11 reste inférieur à 0,2.
Ainsi, la vitesse du gaz dans chaque caisson 11 peut être de l'ordre de 10 m/s alors que la vitesse en sortie des lames 12 peut atteindre et dépasser 150 m/s.
Les caissons 11 forment ainsi des réservoirs de gaz sous-pression pratiquement sans circulation, ce qui permet d'obtenir un écoulement régulier du gaz en sortie des lames 12.
Chaque caisson 11 comporte une ouverture d'alimentation 15 en gaz sous pression qui peut être reliée à des moyens de mise sous pression gazeuse tels qu'un ventilateur 16 (voir figure 1) ou un compresseur.
Le ventilateur 16 est destiné à introduire un débit important de gaz de refroidissement sous pression dans chaque caisson 11.
Ces ouvertures d'alimentation 15 sont disposés dans cet exemple en quinconce dans les faces arrière des caissons 11.
Les moyens de mise sous pression gazeuse comportent dans cet exemple plusieurs ventilateurs 16 (voit figure 1) adaptés à alimenter en gaz un ou plusieurs caissons 11.
De préférence, lorsque le dispositif de refroidissement comporte comme ici un nombre impair de caissons 11, les moyens de mise sous pression gazeuse comportent un ventilateur 16 adapté à alimenter le caisson central 11 et au moins un autre ventilateur 16 adapté à alimenter des caissons 11 disposés symétriquement de part et d'autre du caisson central 11.
Ici, le dispositif de refroidissement peut comporter trois ventilateurs, un premier ventilateur étant relié au caisson central, un deuxième ventilateur étant relié aux caissons intermédiaires et un troisième ventilateur étant relié aux caissons des rives.
De préférence, ces ventilateurs sont entraínés par des moteurs à vitesse variable.
On peut ainsi réguler indépendamment la pression dans les caissons de manière à assurer l'homogénéité transversale du refroidissement. On peut en outre régler l'intensité de refroidissement sur la largeur du produit laminé 1 en fonction du profil thermique désiré.
De même, si la largeur du produit à traiter est par exemple inférieure ou égale à la largeur totale du caisson central et des deux caissons intermédiaires, le ventilateur alimentant les caissons des rives peut être arrêté ou tourner au ralenti pour économiser de l'énergie.
Comme illustré en outre à la figure 6, le dispositif de refroidissement 10 est incorporé dans une enceinte 17 étanche aux gaz, un orifice d'évacuation des gaz 18 étant prévu dans une paroi arrière 17a de l'enceinte 17, opposée à la face avant des caissons 11.
L'orifice d'évacuation 18 des gaz est de préférence situé au centre de la paroi arrière 17a de l'enceinte 17, à mi-hauteur du dispositif de refroidissement 10 et a sensiblement la même largeur que celui-ci (fig. 5).
Cette enceinte étanche 17 peut être utilisée dans les cas où, pour éviter d'oxyder le produit laminé 1 pendant son refroidissement, il est nécessaire d'effectuer le refroidissement sous une atmosphère de protection. On utilise par exemple comme gaz de refroidissement, à la place de l'air, un mélange d'azote et d'hydrogène, à faible teneur en hydrogène afin d'utiliser un gaz réducteur mais non explosif. La proportion d'hydrogène est de préférence inférieure ou égale à 5%. Ce gaz pourrait également être de l'azote pur.
Le gaz peut éventuellement être récupéré à la sortie de l'orifice d'évacuation 18 pour être recyclé en continu dans les moyens de mise sous pression gazeuse. Classiquement, le recyclage comprend une étape de récupération du gaz, une étape de refroidissement de celui-ci et une étape de réinjection par les ouvertures d'alimentation 15 dans les caissons 11.
Comme représenté sur les figures 5, 6 et 7, le dispositif de refroidissement 10 comporte de préférence des moyens de réglage 19 adaptés à déplacer le dispositif 10 dans une direction perpendiculaire au produit laminé 1.
Ainsi, le dispositif dans son ensemble peut être rapproché, dans une position de travail illustrée à la figure 7, ou éloigné du produit laminé 1 comme illustré à la figure 6.
Cette position éloignée permet notamment d'écarter le dispositif de refroidissement du produit défilant 1 en cas d'incident, par exemple lorsque le produit laminé est déformé et forme des surépaisseurs qui pourraient endommager les lames 12 du dispositif de refroidissement 10.
On peut ainsi modifier la distance séparant les orifices de sortie 13 des lames 12 de la surface du produit laminé afin de régler les conditions de refroidissement.
Les moyens de réglage 19 peuvent comporter des axes 20 solidaires du bâti 21 du dispositif sur lequel sont montés les caissons.
Ici, à titre d'exemple, le dispositif de refroidissement 10 comporte quatre axes 20, disposés par paires en haut et en bas du dispositif 10, de chaque coté de ce dispositif.
Des moyens d'actionnement (non représentés) permettent classiquement de déplacer en va-et-vient ces axes, dans une direction perpendiculaire à ces axes, entre les deux positions définies précédemment. Ces moyens d'actionnement peuvent être à titre d'exemple des moteurs de préférence pas à pas, munis de codeurs permettant de connaítre avec précision la distance orifices - produit laminé et actionnant des vérins à vis.
Lorsque le dispositif de refroidissement 10 est incorporé dans une enceinte étanche 17 comme illustré sur les figures 5 à 7, des soufflets souples étanches 22, 23 sont en outre prévus autour des axes 20 émergeant de l'enceinte 17 pour être raccordés aux moyens d'actionnement et autour des ouvertures d'alimentation 15 des caissons 11 qui sont reliées aux moyens de mise sous pression gazeuse 16.
En fonctionnement, une bande d'acier 1 défile entre les dispositifs de refroidissement 10 disposé par paire de chaque coté de la bande d'acier.
Grâce à la vitesse élevée de sortie des gaz des lames, proche de 150 m/s, rendue possible par la récupération vers l'arrière du dispositif, entre les caissons 11, du gaz après impact sur la bande, on peut refroidir efficacement une bande d'acier.
A titre d'exemple, on a refroidi une tôle d'acier de 1300 mm de large de 650 à 400°C, avec un gaz formé d'un mélange de 95 % d'azote et 5 % d'hydrogène, à 45°C.
Le dispositif dans cet essai comporte des lames 12 percées de trous de diamètre égal à 9,2 mm formant des orifices de sortie 13 espacés de 50 mm dans-la largeur de la lame 12.
Le pas des lames 12 ou distance L est égal à 50 mm et la distance orifices - bande à refroidir est réglée à 50 mm.
Un caisson central a des lames d'une largeur égale à 750 mm au niveau des orifices, chaque lame comportant 15 trous.
Les caissons latéraux ont des lames d'une largeur égale à 300 mm et comportant 6 trous.
La profondeur P des lames est uniforme et égale à 0,35 m, la section S de passage entre les lames étant égale à 7,3510-3 m2.
La largeur de passage entre le caisson central et les caissons latéraux D1-2 est égale à 150 mm.
Le débit de gaz par m2 de surface d'échange sur la tôle à refroidir atteint 250 m3/m2.min. x face.
On obtient ainsi une vitesse d'échappement du gaz entre les lames égale à 10,63 m/s, et entre les caissons, central et latéraux, égale à 14,6 m/s.
On atteint ainsi un coefficient de transfert moyen égal à 623 Kcal/m2.h.°C avec une vitesse de refroidissement moyenne entre 650 et 400 °C de 120°C/s pour 1 mm d'épaisseur.
On constate donc que le dispositif conforme à l'invention permet d'atteindre des débits par unité de surface nettement plus élevés que dans les dispositifs classiques, sans observer de saturation et avec des rendements plus élevés.
Il convient de remarquer que, dans ce qui précède, les débits de gaz de retour sont considérés comme égaux aux débits de gaz injectés, alors que, le gaz, se réchauffant au contact du produit à refroidir, se dilate.
Cependant, les débits sont grands et les échauffements faibles de sorte que l'on peut négliger l'augmentation de vitesse due à l'échauffement.
Le calcul des vitesses peut donc se faire en divisant les débits en m3/s au retour, qui sont égaux aux débits injectés en m3/s, par la section en m2.
Bien entendu, l'invention n'est pas limitée à l'exemple de réalisation décrit ci-dessus, et de nombreuses modifications peuvent être apportées à celui-ci sans sortir du cadre de l'invention.
Ainsi, le nombre de caissons, égal à cinq, peut être différent tout en restant de préférence impair.
En outre, le dispositif d'échange de chaleur pourrait être un dispositif de chauffage au lieu d'un dispositif de refroidissement.

Claims (15)

  1. Dispositif d'échange de chaleur avec un produit plat (1), défilant devant ledit dispositif (10), comprenant des moyens de mise sous pression gazeuse (16) d'au moins un caisson (11), ledit caisson (11) comprenant sur une face avant plusieurs lames (12) formant conduit pour l'éjection du gaz en direction d'une surface du produit plat (1), les lames (12) étant superposées les unes aux autres suivant la direction de défilement du produit plat (1) et constituant un orifice de sortie (13) du gaz s'étendant dans le sens de la largeur du produit plat (1), caractérisé en ce que la largeur dudit caisson (11) dans le sens de la largeur du produit plat (1) est inférieure à la largeur de l'orifice de sortie (13) du gaz s'étendant dans la largeur du produit plat (1), la largeur réduite du caisson (11) permettant l'évacuation du gaz vers l'arrière de part et d'autre dudit caisson (11).
  2. Dispositif d'échange de chaleur conforme à la revendication 1, caractérisé en ce que chaque lame (12) s'évase du caisson (11) jusqu'à l'orifice de sortie (13) du gaz.
  3. Dispositif d'échange de chaleur conforme à l'une des revendications 1 ou 2, caractérisé en ce qu'il comporte des ouvertures de sortie (14) du gaz après éjection, situées dans un plan défini par une face arrière opposée à ladite face avant du caisson (11).
  4. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 3, caractérisé en ce qu'il comporte au moins deux caissons (11) disposés dans la largeur du produit plat (1), l'espacement entre lesdits caissons (11) étant tel que l'évacuation du gaz entre lesdits caissons (11) est réalisée à une vitesse inférieure ou égale à 20m/s.
  5. Dispositif d'échange de chaleur conforme à la revendication 4, caractérisé en ce que le rapport de la moitié du débit de gaz en m3/s en sortie de deux lames adjacentes (12) suivant la largeur du produit sur la section en m2 de l'espace séparant lesdits caissons (11) comprenant lesdites lames (12) est inférieur à 20, ladite section s'étendant dans un plan parallèle au produit plat (1) et à la direction de défilement du produit plat (1).
  6. Dispositif d'échange de chaleur conforme à la revendication 5, caractérisé en ce qu'il comporte plusieurs caissons (11) disposés parallèlement dans la largeur du produit laminé (1), ladite section de l'espace séparant les caissons (11) étant égale à la somme des sections des espaces séparant lesdits caissons (11) deux à deux.
  7. Dispositif d'échange de chaleur conforme à l'une des revendications 4 à 6, caractérisé en ce que les lames (12) desdits caissons (11) sont réparties régulièrement sur une face avant du caisson (11) suivant la direction de défilement du produit plat, chaque lame (12) d'un premier caisson (11) étant adjacente à une lame (12) d'un deuxième caisson (11) dans le plan défini par les orifices de sortie (13) du gaz.
  8. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 7, caractérisé en ce que les lames (12) d'un caisson (11) sont dimensionnées de telle sorte que l'évacuation du gaz dans la section (S) entre lesdites lames (12) est réalisée à une vitesse inférieure ou égale à 20m/s en tout point.
  9. Dispositif d'échange de chaleur conforme à la revendication 8, caractérisé en ce que P(x) ≥ q.x/20.l.w, où P(x) est la profondeur de la lame à une distance x d'un axe de symétrie ou d'une extrémité de lame, w est la hauteur libre moyenne entre deux lames, q est le débit par lame et I la largeur de l'extrémité de la lame, et avec x ≤ l/2 dans le cas où le retour du gaz est réalisé par les deux côtés, et x ≤ l dans le cas où le retour du gaz est réalisé par un seul côté.
  10. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 9, caractérisé en ce que le rapport de la vitesse du gaz dans un caisson (11) sur la vitesse du gaz en sortie des lames (12) solidaires dudit caisson (11) est inférieur à 0,2.
  11. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 10, caractérisé en ce que les moyens de mise sous pression gazeuse comportent plusieurs ventilateurs (16) adaptés à alimenter en gaz un ou plusieurs caissons (11).
  12. Dispositif d'échange de chaleur conforme à la revendication 11, caractérisé en ce qu'il comporte un nombre impair de caissons (11), les moyens de mise sous pression gazeuse comportant un ventilateur (16) adapté à alimenter un caisson central (11) et au moins un autre ventilateur (16) adapté à alimenter des caissons (11) disposés symétriquement de part et d'autre dudit caisson central (11).
  13. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 12, caractérisé en ce qu'il est incorporé dans une enceinte (17) étanche aux gaz, un orifice d'évacuation (18) des gaz étant prévu dans une paroi arrière (17a) de ladite enceinte (17), opposée à la face avant desdits caissons (11).
  14. Dispositif d'échange de chaleur conforme à l'une des revendications 1 à 13, caractérisé en ce qu'il comporte des moyens de réglage (19) adaptés à déplacer ledit dispositif (10) dans une direction perpendiculaire au produit plat (1).
  15. Dispositif de refroidissement d'un produit plat, tel qu'un produit laminé en acier, caractérisé en ce qu'il est formé d'un dispositif d'échange de chaleur conforme à l'une des revendications 1 à 14.
EP00400353A 1999-02-16 2000-02-08 Dispositif d'échange de chaleur avec un produit plat Expired - Lifetime EP1029933B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9901851A FR2789757B1 (fr) 1999-02-16 1999-02-16 Dispositif d'echange de chaleur avec un produit plat
FR9901851 1999-02-16

Publications (2)

Publication Number Publication Date
EP1029933A1 EP1029933A1 (fr) 2000-08-23
EP1029933B1 true EP1029933B1 (fr) 2004-12-08

Family

ID=9542070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00400353A Expired - Lifetime EP1029933B1 (fr) 1999-02-16 2000-02-08 Dispositif d'échange de chaleur avec un produit plat

Country Status (11)

Country Link
US (1) US6358465B1 (fr)
EP (1) EP1029933B1 (fr)
JP (1) JP4417511B2 (fr)
KR (1) KR100640134B1 (fr)
AT (1) ATE284452T1 (fr)
AU (1) AU768922B2 (fr)
BR (1) BR0000548A (fr)
CA (1) CA2298311C (fr)
DE (1) DE60016479T2 (fr)
ES (1) ES2234534T3 (fr)
FR (1) FR2789757B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876710B1 (fr) * 2004-10-19 2014-12-26 Kappa Thermline Procede et dispositif de limitation de la vibration de bandes d'acier ou d'aluminium dans des zones de refroidissement par soufflage de gaz ou d'air
AT502239B1 (de) * 2005-08-01 2007-07-15 Ebner Ind Ofenbau Vorrichtung zum kühlen eines metallbandes
US7968046B2 (en) 2005-08-01 2011-06-28 Ebner Industrieofenbau Ges.M.B.H Apparatus for cooling a metal strip
EP2108465A1 (fr) * 2008-04-07 2009-10-14 Siemens VAI Metals Technologies Ltd. Procédé et appareil pour le refroidissement contrôlé

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262688A (en) * 1965-06-03 1966-07-26 Midland Ross Corp Jet convection heat transfer
JPH088254A (ja) 1994-06-21 1996-01-12 Nec Corp 金属薄膜形成方法
FR2738577B1 (fr) * 1995-09-12 1998-03-13 Selas Sa Dispositif de refroidissement d'un produit lamine
JPH09194954A (ja) * 1996-01-22 1997-07-29 Nippon Steel Corp 鋼帯のガスジェットによる冷却装置

Also Published As

Publication number Publication date
FR2789757A1 (fr) 2000-08-18
AU768922B2 (en) 2004-01-08
DE60016479D1 (de) 2005-01-13
KR20000058044A (ko) 2000-09-25
CA2298311A1 (fr) 2000-08-16
US6358465B1 (en) 2002-03-19
JP4417511B2 (ja) 2010-02-17
FR2789757B1 (fr) 2001-05-11
ATE284452T1 (de) 2004-12-15
DE60016479T2 (de) 2005-12-15
CA2298311C (fr) 2010-02-02
ES2234534T3 (es) 2005-07-01
KR100640134B1 (ko) 2006-10-31
BR0000548A (pt) 2001-03-20
JP2000234830A (ja) 2000-08-29
AU1499500A (en) 2000-08-17
EP1029933A1 (fr) 2000-08-23

Similar Documents

Publication Publication Date Title
EP2100673B1 (fr) Procédé et dispositif de soufflage de gaz sur une bande en défilement.
EP0128842B1 (fr) Perfectionnement à la trempe du verre
EP2035588B1 (fr) Dispositif de sécurisation d'un four équipé d'un chauffage et d'un refroidissement rapides fonctionnant sous atmosphère contrôlée.
EP0404678B1 (fr) Enceinte de conditionnement thermique
EP2321232A2 (fr) Unite et procede de traitements de surface de verre plat avec conditionnement thermique du verre
EP0795616B1 (fr) Procédé et installation de traitement thermique en continu de bandes métalliques dans des atmosphères de nature différente
EP2513582A1 (fr) Installation et procédé de préchauffage d'une bande d'acier en défilement continu
EP1655383B1 (fr) Procédé et dispositif de limitation de la vibration de bandes d'acier ou d'aluminium dans des zones de refroidissement par soufflage de gaz ou d'air
EP0761829B1 (fr) Dispositif de refroidissement d'un produit laminé
EP1029933B1 (fr) Dispositif d'échange de chaleur avec un produit plat
EP2231895B1 (fr) Procede et dispositifs de controle d'un flux de vapeur en evaporation sous vide
EP0170542B1 (fr) Procédé de protection d'un métal solide contre l'oxydation - application au laminage
EP3601624B1 (fr) Section et procédé de refroidissement d'une ligne continue combinant un refroidissement sec et un refroidissement humide.
FR2648807A1 (fr)
FR2508618A1 (fr) Procede et dispositif pour etablir un echange intense de chaleur et de matiere entre un gaz et un corps oblong, notamment a des fins de prechauffage ou de sechage de barres metalliques
EP2826570B1 (fr) Systeme de pre-refroidissement avec reglage interne pilote
EP3555324A1 (fr) Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques
EP0058607B1 (fr) Dispositif de refroidissement rapide et contrôlé dans un four de recuit en atmosphère neutre ou réductrice
WO2000053985A1 (fr) Dispositif pour le traitement thermique a haute temperature d'une matiere ligneuse
FR2571384A1 (fr) Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre
EP2176437B1 (fr) Dispositif de refroidissement apres galvanisation d'un produit en bande
FR2921058A1 (fr) Dispositif et procede de soufflage d'un fluide sur une face d'un element mince de type vitrage
EP2173918B1 (fr) Installation de revetement d'une bande metallique
EP1030127A1 (fr) Dispositif anti-givrage pour filtre à air
BE888644A (fr) Appareil et procede pour supporter un feuillard metallique sous une pression de gaz statique,

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001124

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030508

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041208

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60016479

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050308

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050317

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANDRITZ TECHNOLOGY AND ASSET MANAGEMENT GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ANDRITZ TECHNOLOGY AND ASSET MANAGEMENT GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2234534

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: SELAS A FRENCH "SOCIETE PAR ACTIONS SIMPLIFIEE"

Effective date: 20061002

Owner name: ANDRITZ TECHNOLOGY AND ASSET MANAGEMENT GMBH

Effective date: 20061002

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SELAS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190218

Year of fee payment: 20

Ref country code: LU

Payment date: 20190218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 20

Ref country code: ES

Payment date: 20190320

Year of fee payment: 20

Ref country code: IT

Payment date: 20190225

Year of fee payment: 20

Ref country code: FI

Payment date: 20190219

Year of fee payment: 20

Ref country code: GB

Payment date: 20190218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190219

Year of fee payment: 20

Ref country code: BE

Payment date: 20190218

Year of fee payment: 20

Ref country code: SE

Payment date: 20190218

Year of fee payment: 20

Ref country code: FR

Payment date: 20190219

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60016479

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200207

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 284452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200208

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200208

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200209