WO2018107623A1 - 一种基于pfc双全桥的智能型正弦波电压转换电路 - Google Patents

一种基于pfc双全桥的智能型正弦波电压转换电路 Download PDF

Info

Publication number
WO2018107623A1
WO2018107623A1 PCT/CN2017/079191 CN2017079191W WO2018107623A1 WO 2018107623 A1 WO2018107623 A1 WO 2018107623A1 CN 2017079191 W CN2017079191 W CN 2017079191W WO 2018107623 A1 WO2018107623 A1 WO 2018107623A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
bridge
switch tube
tube
pfc
Prior art date
Application number
PCT/CN2017/079191
Other languages
English (en)
French (fr)
Inventor
廖志刚
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018107623A1 publication Critical patent/WO2018107623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent sine wave voltage conversion circuit based on a PFC double full bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel strip.
  • the sine wave voltage conversion circuit topology is its key circuit, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • a certain high-frequency pulse signal exists on the output side of the circuit, thereby affecting the quality of the output voltage, and thus it is difficult to meet the conversion requirement.
  • the technical problem to be solved by the present invention is to provide an intelligent sinusoidal voltage conversion circuit based on PFC double full bridge for improving the PF value of the voltage conversion device, improving the output voltage quality, and filtering In addition to the high frequency pulse on the output side, it provides high quality power frequency sinusoidal AC for the load.
  • the present invention adopts the following technical solutions.
  • An intelligent sinusoidal voltage conversion circuit based on a PFC double full bridge comprising an input rectification and filtering unit for rectifying and filtering a grid voltage, and a PFC boost for boosting an output voltage of an input rectification and filtering unit a unit, and: a full-bridge DC-to-DC isolated converter unit, including a first switch tube, a second switch tube, a transformer, a first rectifier bridge, an eighth switch tube, a ninth switch tube, and a first electrolytic capacitor
  • the drain of the first switch is connected to the output of the PFC boost unit, the source of the first switch is connected to the first end of the primary winding of the transformer, and the drain of the second switch is connected to the first a source of the switching transistor, a source of the second switching transistor is connected to the front end, a drain of the eighth switching transistor is connected to an output end of the PFC boosting unit, and a source of the eighth switching transistor is connected to the transformer a second end of the primary winding, a drain of the ninth switch is connected
  • the anode of the output side of the first rectifier bridge is connected to the rear end, the anode of the output side of the first rectifier bridge is connected to the anode of the first electrolytic capacitor, and the cathode of the first electrolytic capacitor is connected to the back end.
  • the positive pole on the output side of the first rectifier bridge is used as an output end of a full-bridge DC-to-DC isolating converter unit; an inverter inverting unit is connected to an output end of the full-bridge DC-to-DC isolated converter unit, the inverse
  • the inverter unit is configured to perform inverter conversion on the output voltage of the full-bridge DC-to-DC isolated converter unit, and output an alternating current; a filter inductor, a front end of the filter inductor is connected to an output end of the inverter inverter unit, The back end of the filter inductor is connected to a load, and the filter inductor is used to filter out high frequency pulses and provide power frequency sinusoidal alternating current for the load.
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifying diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input rectifying and filtering unit, the liter
  • the back end of the voltage inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal
  • the third The drain of the switch tube is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boost unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the second electrolytic capacitor
  • the negative pole is connected to the front end.
  • the method further includes an MCU control unit, a gate of the first switch tube, a gate of the second switch tube, a gate of the eighth switch tube, a gate of the ninth switch tube, and a gate of the third switch tube.
  • the poles are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output PWM signals to the first switch tube, the second switch tube, the eighth switch tube, the ninth switch tube and the third switch tube to control the first switch The on and off states of the tube, the second switch tube, the eighth switch tube, the ninth switch tube, and the third switch tube.
  • the inverter inverter unit comprises an inverter bridge composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube, and a gate and a fifth switch of the fourth switch tube a gate of the tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, and the fourth switch tube, the fifth switch tube, and the sixth switch tube are controlled by the MCU control unit And the seventh switch tube is turned on or off to enable the inverter inverting unit to output an alternating voltage.
  • the input rectification filtering unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, and the fuse is connected to a neutral line or a live line of the socket, and the common mode rejection
  • the front end of the inductor is connected in parallel to the socket
  • the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor
  • the input ends of the safety capacitor and the rectifier bridge are both connected in parallel to the rear end of the common mode suppression inductor, and the output end of the rectifier bridge
  • the full-bridge DC-to-DC isolating converter unit further includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a positive pole on an output side of the first rectifier bridge.
  • the back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal output by the full-bridge DC-to-DC isolated converter unit by the second sampling resistor and the third sampling resistor.
  • the method further includes an AC sampling unit connected between the input end of the input rectifying and filtering unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input rectifying and filtering unit and feed back to MCU control unit.
  • the AC sampling unit includes an operational amplifier, and two input ends of the operational amplifier are respectively connected to an input end of the input rectifying and filtering unit through a current limiting resistor, and an output end of the operational amplifier is connected to the MCU control unit. .
  • a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor.
  • the control unit collects an electrical signal of the source of the third switching transistor.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the input rectification and filtering unit is used for rectifying and filtering the grid voltage, and then outputting the pulsating DC voltage, and then using the PFC boosting unit to boost the pulsating DC voltage.
  • the full-bridge DC-to-DC isolated converter unit when the first switch tube and the ninth switch tube are turned on; the current is formed by the first switch tube, the transformer primary coil, and the ninth switch tube to the front end, and then The transformer core is coupled to the secondary side of the transformer.
  • the two diodes of the first rectifier bridge start to work, and the alternating current is rectified into a unidirectional pulsating power to the first electrolytic capacitor, and filtered to form a direct current.
  • the current is formed by the second switch tube primary coil and the eighth switch tube to the front end to form a loop, and then is coupled to the transformer secondary side through the transformer core, then the first The other two diodes of the rectifier bridge start to work, rectifying the alternating current into a unidirectional pulsating power to the first electrolytic capacitor, and filtering to form a direct current.
  • the output voltage can be adjusted to achieve boost or buck.
  • the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
  • the invention provides a filter inductor at the output end of the inverter inverter unit, and the filter inductor can filter the high frequency pulse in the alternating current, so that the load can obtain high quality power frequency sinusoidal alternating current, thereby improving the output voltage quality. To meet the power supply needs.
  • FIG. 1 is a schematic diagram of a sinusoidal voltage conversion circuit of the present invention.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on PFC double full bridge. As shown in FIG. 1 to FIG. 3, it comprises an input rectification filtering unit 10 for rectifying and filtering a grid voltage for inputting The PFC boosting unit 20 that performs the boost conversion of the output voltage of the rectifying and filtering unit 10, and:
  • a full-bridge DC-to-DC isolated converter unit 30 includes a first switching transistor Q6, a second switching transistor Q7, a transformer T1, a first rectifier bridge (D5, D6, D7, D8), an eighth switching transistor Q8, and a Nine switch tube Q9 and first electrolytic capacitor C3, the drain of the first switch tube Q6 is connected to the output end of the PFC boost unit 20, and the source of the first switch tube Q6 is connected to the first stage of the transformer T1 One end, the drain of the second switch tube Q7 is connected to the source of the first switch tube Q6, the source of the second switch tube Q7 is connected to the front end, and the drain of the eighth switch tube Q8 is connected to the drain An output end of the PFC boosting unit 20, a source of the eighth switching transistor Q8 is connected to a second end of the primary winding of the transformer T1, and a drain of the ninth switching transistor Q9 is connected to a source of the eighth switching transistor Q8.
  • the source of the ninth switch tube Q9 is connected to the front end, the gate of the first switch tube Q6, the gate of the second switch tube Q7, the gate of the eighth switch tube Q8, and the ninth switch tube Q9.
  • the gates are respectively used for accessing the PWM pulse signal to control the first switch tube Q6 and the ninth switch tube Q9 to be turned on and off at the same time, and the second switch tube Q7 and the
  • the eight switch tubes Q8 are simultaneously turned on and off, and the two ends of the secondary winding of the transformer T1 are connected in parallel with the two ends of the input side of the first rectifier bridge (D5, D6, D7, D8), and the first rectifier bridge (D5, D6)
  • the anode of the output side of the D7, D8) is connected to the rear end, and the anode of the output side of the first rectifier bridge (D5, D6, D7, D8) is connected to the anode of the first electrolytic capacitor C3, and the first electrolytic capacitor
  • the cathode of C3 is connected to the
  • An inverter inverting unit 40 is connected to the output of the full-bridge DC-to-DC isolating converter unit 30 for inverting the output voltage of the full-bridge DC-to-DC isolated converter unit 30. Output alternating current after conversion;
  • a filter inductor L3 a front end of the filter inductor L3 is connected to an output end of the inverter inverting unit 40, a rear end of the filter inductor L3 is connected to a load, and the filter inductor L3 is used for filtering high frequency pulses, and
  • the load provides power frequency sinusoidal AC.
  • the input rectification and filtering unit 10 rectifies and filters the grid voltage to output a pulsating DC voltage, and then uses the PFC boosting unit 20 to boost the pulsating DC voltage.
  • the full-bridge DC-to-DC isolated converter unit 30 when the first switching transistor Q6 and the ninth switching transistor Q9 are turned on; the current is from the first switching transistor Q6, the transformer T1 primary winding, and the ninth switching transistor Q9 to the front end.
  • the ground forms a loop, and then the core of the transformer T1 is coupled to the secondary side of the transformer.
  • the two diodes (D6, D7) of the first rectifier bridge start to work, and the alternating current is rectified into a one-way pulsating power to the first electrolytic capacitor C3. And filtering to form a direct current.
  • the second switching transistor Q7 and the eighth switching transistor Q8 are turned on, the current is formed by the second switching transistor Q7, the primary winding of the transformer T1, and the eighth switching transistor Q8 to form a loop, and then is coupled to the core through the transformer T1.
  • the secondary side of the transformer at which time the other two diodes (D5, D8) of the first rectifier bridge start to work, and the alternating current is rectified into a one-way pulsating electric power to the first electrolytic capacitor C3, and is shaped by filtering.
  • the invention adopts a full bridge isolation method to realize voltage isolation transmission, can effectively improve the PF value of the step-up/step-down conversion device, and also improve the output voltage quality, so that the voltage conversion process is more secure and reliable.
  • the invention provides a filter inductor L3 at the output end of the inverter inverting unit 70, and the filter inductor L3 can filter out the high frequency pulse in the alternating current, so that the load can obtain high quality power frequency sinusoidal alternating current, thereby improving Output voltage quality to meet power supply requirements.
  • the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2.
  • the gate of the tube Q5 is used to access a PWM control signal
  • the drain of the third switching transistor Q5 is connected to the anode of the first rectifier diode D1, and the cathode of the first rectifier diode D1 is used as the output of the PFC boosting unit 20.
  • the cathode of the first rectifier diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC boosting unit 20 when the output rectifying and filtering unit 10 detects that the half-wave AC voltage is output, the PFC boosting unit 20 enters the boosting mode to improve the PF value of the AC-to-AC intelligent buck switching topology circuit.
  • the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off The boosting inductor will form an induced electromotive force much higher than the input voltage.
  • the induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering, and filtered into a DC voltage of 400V.
  • Q5 is to increase or decrease the on-time of Q5 according to the input AC change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
  • the embodiment further includes an MCU control unit 80, a gate of the first switch tube Q6, a gate of the second switch tube Q7, a gate of the eighth switch tube Q8, and a ninth switch.
  • the gate of the transistor Q9 and the gate of the third switching transistor Q5 are respectively connected to the MCU control unit 80, and the MCU control unit 80 is configured to respectively output PWM signals to the first switching transistor Q6, the second switching transistor Q7, and the eighth switch.
  • the tube Q8, the ninth switch tube Q9 and the third switch tube Q5 are configured to control the on and off states of the first switch tube Q6, the second switch tube Q7, the eighth switch tube Q8, the ninth switch tube Q9 and the third switch tube Q5.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • the inverter inverting unit 40 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switch
  • the gate of the tube Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80.
  • the switching transistor Q4 is turned on or off to cause the inverter inverting unit 40 to output an alternating voltage.
  • the front end of the filter inductor L3 is connected to the output end of the inverter inverting unit 40, thereby filtering out the high frequency pulse in the AC voltage, so that the load obtains high quality power frequency sinusoidal alternating current.
  • the DC voltage passing through the C3 filter capacitor forms a loop through Q1, L4, load, and Q4 to supply a load to form a first high frequency pulse level; the second high frequency pulse level passes through Q2.
  • L3, load, and Q3 form a loop, and the blocking effect of the high-frequency pulse level is filtered by L3, and a complete power-frequency sine wave AC voltage is formed on the load.
  • the PWM signal outputted by the single chip U1 is sent to the GATE poles of Q1, Q2, Q3 and Q4 through the driving circuit.
  • the phase and frequency in the inverter inverter circuit operate according to the mode set in the control chip, and Q1, Q2, Q3, and Q4 operate through the power frequency modulation high frequency PWM mode, and the inductor L3 filters the high frequency pulse level. In addition, leaving the power frequency sinusoidal AC power to the load.
  • the input rectification filtering unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1, and the fuse F2 is connected to the neutral line of the socket.
  • the front end of the common mode suppression inductor L1 is connected in parallel to the socket
  • the lightning protection resistor RV1 is connected in parallel to the front end of the common mode suppression inductor L1
  • the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel
  • the mode suppresses the rear end of the inductor L1, and the output terminal of the rectifier bridge DB1 has a filter capacitor C1 connected in parallel.
  • the full-bridge DC-to-DC isolated converter unit 30 further includes a second sampling resistor R13 and a third in series. a sampling resistor R15, a front end of the second sampling resistor R13 is connected to the anode of the output side of the first rectifier bridge (D5, D6, D7, D8), and a rear end of the third sampling resistor R15 is connected to the MCU control unit 80.
  • the MCU control unit 80 acquires an electrical signal output by the full-bridge DC-to-DC isolating converter unit 30 by the second sampling resistor R13 and the third sampling resistor R15.
  • the embodiment further includes an AC sampling unit 70 connected between the input end of the input rectifying and filtering unit 10 and the MCU control unit 80.
  • the unit 70 is configured to collect the voltage of the AC side of the input rectification and filtering unit 10 and feed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B, and two input ends of the operational amplifier U9B are respectively connected to an input end of the input rectifying and filtering unit 10 through a current limiting resistor, and an output end of the operational amplifier U9B Connected to the MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to MCU control unit 80.
  • the MCU control unit 80 acquires an electrical signal of a source of the third switching transistor Q5 by using the first sampling resistor R2A.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on PFC double full bridge, which is compared with the prior art.
  • the invention has a high PF value, realizes isolation between the power grid and the output end, and has high security.
  • the output voltage can be automatically adjusted within the input full voltage range, and the output frequency is fixed. Again, the output voltage is sinusoidal output, and the AC voltage has an automatic shaping function.
  • the present invention includes a voltage and current sampling circuit, which can prevent Surge voltage and current.

Abstract

一种基于PFC双全桥的智能型正弦波电压转换电路,其包括有输入整流滤波单元(10)、PFC升压单元(20)、全桥DC转DC隔离变换器单元(30)、逆变倒相单元(40)和滤波电感(L3),全桥DC转DC隔离变换器单元(30)包括有第一开关管(Q6)、第二开关管(Q7)、变压器(T1)、第一整流桥(D5、D6、D7、D8)、第八开关管(Q8)、第九开关管(Q9)和第一电解电容(C3);逆变倒相单元(40)连接于全桥DC转DC隔离变换器单元(30)的输出端,逆变倒相单元(40)用于对全桥DC转DC隔离变换器单元(30)的输出电压进行逆变转换后输出交流电;滤波电感(L3)的前端连接于逆变倒相单元(40)的输出端,滤波电感(L3)的后端连接负载,滤波电感(L3)用于滤除高频脉冲,并为负载提供工频正弦交流电。所述转换电路可提高输出电压质量以及滤除输出信号中的高频脉冲。

Description

一种基于PFC双全桥的智能型正弦波电压转换电路
技术领域
本发明涉及电压转换电路,尤其涉及一种基于PFC双全桥的智能型正弦波电压转换电路。
背景技术
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,正弦波电压转换电路拓扑是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。实际应用中,由于电压转换过程中存在开关管的高速切换,使得电路的输出侧会存在一定的高频脉冲信号,进而影响输出电压的质量,因而难以满足转换要求。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种基于PFC双全桥的智能型正弦波电压转换电路,用以提高电压转换装置的PF值、提高输出电压质量,并且能够滤除输出侧的高频脉冲,进而为负载提供优质工频正弦交流电。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC双全桥的智能型正弦波电压转换电路,其包括有用于对电网电压进行整流和滤波的输入整流滤波单元、用于对输入整流滤波单元的输出电压进行升压转换的PFC升压单元,以及:一全桥DC转DC隔离变换器单元,包括有第一开关管、第二开关管、变压器、第一整流桥、第八开关管、第九开关管和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器初级绕组的第一端,所述第二开关管的漏极连接于第一开关管的源极,所述第二开关管的源极接前端地,所述第八开关管的漏极连接于PFC升压单元的输出端,所述第八开关管的源极连接于变压器初级绕组的第二端,所述第九开关管的漏极连接于第八开关管的源极,所述第九开关管的源极连接前端地,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极和第九开关管的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管与第九开关管同时通断,且所述第二开关管与第八开关管同时通断,所述变压器副边绕组的两端与第一整流桥输入侧的两端相并 联,所述第一整流桥输出侧的负极连接于后端地,所述第一整流桥输出侧的正极连接于第一电解电容的正极,所述第一电解电容的负极连接于后端地,所述第一整流桥输出侧的正极作为全桥DC转DC隔离变换器单元的输出端;一逆变倒相单元,连接于全桥DC转DC隔离变换器单元的输出端,所述逆变倒相单元用于对全桥DC转DC隔离变换器单元的输出电压进行逆变转换后输出交流电;一滤波电感,所述滤波电感的前端连接于逆变倒相单元的输出端,所述滤波电感的后端连接负载,所述滤波电感用于滤除高频脉冲,并为负载提供工频正弦交流电。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入整流滤波单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极、第九开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管、第八开关管、第九开关管和第三开关管,以控制第一开关管、第二开关管、第八开关管、第九开关管和第三开关管的通断状态。
优选地,所述逆变倒相单元包括由第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。
优选地,所述输入整流滤波单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
优选地,所述全桥DC转DC隔离变换器单元还包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于第一整流桥输出侧的正极,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集全桥DC转DC隔离变换器单元输出的电信号。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入整流滤波单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入整流滤波单元交流侧的电压并反馈至MCU控制单元。
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入整流滤波单元的输入端,所述运放的输出端连接于MCU控制单元。
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
优选地,所述MCU控制单元包括有单片机及其外围电路。
本发明公开的基于PFC双全桥的智能型正弦波电压转换电路中,利用输入整流滤波单元对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元对脉动直流电压进行升压处理,在全桥DC转DC隔离变换器单元中,当第一开关管和第九开关管时导通;电流由第一开关管、变压器原边线圈、第九开关管到前端地形成回路,然后通过变压器磁芯藕合至变压器副边,这时第一整流桥的两个二极管开始工作,将交流电整流成单向脉动电给第一电解电容,并滤波而形成直流。当第二开关管和第八开关管导通时,电流由第二开关管原边线圈、第八开关管到前端地形成回路,然后通过变压器磁芯藕合至变压器副边,这时第一整流桥的另两个二极管开始工作,将交流电整流成单向脉动电给第一电解电容,并滤波而形成直流。通过改变变压器原副边的匝数比可以调整输出电压的高低,进而实现升压或降压。基于上述结构,本发明采用全桥隔离的方式,实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元的输出端设置了滤波电感,利用滤波电感可滤除交流电中的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
附图说明
图1为本发明正弦波电压转换电路的原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC双全桥的智能型正弦波电压转换电路,结合图1至图3所示,其包括有用于对电网电压进行整流和滤波的输入整流滤波单元10、用于对输入整流滤波单元10的输出电压进行升压转换的PFC升压单元20,以及:
一全桥DC转DC隔离变换器单元30,包括有第一开关管Q6、第二开关管Q7、变压器T1、第一整流桥(D5、D6、D7、D8)、第八开关管Q8、第九开关管Q9和第一电解电容C3,所述第一开关管Q6的漏极连接于PFC升压单元20的输出端,所述第一开关管Q6的源极连接于变压器T1初级绕组的第一端,所述第二开关管Q7的漏极连接于第一开关管Q6的源极,所述第二开关管Q7的源极接前端地,所述第八开关管Q8的漏极连接于PFC升压单元20的输出端,所述第八开关管Q8的源极连接于变压器T1初级绕组的第二端,所述第九开关管Q9的漏极连接于第八开关管Q8的源极,所述第九开关管Q9的源极连接前端地,所述第一开关管Q6的栅极、第二开关管Q7的栅极、第八开关管Q8的栅极和第九开关管Q9的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管Q6与第九开关管Q9同时通断,且所述第二开关管Q7与第八开关管Q8同时通断,所述变压器T1副边绕组的两端与第一整流桥(D5、D6、D7、D8)输入侧的两端相并联,所述第一整流桥(D5、D6、D7、D8)输出侧的负极连接于后端地,所述第一整流桥(D5、D6、D7、D8)输出侧的正极连接于第一电解电容C3的正极,所述第一电解电容C3的负极连接于后端地,所述第一整流桥(D5、D6、D7、D8)输出侧的正极作为全桥DC转DC隔离变换器单元30的输出端;
一逆变倒相单元40,连接于全桥DC转DC隔离变换器单元30的输出端,所述逆变倒相单元40用于对全桥DC转DC隔离变换器单元30的输出电压进行逆变转换后输出交流电;
一滤波电感L3,所述滤波电感L3的前端连接于逆变倒相单元40的输出端,所述滤波电感L3的后端连接负载,所述滤波电感L3用于滤除高频脉冲,并为负载提供工频正弦交流电。
上述基于PFC双全桥的智能型正弦波电压转换电路中,利用输入整流滤波单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在全桥DC转DC隔离变换器单元30中,当第一开关管Q6和第九开关管Q9时导通;电流由第一开关管Q6、变压器T1原边线圈、第九开关管Q9到前端地形成回路,然后通过变压器T1磁芯藕合至变压器副边,这时第一整流桥的两个二极管(D6、D7)开始工作,将交流电整流成单向脉动电给第一电解电容C3,并滤波而形成直流。当第二开关管Q7和第八开关管Q8导通时,电流由第二开关管Q7、变压器T1原边线圈、第八开关管Q8到前端地形成回路,然后通过变压器T1磁芯藕合至变压器副边,这时第一整流桥的另两个二极管(D5、D8)开始工作,将交流电整流成单向脉动电给第一电解电容C3,并滤波而形 成直流。通过改变变压器T1原副边的匝数比可以调整输出电压的高低,进而实现升压或降压。基于上述结构,本发明采用全桥隔离的方式,实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元70的输出端设置了滤波电感L3,利用滤波电感L3可滤除交流电中的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
关于升压部分,本实施例中,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一整流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入整流滤波单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一整流二极管D1的阳极,所述第一整流二极管D1的阴极作为PFC升压单元20的输出端,且该第一整流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20中,当监测到输入整流滤波单元10输出半波交流电压是,PFC升压单元20进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值,升压后通过C2滤波后的电压为400V,具体的升压原理如下:Q5导通时,C1上的电流经升压电感L2、Q5到GND形成回路,升压电感L2储存能量;当Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单向脉冲电压再送给C2电容进滤波,滤波成400V的直流电压。并且Q5是根据控制芯片采到的输入交流电变化来加大或减少Q5的导通时间,以使电流与电压相位变一致来提高PF值。
关于本发明的控制部分,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极、第二开关管Q7的栅极、第八开关管Q8的栅极、第九开关管Q9的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6、第二开关管Q7、第八开关管Q8、第九开关管Q9和第三开关管Q5,以控制第一开关管Q6、第二开关管Q7、第八开关管Q8、第九开关管Q9和第三开关管Q5的通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
作为一种优选方式,所述逆变倒相单元40包括由第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七 开关管Q4导通或截止,以令所述逆变倒相单元40输出交流电压。进一步地,滤波电感L3的前端连接于逆变倒相单元40的输出端,进而滤除该交流电压中的高频脉冲,使得负载获得优质的工频正弦交流电。
上述逆变倒相单元40中,经过C3滤波电容的直流电压经Q1、L4、负载、Q4形成回路给负载供电形成第一个高频脉电平;第二个高频脉冲电平通过Q2、L3、负载、Q3形成回路,通过L3对高频脉冲电平的阻碍作用进行滤波,在负载上就形成了一个完整的工频正弦波交流电压。单片机U1输出的PWM信号经驱动电路后分别送出四路PWM信号给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路中的相位与频率按照控制芯片内部设定的模式进行工作,且Q1、Q2、Q3、Q4是通过工频调制高频PWM模式进行工作,电感L3将高频脉冲电平滤除,留下工频正弦交流电对负载供电。
关于交流输入部分,所述输入整流滤波单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
本实施例中,为了实现对全桥DC转DC隔离变换器单元30输出的直流电进行采样,所述全桥DC转DC隔离变换器单元30还包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于第一整流桥(D5、D6、D7、D8)输出侧的正极,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集全桥DC转DC隔离变换器单元30输出的电信号。
为了监测输入整流滤波单元10的输出信号,本实施例还包括有一交流采样单元70,所述交流采样单元70连接于输入整流滤波单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入整流滤波单元10交流侧的电压并反馈至MCU控制单元80。
进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入整流滤波单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。
为了便于对PFC升压单元20中的电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元 80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
本发明公开的基于PFC双全桥的智能型正弦波电压转换电路,其相比现有技术而言,首先,本发明具有高PF值,实现了电网与输出端隔离,安全性非常高,同时,在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,再次,输出电压是以正弦波输出,对交流电压有自动整形功能,此外,本发明方案含有电压与电流采样电路,能防浪涌电压与电流。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,包括有用于对电网电压进行整流和滤波的输入整流滤波单元、用于对输入整流滤波单元的输出电压进行升压转换的PFC升压单元,以及:
    一全桥DC转DC隔离变换器单元,包括有第一开关管、第二开关管、变压器、第一整流桥、第八开关管、第九开关管和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器初级绕组的第一端,所述第二开关管的漏极连接于第一开关管的源极,所述第二开关管的源极接前端地,所述第八开关管的漏极连接于PFC升压单元的输出端,所述第八开关管的源极连接于变压器初级绕组的第二端,所述第九开关管的漏极连接于第八开关管的源极,所述第九开关管的源极连接前端地,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极和第九开关管的栅极分别用于接入PWM脉冲信号,以控制所述第一开关管与第九开关管同时通断,且所述第二开关管与第八开关管同时通断,所述变压器副边绕组的两端与第一整流桥输入侧的两端相并联,所述第一整流桥输出侧的负极连接于后端地,所述第一整流桥输出侧的正极连接于第一电解电容的正极,所述第一电解电容的负极连接于后端地,所述第一整流桥输出侧的正极作为全桥DC转DC隔离变换器单元的输出端;
    一逆变倒相单元,连接于全桥DC转DC隔离变换器单元的输出端,所述逆变倒相单元用于对全桥DC转DC隔离变换器单元的输出电压进行逆变转换后输出交流电;
    一滤波电感,所述滤波电感的前端连接于逆变倒相单元的输出端,所述滤波电感的后端连接负载,所述滤波电感用于滤除高频脉冲,并为负载提供工频正弦交流电。
  2. 如权利要求1所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入整流滤波单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
  3. 如权利要求2所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极、第八开关管的栅极、第九开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管、第八开关管、第九开关管和第三开关 管,以控制第一开关管、第二开关管、第八开关管、第九开关管和第三开关管的通断状态。
  4. 如权利要求3所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述逆变倒相单元包括由第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。
  5. 如权利要求1所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述输入整流滤波单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
  6. 如权利要求3所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述全桥DC转DC隔离变换器单元还包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于第一整流桥输出侧的正极,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集全桥DC转DC隔离变换器单元输出的电信号。
  7. 如权利要求3所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,还包括有一交流采样单元,所述交流采样单元连接于输入整流滤波单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入整流滤波单元交流侧的电压并反馈至MCU控制单元。
  8. 如权利要求7所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入整流滤波单元的输入端,所述运放的输出端连接于MCU控制单元。
  9. 如权利要求3所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
  10. 如权利要求3所述的基于PFC双全桥的智能型正弦波电压转换电路,其特征在于,所述MCU控制单元包括有单片机及其外围电路。
PCT/CN2017/079191 2016-12-14 2017-04-01 一种基于pfc双全桥的智能型正弦波电压转换电路 WO2018107623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611153617.2 2016-12-14
CN201611153617.2A CN106533193A (zh) 2016-12-14 2016-12-14 一种基于pfc双全桥的智能型正弦波电压转换电路

Publications (1)

Publication Number Publication Date
WO2018107623A1 true WO2018107623A1 (zh) 2018-06-21

Family

ID=58339443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079191 WO2018107623A1 (zh) 2016-12-14 2017-04-01 一种基于pfc双全桥的智能型正弦波电压转换电路

Country Status (2)

Country Link
CN (1) CN106533193A (zh)
WO (1) WO2018107623A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302811A (zh) * 2018-09-28 2019-02-01 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN110138232A (zh) * 2019-05-20 2019-08-16 中国地震局地壳应力研究所 地震观测用低频交流稳流电源
CN110456301A (zh) * 2019-07-08 2019-11-15 珠海普斯雷电子科技有限公司 数据分析现场计量装置校验仪
CN111614283A (zh) * 2020-05-25 2020-09-01 苏州迈力电器有限公司 一种高压输入车载离网逆变器
CN113964921A (zh) * 2021-11-01 2022-01-21 国网湖北省电力有限公司电力科学研究院 一种多端口新能源电动汽车充电电路
CN114977768A (zh) * 2022-06-01 2022-08-30 东莞市石龙富华电子有限公司 采用程序控制pfc功能通断的电源适配器初级侧电路
CN116131637A (zh) * 2022-11-17 2023-05-16 中国科学院电工研究所 一种低成本高效率交流到直流转换拓扑及转换方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN106602907A (zh) * 2016-12-14 2017-04-26 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型修正波电压转换电路
CN106787794A (zh) * 2016-12-15 2017-05-31 广东百事泰电子商务股份有限公司 一种基于pfc反激全桥的智能型修正波电压转换电路
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN106787798A (zh) * 2016-12-27 2017-05-31 广东百事泰电子商务股份有限公司 基于pfc交错反激全桥的智能型正弦波电压转换电路
CN106787799A (zh) * 2016-12-27 2017-05-31 广东百事泰电子商务股份有限公司 一种基于pfc正激半桥的智能型正弦波电压转换电路
CN106787806A (zh) * 2017-01-04 2017-05-31 广东百事泰电子商务股份有限公司 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN106712535A (zh) * 2017-01-11 2017-05-24 广东百事泰电子商务股份有限公司 基于pfc交错反激的智能型半桥修正波电压转换电路
CN110086349B (zh) * 2019-05-27 2024-02-13 佛山科学技术学院 一种全桥隔离dc-dc电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012343A1 (en) * 2002-07-19 2004-01-22 Nostwick Allan Albert Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
CN101902137A (zh) * 2009-05-29 2010-12-01 索尼公司 电源装置
CN101976958A (zh) * 2010-11-10 2011-02-16 电子科技大学 一种基于功率因素校正的高效调功装置
CN102064712A (zh) * 2010-12-24 2011-05-18 东南大学 一种基于简易pfc的电力电子变压器
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN106602907A (zh) * 2016-12-14 2017-04-26 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型修正波电压转换电路
CN206332624U (zh) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型修正波电压转换电路
CN206332618U (zh) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012343A1 (en) * 2002-07-19 2004-01-22 Nostwick Allan Albert Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
CN101902137A (zh) * 2009-05-29 2010-12-01 索尼公司 电源装置
CN101976958A (zh) * 2010-11-10 2011-02-16 电子科技大学 一种基于功率因素校正的高效调功装置
CN102064712A (zh) * 2010-12-24 2011-05-18 东南大学 一种基于简易pfc的电力电子变压器
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN106602907A (zh) * 2016-12-14 2017-04-26 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型修正波电压转换电路
CN206332624U (zh) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型修正波电压转换电路
CN206332618U (zh) * 2016-12-14 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302811A (zh) * 2018-09-28 2019-02-01 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN109302811B (zh) * 2018-09-28 2023-08-22 天津斌德鑫力电子科技有限公司 一种悬浮轨道车辆静态调试系统
CN110138232A (zh) * 2019-05-20 2019-08-16 中国地震局地壳应力研究所 地震观测用低频交流稳流电源
CN110138232B (zh) * 2019-05-20 2024-01-19 应急管理部国家自然灾害防治研究院 地震观测用低频交流稳流电源
CN110456301A (zh) * 2019-07-08 2019-11-15 珠海普斯雷电子科技有限公司 数据分析现场计量装置校验仪
CN111614283A (zh) * 2020-05-25 2020-09-01 苏州迈力电器有限公司 一种高压输入车载离网逆变器
CN113964921A (zh) * 2021-11-01 2022-01-21 国网湖北省电力有限公司电力科学研究院 一种多端口新能源电动汽车充电电路
CN113964921B (zh) * 2021-11-01 2024-02-02 国网湖北省电力有限公司电力科学研究院 一种多端口新能源电动汽车充电电路
CN114977768A (zh) * 2022-06-01 2022-08-30 东莞市石龙富华电子有限公司 采用程序控制pfc功能通断的电源适配器初级侧电路
CN116131637A (zh) * 2022-11-17 2023-05-16 中国科学院电工研究所 一种低成本高效率交流到直流转换拓扑及转换方法
CN116131637B (zh) * 2022-11-17 2023-07-28 中国科学院电工研究所 一种低成本高效率交流到直流转换拓扑及转换方法

Also Published As

Publication number Publication date
CN106533193A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN208508805U (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018129832A1 (zh) 一种基于维也纳pfc的智能型半桥修正波电压转换电路
CN206364711U (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN206364708U (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
CN206402114U (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206620057U (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018129835A1 (zh) 一种基于维也纳pfc的智能型半桥正弦波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881000

Country of ref document: EP

Kind code of ref document: A1