WO2018120523A1 - 一种基于pfc正激半桥的智能型正弦波电压转换电路 - Google Patents

一种基于pfc正激半桥的智能型正弦波电压转换电路 Download PDF

Info

Publication number
WO2018120523A1
WO2018120523A1 PCT/CN2017/080988 CN2017080988W WO2018120523A1 WO 2018120523 A1 WO2018120523 A1 WO 2018120523A1 CN 2017080988 W CN2017080988 W CN 2017080988W WO 2018120523 A1 WO2018120523 A1 WO 2018120523A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching transistor
diode
pfc
unit
electrolytic capacitor
Prior art date
Application number
PCT/CN2017/080988
Other languages
English (en)
French (fr)
Inventor
侯涛
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018120523A1 publication Critical patent/WO2018120523A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent sine wave voltage conversion circuit based on a PFC forward half bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
  • the sine wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • a certain high-frequency pulse signal exists on the output side of the circuit, thereby affecting the quality of the output voltage, and thus it is difficult to meet the conversion requirement.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a PF value of a voltage conversion device can be improved, an output voltage quality can be improved, and a high frequency pulse on the output side can be filtered, thereby providing a high quality load.
  • An intelligent sinusoidal voltage conversion circuit based on a PFC forward half bridge for power frequency sinusoidal alternating current.
  • the present invention adopts the following technical solutions.
  • An intelligent sinusoidal voltage conversion circuit based on a PFC forward half bridge includes: an input rectification and filtering unit, the input end is connected to the power grid for rectifying and filtering the grid voltage; and a PFC boosting unit is connected The output end of the input rectifying and filtering unit is configured to perform boost conversion on the output voltage of the input rectifying and filtering unit; and an isolated double-switch forward converter includes a first switching tube, a second switching tube, and a first diode a diode, a second diode, a third diode, a fourth diode, a transformer, and a filter inductor, wherein a drain of the first switch is connected to an output of the PFC boost unit, the first switch a source is connected to the first end of the primary winding of the transformer, a second end of the primary winding of the transformer is connected to a drain of the second switching transistor, a source of the second switching transistor is connected to the front end, the first diode a cathode of the tube
  • a first resistor is connected between the gate and the source of the fourth switching transistor, and a second resistor is connected between the gate and the source of the fifth switching transistor.
  • the input rectification filtering unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, and the fuse is connected to a neutral line or a live line of the socket, and the common mode rejection
  • the front end of the inductor is connected in parallel to the socket
  • the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor
  • the input ends of the safety capacitor and the rectifier bridge are both connected in parallel to the rear end of the common mode suppression inductor, and the output end of the rectifier bridge
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifying diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input rectifying and filtering unit, the liter
  • the back end of the voltage inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal
  • the third The drain of the switch tube is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boost unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the second electrolytic capacitor
  • the negative pole is connected to the front end.
  • an MCU control unit is further included, the gate of the first switch tube, the gate of the second switch tube and the gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is used for respectively
  • the PWM signal is output to the first switch tube, the second switch tube and the third switch tube to control the on/off state of the first switch tube, the second switch tube and the third switch tube.
  • the method further includes an AC sampling unit connected between the input end of the input rectifying and filtering unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input rectifying and filtering unit and feed back to MCU control unit.
  • the AC sampling unit includes an operational amplifier, and two input ends of the operational amplifier are respectively connected to an input end of the input rectifying and filtering unit through a current limiting resistor, and an output end of the operational amplifier is connected to the MCU control unit. .
  • a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor.
  • the control unit collects an electrical signal of the source of the third switching transistor.
  • the method further includes a DC voltage sampling unit, the DC voltage sampling unit includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a rear end of the filter inductor, The back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal of the back end of the filter inductor by the second sampling resistor and the third sampling resistor.
  • the DC voltage sampling unit includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a rear end of the filter inductor, The back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal of the back end of the filter inductor by the second sampling resistor and the third sampling resistor.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the intelligent sinusoidal voltage conversion circuit based on PFC forward half bridge disclosed in the invention not only realizes isolated transmission of voltage, but also effectively improves PF value of boost/buck conversion device, and also improves output voltage quality, thereby making The voltage conversion process is safer and more reliable.
  • the first filter inductor is disposed at the output end of the inverter inverting unit, and the high frequency pulse of the alternating current can be filtered by using the first filter inductor, so that the load can obtain high quality power frequency sinusoidal alternating current. In turn, the output voltage quality is improved to meet the power supply requirements.
  • FIG. 1 is a circuit schematic diagram of an input rectification filtering unit and a PFC boosting unit.
  • Figure 2 is a circuit schematic of an isolated two-switch forward converter and a DC voltage sampling unit.
  • FIG. 3 is a circuit schematic diagram of an inverter inverter unit.
  • FIG. 4 is a circuit schematic diagram of an AC sampling unit.
  • Figure 5 is a circuit schematic of the MCU control unit.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on a PFC forward half bridge, which is combined with FIG. 1 to FIG. 5 and includes:
  • An input rectification and filtering unit 10 the input end of which is connected to the power grid for rectifying and filtering the grid voltage;
  • a PFC boosting unit 20 is connected to the output end of the input rectifying and filtering unit 10 for boosting and converting the output voltage of the input rectifying and filtering unit 10;
  • An isolated double-switch forward converter 30 includes a first switching transistor Q6, a second switching transistor Q7, a first diode D3, and a first a diode D2, a third diode D5, a fourth diode D8, a transformer T1 and a filter inductor L3.
  • the drain of the first switch transistor Q6 is connected to the output end of the PFC boost unit 20, the first The source of the switching transistor Q6 is connected to the first end of the primary winding of the transformer T1, the second end of the primary winding of the transformer T1 is connected to the drain of the second switching transistor Q7, and the source of the second switching transistor Q7 is connected to the front end.
  • the cathode of the first diode D3 is connected to the drain of the first switching transistor Q6, and the anode of the first diode D3 is connected to the second end of the primary winding of the transformer T1, the second diode
  • the cathode of D2 is connected to the first end of the primary winding of the transformer T1
  • the anode of the second diode D2 is connected to the source of the second switching transistor Q7
  • the gate of Q7 is used to access the same PWM signal
  • the middle tap of the secondary winding of the transformer T1 is connected to the back end
  • the first end of the secondary winding of the transformer T1 is connected to the anode of the third diode D5.
  • the cathode of the third diode D5 is connected to the front end of the filter inductor L3, and the back end of the filter inductor L3
  • the second end of the secondary winding of the transformer T1 is connected to the cathode of the fourth diode D8, and the anode of the fourth diode D8 is isolated.
  • the output terminal of the double-tube forward converter 30 is negative;
  • An inverter inverter unit 60 includes a fourth switching transistor Q2, a fifth switching transistor Q4, a third electrolytic capacitor C3, a fourth electrolytic capacitor C4, and a first filter inductor L4, and a drain of the fourth switching transistor Q2.
  • the source of the fourth switching transistor Q2 is connected to the drain of the fifth switching transistor Q4, and the source of the fifth switching transistor Q4 is connected to the isolation.
  • the output terminal of the double-switch forward converter 30 is negative, the gate of the fourth switching transistor Q2 and the gate of the fifth switching transistor Q4 are respectively used to access two PWM pulse signals of opposite phases, the fourth The source of the switching transistor Q2 is also connected to the front end of the first filter inductor L4, the anode of the third electrolytic capacitor C3 is connected to the drain of the fourth switching transistor Q2, and the cathode of the third electrolytic capacitor C3 is connected to the back end.
  • the cathode of the third electrolytic capacitor C3 is also connected to the anode of the fourth electrolytic capacitor C4, and the cathode of the fourth electrolytic capacitor C4 is connected to the source of the fifth switching transistor Q4, after the first filter inductor L4
  • the terminal and the cathode of the third electrolytic capacitor C3 serve as the output terminal of the inverter inverter unit 60.
  • the input rectification and filtering unit 10 rectifies and filters the grid voltage to output a pulsating DC voltage, and then uses the PFC boosting unit 20 to boost the pulsating DC voltage, in the isolated double-tube forward In the converter 30, the gate of the first switching transistor Q6 and the gate of the second switching transistor Q7 are used to access the same PWM signal, and when the first switching transistor Q6 and the second switching transistor Q7 are simultaneously turned on, the transformer T1 is The primary coil is coupled to the secondary two coils via the magnetic core, and one of the secondary windings is connected to the opposite end of the other coil, and is rectified by the third diode D5 and the fourth diode D8.
  • the invention not only realizes the isolated transmission of voltage, but also effectively improves the PF value of the step-up/step-down conversion device, and also improves the output voltage quality, so that the voltage conversion process is more safe and reliable.
  • the first filter inductor L4 is disposed at the output end of the inverter inverter unit 60, and the high-frequency pulse in the output signal of the inverter inverter unit can be filtered by the first filter inductor L4, so that the load can be Obtain high-quality power frequency sinusoidal AC power to improve output voltage quality to meet power supply requirements.
  • the operating principle of the inverter inverting unit 60 is: when the fourth switching transistor Q2 is turned on, the fourth switching transistor Q2, the load, and the fourth electrolytic capacitor C4 form a loop, which generates the first high.
  • the frequency pulse level is applied to the load.
  • the fourth switching tube Q2 is turned off, the freewheeling circuit is formed by the fourth electrolytic capacitor C4, the fifth switching transistor Q4, and the first filter inductor L4; when the fifth switching transistor Q4 is turned on, the first pass The fifth switch tube Q4, the load, and the third electrolytic capacitor C3 form a loop, and a second high frequency pulse level is formed on the load.
  • the body diode of the fourth switch tube Q2 When the fifth switch tube Q4 is turned off, the body diode of the fourth switch tube Q2, the first The three electrolytic capacitor C3, the load, and the first filter inductor L4 form a freewheeling circuit.
  • the high frequency driving PWM signal of the fourth switching transistor Q2 and the fifth switching transistor Q4 is changed to the GATE pole of the fourth switching transistor Q2 and the fifth switching transistor Q4 after being changed by the power frequency sinusoidal modulation. Since the fourth switching transistor Q2 and the fifth switching transistor Q4 are sinusoidally modulated driving signals, the high frequency pulse level after filtering the inverter through the first filter inductor L4 leaves only the power frequency sinusoidal alternating voltage, and supplies power to the load. .
  • the third electrolytic capacitor C3 and the fourth electrolytic capacitor C4 also have a filtering function, and can form a DC filter circuit with the filter inductor L3.
  • the inverter circuit is simple to control, and the circuit uses only two MOS tubes, and the cost is low.
  • a first resistor R17 is connected between the gate and the source of the fourth switching transistor Q2, and a gate is connected between the gate and the source of the fifth switching transistor Q4.
  • Two resistors R23 are connected between the gate and the source of the fourth switching transistor Q2, and a gate is connected between the gate and the source of the fifth switching transistor Q4.
  • the input rectifying and filtering unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1.
  • the fuse F2 is connected in series to the neutral line of the socket or On the live line, the front end of the common mode suppression inductor L1 is connected in parallel to the socket, the lightning protection resistor RV1 is connected in parallel to the front end of the common mode suppression inductor L1, and the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel to the common mode.
  • the back end of the inductor L1 is suppressed, and the filter capacitor C1 is connected in parallel with the output end of the rectifier bridge DB1.
  • the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2.
  • the gate of the tube Q5 is used to access a PWM control signal
  • the drain of the third switching transistor Q5 is connected to the anode of the first rectifier diode D1, and the cathode of the first rectifier diode D1 is used as the output of the PFC boosting unit 20.
  • the cathode of the first rectifier diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC boosting unit 20 if the filter capacitor C1 outputs a half-wave AC voltage, the PFC enters the boost mode to increase the PF value of the AC-to-AC intelligent buck conversion topology circuit, and after boosting, filtering through the second electrolytic capacitor C2.
  • the voltage is 400V.
  • the specific boosting principle is as follows: When the third switching transistor Q5 is turned on, the current on the filter capacitor C1 forms a loop through the boost inductor L2 and the third switch transistor Q5 to GND, and the boost inductor L2 stores energy; When the third switching transistor Q5 is turned off, an induced electromotive force is formed on the boosting inductor which is much higher than the input voltage, and the induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the second electrolytic capacitor C2 capacitor. Filtered and filtered into a DC voltage of 400V. And the third switch tube Q5 increases or decreases the on-time of the third switch tube Q5 according to the input AC sine wave change obtained by the control chip, so that the current and the voltage phase are consistent to increase the PF value.
  • the embodiment further includes an MCU control unit 80, a gate of the first switching transistor Q6, a gate of the second switching transistor Q7, and a gate of the third switching transistor Q5.
  • the MCU control unit 80 is configured to respectively output PWM signals to the first switch tube Q6, the second switch tube Q7 and the third switch tube Q5 to control the first switch tube Q6 and the second switch.
  • the tube Q7 and the third switching tube Q5 are in an on-off state.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • FIG. 4 further includes an AC sampling unit 70 connected between the input end of the input rectifying and filtering unit 10 and the MCU control unit 80.
  • the unit 70 is configured to collect the voltage of the AC side of the input rectification and filtering unit 10 and feed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B, and two input ends of the operational amplifier U9B are respectively connected to an input end of the input rectifying and filtering unit 10 through a current limiting resistor, and an output end of the operational amplifier U9B Connected to the MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
  • the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
  • the embodiment further includes a DC voltage sampling unit 40, and the DC voltage sampling unit 40 includes a second sampling resistor R13 connected in series and a third sampling resistor R15, a front end of the second sampling resistor R13 is connected to a rear end of the filter inductor L3, and a rear end of the third sampling resistor R15 is connected to the MCU control unit 80, and the second sampling resistor R13 And the third sampling resistor R15 causes the MCU control unit 80 to collect the electrical signal at the rear end of the filter inductor L3.
  • the DC voltage sampling unit 40 includes a second sampling resistor R13 connected in series and a third sampling resistor R15, a front end of the second sampling resistor R13 is connected to a rear end of the filter inductor L3, and a rear end of the third sampling resistor R15 is connected to the MCU control unit 80, and the second sampling resistor R13 And the third sampling resistor R15 causes the MCU control unit 80 to collect the electrical signal at the rear end of the filter inductor L3.
  • the voltage conversion circuit has a high PF value, and the power grid is isolated from the output end, and the safety is very high.
  • the invention can automatically adjust the output voltage in the input full voltage range, and fix the output frequency, and the output voltage is pure sine wave output, and has an automatic shaping function for the alternating voltage.
  • the circuit of the invention is simple and the controller It includes a voltage and current sampling circuit that is effective against surge voltages and currents.

Abstract

一种基于PFC正激半桥的智能型正弦波电压转换电路,其包括有:输入整流滤波单元(10);PFC升压单元(20);一隔离型双管正激变换器(30),包括有第一开关管(Q6)、第二开关管(Q7)、第一二极管(D3)、第二二极管(D2)、第三二极管(D5)、第四二极管(D8)、变压器(T1)和滤波电感(L3);一逆变倒相单元(60),包括有第四开关管(Q2)、第五开关管(Q4)、第三电解电容(C3)、第四电解电容(C4)和第一滤波电感(L4),所述第四开关管(Q2)的栅极和第五开关管(Q4)的栅极分别用于接入两路相位相反的PWM脉冲信号,所述第四开关管(Q2)的源极还连接于第一滤波电感(L4)的前端,所述第三电解电容(C3)的负极还连接于第四电解电容(C4)的正极,所述第一滤波电感(L4)的后端和第三电解电容(C3)的负极作为逆变倒相单元(60)的输出端,该电路可提高PF值和输出电压质量。

Description

一种基于PFC正激半桥的智能型正弦波电压转换电路
技术领域
本发明涉及电压转换电路,尤其涉及一种基于PFC正激半桥的智能型正弦波电压转换电路。
背景技术
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,正弦波电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。实际应用中,由于电压转换过程中存在开关管的高速切换,使得电路的输出侧会存在一定的高频脉冲信号,进而影响输出电压的质量,因而难以满足转换要求。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种可提高电压转换装置的PF值、可提高输出电压质量,并且能够滤除输出侧的高频脉冲,进而为负载提供优质工频正弦交流电的基于PFC正激半桥的智能型正弦波电压转换电路。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC正激半桥的智能型正弦波电压转换电路,其包括有:一输入整流滤波单元,其输入端连接电网,用于对电网电压进行整流和滤波;一PFC升压单元,连接于输入整流滤波单元的输出端,用于对输入整流滤波单元的输出电压进行升压转换;一隔离型双管正激变换器,包括有第一开关管、第二开关管、第一二极管、第二二极管、第三二极管、第四二极管、变压器和滤波电感,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器初级绕组的第一端,所述变压器初级绕组的第二端连接第二开关管的漏极,所述第二开关管的源极连接前端地,所述第一二极管的阴极连接于第一开关管的漏极,所述第一二极管的阳极连接于变压器初级绕组的第二端,所述第二二极管的阴极连接于变压器初级绕组的第一端,所述第二二极管的阳极连接于第二开关管的源极,所述第一开关管的栅极和第二开关管的栅极用于接入相同的PWM信号,所述变压器次级绕组的中间抽头连接于后端地,所述变压器次级绕组的第一端连接于第三二极管的阳极,所述第 三二极管的阴极连接于滤波电感的前端,所述滤波电感的后端作为隔离型双管正激变换器的输出端正极,所述变压器次级绕组的第二端连接于第四二极管的阴极,所述第四二极管的阳极作为隔离型双管正激变换器的输出端负极;一逆变倒相单元,包括有第四开关管、第五开关管、第三电解电容、第四电解电容和第一滤波电感,所述第四开关管的漏极连接于隔离型双管正激变换器的输出端正极,所述第四开关管的源极连接于第五开关管的漏极,所述第五开关管的源极连接于隔离型双管正激变换器的输出端负极,所述第四开关管的栅极和第五开关管的栅极分别用于接入两路相位相反的PWM脉冲信号,所述第四开关管的源极还连接于第一滤波电感的前端,所述第三电解电容的正极连接于第四开关管的漏极,所述第三电解电容的负极连接后端地,所述第三电解电容的负极还连接于第四电解电容的正极,所述第四电解电容的负极连接于第五开关管的源极,所述第一滤波电感的后端和第三电解电容的负极作为逆变倒相单元的输出端。
优选地,所述第四开关管的栅极和源极之间连接有第一电阻,所述第五开关管的栅极和源极之间连接有第二电阻。
优选地,所述输入整流滤波单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入整流滤波单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管和第三开关管,以控制第一开关管、第二开关管和第三开关管通断状态。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入整流滤波单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入整流滤波单元交流侧的电压并反馈至MCU控制单元。
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入整流滤波单元的输入端,所述运放的输出端连接于MCU控制单元。
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
优选地,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于滤波电感的后端,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集滤波电感后端的电信号。
优选地,所述MCU控制单元包括有单片机及其外围电路。
本发明公开的基于PFC正激半桥的智能型正弦波电压转换电路,其不仅实现了电压的隔离传输,有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元的输出端设置了第一滤波电感,利用第一滤波电感可滤除所述交流电的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
附图说明
图1为输入整流滤波单元和PFC升压单元的电路原理图。
图2为隔离型双管正激变换器和DC电压采样单元的电路原理图。
图3为逆变倒相单元的电路原理图。
图4为交流采样单元的电路原理图。
图5为MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC正激半桥的智能型正弦波电压转换电路,结合图1至图5所示,其包括有:
一输入整流滤波单元10,其输入端连接电网,用于对电网电压进行整流和滤波;
一PFC升压单元20,连接于输入整流滤波单元10的输出端,用于对输入整流滤波单元10的输出电压进行升压转换;
一隔离型双管正激变换器30,包括有第一开关管Q6、第二开关管Q7、第一二极管D3、第 二二极管D2、第三二极管D5、第四二极管D8、变压器T1和滤波电感L3,所述第一开关管Q6的漏极连接于PFC升压单元20的输出端,所述第一开关管Q6的源极连接于变压器T1初级绕组的第一端,所述变压器T1初级绕组的第二端连接第二开关管Q7的漏极,所述第二开关管Q7的源极连接前端地,所述第一二极管D3的阴极连接于第一开关管Q6的漏极,所述第一二极管D3的阳极连接于变压器T1初级绕组的第二端,所述第二二极管D2的阴极连接于变压器T1初级绕组的第一端,所述第二二极管D2的阳极连接于第二开关管Q7的源极,所述第一开关管Q6的栅极和第二开关管Q7的栅极用于接入相同的PWM信号,所述变压器T1次级绕组的中间抽头连接于后端地,所述变压器T1次级绕组的第一端连接于第三二极管D5的阳极,所述第三二极管D5的阴极连接于滤波电感L3的前端,所述滤波电感L3的后端作为隔离型双管正激变换器30的输出端正极,所述变压器T1次级绕组的第二端连接于第四二极管D8的阴极,所述第四二极管D8的阳极作为隔离型双管正激变换器30的输出端负极;
一逆变倒相单元60,包括有第四开关管Q2、第五开关管Q4、第三电解电容C3、第四电解电容C4和第一滤波电感L4,所述第四开关管Q2的漏极连接于隔离型双管正激变换器30的输出端正极,所述第四开关管Q2的源极连接于第五开关管Q4的漏极,所述第五开关管Q4的源极连接于隔离型双管正激变换器30的输出端负极,所述第四开关管Q2的栅极和第五开关管Q4的栅极分别用于接入两路相位相反的PWM脉冲信号,所述第四开关管Q2的源极还连接于第一滤波电感L4的前端,所述第三电解电容C3的正极连接于第四开关管Q2的漏极,所述第三电解电容C3的负极连接后端地,所述第三电解电容C3的负极还连接于第四电解电容C4的正极,所述第四电解电容C4的负极连接于第五开关管Q4的源极,所述第一滤波电感L4的后端和第三电解电容C3的负极作为逆变倒相单元60的输出端。
上述正弦波电压转换电路中,利用输入整流滤波单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在隔离型双管正激变换器30中,第一开关管Q6的栅极和第二开关管Q7的栅极用于接入相同的PWM信号,当第一开关管Q6与第二开关管Q7同时导通,变压器T1的初级线圈经过磁芯藕合至次级两个线圈,次级两个线圈中的一个同名端与另一个线圈的异端连在一起,通过第三二极管D5、第四二极管D8整流后形成正负母线电压,送给滤波电感L3滤波成直流输出给逆变倒相单元60;当第一开关管Q6与第二开关管Q7关断时,为了保持变压器T1的初级线圈电流方向相同,此时第一二极管D3和第二二极管D2开始工作,并对磁芯进行磁复位,通过改变变压器T1初次级的匝比可以使次级电压低于或高于初级输入电压,达到降压 或升压目的。本发明不仅实现了电压的隔离传输,有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元60的输出端设置了第一滤波电感L4,利用第一滤波电感L4可滤除逆变倒相单元输出信号中的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
进一步地,请参照图3,逆变倒相单元60的工作原理为:当第四开关管Q2导通时,第四开关管Q2、负载、第四电解电容C4形成回路,产生第一个高频脉冲电平给负载,当第四开关管Q2关闭时,通过第四电解电容C4、第五开关管Q4、第一滤波电感L4形成续流回路;当第五开关管Q4导通时通过第五开关管Q4、负载、第三电解电容C3形成回路,在负载上就形成了第二个高频脉冲电平,当第五开关管Q4关断时,第四开关管Q2的体二极管、第三电解电容C3、负载、第一滤波电感L4形成续流回路。第四开关管Q2、第五开关管Q4的高频驱动PWM信号是经工频正弦调制变化后再送给第四开关管Q2、第五开关管Q4的GATE极。由于第四开关管Q2、第五开关管Q4是正弦调制后的驱动信号,所以经第一滤波电感L4滤除逆变后的高频脉冲电平只留下工频正弦交流电压,给负载供电。同时第三电解电容C3、第四电解电容C4还有滤波的作用,可以与滤波电感L3组成直流滤波电路。本逆变电路控制简单,电路只用两个MOS管,成本低廉。
本实施例中,为了提高开关速度,所述第四开关管Q2的栅极和源极之间连接有第一电阻R17,所述第五开关管Q4的栅极和源极之间连接有第二电阻R23。
关于输入部分,所述输入整流滤波单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
本实施例中,请参照图1,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一整流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入整流滤波单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一整流二极管D1的阳极,所述第一整流二极管D1的阴极作为PFC升压单元20的输出端,且该第一整流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20中,若滤波电容C1输出半波交流电压,PFC进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值,升压后通过第二电解电容C2滤波后的电压为400V,具体的升压原理如下:第三开关管Q5导通时,滤波电容C1上的电流经升压电感L2、第三开关管Q5到GND形成回路,升压电感L2储存能量;当第三开关管Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单向脉冲电压再送给第二电解电容C2电容进滤波,滤波成400V的直流电压。并且第三开关管Q5是根据控制芯片采到的输入交流正弦波变化来加大或减少第三开关管Q5的导通时间,以使电流与电压相位变一致来提高PF值。
作为一种优选方式,请参照图5,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极、第二开关管Q7的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6、第二开关管Q7和第三开关管Q5,以控制第一开关管Q6、第二开关管Q7和第三开关管Q5通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
为了便于监测交流侧的电信号,请参照图4,还包括有一交流采样单元70,所述交流采样单元70连接于输入整流滤波单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入整流滤波单元10交流侧的电压并反馈至MCU控制单元80。
进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入整流滤波单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。
为了便于对电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
作为一种优选方式,为了对直流侧电信号进行采集,请参照图2,本实施例还包括有一DC电压采样单元40,所述DC电压采样单元40包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于滤波电感L3的后端,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集滤波电感L3后端的电信号。
本发明相比现有技术而言,该电压转换电路具有高PF值、电网与输出端隔离,安全性非常高。本发明在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,而输出电压是以纯正弦波输出,对交流电压有自动整形功能。此外,本发明电路简单、控制方 便,其包含有电压与电流采样电路,能有效防浪涌电压与电流。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,包括有:
    一输入整流滤波单元(10),其输入端连接电网,用于对电网电压进行整流和滤波;
    一PFC升压单元(20),连接于输入整流滤波单元(10)的输出端,用于对输入整流滤波单元(10)的输出电压进行升压转换;
    一隔离型双管正激变换器(30),包括有第一开关管(Q6)、第二开关管(Q7)、第一二极管(D3)、第二二极管(D2)、第三二极管(D5)、第四二极管(D8)、变压器(T1)和滤波电感(L3),所述第一开关管(Q6)的漏极连接于PFC升压单元(20)的输出端,所述第一开关管(Q6)的源极连接于变压器(T1)初级绕组的第一端,所述变压器(T1)初级绕组的第二端连接第二开关管(Q7)的漏极,所述第二开关管(Q7)的源极连接前端地,所述第一二极管(D3)的阴极连接于第一开关管(Q6)的漏极,所述第一二极管(D3)的阳极连接于变压器(T1)初级绕组的第二端,所述第二二极管(D2)的阴极连接于变压器(T1)初级绕组的第一端,所述第二二极管(D2)的阳极连接于第二开关管(Q7)的源极,所述第一开关管(Q6)的栅极和第二开关管(Q7)的栅极用于接入相同的PWM信号,所述变压器(T1)次级绕组的中间抽头连接于后端地,所述变压器(T1)次级绕组的第一端连接于第三二极管(D5)的阳极,所述第三二极管(D5)的阴极连接于滤波电感(L3)的前端,所述滤波电感(L3)的后端作为隔离型双管正激变换器(30)的输出端正极,所述变压器(T1)次级绕组的第二端连接于第四二极管(D8)的阴极,所述第四二极管(D8)的阳极作为隔离型双管正激变换器(30)的输出端负极;
    一逆变倒相单元(60),包括有第四开关管(Q2)、第五开关管(Q4)、第三电解电容(C3)、第四电解电容(C4)和第一滤波电感(L4),所述第四开关管(Q2)的漏极连接于隔离型双管正激变换器(30)的输出端正极,所述第四开关管(Q2)的源极连接于第五开关管(Q4)的漏极,所述第五开关管(Q4)的源极连接于隔离型双管正激变换器(30)的输出端负极,所述第四开关管(Q2)的栅极和第五开关管(Q4)的栅极分别用于接入两路相位相反的PWM脉冲信号,所述第四开关管(Q2)的源极还连接于第一滤波电感(L4)的前端,所述第三电解电容(C3)的正极连接于第四开关管(Q2)的漏极,所述第三电解电容(C3)的负极连接后端地,所述第三电解电容(C3)的负极还连接于第四电解电容(C4)的正极,所述第四电解电容(C4)的负极连接于第五开关管(Q4)的源极,所述第一滤波电感(L4)的后端和第三电解电容(C3)的负极作为逆变倒相单元(60)的输出端。
  2. 如权利要求1所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所 述第四开关管(Q2)的栅极和源极之间连接有第一电阻(R17),所述第五开关管(Q4)的栅极和源极之间连接有第二电阻(R23)。
  3. 如权利要求1所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所述输入整流滤波单元(10)包括有插座、保险(F2)、防雷电阻(RV1)、共模抑制电感(L1)、安规电容(CX1)和整流桥(DB1),所述保险(F2)串接于插座的零线或火线上,所述共模抑制电感(L1)的前端并联于插座,所述防雷电阻(RV1)并联于共模抑制电感(L1)的前端,所述安规电容(CX1)和整流桥(DB1)的输入端均并联于共模抑制电感(L1)的后端,所述整流桥(DB1)的输出端并联有滤波电容(C1)。
  4. 如权利要求1所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所述PFC升压单元(20)包括有升压电感(L2)、第三开关管(Q5)、第一整流二极管(D1)和第二电解电容(C2),所述升压电感(L2)的前端连接于输入整流滤波单元(10)的输出端,所述升压电感(L2)的后端连接于第三开关管(Q5)的漏极,所述第三开关管(Q5)的源极接前端地,所述第三开关管(Q5)的栅极用于接入一路PWM控制信号,所述第三开关管(Q5)的漏极连接第一整流二极管(D1)的阳极,所述第一整流二极管(D1)的阴极作为PFC升压单元(20)的输出端,且该第一整流二极管(D1)的阴极连接第二电解电容(C2)的正极,第二电解电容(C2)的负极接前端地。
  5. 如权利要求4所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,还包括有一MCU控制单元(80),所述第一开关管(Q6)的栅极、第二开关管(Q7)的栅极和第三开关管(Q5)的栅极分别连接于MCU控制单元(80),所述MCU控制单元(80)用于分别输出PWM信号至第一开关管(Q6)、第二开关管(Q7)和第三开关管(Q5),以控制第一开关管(Q6)、第二开关管(Q7)和第三开关管(Q5)通断状态。
  6. 如权利要求5所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,还包括有一交流采样单元(70),所述交流采样单元(70)连接于输入整流滤波单元(10)的输入端与MCU控制单元(80)之间,所述交流采样单元(70)用于采集输入整流滤波单元(10)交流侧的电压并反馈至MCU控制单元(80)。
  7. 如权利要求6所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所述交流采样单元(70)包括有运放(U9B),所述运放(U9B)的两个输入端分别通过限流电阻而连接于输入整流滤波单元(10)的输入端,所述运放(U9B)的输出端连接于MCU控制单元(80)。
  8. 如权利要求5所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所 述第三开关管(Q5)的源极与前端地之间连接有第一采样电阻(R2A),所述第三开关管(Q5)的源极连接于MCU控制单元(80),藉由所述第一采样电阻(R2A)而令MCU控制单元(80)采集第三开关管(Q5)源极的电信号。
  9. 如权利要求5所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,还包括有一DC电压采样单元(40),所述DC电压采样单元(40)包括有依次串联的第二采样电阻(R13)和第三采样电阻(R15),所述第二采样电阻(R13)的前端连接于滤波电感(L3)的后端,所述第三采样电阻(R15)的后端连接于MCU控制单元(80),藉由所述第二采样电阻(R13)和第三采样电阻(R15)而令MCU控制单元(80)采集滤波电感(L3)后端的电信号。
  10. 如权利要求5所述的基于PFC正激半桥的智能型正弦波电压转换电路,其特征在于,所述MCU控制单元(80)包括有单片机(U1)及其外围电路。
PCT/CN2017/080988 2016-12-27 2017-04-19 一种基于pfc正激半桥的智能型正弦波电压转换电路 WO2018120523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611226229.2A CN106787799A (zh) 2016-12-27 2016-12-27 一种基于pfc正激半桥的智能型正弦波电压转换电路
CN201611226229.2 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018120523A1 true WO2018120523A1 (zh) 2018-07-05

Family

ID=58921708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080988 WO2018120523A1 (zh) 2016-12-27 2017-04-19 一种基于pfc正激半桥的智能型正弦波电压转换电路

Country Status (2)

Country Link
CN (1) CN106787799A (zh)
WO (1) WO2018120523A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309448A (zh) * 2018-11-21 2019-02-05 三峡大学 一种宽输入宽输出Cuk DC-DC变换器
CN109521828A (zh) * 2018-12-29 2019-03-26 惠州华科电器有限公司 线性稳压电路
CN110856316A (zh) * 2019-12-19 2020-02-28 福建省中科生物股份有限公司 一种提高光利用率的植物照明系统及方法
CN111179709A (zh) * 2020-03-13 2020-05-19 安徽工业大学 一种数字式多功能电力电子技术教学实验平台
CN112366942A (zh) * 2020-11-30 2021-02-12 武汉博泰电力自动化设备有限责任公司 一种采用锂电池组供电的电力操作电源
CN114567196A (zh) * 2022-02-28 2022-05-31 郑州大学 一种可幂次电平扩展的dc/ac变换器及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787800A (zh) * 2016-12-27 2017-05-31 广东百事泰电子商务股份有限公司 一种基于pfc正激半桥的智能型修正波电压转换电路
CN114301295A (zh) * 2020-10-07 2022-04-08 浙江杭可仪器有限公司 一种直流集成电源及其设计方法
CN116526438B (zh) * 2023-07-04 2023-12-22 汉德森工业(天津)有限公司 一种用于电解的电路、电解器的控制器及电解器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012343A1 (en) * 2002-07-19 2004-01-22 Nostwick Allan Albert Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
CN101521467A (zh) * 2008-11-14 2009-09-02 浙江大学 一种高频化配电变压器
CN201536275U (zh) * 2009-11-18 2010-07-28 陆乐 一种多功能开关电源
CN106208638A (zh) * 2015-04-30 2016-12-07 神华集团有限责任公司 电能转换装置及相应的电能管理连接系统
CN106533194A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc正激全桥的智能型修正波电压转换电路
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204030965U (zh) * 2014-08-12 2014-12-17 深圳市科瑞爱特科技开发有限公司 一种三相工频逆变器驱动板的辅助电源电路
CN206442304U (zh) * 2016-12-27 2017-08-25 广东百事泰电子商务股份有限公司 一种基于pfc正激半桥的智能型正弦波电压转换电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012343A1 (en) * 2002-07-19 2004-01-22 Nostwick Allan Albert Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
CN101521467A (zh) * 2008-11-14 2009-09-02 浙江大学 一种高频化配电变压器
CN201536275U (zh) * 2009-11-18 2010-07-28 陆乐 一种多功能开关电源
CN106208638A (zh) * 2015-04-30 2016-12-07 神华集团有限责任公司 电能转换装置及相应的电能管理连接系统
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN106533194A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc正激全桥的智能型修正波电压转换电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309448A (zh) * 2018-11-21 2019-02-05 三峡大学 一种宽输入宽输出Cuk DC-DC变换器
CN109309448B (zh) * 2018-11-21 2024-03-12 三峡大学 一种宽输入宽输出Cuk DC-DC变换器
CN109521828A (zh) * 2018-12-29 2019-03-26 惠州华科电器有限公司 线性稳压电路
CN110856316A (zh) * 2019-12-19 2020-02-28 福建省中科生物股份有限公司 一种提高光利用率的植物照明系统及方法
CN111179709A (zh) * 2020-03-13 2020-05-19 安徽工业大学 一种数字式多功能电力电子技术教学实验平台
CN112366942A (zh) * 2020-11-30 2021-02-12 武汉博泰电力自动化设备有限责任公司 一种采用锂电池组供电的电力操作电源
CN114567196A (zh) * 2022-02-28 2022-05-31 郑州大学 一种可幂次电平扩展的dc/ac变换器及方法
CN114567196B (zh) * 2022-02-28 2024-03-01 郑州大学 一种可幂次电平扩展的dc/ac变换器及方法

Also Published As

Publication number Publication date
CN106787799A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
TW201436444A (zh) 交流-直流功率轉換器
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN206364711U (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN212381122U (zh) 单级隔离型双向直流变换器
CN208508805U (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018094897A1 (zh) 一种正弦波智能降压转换装置
WO2018094898A1 (zh) 一种长寿命智能升压转换装置
WO2018120522A1 (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路
CN206402114U (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888360

Country of ref document: EP

Kind code of ref document: A1