WO2018094898A1 - 一种长寿命智能升压转换装置 - Google Patents

一种长寿命智能升压转换装置 Download PDF

Info

Publication number
WO2018094898A1
WO2018094898A1 PCT/CN2017/075079 CN2017075079W WO2018094898A1 WO 2018094898 A1 WO2018094898 A1 WO 2018094898A1 CN 2017075079 W CN2017075079 W CN 2017075079W WO 2018094898 A1 WO2018094898 A1 WO 2018094898A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
switch tube
inverter
mcu control
Prior art date
Application number
PCT/CN2017/075079
Other languages
English (en)
French (fr)
Inventor
廖志刚
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Priority to EP17873267.3A priority Critical patent/EP3547522A4/en
Publication of WO2018094898A1 publication Critical patent/WO2018094898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53878Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters

Definitions

  • the invention relates to a voltage converter, in particular to a long-life intelligent boost converter of an electroless capacitor.
  • the sine wave boost converter also known as boost travel strip, is a sinusoidal AC/AC converter that boosts and stabilizes voltage and frequency in AC/AC conversion.
  • the boosting circuit is first integrated into DC and then filtered by aluminum electrolytic capacitors and then BOOST boosted, and finally inverted.
  • the voltage outputted by such a boost converter is mostly a correction wave, which is harmful to electrical equipment, and most of the internal use of aluminum electrolytic capacitor filtering, which seriously affects the product life, resulting in reduced safety and reliability of the product.
  • the boost converter has a large volume and is not suitable for carrying.
  • the existing boost converter PF value is too low, which easily causes interference to the power grid.
  • the technical problem to be solved by the present invention is to provide a long-life intelligent boost conversion that can improve the service life, improve the PF value of the product, is easy to carry, and can avoid interference to the power grid without the need of an electrolytic capacitor. Device.
  • the present invention adopts the following technical solutions.
  • a long-life intelligent boost converter includes a high frequency modulation unit, an inductive filtering unit, and an inverter inverting unit, wherein: the high frequency modulation unit includes an energy storage inductor, a first switching transistor, and a continuation a current diode, a front end of the energy storage inductor is used to connect a direct current, a rear end of the energy storage inductor is connected to a drain of the first switch tube, and a drain of the first switch tube is connected to an anode of the freewheeling diode a source of the first switch is grounded, a gate of the first switch is used to access a PWM pulse signal, and the inductor filter unit includes a filter inductor and a filter capacitor, and a front end of the filter inductor is connected to a cathode of the freewheeling diode, a rear end of the filter inductor is grounded through a filter capacitor, and a rear end of the filter inductor is further connected to the inverter inverter unit, and
  • the energy storage inductor causes the back end to be higher than the front end due to the self-inductance effect. Voltage, the energy storage
  • the back-end voltage is rectified by the freewheeling diode, and then filtered by the filter inductor and the filter capacitor to remove the high-frequency crosstalk and transmitted to the inverter inverting unit; the inverter inverting unit is used to output the DC ripple voltage of the filter inductor back end.
  • the inverter is converted to a sinusoidal AC voltage.
  • the method further includes: an AC input unit for accessing the mains AC voltage; and a rectification filter
  • the input end is connected to the output end of the AC input unit, and the output end thereof is connected to the front end of the energy storage inductor.
  • the rectification and filtering unit is used for rectifying and filtering the mains AC voltage to form a pulsating DC power and being loaded on the energy storage inductor. Front end.
  • the first switching transistor is an N-channel MOS transistor.
  • the method further includes an MCU control unit, the gate of the first switch tube and the control end of the inverter inverting unit are respectively connected to the MCU control unit, and the PWM pulse signal is output to the first by the MCU control unit. Switching tube and controlling the switching frequency of the inverter inverting unit.
  • the method further includes an AC sampling unit, the input end of the AC sampling unit is connected to the AC input unit, the output end of the AC sampling unit is connected to the MCU control unit, and the AC sampling unit is configured to collect the mains AC voltage.
  • the voltage value and the phase are transmitted to the MCU control unit, and the MCU control unit is configured to: determine whether the mains AC voltage is lower than a preset value according to the voltage value collected by the AC sampling unit, and if it is lower than the preset value, The gate of the first switch tube outputs a PWM pulse signal. If the voltage is not lower than the preset value, the first switch tube is kept off; the inverter phase is controlled according to the phase of the commercial AC voltage collected by the AC sampling unit.
  • the switching frequency of the unit is such that the inverter inverting unit outputs a sinusoidal alternating voltage having the same phase as the mains AC voltage.
  • the AC sampling unit comprises an operational amplifier and a comparator, and the two input ends of the operational amplifier are respectively connected to the live line and the neutral line of the AC input unit through a current limiting resistor, and the output ends of the operational amplifier are connected
  • the MCU control unit calculates the voltage value of the mains AC voltage after calculating the voltage signal output by the operational amplifier.
  • the output of the operational amplifier is further connected to an inverting terminal of the comparator, the non-inverting terminal of the comparator is used for accessing a reference voltage, and the output of the comparator is connected to an MCU control unit, the MCU The control unit derives the phase of the mains AC voltage based on the voltage signal output by the comparator.
  • the method further includes a current sampling unit, the current sampling unit includes a finite current sampling resistor, and the current limiting sampling resistor is serially connected between the source of the first switching transistor and the ground, the first switching transistor source The current is transferred to the MCU control unit.
  • the current sampling unit includes a finite current sampling resistor
  • the current limiting sampling resistor is serially connected between the source of the first switching transistor and the ground, the first switching transistor source The current is transferred to the MCU control unit.
  • the inverter inverter unit comprises an inverter bridge composed of a third switch tube, a fourth switch tube, a fifth switch tube and a sixth switch tube, and a gate and a fourth switch of the third switch tube a gate of the tube, a gate of the fifth switch tube, and a gate of the sixth switch tube are respectively connected to the MCU control unit, and the third switch tube, the fourth switch tube, and the fifth switch tube are controlled by the MCU control unit And the sixth switch tube is turned on or off to enable the inverter inverting unit to output a sinusoidal alternating voltage.
  • the front end of the energy storage inductor is used for accessing direct current power
  • the direct current power may be a voltage obtained by rectifying and filtering the commercial power, or may be a pulsating direct current obtained by other methods.
  • the first switch tube is continuously turned on/off by the gate to the first switch tube and the PWM pulse signal is input, when the first When the switch tube is turned on, the DC power is sequentially transmitted to the ground via the energy storage inductor and the first switch tube. At this time, the energy storage inductor starts to store energy.
  • the energy storage inductor When the first switch tube is turned off, the energy storage inductor generates self-inductance due to a sudden change in voltage.
  • the back end of the energy storage inductor generates a voltage higher than the front end thereof, and the voltage is rectified by the freewheeling diode, and the filter inductor filters out the high frequency crosstalk and transmits to the inverter inverting unit.
  • the first The switch tube is repeatedly switched, so that the high-pulsation direct current generated by the energy storage inductor is transmitted to the inverter inverting unit.
  • the on-time of the first switch tube can be adjusted by adjusting the duty ratio of the PWM pulse signal.
  • the electric energy stored by the energy storage inductor is controlled. The more energy storage energy is stored, the higher the voltage output by the energy storage inductor is, and the sine wave intelligent boost conversion is realized.
  • the present invention can realize boost conversion without an electrolytic capacitor, which not only improves the service life, improves the PF value of the product, but also is convenient to carry, and can avoid interference to the power grid.
  • Figure 1 is a circuit schematic of a long-life intelligent boost converter.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the present invention discloses a long-life intelligent boost converter device, which is shown in FIG. 1 to FIG. 3, and includes a high frequency modulation unit 30, an inductive filtering unit 40 and an inverter inverting unit 50, wherein:
  • the high-frequency modulation unit 30 includes a storage inductor L2, a first switch transistor Q7, and a freewheeling diode D24.
  • the front end of the energy storage inductor L2 is used to connect DC power, and the back end of the energy storage inductor L2 is connected to the back end.
  • a drain of the first switch transistor Q7 a drain of the first switch transistor Q7 is connected to an anode of the freewheeling diode D24, a source of the first switch transistor Q7 is grounded, and a gate of the first switch transistor Q7 Used to access the PWM pulse signal;
  • the inductive filtering unit 40 includes a filter inductor L3 and a filter capacitor C2.
  • the front end of the filter inductor L3 is connected to the cathode of the freewheeling diode D24.
  • the back end of the filter inductor is grounded through the filter capacitor C2.
  • the back end is also connected to the inverter inverting unit 50.
  • the first switch tube Q7 When the first switch tube Q7 is turned on, the first switch tube Q7 communicates the back end of the energy storage inductor L2 with the ground.
  • the energy storage inductor L2 When the first switch tube Q7 is turned off, the energy storage inductor L2 causes a voltage higher than its front end due to self-inductance, and the back end voltage of the energy storage inductor L2 continues.
  • the flow diode D24 is rectified, and then filtered by the filter inductor L3 and the filter capacitor C2 to remove the high frequency crosstalk and transmitted to the inverter inverting
  • the inverter inverting unit 50 is configured to invert and convert the DC ripple voltage outputted from the rear end of the filter inductor L3 into a sinusoidal alternating current Pressure.
  • the working principle of the long-life intelligent boost converter is as follows: the front end of the energy storage inductor L2 is used to access the pulsating direct current, and the direct current may be a voltage obtained by rectifying and filtering the commercial power, or may be pulsed by other methods.
  • the first switching transistor Q7 is continuously turned on/off by the gate of the first switching transistor Q7 and the PWM pulse signal is input.
  • the direct current is sequentially passed through the energy storage inductor.
  • L2 and the first switching transistor Q7 are transmitted to the ground. At this time, the energy storage inductor L2 starts to store energy.
  • the energy storage inductor L2 When the first switching transistor Q7 is turned off, the energy storage inductor L2 generates self-inductance due to a sudden change in voltage, so that the back end of the energy storage inductor L2 A voltage higher than the front end is generated. After the voltage is rectified by the freewheeling diode D24, the filter inductor L3 filters out the high frequency crosstalk and transmits it to the inverter inverting unit 50. Under the control of the PWM pulse signal, the first switching transistor Q7 Repeating the switch, so that the high-pulsation direct current generated by the storage inductor L2 is transmitted to the inverter inverting unit 50. In the process, the on-time of the first switching transistor Q7 can be adjusted by adjusting the duty ratio of the PWM pulse signal.
  • the present invention can realize boost conversion without an electrolytic capacitor, which not only improves the service life, improves the PF value of the product, but also is convenient to carry, and can avoid interference to the power grid.
  • the DC power is preferably a voltage obtained by rectifying and filtering the commercial power. Therefore, the long-life intelligent boost converter further includes:
  • a rectifying and filtering unit 20 the input end of which is connected to the output end of the AC input unit 10, the output end of which is connected to the front end of the energy storage inductor L2, and the rectifying and filtering unit 20 is used for rectifying and filtering the mains AC voltage to form a pulsation
  • the DC power is applied to the front end of the energy storage inductor L2.
  • the rectifying action of the rectifying and filtering unit 20 is used, so that the input side of the high-frequency modulation unit 30 is connected to a half-wave pulsating direct current, and the half-wave pulsating direct current passes through the high-frequency modulation unit 30 and the inductor.
  • the filtering unit 40 processes, the half-wave pulsating direct current is still supplied to the inverter inverting unit 50, and the inverter inverting unit 50 only needs to invert one half of the adjacent two half waves, and then Form a sine wave AC.
  • the present invention firstly uses the electrolytic capacitor to filter the smoothed direct current, and then converts the smoothed direct current into the alternating current.
  • the alternating current can be obtained only by performing the phase inversion processing, thereby greatly improving the conversion efficiency. .
  • the first switching transistor Q7 is an N-channel MOS transistor.
  • the embodiment further includes an MCU control unit 80.
  • the gate of the first switch tube Q7 and the control end of the inverter inverter unit 50 are respectively connected.
  • the MCU control unit 80 outputs a PWM pulse signal to the first switching transistor Q7 and controls the inverter inversion by the MCU control unit 80.
  • the switching frequency of unit 50 is also included in the MCU control unit 80.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • the present embodiment further includes an AC sampling unit 70.
  • the input end of the AC sampling unit 70 is connected to the AC input unit 10.
  • the output of the AC sampling unit 70 is connected to the MCU control unit 80.
  • the AC sampling is performed.
  • the unit 70 is configured to collect the voltage value and phase of the mains AC voltage and transmit it to the MCU control unit 80, the MCU control unit 80 is configured to:
  • the switching frequency of the inverter inverting unit 50 is controlled in accordance with the phase of the commercial AC voltage collected by the AC sampling unit 70, so that the inverter inverting unit 50 outputs a sinusoidal alternating voltage having the same phase as the commercial AC voltage.
  • the AC sampling unit 70 includes an operational amplifier U9B and a comparator U9A.
  • the two input terminals of the operational amplifier U9B are respectively connected to the live line of the AC input unit 10 through a current limiting resistor.
  • the zero line, the output end of the operational amplifier U9B is connected to the MCU control unit 80, and the MCU control unit 80 calculates the voltage value of the commercial AC voltage after calculating the voltage signal output by the operational amplifier U9B.
  • the output end of the op amp U9B is also connected to the inverting terminal of the comparator U9A, the non-inverting terminal of the comparator U9A is used to access the reference voltage, and the output end of the comparator U9A is connected to the MCU control unit 80.
  • the MCU control unit 80 derives the phase of the commercial AC voltage based on the voltage signal output from the comparator U9A.
  • phase adoption is also performed.
  • the MCU control unit 80 can correspondingly control the switching frequency of the inverter inverting unit 50 to make the inverter.
  • the voltage output by the inverter unit 50 is the same as the phase of the commercial AC voltage, thereby achieving a higher PF value to reduce interference to the power grid.
  • the embodiment further includes a current sampling unit 90, the current sampling unit 90 includes a finite current sampling resistor R2A, and the current limiting sampling resistor R2A is connected in series with the source of the first switching transistor Q7 and the ground. The current of the source of the first switching transistor Q7 is transmitted to the MCU control unit 80.
  • the embodiment further includes a voltage sampling unit 60 for collecting the voltage at the back end of the filter inductor L3 and transmitting it to the MCU control unit 80.
  • the voltage generated at the rear end of the energy storage inductor L2 is rectified by the freewheeling diode D24, and the filter inductor L3 filters out the high frequency crosstalk and transmits the signal to the inverter inverting unit 50.
  • the function of the freewheeling diode D24 is that when the first switching transistor Q7 is turned off, the freewheeling diode D24 supplies the self-inductance voltage generated at the rear end of the storage inductor L2 to the filter inductor L3 and the inverter bridge. At the instant when the first switching transistor Q7 is turned on, in order to prevent the reverse current from being generated by the filter inductor L3, the reverse current is blocked by the freewheeling diode D24, thereby achieving the rectification effect.
  • the inverter inverter unit 50 includes an inverter bridge composed of a third switching transistor Q1, a fourth switching transistor Q2, a fifth switching transistor Q3, and a sixth switching transistor Q4.
  • the gate of the third switching transistor Q1, the gate of the fourth switching transistor Q2, the gate of the fifth switching transistor Q3, and the gate of the sixth switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU.
  • the unit 80 controls the third switching transistor Q1, the fourth switching transistor Q2, the fifth switching transistor Q3, and the sixth switching transistor Q4 to be turned on or off to cause the inverter inverting unit 50 to output a sinusoidal alternating voltage.
  • the grid voltage passes through the AC socket, fuse F2, lightning protection resistor RV1, common mode suppression inductor L1 and CX1 group input filter circuit.
  • D3, C1 form a rectifying and filtering circuit, and the input AC voltage is rectified into a half-wave AC voltage by D3. Since the C1 capacity is small, the output is still a half-wave ripple voltage to the high-frequency modulation unit after being filtered by C1.
  • the control chip U1 is sampled by an AC input voltage composed of R126, R127, R128, R38, R129, R130, R131, R45, C39, R39, R47, C41, U9, R44, D15, and R46, C40, R33, R34, D1
  • the AC input phase sampling circuit composed of R31 and R32 is used to determine the working state of the high frequency modulation circuit; if the input voltage is lower than AC230V, the high frequency modulation circuit will be activated, and if the input voltage is equal to or greater than AC230V, the high frequency modulation circuit will be turned off. .
  • the high frequency modulation circuit consists of a boost inductor L2, a switching MOS transistor Q7 and a freewheeling diode D24. If the input grid voltage is lower than 230V, the control chip U1 outputs the high-frequency control signal PWM1 to the GATE of Q7 via the drive circuits D4, R8, and R22, and the half-wave ripple voltage after the rectification of D3 is boosted by the PFC boost mode by Q7.
  • the specific boosting principle is: when Q7 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q7 to GND, and the boost inductor L2 stores energy; when Q7 is turned off, the boost inductor forms a specific input voltage.
  • the induced electromotive force is rectified by the rectifier D24 to form a unidirectional half-wave pulsation voltage and then sent to the high-frequency filter circuit for filtering.
  • Q7 controls the duty cycle change of PWM1 according to the input fundamental voltage obtained by the AC sampling circuit.
  • the control chip U1 turns off the high frequency modulation circuit, and Q7 does not work; the rectified and filtered voltage flows directly through L2 and D24.
  • the high-frequency filter circuit consists of L3 and C2.
  • the high-frequency voltage and current after Q7 modulation are converted into AC half-wave by L3 and C2 filtering. If Q7 is not working, the filter circuit will not work, and D3 rectified half-wave pulsation Voltage straight through.
  • the L3 filtered voltage is sent to the U1 control chip by a voltage sampling circuit composed of R13 and R15, and the duty cycle of the PWM of Q7 is determined by U1. That is, the high frequency modulation circuit, the current sampling, the filter circuit and the voltage sampling circuit form a closed loop to adjust the duty ratio of the Q7 to achieve the stability of the filtered output voltage.
  • a current sampling unit is set: R2A and the control chip U1 form a current detecting circuit, and when an overcurrent occurs in the Q7, an overcurrent protection action inside the U1 is started.
  • the inverter inverter circuit is composed of Q1, Q2, Q3, and Q4.
  • the first output half-wave AC voltage through the L3 filter inductor is sent to the load through Q1 and Q4; when the second output half-wave AC through the L3 filter inductor
  • the voltage is applied to the load via Q2 and Q3, which forms a complete power-frequency AC voltage across the load.
  • the PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM2H, PWM1L, and PWM2L through the driving circuit.
  • the phase of the inverter inverter circuit is to lock the inverter inverter circuit according to the phase taken by the input sampling circuit, that is, the frequency and phase of the inverter inverter circuit will be consistent with the frequency and phase of the input voltage.
  • the long-life intelligent boost converter device disclosed by the invention has the characteristics of small volume, light weight, convenient carrying, etc., and can automatically adjust the output voltage in the input full voltage range, and the output voltage is output in a pure sinusoidal mode, which damages the load.

Abstract

一种长寿命智能升压转换装置,其包括有一高频调制单元(30)、一电感滤波单元(40)及一逆变倒相单元(50),高频调制单元包括有储能电感(L2)和第一开关管(Q7),储能电感的后端连接于第一开关管的漏极和续流二极管(D24)的正极,第一开关管的源极接地(HGND1),第一开关管的栅极用于接入PWM脉冲信号;电感滤波单元包括有滤波电感(L3),滤波电感的前端连接于续流二极管的负极,滤波电感的后端连接于逆变倒相单元;逆变倒相单元用于将滤波电感后端输出的直流脉动电压逆变转换为正弦交流电压。该升压转换装置无需电解电容,可提高使用寿命、提高产品的PF值、便于携带并且能避免对电网造成干扰。

Description

一种长寿命智能升压转换装置
技术领域
本发明涉及电压转换器,尤其涉及一种无电解电容的长寿命智能升压转换装置。
背景技术
正弦波升压转换装置又被称为升压旅行排插,是一种正弦波AC/AC变换器,可以在AC/AC变换中实现升压并稳定电压与频率。目前AC/AC便隽式设备市场大多数为修正波输出,升压电路都先整成直流然后用铝电解电容滤波再BOOST升压,最后再进行逆变。但是这种升压转换装置输出的电压大多为修正波,对电器设备的伤害较大,而且内部大多用铝电解电容滤波,严重影响产品寿命,导致产品的安全可靠性降低。同时,这种升压转换装置的体积较大,不利于携带。此外,现有的升压转换装置PF值太低,容易对电网产生干扰。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种无需电解电容,可提高使用寿命、提高产品的PF值、便于携带并且能避免对电网造成干扰的长寿命智能升压转换装置。
为解决上述技术问题,本发明采用如下技术方案。
一种长寿命智能升压转换装置,其包括有一高频调制单元、一电感滤波单元及一逆变倒相单元,其中:所述高频调制单元包括有储能电感、第一开关管和续流二极管,所述储能电感的前端用于接入直流电,所述储能电感的后端连接于第一开关管的漏极,所述第一开关管的漏极连接于续流二极管的阳极,所述第一开关管的源极接地,所述第一开关管的栅极用于接入PWM脉冲信号;所述电感滤波单元包括有滤波电感和滤波电容,所述滤波电感的前端连接于续流二极管的阴极,所述滤波电感的后端通过滤波电容接地,所述滤波电感的后端还连接于逆变倒相单元,当所述第一开关管导通时,所述第一开关管将储能电感的后端与地连通,所述储能电感开始储能,当所述第一开关管截至时,所述储能电感因自感作用而令其后端产生高于其前端的电压,所述储能电感的后端电压经过续流二极管整流,再经过滤波电感和滤波电容滤除高频串扰后传输至逆变倒相单元;所述逆变倒相单元用于将滤波电感后端输出的直流脉动电压逆变转换为正弦交流电压。
优选地,还包括有:一交流输入单元,其用于接入市电交流电压;一整流滤波单 元,其输入端连接交流输入单元的输出端,其输出端连接储能电感的前端,所述整流滤波单元用于将市电交流电压进行整流和滤波后,形成脉动直流电并加载于储能电感的前端。
优选地,所述第一开关管为N沟道MOS管。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极和逆变倒相单元的控制端分别连接于MCU控制单元,藉由所述MCU控制单元而输出PWM脉冲信号至第一开关管以及控制逆变倒相单元的转换频率。
优选地,还包括有一交流采样单元,所述交流采样单元的输入端连接于交流输入单元,所述交流采样单元的输出端连接于MCU控制单元,所述交流采样单元用于采集市电交流电压的电压值和相位并传输至MCU控制单元,所述MCU控制单元用于:根据交流采样单元采集的电压值判断市电交流电压是否低于预设值,若低于预设值,则向所述第一开关管的栅极输出PWM脉冲信号,若未低于预设值,则令所述第一开关管保持截止;根据交流采样单元采集的市电交流电压的相位而控制逆变倒相单元的转换频率,以令逆变倒相单元输出与市电交流电压相位相同的正弦交流电压。
优选地,所述交流采样单元包括有运放和比较器,所述运放的两个输入端分别通过限流电阻而连接于交流输入单元的火线和零线,所述运放的输出端连接于MCU控制单元,所述MCU控制单元对运放输出的电压信号运算后得出市电交流电压的电压值。
优选地,所述运放的输出端还连接于比较器的反相端,所述比较器的同相端用于接入基准电压,所述比较器的输出端连接于MCU控制单元,所述MCU控制单元根据比较器输出的电压信号而得出市电交流电压的相位。
优选地,还包括有一电流采样单元,所述电流采样单元包括有限流采样电阻,所述限流采样电阻串接于第一开关管的源极与地之间,所述第一开关管源极的电流传输至MCU控制单元。
优选地,所述逆变倒相单元包括由第三开关管、第四开关管、第五开关管和第六开关管组成的逆变桥,所述第三开关管的栅极、第四开关管的栅极、第五开关管的栅极和第六开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第三开关管、第四开关管、第五开关管和第六开关管导通或截止,以令所述逆变倒相单元输出正弦交流电压。
本发明公开的长寿命智能升压转换装置中:储能电感的前端用于接入直流电,该直流电可以是将市电进行整流、滤波后的电压,也可以是由其他方式获得的脉动直流电,工作时,通过向第一开关管的栅极和接入PWM脉冲信号,使得第一开关管持续通/断,当第一 开关管导通时,该直流电依次经由储能电感和第一开关管向地传输,此时储能电感开始储能,当第一开关管截至时,储能电感因电压突变而产生自感,使得储能电感的后端产生高于其前端的电压,该电压由续流二极管整流、滤波电感滤除高频串扰后传输至逆变倒相单元,在PWM脉冲信号的控制作用下,第一开关管重复开关,使得储能电感每次产生的高脉动直流电均传输至逆变倒相单元,该过程中,通过调整PWM脉冲信号的占空比,可以调整第一开关管的导通时间,进而控制储能电感所存储的电能,其中,储能电感的储能越多,则储能电感自感时输出的电压越高,进而实现了正弦波智能升压转换。基于上述原理可见,本发明无需电解电容即能实现升压转换,不仅提高了使用寿命、提高了产品的PF值,而且便于携带,并能够避免对电网造成干扰。
附图说明
图1为长寿命智能升压转换装置的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种长寿命智能升压转换装置,结合图1至图3所示,其包括有一高频调制单元30、一电感滤波单元40及一逆变倒相单元50,其中:
所述高频调制单元30包括有储能电感L2、第一开关管Q7和续流二极管D24,所述储能电感L2的前端用于接入直流电,所述储能电感L2的后端连接于第一开关管Q7的漏极,所述第一开关管Q7的漏极连接于续流二极管D24的阳极,所述第一开关管Q7的源极接地,所述第一开关管Q7的栅极用于接入PWM脉冲信号;
所述电感滤波单元40包括有滤波电感L3和滤波电容C2,所述滤波电感L3的前端连接于续流二极管D24的阴极,所述滤波电感的后端通过滤波电容C2接地,所述滤波电感L3的后端还连接于逆变倒相单元50,当所述第一开关管Q7导通时,所述第一开关管Q7将储能电感L2的后端与地连通,所述储能电感L2开始储能,当所述第一开关管Q7截至时,所述储能电感L2因自感作用而令其后端产生高于其前端的电压,所述储能电感L2的后端电压经过续流二极管D24整流,再经过滤波电感L3和滤波电容C2滤除高频串扰后传输至逆变倒相单元50;
所述逆变倒相单元50用于将滤波电感L3后端输出的直流脉动电压逆变转换为正弦交流电 压。
上述长寿命智能升压转换装置的工作原理为:储能电感L2的前端用于接入脉动直流电,该直流电可以是将市电进行整流、滤波后的电压,也可以是由其他方式获得的脉动直流电,工作时,通过向第一开关管Q7的栅极和接入PWM脉冲信号,使得第一开关管Q7持续通/断,当第一开关管Q7导通时,该直流电依次经由储能电感L2和第一开关管Q7向地传输,此时储能电感L2开始储能,当第一开关管Q7截至时,储能电感L2因电压突变而产生自感,使得储能电感L2的后端产生高于其前端的电压,该电压由续流二极管D24整流后,滤波电感L3滤除高频串扰后传输至逆变倒相单元50,在PWM脉冲信号的控制作用下,第一开关管Q7重复开关,使得储能电感L2每次产生的高脉动直流电均传输至逆变倒相单元50,该过程中,通过调整PWM脉冲信号的占空比,可以调整第一开关管Q7的导通时间,进而控制储能电感L2所存储的电能,其中,储能电感L2的储能越多,则储能电感L2自感时输出的电压越高,进而实现了正弦波智能升压转换。基于上述原理可见,本发明无需电解电容即能实现升压转换,不仅提高了使用寿命、提高了产品的PF值,而且便于携带,并能够避免对电网造成干扰。
本实施例中,直流电优选是将市电进行整流、滤波后的电压,所以该长寿命智能升压转换装置还包括有:
一交流输入单元10,其用于接入市电交流电压;
一整流滤波单元20,其输入端连接交流输入单元10的输出端,其输出端连接储能电感L2的前端,所述整流滤波单元20用于将市电交流电压进行整流和滤波后,形成脉动直流电并加载于储能电感L2的前端。
本实施例中,请参照图1,利用整流滤波单元20的整流作用,使得高频调制单元30的输入侧接入了半波的脉动直流电,该半波脉动直流电经过高频调制单元30和电感滤波单元40处理后,输送至逆变倒相单元50的依然是半波的脉动直流电,逆变倒相单元50只需将相邻两个半波中的一个半波倒相处理后,即可形成正弦波交流电。本发明相比现有技术中,先利用电解电容滤成平滑直流电,再将平滑直流电逆变为交流电的方式而言,本发明仅需进行倒相处理即能获得交流电,因而大大提高了转换效率。
关于器件选型,所述第一开关管Q7为N沟道MOS管。
为了更好地实现智能控制,结合图1至图3所示,本实施例还包括有一MCU控制单元80,所述第一开关管Q7的栅极和逆变倒相单元50的控制端分别连接于MCU控制单元80,藉由所述MCU控制单元80而输出PWM脉冲信号至第一开关管Q7以及控制逆变倒相 单元50的转换频率。进一步地,该MCU控制单元80包括有单片机U1及其外围电路。
在实际应用中,对于旅行插排而言,仅当应用于较低市电电压的环境下,才需要进行升压转换,因此,需要对市电交流电压进行采样和判断,为了便于采样市电电压,本实施例还还包括有一交流采样单元70,所述交流采样单元70的输入端连接于交流输入单元10,所述交流采样单元70的输出端连接于MCU控制单元80,所述交流采样单元70用于采集市电交流电压的电压值和相位并传输至MCU控制单元80,所述MCU控制单元80用于:
根据交流采样单元70采集的电压值判断市电交流电压是否低于预设值,若低于预设值,则向所述第一开关管Q7的栅极输出PWM脉冲信号,若未低于预设值,则令所述第一开关管Q7保持截止;
根据交流采样单元70采集的市电交流电压的相位而控制逆变倒相单元50的转换频率,以令逆变倒相单元50输出与市电交流电压相位相同的正弦交流电压。
关于交流采样单元70的具体组成,所述交流采样单元70包括有运放U9B和比较器U9A,所述运放U9B的两个输入端分别通过限流电阻而连接于交流输入单元10的火线和零线,所述运放U9B的输出端连接于MCU控制单元80,所述MCU控制单元80对运放U9B输出的电压信号运算后得出市电交流电压的电压值。所述运放U9B的输出端还连接于比较器U9A的反相端,所述比较器U9A的同相端用于接入基准电压,所述比较器U9A的输出端连接于MCU控制单元80,所述MCU控制单元80根据比较器U9A输出的电压信号而得出市电交流电压的相位。
上述交流采样单元70中,在对市电交流电压进行电压采样的同时,还进行相位采用,基于该相位的变化,MCU控制单元80可以相应控制逆变倒相单元50的转换频率,使得逆变倒相单元50输出的电压与市电交流电压相位相同,进而达到较高的PF值,以降低对电网的干扰。
为了实现输出采样,本实施例还包括有一电流采样单元90,所述电流采样单元90包括有限流采样电阻R2A,所述限流采样电阻R2A串接于第一开关管Q7的源极与地之间,所述第一开关管Q7源极的电流传输至MCU控制单元80。此外,本实施例还包括有一电压采样单元60,所述电压采样单元60用于采集滤波电感L3后端的电压并传输至MCU控制单元80。
作为一种优选方式,储能电感L2后端产生的电压由续流二极管D24整流、滤波电感L3滤除高频串扰后传输至逆变倒相单元50。该续流二极管D24的作用是,当第一开关管Q7关断时,续流二极管D24将储能电感L2后端产生的自感电压向滤波电感L3和逆变桥供 电,在第一开关管Q7导通的瞬间,为防止滤波电感L3产生反向电流,利用续流二极管D24阻断该反向电流,从而达到整流的作用。
关于逆变倒相单元50的组成,所述逆变倒相单元50包括由第三开关管Q1、第四开关管Q2、第五开关管Q3和第六开关管Q4组成的逆变桥,所述第三开关管Q1的栅极、第四开关管Q2的栅极、第五开关管Q3的栅极和第六开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第三开关管Q1、第四开关管Q2、第五开关管Q3和第六开关管Q4导通或截止,以令所述逆变倒相单元50输出正弦交流电压。
将上述各单元整合后构成本发明的优选实施例,结合图1至图3所示,该实施例整体的工作原理为:
电网电压通过交流插座、保险F2、防雷电阻RV1、共模抑制电感L1与CX1组输入滤波电路。D3、C1、组成整流滤波电路,将输入交流电压经D3整流变成半波交流电压,由于C1容量较小,通过C1滤波后输出仍然为半波脉动电压给高频调制单元。控制芯片U1通过R126、R127、R128、R38、R129、R130、R131、R45、C39、R39、R47、C41、U9、R44、D15组成的交流输入电压采样,及R46、C40、R33、R34、D1、R31、R32组成的交流输入相位采样电路,用来判定高频调制电路的工作状态;如果输入电压低于AC230V,将启动高频调制电路,如果输入电压等于或大于AC230V将关闭高频调制电路。
在升压的关键部分,高频调制电路由升压电感L2、开关MOS管Q7和续流二极管D24组成。如果输入电网电压低于230V,控制芯片U1输出高频控制信号PWM1经驱动电路D4、R8、R22送给Q7的GATE,D3整流后的半波脉动电压被Q7以PFC升压方式进行升压,具体的升压原理是:Q7导通时,C1上的电流经升压电感L2、Q7到GND形成回路,升压电感L2储存能量;当Q7关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经整流管D24进行整流后形成单向半波脉动电压再送给高频滤波电路滤波。并且Q7是根据交流采样电路采得的输入电网电压的为调制基波来控制PWM1的占空比变化。当输入电网电压等于或大于230V电压时控制芯片U1将高频调制电路关闭,Q7不工作;整流滤波后的电压直接经L2、D24流出。
高频滤波电路由L3、C2组成,经过Q7调制后的高频电压与电流经过L3、C2滤波后变成交流半波,若Q7不工作则滤波电路不起作用,D3整流后的半波脉动电压直通。L3滤波后的电压由R13、R15组成的电压采样电路送到U1控制芯片,由U1来确定Q7的PWM的占空比。即高频调制电路、电流采样、滤波电路与电压采样电路形成闭环,来调节Q7的占空比达到滤波后的输出电压的稳定。
本实施例设置了电流采样单元:R2A与控制芯片U1组成电流检测电路,当Q7发生过流时将启动U1内部的过流保护动作。
逆变倒相电路由Q1、Q2、Q3、Q4组成,当经过L3滤波电感的第一个输出半波交流电压经Q1与Q4送给负载;当经过L3滤波电感的第二个输出半波交流电压经Q2与Q3送给负载,这样在负载上就形成了一个完整的工频交流电压。控制芯片U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM2H、PWM1L、PWM2L给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路的相位是按照输入采样电路采到的相位来锁定逆变倒相电路,即逆变倒相电路的频率和相位将与输电压的频率与相位一致。
本发明公开的长寿命智能升压转换装置,具有体积小、重量轻、方便携带等特点,在输入全电压范围内能够能自动调节输出电压,输出电压是以纯正弦模式输出,对负载设损害较小,兼容强;同时,本发明没有使用铝电解电容滤波,使用的是长寿命的CBB电容,所以产品的寿命更长,此外,输出电压会跟随交流电网变化,使得本发明具有高PF值,对电网干扰较小。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (9)

  1. 一种长寿命智能升压转换装置,其特征在于,包括有一高频调制单元、一电感滤波单元及一逆变倒相单元,其中:
    所述高频调制单元包括有储能电感、第一开关管和续流二极管,所述储能电感的前端用于接入直流电,所述储能电感的后端连接于第一开关管的漏极,所述第一开关管的漏极连接于续流二极管的阳极,所述第一开关管的源极接地,所述第一开关管的栅极用于接入PWM脉冲信号;
    所述电感滤波单元包括有滤波电感和滤波电容,所述滤波电感的前端连接于续流二极管的阴极,所述滤波电感的后端通过滤波电容接地,所述滤波电感的后端还连接于逆变倒相单元,当所述第一开关管导通时,所述第一开关管将储能电感的后端与地连通,所述储能电感开始储能,当所述第一开关管截至时,所述储能电感因自感作用而令其后端产生高于其前端的电压,所述储能电感的后端电压经过续流二极管整流,再经过滤波电感和滤波电容滤除高频串扰后传输至逆变倒相单元;
    所述逆变倒相单元用于将滤波电感后端输出的直流脉动电压逆变转换为正弦交流电压。
  2. 如权利要求1所述的长寿命智能升压转换装置,其特征在于,还包括有:
    一交流输入单元,其用于接入市电交流电压;
    一整流滤波单元,其输入端连接交流输入单元的输出端,其输出端连接储能电感的前端,所述整流滤波单元用于将市电交流电压进行整流和滤波后,形成脉动直流电并加载于储能电感的前端。
  3. 如权利要求1所述的长寿命智能升压转换装置,其特征在于,所述第一开关管为N沟道MOS管。
  4. 如权利要求2所述的长寿命智能升压转换装置,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极和逆变倒相单元的控制端分别连接于MCU控制单元,藉由所述MCU控制单元而输出PWM脉冲信号至第一开关管以及控制逆变倒相单元的转换频率。
  5. 如权利要求4所述的长寿命智能升压转换装置,其特征在于,还包括有一交流采样单元,所述交流采样单元的输入端连接于交流输入单元,所述交流采样单元的输出端连接于MCU控制单元,所述交流采样单元用于采集市电交流电压的电压值和相位并传输至MCU控制单元,所述MCU控制单元用于:
    根据交流采样单元采集的电压值判断市电交流电压是否低于预设值,若低于预设值,则向所述第一开关管的栅极输出PWM脉冲信号,若未低于预设值,则令所述第一开关管保持截止;
    根据交流采样单元采集的市电交流电压的相位而控制逆变倒相单元的转换频率,以令逆变倒相单元输出与市电交流电压相位相同的正弦交流电压。
  6. 如权利要求5所述的长寿命智能升压转换装置,其特征在于,所述交流采样单元包括有运放和比较器,所述运放的两个输入端分别通过限流电阻而连接于交流输入单元的火线和零线,所述运放的输出端连接于MCU控制单元,所述MCU控制单元对运放输出的电压信号运算后得出市电交流电压的电压值。
  7. 如权利要求6所述的长寿命智能升压转换装置,其特征在于,所述运放的输出端还连接于比较器的反相端,所述比较器的同相端用于接入基准电压,所述比较器的输出端连接于MCU控制单元,所述MCU控制单元根据比较器输出的电压信号而得出市电交流电压的相位。
  8. 如权利要求4所述的长寿命智能升压转换装置,其特征在于,还包括有一电流采样单元,所述电流采样单元包括有限流采样电阻,所述限流采样电阻串接于第一开关管的源极与地之间,所述第一开关管源极的电流传输至MCU控制单元。
  9. 如权利要求5所述的长寿命智能升压转换装置,其特征在于,所述逆变倒相单元包括由第三开关管、第四开关管、第五开关管和第六开关管组成的逆变桥,所述第三开关管的栅极、第四开关管的栅极、第五开关管的栅极和第六开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第三开关管、第四开关管、第五开关管和第六开关管导通或截止,以令所述逆变倒相单元输出正弦交流电压。
PCT/CN2017/075079 2016-11-25 2017-02-28 一种长寿命智能升压转换装置 WO2018094898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17873267.3A EP3547522A4 (en) 2016-11-25 2017-02-28 INTELLIGENT UPPER CONVERTER WITH LONG LIFETIME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611061767.0 2016-11-25
CN201611061767.0A CN106505870A (zh) 2016-11-25 2016-11-25 一种长寿命智能升压转换装置

Publications (1)

Publication Number Publication Date
WO2018094898A1 true WO2018094898A1 (zh) 2018-05-31

Family

ID=58327557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075079 WO2018094898A1 (zh) 2016-11-25 2017-02-28 一种长寿命智能升压转换装置

Country Status (3)

Country Link
EP (1) EP3547522A4 (zh)
CN (1) CN106505870A (zh)
WO (1) WO2018094898A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683354B (zh) * 2018-05-28 2024-02-02 红河学院 一种脉冲频率调制变流电路
CN115276421B (zh) * 2022-07-11 2023-07-14 湖南众源科技有限公司 一种双极脉冲电源、电源控制方法及可读存储介质
CN115133789B (zh) * 2022-07-11 2023-09-01 湖南众源科技有限公司 一种双极电压脉冲电源拓扑结构及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090190378A1 (en) * 2008-01-29 2009-07-30 Hideo Ishii Power supply device outputting pulsed electrical current
CN201839200U (zh) * 2010-11-02 2011-05-18 华南理工大学 一种变占空比控制的功率因数校正电路
CN106160504A (zh) * 2015-04-13 2016-11-23 纪睿 交流宽电压输入的电力电子交流稳压器
CN106655798A (zh) * 2016-11-25 2017-05-10 广东百事泰电子商务股份有限公司 一种正弦波智能升压转换装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69536081D1 (de) * 1994-07-01 2010-07-22 Sharp Kk Klimaanlage
CN2438294Y (zh) * 2000-06-15 2001-07-04 珠海市明宏集团有限公司 高强度气体放电灯用的交流电子镇流器
CN101325367B (zh) * 2007-06-14 2010-09-22 海尔集团公司 一种部分有源功率因数校正电路
US8644037B2 (en) * 2008-07-15 2014-02-04 General Electric Company AC-AC converter with high frequency link
CN201312267Y (zh) * 2008-10-31 2009-09-16 厦门拓宝科技有限公司 单级spwm逆变电源电路
CN101986542B (zh) * 2010-11-02 2013-02-13 华南理工大学 一种高输入功率因数的pfc控制方法及其控制电路
CN204046457U (zh) * 2014-08-11 2014-12-24 西安后羿半导体科技有限公司 一种并网逆变器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090190378A1 (en) * 2008-01-29 2009-07-30 Hideo Ishii Power supply device outputting pulsed electrical current
CN201839200U (zh) * 2010-11-02 2011-05-18 华南理工大学 一种变占空比控制的功率因数校正电路
CN106160504A (zh) * 2015-04-13 2016-11-23 纪睿 交流宽电压输入的电力电子交流稳压器
CN106655798A (zh) * 2016-11-25 2017-05-10 广东百事泰电子商务股份有限公司 一种正弦波智能升压转换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547522A4 *

Also Published As

Publication number Publication date
EP3547522A4 (en) 2020-06-24
EP3547522A1 (en) 2019-10-02
CN106505870A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018094898A1 (zh) 一种长寿命智能升压转换装置
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
WO2018094897A1 (zh) 一种正弦波智能降压转换装置
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN106655798B (zh) 一种正弦波智能升压转换装置
CN206379887U (zh) 一种基于mos管全桥整流的智能型正弦波电压转换电路
WO2018094899A1 (zh) 一种长寿命智能降压转换装置
CN208337420U (zh) 一种长寿命智能升压转换装置
WO2018129833A1 (zh) 一种基于mos管全桥整流的智能型正弦波电压转换电路
CN206727882U (zh) 一种基于mos管全桥整流的智能型修正波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873267

Country of ref document: EP

Effective date: 20190625