WO2018120483A1 - 基于pfc交错反激全桥的智能型正弦波电压转换电路 - Google Patents

基于pfc交错反激全桥的智能型正弦波电压转换电路 Download PDF

Info

Publication number
WO2018120483A1
WO2018120483A1 PCT/CN2017/079189 CN2017079189W WO2018120483A1 WO 2018120483 A1 WO2018120483 A1 WO 2018120483A1 CN 2017079189 W CN2017079189 W CN 2017079189W WO 2018120483 A1 WO2018120483 A1 WO 2018120483A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching transistor
unit
pfc
filter
transformer
Prior art date
Application number
PCT/CN2017/079189
Other languages
English (en)
French (fr)
Inventor
廖志刚
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018120483A1 publication Critical patent/WO2018120483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent sine wave voltage conversion circuit based on a PFC staggered flyback full bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
  • the voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion, which can be AC-AC conversion realizes the function of buck-boost and stabilizes voltage and frequency.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability. Especially in the voltage conversion process, more ripple interference is generated, especially the lack of EMI filtering performance, thus affecting the voltage quality.
  • an intelligent PFC-based interleaved flyback bridge can be provided which can reduce ripple in the circuit, has good filtering effect, can improve output voltage quality, and is safe and reliable.
  • Type sine wave voltage conversion circuit
  • the present invention adopts the following technical solutions.
  • An intelligent sinusoidal voltage conversion circuit based on a PFC interleaved flyback full bridge comprising an input unit for providing a DC voltage, a PFC boosting unit for boosting the DC voltage, and: an interleaving a flyback isolation conversion unit includes a first switch tube, a second switch tube, a first transformer, a second transformer, a second rectifier diode, and a third rectifier diode, the first end and the second end of the first transformer primary winding a first end of the transformer primary winding is connected to an output end of the PFC boosting unit, a second end of the first transformer primary winding is connected to a drain of the first switching transistor, and a second end of the second transformer primary winding Connected to the drain of the second switch tube, the source of the first switch tube and the source of the second switch tube are both connected to the front end, the gate of the first switch tube and the gate of the second switch tube For connecting two opposite phase PWM pulse signals, a first end of the first transformer secondary winding is connected to an an
  • the front end of the filter inductor is connected to the output end of the interleaved flyback isolation unit, the rear end of the filter inductor is used as an output end of the DC filter unit, and an inverter inverter unit is connected to the output end of the DC filter unit.
  • the inverter inverting unit is configured to invert and convert the output voltage of the DC filter unit to output an alternating current.
  • the input unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, wherein the fuse is connected to a neutral or a live line of the socket, and the common mode suppresses the inductance.
  • the front end is connected in parallel to the socket, the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor, and the input terminals of the safety capacitor and the rectifier bridge are both connected in parallel with the rear end of the common mode suppression inductor, and the output ends of the rectifier bridge are connected in parallel Filter capacitor.
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifier diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input unit, the boosting inductor
  • the back end is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third switch tube
  • the drain is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boosting unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the cathode of the second electrolytic capacitor Connect to the front end.
  • an MCU control unit is further included, the gate of the first switch tube, the gate of the second switch tube and the gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is used for respectively
  • the PWM signal is output to the first switch tube, the second switch tube and the third switch tube to control the on/off state of the first switch tube, the second switch tube and the third switch tube.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the method further includes an AC sampling unit connected between the input end of the input unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input unit and feed back to the MCU control unit.
  • the AC sampling unit comprises an operational amplifier, and the two input ends of the operational amplifier are respectively connected to the input end of the input unit through a current limiting resistor, and the output end of the operational amplifier is connected to the MCU control unit.
  • a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor.
  • the control unit collects an electrical signal of the source of the third switching transistor.
  • the method further includes a DC voltage sampling unit, the DC voltage sampling unit includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to an output end of the DC filtering unit.
  • Description The back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit acquires the electrical signal output by the DC filtering unit by the second sampling resistor and the third sampling resistor.
  • the inverter inverter unit comprises an inverter bridge composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube, and a gate and a fifth switch of the fourth switch tube a gate of the tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, and the fourth switch tube, the fifth switch tube, and the sixth switch tube are controlled by the MCU control unit And the seventh switch tube is turned on or off to enable the inverter inverting unit to output an alternating voltage.
  • the input unit is used for supplying a DC voltage
  • the DC voltage outputted by the input unit is boosted by the PFC boosting unit, and then output to the interleaving.
  • a flyback isolation conversion unit wherein the first switch tube and the second switch tube are mutually conductive when the first switch tube is turned on, and the current is blocked by the first transformer primary winding when the first switch tube is turned on,
  • the first switch tube forms a loop to the front end, the first transformer primary winding starts to reserve; when the second switch tube is turned on, the first switch tube is turned off, and the current is formed by the second transformer primary winding, the second switching tube, and the front end.
  • the primary winding of the second transformer begins to store energy, and the electrical energy of the primary winding of the first transformer is coupled to the secondary winding through its magnetic core, and then the second rectifier diode is used to supply power to the load; then the first switching transistor is again turned on, and the second The switch tube is cut off, the first transformer stores energy, and the second transformer secondary winding supplies power to the load through the third rectifier diode.
  • the DC filter unit is adopted.
  • the ⁇ -type filter composed of the first CBB filter capacitor, the second CBB filter capacitor and the filter inductor makes the EMI and EMC interference in the circuit smaller, the circuit operates at a higher frequency, and can improve the power density.
  • Changing the turns ratio of the primary transformer and the primary and secondary of the second transformer can change the output voltage to achieve boost or buck.
  • Figure 1 is a circuit schematic of a sinusoidal voltage conversion circuit.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on a PFC staggered flyback full bridge. As shown in FIG. 1 to FIG. 3, it comprises an input unit 10 for providing a DC voltage for the DC voltage.
  • a PFC boost unit 20 that performs boost conversion, and:
  • An interleaved flyback isolation conversion unit 30 includes a first switching transistor Q6, a second switching transistor Q7, a first transformer T1, a second transformer T2, a second rectifier diode D7, and a third rectifier diode D8, the first transformer
  • the first end of the T1 primary winding and the first end of the second transformer T2 primary winding are both connected to the output end of the PFC boosting unit 20, and the second end of the primary winding of the first transformer T1 is connected to the first switching transistor Q6.
  • a drain a second end of the second winding of the second transformer T2 is connected to a drain of the second switching transistor Q7, and a source of the first switching transistor Q6 and a source of the second switching transistor Q7 are connected to the front end
  • the gate of the first switching transistor Q6 and the gate of the second switching transistor Q7 are used to access two PWM pulses with opposite phases, and the first end of the secondary winding of the first transformer T1 is connected to the second
  • the second ends are both connected to the back end, and the second rectification is D7 cathode tube and the cathode of the third rectifier diode D8 is connected to an output terminal of the interleaved flyback isolation converting unit 30;
  • a DC filter unit 40 includes a first CBB filter capacitor C3, a second CBB filter capacitor C4, and a filter inductor L3.
  • the front end of the filter inductor L3 is connected to the front end of the first CBB filter capacitor C3, and the filter inductor L3 is The back end is connected to the front end of the second CBB filter capacitor C4, the rear end of the first CBB filter capacitor C3 and the rear end of the second CBB filter capacitor C4 are connected to the back end, and the front end of the filter inductor L3 is connected to Interleaving the output of the flyback isolation unit 30, the back end of the filter inductor L3 as the output of the DC filter unit 40;
  • An inverter inverting unit 60 is connected to the output end of the DC filter unit 40, and the inverter inverting unit 60 is configured to invert and convert the output voltage of the DC filter unit 40 to output an alternating current.
  • the input unit 10 is configured to supply a DC voltage, and the DC voltage output from the input unit 10 is boosted by the PFC boosting unit 20, and then output to the interleaved flyback isolation unit 30, which is inverted.
  • the first switching transistor Q6 and the second switching transistor Q7 are mutually turned on. When the first switching transistor Q6 is turned on, the second switching transistor Q7 is turned off, and the current is from the first transformer T1 primary winding and the first switch.
  • the tube Q6 forms a loop to the front end, the first transformer T1 primary winding starts to reserve; when the second switching tube Q7 is turned on, the first switching tube Q6 is turned off, the current is from the second transformer T2 primary winding, the second switching tube Q7, the front end
  • the ground constitutes a loop, the primary winding of the second transformer T2 begins to store energy, and the electrical energy of the primary winding of the first transformer T1 is coupled to the secondary winding through its core, and then the second rectifier diode D7 is supplied to the load; then the first switch Q6 is turned on again, the second switching transistor Q7 is turned off, the first transformer T1 stores energy, and the secondary winding of the second transformer T2 supplies power to the load through the third rectifier diode D8.
  • the DC filter unit 40 is used.
  • a ⁇ -type filter composed of a first CBB filter capacitor C3, a second CBB filter capacitor C4, and a filter inductor L3 is used to make EMI in the circuit,
  • the EMC interference is small, the circuit operating frequency is high, and the power density can be improved.
  • the output voltage can be changed by changing the turns ratio of the primary and secondary transformers T1 and the second transformer T2, and the voltage can be boosted or stepped down. .
  • the ⁇ -type filter formed by the first CBB filter capacitor C3, the third CBB filter capacitor C4 and the filter inductor L3 is filtered out. After the frequency pulse signal, a pure sinusoidal half-wave voltage is obtained at the third CBB filter capacitor C4.
  • the first switching transistor Q6 and the second switching transistor Q7 are operated according to a sinusoidal power frequency modulated high frequency PWM signal, after being rectified by the second rectifier diode D7 and the third rectifier diode D8, the first CBB Filter capacitor C3, filter inductor L3, and third CBB filter capacitor C4 filter the high-frequency ripple and leave a pure sine half-wave voltage for voltage sampling and inverter unit.
  • the first switching transistor Q6 and the second switching transistor Q7 in this embodiment are modulated by a power frequency modulated high frequency PWM signal, and the first switching transistor Q6 and the second switching transistor Q7 can adjust the output voltage according to a sinusoidal change.
  • the input part converts the grid voltage into a DC voltage for use by the subsequent circuit.
  • the input unit 10 includes a socket, an insurance F2, a lightning protection resistor RV1, and a common mode suppression inductor L1.
  • the capacitor CX1 and the rectifier bridge DB1 are connected in series to the neutral or the live line of the socket, the front end of the common mode suppression inductor L1 is connected in parallel to the socket, and the lightning protection resistor RV1 is connected in parallel to the common mode suppression inductor L1.
  • the front end, the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are both connected in parallel with the rear end of the common mode suppression inductor L1, and the output terminal of the rectifier bridge DB1 is connected with a filter capacitor C1 in parallel.
  • the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first rectifier diode D1, and a second electrolytic capacitor C2.
  • the front end of the boosting inductor L2 is connected to the input unit 10.
  • the output end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5, the source of the third switching transistor Q5 is connected to the front end, and the gate of the third switching transistor Q5 is used for A PWM control signal is connected, a drain of the third switching transistor Q5 is connected to an anode of the first rectifier diode D1, a cathode of the first rectifier diode D1 is used as an output end of the PFC boosting unit 20, and the first rectification is performed.
  • the cathode of the diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC boosting unit 20 when sampling the filter capacitor C1 to output a half-wave AC voltage, the PFC enters the boost mode to improve the PF value of the AC-to-AC intelligent buck conversion topology circuit, and after boosting, passes through the second electrolytic capacitor C2.
  • the filtered voltage is 400V.
  • the specific boosting principle is as follows: When the third switching transistor Q5 is turned on, the current on the filter capacitor C1 is formed by the boost inductor L2 and the third switch transistor Q5 to GND, and the boost inductor L2 is stored.
  • the third switching transistor Q5 when the third switching transistor Q5 is turned off, an induced electromotive force is formed on the boosting inductor that is much higher than the input voltage, and the induced electromotive force is rectified by the first rectifying diode D1 to form a unidirectional pulse voltage and then sent to the second electrolytic capacitor.
  • the C2 capacitor is filtered and filtered into a DC voltage of 400V.
  • the third switch tube Q5 is increased or decreased according to the input AC sine wave change taken by the control chip. Turn on the on-time of Q5 to make the current and voltage phases consistent to increase the PF value.
  • the embodiment further includes an MCU control unit 80.
  • the gate of the first switch Q6, the gate of the second switch Q7, and the gate of the third switch Q5 are respectively connected to the MCU control.
  • the unit 80, the MCU control unit 80 is configured to respectively output PWM signals to the first switch tube Q6, the second switch tube Q7 and the third switch tube Q5 to control the first switch tube Q6, the second switch tube Q7 and the third unit
  • the switch tube Q5 is on and off.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • an AC sampling unit 70 is further included.
  • the AC sampling unit 70 is connected between the input end of the input unit 10 and the MCU control unit 80.
  • the AC sampling unit 70 is used to collect the input unit.
  • the voltage on the AC side is fed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B.
  • the two input ends of the operational amplifier U9B are respectively connected to the input end of the input unit 10 through a current limiting resistor, and the output end of the operational amplifier U9B is connected to MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
  • the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
  • the embodiment further includes a DC voltage sampling unit 50, and the DC voltage sampling unit 50 includes a second sampling resistor R13 and a third sampling resistor R15 connected in series.
  • the front end of the second sampling resistor R13 is connected to the output end of the DC filtering unit 40, and the rear end of the third sampling resistor R15 is connected to the MCU control unit 80 by the second sampling resistor R13 and the third sampling.
  • the resistor R15 causes the MCU control unit 80 to acquire an electrical signal output by the DC filter unit 40.
  • the inverter inverting unit 60 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor
  • the gate of Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80.
  • the four switching transistors Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 60 to output an alternating voltage.
  • the filtered DC voltage is formed by the fourth switch tube Q1, the load, and the seventh switch tube Q4 to form a loop to supply power to the load to form a first half cycle power frequency level; the second half cycle
  • the power frequency level forms a loop through the fifth switch tube Q2, the load, and the sixth switch tube Q3, so that a complete power frequency correction wave AC voltage is formed on the load.
  • the PWM signal outputted by the single chip U1 is sent to the PWM1H, PWM1L, PWM2H, and PWM2L to the fourth switch tube Q1, the fifth switch tube Q2, the sixth switch tube Q3, and the seventh switch tube Q4. GATE pole.
  • the phase and frequency in the inverter inverter circuit operate in accordance with the mode set in the control chip.
  • the interleaved flyback isolation unit 30 further includes a first freewheeling diode D6, a first resistor R26 and a first capacitor C5.
  • the anode of the first freewheeling diode D6 is connected to the first switch.
  • the cathode of the first freewheeling diode D6 is connected to the output of the PFC boosting unit 20 via a first resistor R26, and the first capacitor C5 is connected in parallel to the first resistor R26.
  • the interleaved flyback isolation conversion unit 30 further includes a second freewheeling diode D5, a second resistor R27, and a second capacitor C6.
  • the anode of the second freewheeling diode D5 is connected to the drain of the second switching transistor Q7.
  • the cathode of the second freewheeling diode D5 is connected to the output of the PFC boosting unit 20 via a second resistor R27, and the second capacitor C6 is connected in parallel to the second resistor R27.
  • the second freewheeling diode D5, the first freewheeling diode D6, the first resistor R26, the second resistor R27, the first capacitor C5, and the second capacitor C6 are the first switching transistor Q6 and the second switching transistor Q7, respectively.
  • the attracting circuit is configured to absorb the spike voltage generated by the leakage inductance of the first transformer T1 and the second transformer T1 to reduce the voltage stress of the switching tube.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on PFC staggered flyback full bridge, which has higher PF value than the prior art, and realizes isolation between the power grid and the output end, and the safety thereof is very high;
  • the DC and DC units adopt an interactive working mode, which makes the EMC and EMI interference in the circuit small and the power application flexible; again, the invention can automatically adjust the output voltage in the input full voltage range, and fix the output frequency, and the output voltage It is a pure sine wave output and has an automatic shaping function for the AC voltage.
  • the present invention includes a voltage and current sampling circuit capable of preventing surge voltage and current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种基于PFC交错反激全桥的智能型正弦波电压转换电路,其包括有输入单元(10);PFC升压单元(20);交错反激隔离变换单元(30),包括有第一开关管(Q6)、第二开关管(Q7)、第一变压器(T1)、第二变压器(T2)、第二整流二极管(D7)和第三整流二极管(D8);DC滤波单元(40),包括有第一CBB滤波电容(C3)、第二CBB滤波电容(C4)和滤波电感(L3),滤波电感的前端连接于第一CBB滤波电容的前端,滤波电感的后端连接于第二CBB滤波电容的前端,第一CBB滤波电容的后端和第二CBB滤波电容的后端均连接于后端地,滤波电感的前端连接于交错反激隔离变换单元的输出端,滤波电感的后端作为DC滤波单元的输出端;逆变倒相单元(60)。该智能型正弦波电压转换电路可减少纹波干扰以及提高输出电压质量。

Description

基于PFC交错反激全桥的智能型正弦波电压转换电路
技术领域
本发明涉及电压转换电路,尤其涉及一种基于PFC交错反激全桥的智能型正弦波电压转换电路。
背景技术
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。特别是在电压转换过程中,会产生较多的纹波干扰,特别是缺少EMI滤波性能,因此影响电压质量。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种可降低电路中的纹波、滤波效果好、可提高输出电压质量,并且安全可靠的基于PFC交错反激全桥的智能型正弦波电压转换电路。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC交错反激全桥的智能型正弦波电压转换电路,其包括有用于提供直流电压的输入单元、用于对所述直流电压进行升压转换的PFC升压单元,以及:一交错反激隔离变换单元,包括有第一开关管、第二开关管、第一变压器、第二变压器、第二整流二极管和第三整流二极管,所述第一变压器初级绕组的第一端和第二变压器初级绕组的第一端均连接于PFC升压单元的输出端,所述第一变压器初级绕组的第二端连接于第一开关管的漏极,所述第二变压器初级绕组的第二端连接于第二开关管的漏极,所述第一开关管的源极和第二开关管的源极均连接于前端地,所述第一开关管的栅极和第二开关管的栅极用于接入两路相位相反的PWM脉冲信号,所述第一变压器次级绕组的第一端连接于第二整流二极管的阳极,所述第二变压器次级绕组的第一端连接于第三整流二极管的阳极,所述第一变压器次级绕组的第二端和第二变压器次级绕组的第二端均连接于后端地,所述第二整流二极管的阴极和第三整流二极管的阴极相连接后作为交错反激隔离变换单元的输出端;一DC滤波单元,包括有第一CBB滤波电容、第二CBB滤波电容和滤波电感,所述滤波电感的前端连接 于第一CBB滤波电容的前端,所述滤波电感的后端连接于第二CBB滤波电容的前端,所述第一CBB滤波电容的后端和第二CBB滤波电容的后端均连接于后端地,所述滤波电感的前端连接于交错反激隔离变换单元的输出端,所述滤波电感的后端作为DC滤波单元的输出端;一逆变倒相单元,连接于DC滤波单元的输出端,所述逆变倒相单元用于对DC滤波单元的输出电压进行逆变转换后输出交流电。
优选地,所述输入单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管和第三开关管,以控制第一开关管、第二开关管和第三开关管通断状态。
优选地,所述MCU控制单元包括有单片机及其外围电路。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入单元的输入端,所述运放的输出端连接于MCU控制单元。
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
优选地,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于DC滤波单元的输出端,所述 第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集DC滤波单元输出的电信号。
优选地,所述逆变倒相单元包括由第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。
本发明公开的基于PFC交错反激全桥的智能型正弦波电压转换电路中,输入单元用于提供直流电压,利用PFC升压单元对输入单元输出的直流电压进行升压处理,之后输出至交错反激隔离变换单元,该交错反激隔离变换单元中,第一开关管和第二开关管交互导通,当第一开关管导通时第二开关管截止,电流由第一变压器初级绕组、第一开关管到前端地形成回路,第一变压器初级绕组开始储量;当第二开关管导通时,第一开关管截止,电流由第二变压器初级绕组、第二开关管、前端地构成回路,第二变压器初级绕组开始储能,同时第一变压器初级绕组的电能通过其磁芯藕合至次级绕组,再经第二整流二极管向负载供电;然后第一开关管再次导通,第二开关管截止,第一变压器储能,第二变压器次级绕组通过第三整流二极管向负载供电。上述交错反激隔离变换单元中,由于是交互导通电流纹波较小、应用比较灵活,特别是当负载较小时只需启动一个反激变电路即可,在此基础上,DC滤波单元采用了由第一CBB滤波电容、第二CBB滤波电容和滤波电感构成的π型滤波器,使得电路中的EMI、EMC干扰较小、电路工作频率较高,并能够提高功率密度,实际应用中,通过改变第一变压器、第二变压器初次级的匝数比可以改变输出电压,可实现升压或降压。
附图说明
图1为正弦波电压转换电路的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC交错反激全桥的智能型正弦波电压转换电路,结合图1至图3所示,其包括有用于提供直流电压的输入单元10、用于对所述直流电压进行升压转换的PFC升压单元20,以及:
一交错反激隔离变换单元30,包括有第一开关管Q6、第二开关管Q7、第一变压器T1、第二变压器T2、第二整流二极管D7和第三整流二极管D8,所述第一变压器T1初级绕组的第一端和第二变压器T2初级绕组的第一端均连接于PFC升压单元20的输出端,所述第一变压器T1初级绕组的第二端连接于第一开关管Q6的漏极,所述第二变压器T2初级绕组的第二端连接于第二开关管Q7的漏极,所述第一开关管Q6的源极和第二开关管Q7的源极均连接于前端地,所述第一开关管Q6的栅极和第二开关管Q7的栅极用于接入两路相位相反的PWM脉冲信号,所述第一变压器T1次级绕组的第一端连接于第二整流二极管D7的阳极,所述第二变压器T2次级绕组的第一端连接于第三整流二极管D8的阳极,所述第一变压器T1次级绕组的第二端和第二变压器T2次级绕组的第二端均连接于后端地,所述第二整流二极管D7的阴极和第三整流二极管D8的阴极相连接后作为交错反激隔离变换单元30的输出端;
一DC滤波单元40,包括有第一CBB滤波电容C3、第二CBB滤波电容C4和滤波电感L3,所述滤波电感L3的前端连接于第一CBB滤波电容C3的前端,所述滤波电感L3的后端连接于第二CBB滤波电容C4的前端,所述第一CBB滤波电容C3的后端和第二CBB滤波电容C4的后端均连接于后端地,所述滤波电感L3的前端连接于交错反激隔离变换单元30的输出端,所述滤波电感L3的后端作为DC滤波单元40的输出端;
一逆变倒相单元60,连接于DC滤波单元40的输出端,所述逆变倒相单元60用于对DC滤波单元40的输出电压进行逆变转换后输出交流电。
上述正弦波电压转换电路中,输入单元10用于提供直流电压,利用PFC升压单元20对输入单元10输出的直流电压进行升压处理,之后输出至交错反激隔离变换单元30,该交错反激隔离变换单元30中,第一开关管Q6和第二开关管Q7交互导通,当第一开关管Q6导通时第二开关管Q7截止,电流由第一变压器T1初级绕组、第一开关管Q6到前端地形成回路,第一变压器T1初级绕组开始储量;当第二开关管Q7导通时,第一开关管Q6截止,电流由第二变压器T2初级绕组、第二开关管Q7、前端地构成回路,第二变压器T2初级绕组开始储能,同时第一变压器T1初级绕组的电能通过其磁芯藕合至次级绕组,再经第二整流二极管D7向负载供电;然后第一开关管Q6再次导通,第二开关管Q7截止,第一变压器T1储能,第二变压器T2次级绕组通过第三整流二极管D8向负载供电。上述交错反激隔离变换单元30中,由于是交互导通电流纹波较小、应用比较灵活,特别是当负载较小时只需启动一个反激变电路即可,在此基础上,DC滤波单元40采用了由第一CBB滤波电容C3、第二CBB滤波电容C4和滤波电感L3构成的π型滤波器,使得电路中的EMI、 EMC干扰较小、电路工作频率较高,并能够提高功率密度,实际应用中,通过改变第一变压器T1、第二变压器T2初次级的匝数比可以改变输出电压,可实现升压或降压。由于第一开关管Q6和第二开关管Q7是按正弦规律调制的高频PWM信号,经由第一CBB滤波电容C3、第三CBB滤波电容C4和滤波电感L3构成的π型滤波器滤除高频脉冲信号后,在第三CBB滤波电容C4得到的是纯正弦半波电压。
在DC滤波单元40中,由于第一开关管Q6和第二开关管Q7是按正弦工频调制高频PWM信号工作的,经第二整流二极管D7、第三整流二极管D8整流后,第一CBB滤波电容C3、滤波电感L3、第三CBB滤波电容C4滤除高频纹波后留下纯正弦半波电压,送给电压采样与逆变单元。本实施例中的第一开关管Q6和第二开关管Q7是以工频调制高频PWM信号的,可以使第一开关管Q6和第二开关管Q7按照正弦的变化来调节输出电压。
本实施例在输入部分,是将电网电压转换为直流电压以供后续电路使用的,具体是指,所述输入单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
关于升压部分,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一整流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一整流二极管D1的阳极,所述第一整流二极管D1的阴极作为PFC升压单元20的输出端,且该第一整流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20,当采样到滤波电容C1输出半波交流电压时,PFC进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值,升压后通过第二电解电容C2滤波后的电压为400V,具体的升压原理如下:第三开关管Q5导通时,滤波电容C1上的电流经升压电感L2、第三开关管Q5到GND形成回路,升压电感L2储存能量;当第三开关管Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经第一整流二极管D1进行整流后形成单向脉冲电压再送给第二电解电容C2电容进滤波,滤波成400V的直流电压。并且第三开关管Q5是根据控制芯片采到的输入交流正弦波变化来加大或减少第三开 关管Q5的导通时间,以使电流与电压相位变一致来提高PF值。
作为一种优选方式,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极、第二开关管Q7的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6、第二开关管Q7和第三开关管Q5,以控制第一开关管Q6、第二开关管Q7和第三开关管Q5通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
为了便于监测交流侧的电信号,还包括有一交流采样单元70,所述交流采样单元70连接于输入单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入单元10交流侧的电压并反馈至MCU控制单元80。
进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。
为了便于对电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
作为一种优选方式,为了对直流侧电信号进行采集,本实施例还包括有一DC电压采样单元50,所述DC电压采样单元50包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于DC滤波单元40的输出端,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集DC滤波单元40输出的电信号。
关于逆变部分,所述逆变倒相单元60包括由第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4导通或截止,以令所述逆变倒相单元60输出交流电压。
上述逆变倒相单元60中,经过滤波后的直流电压经第四开关管Q1、负载、第七开关管Q4形成回路给负载供电形成第一个半周期工频电平;第二个半周期工频电平通过第五开关管Q2、负载、第六开关管Q3形成回路,这样在负载上就形成了一个完整的工频修正波交流电压。单片机U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM1L、PWM2H、PWM2L给第四开关管Q1、第五开关管Q2、第六开关管Q3、第七开关管Q4的 GATE极。逆变倒相电路中的相位与频率按照控制芯片内部设定的模式进行工作。
作为一种优选方式,所述交错反激隔离变换单元30还包括有第一续流二极管D6、第一电阻R26和第一电容C5,所述第一续流二极管D6的阳极连接于第一开关管Q6的漏极,所述第一续流二极管D6的阴极通过第一电阻R26连接于PFC升压单元20的输出端,所述第一电容C5并联于第一电阻R26。此外,所述交错反激隔离变换单元30还包括有第二续流二极管D5、第二电阻R27和第二电容C6,所述第二续流二极管D5的阳极连接于第二开关管Q7的漏极,所述第二续流二极管D5的阴极通过第二电阻R27连接于PFC升压单元20的输出端,所述第二电容C6并联于第二电阻R27。
上述电路中,第二续流二极管D5、第一续流二极管D6、第一电阻R26、第二电阻R27、第一电容C5、第二电容C6分别为第一开关管Q6、第二开关管Q7的吸引电路,用来吸收第一变压器T1、第二变压器T1的漏感产生的尖峰电压,以减开关管的电压应力。
本发明公开的基于PFC交错反激全桥的智能型正弦波电压转换电路,其相比现有技术而言,本发明具有高PF值,实现了电网与输出端的隔离,其安全性非常高;同时,DC与DC单元采用交互工作模式,使得电路中的EMC、EMI干扰小、功率应用灵活;再次,本发明在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,并且输出电压是以纯正弦波输出,对交流电压有自动整形功能;此外,本发明含有电压与电流采样电路,能防浪涌电压与电流。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,包括有用于提供直流电压的输入单元(10)、用于对所述直流电压进行升压转换的PFC升压单元(20),以及:
    一交错反激隔离变换单元(30),包括有第一开关管(Q6)、第二开关管(Q7)、第一变压器(T1)、第二变压器(T2)、第二整流二极管(D7)和第三整流二极管(D8),所述第一变压器(T1)初级绕组的第一端和第二变压器(T2)初级绕组的第一端均连接于PFC升压单元(20)的输出端,所述第一变压器(T1)初级绕组的第二端连接于第一开关管(Q6)的漏极,所述第二变压器(T2)初级绕组的第二端连接于第二开关管(Q7)的漏极,所述第一开关管(Q6)的源极和第二开关管(Q7)的源极均连接于前端地,所述第一开关管(Q6)的栅极和第二开关管(Q7)的栅极用于接入两路相位相反的PWM脉冲信号,所述第一变压器(T1)次级绕组的第一端连接于第二整流二极管(D7)的阳极,所述第二变压器(T2)次级绕组的第一端连接于第三整流二极管(D8)的阳极,所述第一变压器(T1)次级绕组的第二端和第二变压器(T2)次级绕组的第二端均连接于后端地,所述第二整流二极管(D7)的阴极和第三整流二极管(D8)的阴极相连接后作为交错反激隔离变换单元(30)的输出端;
    一DC滤波单元(40),包括有第一CBB滤波电容(C3)、第二CBB滤波电容(C4)和滤波电感(L3),所述滤波电感(L3)的前端连接于第一CBB滤波电容(C3)的前端,所述滤波电感(L3)的后端连接于第二CBB滤波电容(C4)的前端,所述第一CBB滤波电容(C3)的后端和第二CBB滤波电容(C4)的后端均连接于后端地,所述滤波电感(L3)的前端连接于交错反激隔离变换单元(30)的输出端,所述滤波电感(L3)的后端作为DC滤波单元(40)的输出端;
    一逆变倒相单元(60),连接于DC滤波单元(40)的输出端,所述逆变倒相单元(60)用于对DC滤波单元(40)的输出电压进行逆变转换后输出交流电。
  2. 如权利要求1所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,所述输入单元(10)包括有插座、保险(F2)、防雷电阻(RV1)、共模抑制电感(L1)、安规电容(CX1)和整流桥(DB1),所述保险(F2)串接于插座的零线或火线上,所述共模抑制电感(L1)的前端并联于插座,所述防雷电阻(RV1)并联于共模抑制电感(L1)的前端,所述安规电容(CX1)和整流桥(DB1)的输入端均并联于共模抑制电感(L1)的后端,所述整流桥(DB1)的输出端并联有滤波电容(C1)。
  3. 如权利要求1所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在 于,所述PFC升压单元(20)包括有升压电感(L2)、第三开关管(Q5)、第一整流二极管(D1)和第二电解电容(C2),所述升压电感(L2)的前端连接于输入单元(10)的输出端,所述升压电感(L2)的后端连接于第三开关管(Q5)的漏极,所述第三开关管(Q5)的源极接前端地,所述第三开关管(Q5)的栅极用于接入一路PWM控制信号,所述第三开关管(Q5)的漏极连接第一整流二极管(D1)的阳极,所述第一整流二极管(D1)的阴极作为PFC升压单元(20)的输出端,且该第一整流二极管(D1)的阴极连接第二电解电容(C2)的正极,第二电解电容(C2)的负极接前端地。
  4. 如权利要求3所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一MCU控制单元(80),所述第一开关管(Q6)的栅极、第二开关管(Q7)的栅极和第三开关管(Q5)的栅极分别连接于MCU控制单元(80),所述MCU控制单元(80)用于分别输出PWM信号至第一开关管(Q6)、第二开关管(Q7)和第三开关管(Q5),以控制第一开关管(Q6)、第二开关管(Q7)和第三开关管(Q5)通断状态。
  5. 如权利要求4所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,所述MCU控制单元(80)包括有单片机(U1)及其外围电路。
  6. 如权利要求4所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一交流采样单元(70),所述交流采样单元(70)连接于输入单元(10)的输入端与MCU控制单元(80)之间,所述交流采样单元(70)用于采集输入单元(10)交流侧的电压并反馈至MCU控制单元(80)。
  7. 如权利要求6所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,所述交流采样单元(70)包括有运放(U9B),所述运放(U9B)的两个输入端分别通过限流电阻而连接于输入单元(10)的输入端,所述运放(U9B)的输出端连接于MCU控制单元(80)。
  8. 如权利要求4所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,所述第三开关管(Q5)的源极与前端地之间连接有第一采样电阻(R2A),所述第三开关管(Q5)的源极连接于MCU控制单元(80),藉由所述第一采样电阻(R2A)而令MCU控制单元(80)采集第三开关管(Q5)源极的电信号。
  9. 如权利要求4所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一DC电压采样单元(50),所述DC电压采样单元(50)包括有依次串联的第二采样电阻(R13)和第三采样电阻(R15),所述第二采样电阻(R13)的前端连接于DC滤波单元(40)的输出端,所述第三采样电阻(R15)的后端连接于MCU控制单元(80), 藉由所述第二采样电阻(R13)和第三采样电阻(R15)而令MCU控制单元(80)采集DC滤波单元(40)输出的电信号。
  10. 如权利要求4所述的基于PFC交错反激全桥的智能型正弦波电压转换电路,其特征在于,所述逆变倒相单元(60)包括由第四开关管(Q1)、第五开关管(Q2)、第六开关管(Q3)和第七开关管(Q4)组成的逆变桥,所述第四开关管(Q1)的栅极、第五开关管(Q2)的栅极、第六开关管(Q3)的栅极和第七开关管(Q4)的栅极分别连接于MCU控制单元(80),藉由所述MCU控制单元(80)而控制第四开关管(Q1)、第五开关管(Q2)、第六开关管(Q3)和第七开关管(Q4)导通或截止,以令所述逆变倒相单元(60)输出交流电压。
PCT/CN2017/079189 2016-12-27 2017-04-01 基于pfc交错反激全桥的智能型正弦波电压转换电路 WO2018120483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611225468.6 2016-12-27
CN201611225468.6A CN106787798A (zh) 2016-12-27 2016-12-27 基于pfc交错反激全桥的智能型正弦波电压转换电路

Publications (1)

Publication Number Publication Date
WO2018120483A1 true WO2018120483A1 (zh) 2018-07-05

Family

ID=58922016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079189 WO2018120483A1 (zh) 2016-12-27 2017-04-01 基于pfc交错反激全桥的智能型正弦波电压转换电路

Country Status (2)

Country Link
CN (1) CN106787798A (zh)
WO (1) WO2018120483A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696144A (zh) * 2018-07-24 2018-10-23 西安工业大学 交错反激式dc/dc硬件调制补偿电路
CN109495000A (zh) * 2018-12-18 2019-03-19 北京纳米维景科技有限公司 一种高压发生器电源
CN109521828A (zh) * 2018-12-29 2019-03-26 惠州华科电器有限公司 线性稳压电路
CN110829558A (zh) * 2019-11-08 2020-02-21 上海电动工具研究所(集团)有限公司 一种智能自适应控制的万能电动工具充电器
CN112188677A (zh) * 2020-11-02 2021-01-05 东莞市擎洲光电科技有限公司 一种高功率大电流输出的驱动电源电路
CN112953203A (zh) * 2021-03-22 2021-06-11 千黎(苏州)电源科技有限公司 一种输出无纹波的组合式交错直流变换系统
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN113541458A (zh) * 2021-05-31 2021-10-22 广州金升阳科技有限公司 一种滤波电路
CN113676048A (zh) * 2021-08-25 2021-11-19 重庆梅安森科技股份有限公司 适应宽输入电压的交错型电源转换系统
CN115514202A (zh) * 2022-10-20 2022-12-23 海信冰箱有限公司 一种交直流兼容的电源输入电路和冰箱

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787754A (zh) * 2016-12-27 2017-05-31 广东百事泰电子商务股份有限公司 基于pfc交错反激全桥的智能型修正波电压转换电路
CN108512431B (zh) * 2018-04-24 2019-08-27 上海推拓科技有限公司 双整流交错式全桥单级功率因素校正电源电路及控制方法
CN110208722A (zh) * 2019-07-15 2019-09-06 珠海格力电器股份有限公司 检测直流电源稳定性的设备及其方法
CN115065228B (zh) * 2022-06-29 2023-06-20 江苏埃施朗电气有限公司 一种输出共享型工业电源
CN115694145A (zh) * 2022-11-01 2023-02-03 昂宝电子(上海)有限公司 用于非对称半桥反激式电源的电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267856A1 (en) * 2009-01-14 2011-11-03 Nxp B.V. Pfc with high efficiency at low load
CN104022661A (zh) * 2014-06-11 2014-09-03 合肥工业大学 超宽电压输入范围ac/dc-dc自适应仪用开关电源
CN105006957A (zh) * 2015-08-14 2015-10-28 南京理工大学 一种单相交错反激逆变器输入电流脉动抑制的装置及方法
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN206402113U (zh) * 2016-12-27 2017-08-11 广东百事泰电子商务股份有限公司 基于pfc交错反激全桥的智能型正弦波电压转换电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724152B2 (en) * 2002-07-19 2004-04-20 Donald K. Gladding Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
JP5481939B2 (ja) * 2009-05-29 2014-04-23 ソニー株式会社 電源装置
CN106208638A (zh) * 2015-04-30 2016-12-07 神华集团有限责任公司 电能转换装置及相应的电能管理连接系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267856A1 (en) * 2009-01-14 2011-11-03 Nxp B.V. Pfc with high efficiency at low load
CN104022661A (zh) * 2014-06-11 2014-09-03 合肥工业大学 超宽电压输入范围ac/dc-dc自适应仪用开关电源
CN105006957A (zh) * 2015-08-14 2015-10-28 南京理工大学 一种单相交错反激逆变器输入电流脉动抑制的装置及方法
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN206402113U (zh) * 2016-12-27 2017-08-11 广东百事泰电子商务股份有限公司 基于pfc交错反激全桥的智能型正弦波电压转换电路

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696144A (zh) * 2018-07-24 2018-10-23 西安工业大学 交错反激式dc/dc硬件调制补偿电路
CN108696144B (zh) * 2018-07-24 2023-11-28 西安工业大学 交错反激式dc/dc硬件调制补偿电路
CN109495000A (zh) * 2018-12-18 2019-03-19 北京纳米维景科技有限公司 一种高压发生器电源
CN109521828A (zh) * 2018-12-29 2019-03-26 惠州华科电器有限公司 线性稳压电路
CN110829558A (zh) * 2019-11-08 2020-02-21 上海电动工具研究所(集团)有限公司 一种智能自适应控制的万能电动工具充电器
CN112188677A (zh) * 2020-11-02 2021-01-05 东莞市擎洲光电科技有限公司 一种高功率大电流输出的驱动电源电路
CN112953203A (zh) * 2021-03-22 2021-06-11 千黎(苏州)电源科技有限公司 一种输出无纹波的组合式交错直流变换系统
CN113179028A (zh) * 2021-05-28 2021-07-27 北京石油化工学院 一种具有脉宽内分段加压功能的交流脉冲原油脱水电源装置
CN113541458A (zh) * 2021-05-31 2021-10-22 广州金升阳科技有限公司 一种滤波电路
CN113676048A (zh) * 2021-08-25 2021-11-19 重庆梅安森科技股份有限公司 适应宽输入电压的交错型电源转换系统
CN115514202A (zh) * 2022-10-20 2022-12-23 海信冰箱有限公司 一种交直流兼容的电源输入电路和冰箱

Also Published As

Publication number Publication date
CN106787798A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
CN108512431B (zh) 双整流交错式全桥单级功率因素校正电源电路及控制方法
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
TW201417488A (zh) 交流/直流轉換器
WO2020052617A1 (zh) 一种无桥三整流Boost电源电路
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018129835A1 (zh) 一种基于维也纳pfc的智能型半桥正弦波电压转换电路
CN205407613U (zh) 单极高功率因数推挽双正激电路
WO2018120522A1 (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
WO2018129832A1 (zh) 一种基于维也纳pfc的智能型半桥修正波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888452

Country of ref document: EP

Kind code of ref document: A1