WO2018107620A1 - 一种基于pfc反激全桥的智能型修正波电压转换电路 - Google Patents

一种基于pfc反激全桥的智能型修正波电压转换电路 Download PDF

Info

Publication number
WO2018107620A1
WO2018107620A1 PCT/CN2017/079186 CN2017079186W WO2018107620A1 WO 2018107620 A1 WO2018107620 A1 WO 2018107620A1 CN 2017079186 W CN2017079186 W CN 2017079186W WO 2018107620 A1 WO2018107620 A1 WO 2018107620A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pfc
switching transistor
flyback
transformer
Prior art date
Application number
PCT/CN2017/079186
Other languages
English (en)
French (fr)
Inventor
何伟
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018107620A1 publication Critical patent/WO2018107620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent correction wave voltage conversion circuit based on a PFC flyback full bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
  • the modified wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • the technical problem to be solved by the present invention is to provide an intelligent correction wave voltage conversion circuit based on a PFC flyback full bridge for improving the PF value of the voltage conversion device and improving the output voltage quality, and the prior art. Improve safety and reliability.
  • the present invention adopts the following technical solutions.
  • An intelligent correction wave voltage conversion circuit based on a PFC flyback full bridge comprising: an input unit for outputting a DC voltage; a PFC boost unit connected to an output end of the input unit for the input unit The output voltage is boosted; a flyback isolating converter unit includes a first switching transistor, a transformer, a first rectifying diode and a first electrolytic capacitor, and the first end of the primary winding of the transformer is connected to the PFC boost An output end of the unit, a second end of the primary winding of the transformer is connected to a drain of the first switching tube, a source of the first switching tube is connected to a front end, and a gate of the first switching tube is used for receiving Into the PWM signal, the first end of the secondary winding of the transformer is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is connected to the anode of the first electrolytic capacitor, and the cathode of the first electrolytic capacitor is connected to the back end Ground
  • the flyback isolation converter unit further includes a first resistor, a first capacitor and a second rectifier diode, the first resistor being connected to the first end of the transformer secondary winding and the cathode of the second rectifier diode
  • the anode of the second rectifier diode is connected to the second end of the secondary winding of the transformer, and the first capacitor is connected in parallel to the first resistor.
  • the flyback isolation converter unit further includes a second resistor and a pull-down resistor, the second resistor is connected between the source and the front end of the first switch tube, and the pull-down resistor is connected to the first switch Between the gate and the source of the tube.
  • the input unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, wherein the fuse is connected to a neutral or a live line of the socket, and the common mode suppresses the inductance.
  • the front end is connected in parallel to the socket, the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor, and the input terminals of the safety capacitor and the rectifier bridge are both connected in parallel with the rear end of the common mode suppression inductor, and the output ends of the rectifier bridge are connected in parallel Filter capacitor.
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first freewheeling diode, and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input unit, and the boosting The back end of the inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third switch a drain of the tube is connected to the anode of the first freewheeling diode, a cathode of the first freewheeling diode is used as an output end of the PFC boosting unit, and a cathode of the first freewheeling diode is connected to a positive pole of the second electrolytic capacitor, and a second The negative electrode of the electrolytic capacitor is connected to the front end.
  • the method further includes an MCU control unit, a gate of the first switch tube and a gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output a PWM signal to the first switch tube And a third switching tube to control the on-off state of the first switching tube and the third switching tube.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the method further includes an AC sampling unit connected between the input end of the input unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input unit and feed back to the MCU control unit.
  • the AC sampling unit comprises an operational amplifier, and the two input ends of the operational amplifier are respectively connected to the input end of the input unit through a current limiting resistor, and the output end of the operational amplifier is connected to the MCU control unit.
  • a first sampling resistor is connected between the source and the front end of the third switching transistor, and a source of the third switching transistor is connected to the MCU control unit, and the MCU is used by the first sampling resistor.
  • the control unit collects an electrical signal of the source of the third switching transistor.
  • the input rectification filtering unit is used for rectifying and filtering the grid voltage, and then outputting the pulsating DC voltage, and then using the PFC boosting unit to increase the pulsating DC voltage.
  • the PWM signal is applied to the gate of the first switching transistor.
  • the primary winding of the transformer is discharged by the magnetic core to the secondary winding, and then rectified by the first rectifier diode and transmitted to the first electrolytic capacitor for filtering, and The filtered DC power is output to the inverter inverting unit, and the inverter is converted by the inverter inverting unit to output AC power.
  • the secondary side voltage can be lower than or the plateau side input voltage, thereby achieving the purpose of buck-boosting.
  • the present invention realizes voltage isolation transmission, which can effectively improve
  • the PF value of the step-up/step-down converter also improves the output voltage quality, making the voltage conversion process safer and more reliable.
  • FIG. 1 is a circuit schematic diagram of a modified wave voltage conversion circuit.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent correction wave voltage conversion circuit based on a PFC flyback full bridge, which is combined with FIG. 1 to FIG. 3 and includes:
  • a PFC boosting unit 20 is connected to the output end of the input unit 10 for boosting the output voltage of the input unit 10;
  • a flyback isolating converter unit 30 includes a first switching transistor Q6, a transformer T1, a first rectifying diode D5, and a first electrolytic capacitor C3.
  • the first end of the primary winding of the transformer T1 is connected to the PFC boosting unit 20
  • the second end of the primary winding of the transformer T1 is connected to the drain of the first switching transistor Q6, the source of the first switching transistor Q6 is connected to the front end, and the gate of the first switching transistor Q6
  • the first end of the secondary winding of the transformer T1 is connected to the anode of the first rectifier diode D5, and the cathode of the first rectifier diode D5 is connected to the anode of the first electrolytic capacitor C3, the first The cathode of the electrolytic capacitor C3 is connected to the rear end, the second end of the secondary winding of the transformer T1 is connected to the rear end, and the cathode of the first rectifier diode D5 is used as the output end of the flyback isolation converter unit
  • An inverter inverting unit 60 is connected to the output end of the flyback isolating converter unit 30 for inverting and converting the output voltage of the flyback isolating converter unit 30 to output an alternating current.
  • the grid voltage is rectified and filtered by the input unit 10, and then the ripple DC voltage is output, and then the ripple DC voltage is boosted by the PFC boost unit 20 in the flyback isolation converter unit 30.
  • the PWM signal is applied to the gate of the first switching transistor Q6.
  • the primary winding of the transformer T1 and the first switching transistor Q6 form a loop to the front end and generate a current.
  • the primary winding of the transformer T1 is turned on and starts to store energy, when the first switch
  • the tube Q6 is turned off, the primary winding of the transformer T1 is twisted by the magnetic core to the secondary side winding.
  • the group performs discharge, is rectified by the first rectifier diode D5, is transmitted to the first electrolytic capacitor C3 for filtering, and outputs the filtered DC power to the inverter inverting unit 60, and is inverted by the inverter inverting unit 60. After outputting AC power.
  • the secondary side voltage can be lower than the primary input voltage, thereby achieving the purpose of voltage reduction.
  • the present invention realizes voltage isolation transmission, which can effectively improve the rise.
  • the PF value of the voltage/buck converter also increases the output voltage quality, making the voltage conversion process safer and more reliable.
  • the flyback isolation converter unit 30 further includes a first resistor R26, a first capacitor C5 and a second rectifier diode D6.
  • the first resistor R26 is connected to the first winding of the transformer T1.
  • the anode of the second rectifier diode D6 is connected to the second end of the secondary winding of the transformer T1, and the first capacitor C5 is connected in parallel to the first resistor R26.
  • C5, R26 and D6 form a spike absorption circuit for absorbing the spike voltage generated by the leakage inductance.
  • the flyback isolation converter unit 30 further includes a second resistor R2B and a pull-down resistor R25.
  • the second resistor R2B is connected between the source and the front end of the first switch transistor Q6.
  • the pull-down resistor R25 is connected between the gate and the source of the first switching transistor Q6.
  • R25 is a pull-down resistor of the first switching transistor Q6 for preventing mis-conduction.
  • the input unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1.
  • the fuse F2 is connected in series with the socket.
  • the front end of the common mode suppression inductor L1 is connected in parallel to the socket
  • the lightning protection resistor RV1 is connected in parallel to the front end of the common mode rejection inductor L1
  • the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel
  • the common mode suppresses the rear end of the inductor L1, and the output terminal of the rectifier bridge DB1 has a filter capacitor C1 connected in parallel.
  • the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, a first freewheeling diode D1, and a second electrolytic capacitor C2.
  • the front end of the boosting inductor L2 is connected to the input unit.
  • the output end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5, the source of the third switching transistor Q5 is connected to the front end, and the gate of the third switching transistor Q5 is used.
  • the first switch diode Q5 has a drain connected to the anode of the first freewheeling diode D1, and a cathode of the first freewheeling diode D1 serves as an output end of the PFC boost unit 20, and the PWM control signal is connected to the PWM control signal.
  • the cathode of the first freewheeling diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC enters the boost mode when the AC input voltage is sampled to the AC voltage to increase the PF value of the AC-to-AC intelligent buck conversion topology circuit.
  • the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off, the boost inductor forms a specific input voltage. A much higher induced electromotive force, the induced electromotive force is rectified by the freewheeling tube D1 to form a single The pulse voltage is sent to the C2 capacitor for filtering and energy storage.
  • Q5 is to increase or decrease the on-time of Q5 according to the input AC sine wave change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
  • the filtered voltage is directly filtered and stored by the C2 capacitor through L2 and D1.
  • the embodiment further includes an MCU control unit 80.
  • the gates of the first switch tube Q6 and the gate of the third switch tube Q5 are respectively connected to the MCU control unit 80, and the MCU control unit 80 is used.
  • the PWM signal is respectively output to the first switching transistor Q6 and the third switching transistor Q5 to control the on-off state of the first switching transistor Q6 and the third switching transistor Q5.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • the embodiment further includes an AC sampling unit 70, which is connected between the input end of the input unit 10 and the MCU control unit 80, and the AC sampling unit 70 is used for The voltage on the AC side of the input unit 10 is collected and fed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B. The two input ends of the operational amplifier U9B are respectively connected to the input end of the input unit 10 through a current limiting resistor, and the output end of the operational amplifier U9B is connected to MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
  • the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
  • the embodiment further includes a DC voltage sampling unit 40, and the DC voltage sampling unit 40 includes a second sampling resistor R13 and a third sampling resistor R15 connected in series.
  • the front end of the second sampling resistor R13 is connected to the cathode of the first rectifier diode D5
  • the rear end of the third sampling resistor R15 is connected to the MCU control unit 80
  • the second sampling resistor R13 and the third sampling The resistor R15 causes the MCU control unit 80 to collect the electrical signal output by the flyback isolation converter unit 30.
  • the inverter inverting unit 60 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor
  • the gate of Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80.
  • the four switching transistors Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 60 to output an alternating voltage.
  • the C3 filtered DC voltage is looped through Q1, load, and Q4 to supply power to the load to form a first half cycle power frequency level; the second half cycle power frequency level passes through Q2.
  • the load and Q3 form a loop, thus forming a complete power frequency correction wave AC voltage on the load.
  • the PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM1L, PWM2H, and PWM2L through the driving circuit.
  • the phase and frequency in the inverter inverter circuit operate in accordance with the mode set in the control chip.
  • the invention has a high PF value, realizes isolation between the power grid and the output end, and has high safety.
  • the output voltage can be automatically adjusted in the input full voltage range, and the output frequency is fixed.
  • the output voltage is a modified wave output, and has an automatic shaping function for the AC voltage.
  • the present invention includes a voltage and current sampling circuit that is capable of preventing surge voltage and current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种基于PFC反激全桥的智能型修正波电压转换电路,其包括有:输入单元(10);PFC升压单元(20);反激隔离变换器单元(30),包括有第一开关管(Q6)、变压器(T1)、第一整流二极管(D5)和第一电解电容(C3),变压器原边绕组的第一端连接于PFC升压单元的输出端,变压器原边绕组的第二端连接于第一开关管的漏极,第一开关管的源极接前端地(HGND1),变压器副边绕组的第一端连接于第一整流二极管的阳极,变压器副边绕组的第二端接后端地,第一整流二极管的阴极作为反激隔离变换器单元的输出端;逆变倒相单元(60),用于将反激隔离变换器单元的输出电压进行逆变转换后输出交流电。该智能型修正波电压转换电路可提高PF值以及提高输出电压质量。

Description

一种基于PFC反激全桥的智能型修正波电压转换电路
技术领域
本发明涉及电压转换电路,尤其涉及一种基于PFC反激全桥的智能型修正波电压转换电路。
背景技术
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,修正波电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种基于PFC反激全桥的智能型修正波电压转换电路,用以提高电压转换装置的PF值、提高输出电压质量,以及提高安全性和可靠性。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC反激全桥的智能型修正波电压转换电路,其包括有:一输入单元,用于输出直流电压;一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;一反激隔离变换器单元,包括有第一开关管、变压器、第一整流二极管和第一电解电容,所述变压器原边绕组的第一端连接于PFC升压单元的输出端,所述变压器原边绕组的第二端连接于第一开关管的漏极,所述第一开关管的源极接前端地,所述第一开关管的栅极用于接入PWM信号,所述变压器副边绕组的第一端连接于第一整流二极管的阳极,所述第一整流二极管的阴极连接第一电解电容的正极,所述第一电解电容的负极接后端地,所述变压器副边绕组的第二端接后端地,所述第一整流二极管的阴极作为反激隔离变换器单元的输出端;一逆变倒相单元,连接于反激隔离变换器单元的输出端,所述逆变倒相单元用于对反激隔离变换器单元的输出电压进行逆变转换后输出交流电。
优选地,所述反激隔离变换器单元还包括有第一电阻、第一电容和第二整流二极管,所述第一电阻连接于变压器副边绕组的第一端与第二整流二极管的阴极之间,所述第二整流二极管的阳极连接于变压器副边绕组的第二端,所述第一电容并联于第一电阻。
优选地,所述反激隔离变换器单元还包括有第二电阻和下拉电阻,所述第二电阻连接于第一开关管的源极与前端地之间,所述下拉电阻连接于第一开关管的栅极与源极之间。
优选地,所述输入单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一续流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一续流二极管的阳极,所述第一续流二极管的阴极作为PFC升压单元的输出端,且该第一续流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管和第三开关管,以控制第一开关管和第三开关管通断状态。
优选地,所述MCU控制单元包括有单片机及其外围电路。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入单元的输入端,所述运放的输出端连接于MCU控制单元。
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
本发明公开的基于PFC反激全桥的智能型修正波电压转换电路中,利用输入整流滤波单元对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元对脉动直流电压进行升压处理,在反激隔离变换器单元中,将PWM信号加载于第一开关管的栅极。当第一开关管导通时,变压器的原边绕组、第一开关管到前端地形成回路并产生电流,此时变压器的原边绕组导通并开始储能,当第一开关管关断时,变压器的原边绕组通过磁芯藕合给副边绕组进行放电,然后经过第一整流二极管整流后传输至第一电解电容进行滤波,并将 滤波后的直流电输出至逆变倒相单元,且由逆变倒相单元进行逆变转换后输出交流电。上述电路中,通过调整变压器原副边绕组的匝数可以使副边电压低于或高原边输入电压,从而达到升降压目的,基于上述电路,本发明实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。
附图说明
图1为修正波电压转换电路的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC反激全桥的智能型修正波电压转换电路,结合图1至图3所示,其包括有:
一输入单元10,用于输出直流电压;
一PFC升压单元20,连接于输入单元10的输出端,用于对输入单元10的输出电压进行升压转换;
一反激隔离变换器单元30,包括有第一开关管Q6、变压器T1、第一整流二极管D5和第一电解电容C3,所述变压器T1原边绕组的第一端连接于PFC升压单元20的输出端,所述变压器T1原边绕组的第二端连接于第一开关管Q6的漏极,所述第一开关管Q6的源极接前端地,所述第一开关管Q6的栅极用于接入PWM信号,所述变压器T1副边绕组的第一端连接于第一整流二极管D5的阳极,所述第一整流二极管D5的阴极连接第一电解电容C3的正极,所述第一电解电容C3的负极接后端地,所述变压器T1副边绕组的第二端接后端地,所述第一整流二极管D5的阴极作为反激隔离变换器单元30的输出端;
一逆变倒相单元60,连接于反激隔离变换器单元30的输出端,所述逆变倒相单元60用于对反激隔离变换器单元30的输出电压进行逆变转换后输出交流电。
上述修正波电压转换电路中,利用输入单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在反激隔离变换器单元30中,将PWM信号加载于第一开关管Q6的栅极。当第一开关管Q6导通时,变压器T1的原边绕组、第一开关管Q6到前端地形成回路并产生电流,此时变压器T1的原边绕组导通并开始储能,当第一开关管Q6关断时,变压器T1的原边绕组通过磁芯藕合给副边绕 组进行放电,然后经过第一整流二极管D5整流后传输至第一电解电容C3进行滤波,并将滤波后的直流电输出至逆变倒相单元60,且由逆变倒相单元60进行逆变转换后输出交流电。上述电路中,通过调整变压器T1原副边绕组的匝数可以使副边电压低于原边输入电压,从而达到降压目的,基于上述电路,本发明实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。
作为一种优选方式,所述反激隔离变换器单元30还包括有第一电阻R26、第一电容C5和第二整流二极管D6,所述第一电阻R26连接于变压器T1副边绕组的第一端与第二整流二极管D6的阴极之间,所述第二整流二极管D6的阳极连接于变压器T1副边绕组的第二端,所述第一电容C5并联于第一电阻R26。其中的C5、R26、D6构成尖峰吸收电路,用于吸收漏感所产生的尖峰电压。
本实施例中,所述反激隔离变换器单元30还包括有第二电阻R2B和下拉电阻R25,所述第二电阻R2B连接于第一开关管Q6的源极与前端地之间,所述下拉电阻R25连接于第一开关管Q6的栅极与源极之间。其中,R25是第一开关管Q6的下拉电阻,用于防止误导通。
作为一种优选的电路结构,所述输入单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
关于升压部分,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一续流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一续流二极管D1的阳极,所述第一续流二极管D1的阴极作为PFC升压单元20的输出端,且该第一续流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20中,当交流输入电压采样到AC电压时PFC进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值。具体的升压原理如下:Q5导通时,C1上的电流经升压电感L2、Q5到GND形成回路,升压电感L2储存能量;当Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单 向脉冲电压再送给C2电容进滤及储能。并且Q5是根据控制芯片采到的输入交流正弦波变化来加大或减少Q5的导通时间,以使电流与电压相位变一致来提高PF值。滤波后的电压直接经L2、D1给C2电容进滤及储能。
为了实现PWM控制,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6和第三开关管Q5,以控制第一开关管Q6和第三开关管Q5通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
为了便于监测交流侧的电信号,本实施例还包括有一交流采样单元70,所述交流采样单元70连接于输入单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入单元10交流侧的电压并反馈至MCU控制单元80。进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。
为了便于对电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
作为一种优选方式,为了对直流侧电信号进行采集,本实施例还包括有一DC电压采样单元40,所述DC电压采样单元40包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于第一整流二极管D5的阴极,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集反激隔离变换器单元30输出的电信号。
关于逆变部分,所述逆变倒相单元60包括有第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4导通或截止,以令所述逆变倒相单元60输出交流电压。
上述逆变倒相单元60中,经过C3滤波后的直流电压经Q1、负载、Q4形成回路给负载供电形成第一个半周期工频电平;第二个半周期工频电平通过Q2、负载、Q3形成回路,这样在负载上就形成了一个完整的工频修正波交流电压。控制芯片U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM1L、PWM2H、PWM2L给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路中的相位与频率按照控制芯片内部设定的模式进行工作。
相比现有技术而言,首先,本发明具有高PF值,实现了电网与输出端隔离,安全性非常高,同时,在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,再次,输出电压是以修正波输出,对交流电压有自动整形功能,此外,本发明方案含有电压与电流采样电路,能防浪涌电压与电流。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,包括有:
    一输入单元,用于输出直流电压;
    一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;
    一反激隔离变换器单元,包括有第一开关管、变压器、第一整流二极管和第一电解电容,所述变压器原边绕组的第一端连接于PFC升压单元的输出端,所述变压器原边绕组的第二端连接于第一开关管的漏极,所述第一开关管的源极接前端地,所述第一开关管的栅极用于接入PWM信号,所述变压器副边绕组的第一端连接于第一整流二极管的阳极,所述第一整流二极管的阴极连接第一电解电容的正极,所述第一电解电容的负极接后端地,所述变压器副边绕组的第二端接后端地,所述第一整流二极管的阴极作为反激隔离变换器单元的输出端;
    一逆变倒相单元,连接于反激隔离变换器单元的输出端,所述逆变倒相单元用于对反激隔离变换器单元的输出电压进行逆变转换后输出交流电。
  2. 如权利要求1所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述反激隔离变换器单元还包括有第一电阻、第一电容和第二整流二极管,所述第一电阻连接于变压器副边绕组的第一端与第二整流二极管的阴极之间,所述第二整流二极管的阳极连接于变压器副边绕组的第二端,所述第一电容并联于第一电阻。
  3. 如权利要求1所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述反激隔离变换器单元还包括有第二电阻和下拉电阻,所述第二电阻连接于第一开关管的源极与前端地之间,所述下拉电阻连接于第一开关管的栅极与源极之间。
  4. 如权利要求1所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述输入单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有滤波电容。
  5. 如权利要求1所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述PFC升压单元包括有升压电感、第三开关管、第一续流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一续流二极管的阳极,所述第一续流二极管的阴极作为PFC升压单元的输出端,且该第一续流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
  6. 如权利要求5所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管和第三开关管,以控制第一开关管和第三开关管通断状态。
  7. 如权利要求6所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述MCU控制单元包括有单片机及其外围电路。
  8. 如权利要求6所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
  9. 如权利要求8所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入单元的输入端,所述运放的输出端连接于MCU控制单元。
  10. 如权利要求6所述的基于PFC反激全桥的智能型修正波电压转换电路,其特征在于,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
PCT/CN2017/079186 2016-12-15 2017-04-01 一种基于pfc反激全桥的智能型修正波电压转换电路 WO2018107620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611160714.4 2016-12-15
CN201611160714.4A CN106787794A (zh) 2016-12-15 2016-12-15 一种基于pfc反激全桥的智能型修正波电压转换电路

Publications (1)

Publication Number Publication Date
WO2018107620A1 true WO2018107620A1 (zh) 2018-06-21

Family

ID=58887566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079186 WO2018107620A1 (zh) 2016-12-15 2017-04-01 一种基于pfc反激全桥的智能型修正波电压转换电路

Country Status (2)

Country Link
CN (1) CN106787794A (zh)
WO (1) WO2018107620A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560710A (zh) * 2018-12-29 2019-04-02 惠州华科电器有限公司 正极直流叠加电路
CN111405719A (zh) * 2020-03-27 2020-07-10 杰华特微电子(杭州)有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN112366923A (zh) * 2020-12-02 2021-02-12 北京大华无线电仪器有限责任公司 一种隔离电压采样装置
CN114123799A (zh) * 2021-11-26 2022-03-01 珠海格力电器股份有限公司 隔离开关电源电路、控制方法及隔离开关电源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787792A (zh) * 2016-12-15 2017-05-31 广东百事泰电子商务股份有限公司 一种基于pfc反激全桥的智能型正弦波电压转换电路
CN113794368B (zh) * 2021-09-14 2023-10-27 珠海格力电器股份有限公司 一种反激式开关电源的控制装置、方法和反激式开关电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2817288Y (zh) * 2005-08-15 2006-09-13 袁荣荣 一种高强度气体放电灯电子镇流器
US20110267856A1 (en) * 2009-01-14 2011-11-03 Nxp B.V. Pfc with high efficiency at low load
CN203722501U (zh) * 2013-12-10 2014-07-16 美固电子(深圳)有限公司 修正波车载逆变器的逆变控制电路及修正波车载逆变器
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN206332617U (zh) * 2016-12-15 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc反激全桥的智能型修正波电压转换电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724152B2 (en) * 2002-07-19 2004-04-20 Donald K. Gladding Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply
JP5481939B2 (ja) * 2009-05-29 2014-04-23 ソニー株式会社 電源装置
CN105006957A (zh) * 2015-08-14 2015-10-28 南京理工大学 一种单相交错反激逆变器输入电流脉动抑制的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2817288Y (zh) * 2005-08-15 2006-09-13 袁荣荣 一种高强度气体放电灯电子镇流器
US20110267856A1 (en) * 2009-01-14 2011-11-03 Nxp B.V. Pfc with high efficiency at low load
CN203722501U (zh) * 2013-12-10 2014-07-16 美固电子(深圳)有限公司 修正波车载逆变器的逆变控制电路及修正波车载逆变器
CN106533193A (zh) * 2016-12-14 2017-03-22 广东百事泰电子商务股份有限公司 一种基于pfc双全桥的智能型正弦波电压转换电路
CN206332617U (zh) * 2016-12-15 2017-07-14 广东百事泰电子商务股份有限公司 一种基于pfc反激全桥的智能型修正波电压转换电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560710A (zh) * 2018-12-29 2019-04-02 惠州华科电器有限公司 正极直流叠加电路
CN111405719A (zh) * 2020-03-27 2020-07-10 杰华特微电子(杭州)有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN111405719B (zh) * 2020-03-27 2023-10-27 杰华特微电子股份有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN112366923A (zh) * 2020-12-02 2021-02-12 北京大华无线电仪器有限责任公司 一种隔离电压采样装置
CN114123799A (zh) * 2021-11-26 2022-03-01 珠海格力电器股份有限公司 隔离开关电源电路、控制方法及隔离开关电源
CN114123799B (zh) * 2021-11-26 2023-10-10 珠海格力电器股份有限公司 隔离开关电源电路、控制方法及隔离开关电源

Also Published As

Publication number Publication date
CN106787794A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN103795237A (zh) 无桥降压apfc电路
WO2018129835A1 (zh) 一种基于维也纳pfc的智能型半桥正弦波电压转换电路
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
WO2018120522A1 (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路
WO2018129832A1 (zh) 一种基于维也纳pfc的智能型半桥修正波电压转换电路
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206364711U (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN208508805U (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN219287377U (zh) 一种双向dc转换电路及相应的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882222

Country of ref document: EP

Kind code of ref document: A1