WO2018107599A1 - 一种基于pfc正激全桥的智能型正弦波电压转换电路 - Google Patents

一种基于pfc正激全桥的智能型正弦波电压转换电路 Download PDF

Info

Publication number
WO2018107599A1
WO2018107599A1 PCT/CN2017/076867 CN2017076867W WO2018107599A1 WO 2018107599 A1 WO2018107599 A1 WO 2018107599A1 CN 2017076867 W CN2017076867 W CN 2017076867W WO 2018107599 A1 WO2018107599 A1 WO 2018107599A1
Authority
WO
WIPO (PCT)
Prior art keywords
pfc
unit
switching transistor
diode
conversion circuit
Prior art date
Application number
PCT/CN2017/076867
Other languages
English (en)
French (fr)
Inventor
侯涛
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018107599A1 publication Critical patent/WO2018107599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a voltage conversion circuit, in particular to an intelligent sine wave voltage conversion circuit based on a PFC forward full bridge.
  • the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
  • the sine wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
  • most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
  • a certain high-frequency pulse signal exists on the output side of the circuit, thereby affecting the quality of the output voltage, and thus it is difficult to meet the conversion requirement.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a PF value of a voltage conversion device can be improved, an output voltage quality can be improved, and a high frequency pulse on the output side can be filtered, thereby providing a high quality load.
  • the present invention adopts the following technical solutions.
  • An intelligent sine wave voltage conversion circuit based on a PFC forward full bridge includes: an input unit for outputting a DC voltage; and a PFC boost unit connected to an output end of the input unit for the input unit The output voltage is boosted and converted; an isolated double-switch forward converter includes a first switching transistor, a second switching transistor, a first freewheeling diode, a second freewheeling diode, a second rectifier diode, a transformer, and a a filter inductor and a first electrolytic capacitor, a drain of the first switch transistor is connected to an output end of the PFC boost unit, and a source of the first switch transistor is connected to a first end of a primary winding of the transformer, a second end of the primary winding of the transformer is connected to a drain of the second switching tube, a source of the second switching tube is connected to the front end, and a gate of the first switching tube and a gate of the second switching tube are used Accessing the same PWM signal, the cathode of the first free
  • the PFC boosting unit includes a boosting inductor, a third switching transistor, a first rectifier diode and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input unit, the boosting inductor
  • the back end is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third switch tube
  • the drain is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is used as the output end of the PFC boosting unit, and the cathode of the first rectifier diode is connected to the anode of the second electrolytic capacitor, and the cathode of the second electrolytic capacitor Connect to the front end.
  • the PFC boosting unit further includes a first driving resistor, a second driving resistor and a driving diode, a gate of the third switching transistor is connected to an anode of the driving diode, and the first driving resistor is connected in parallel to the driving.
  • the cathode of the driving diode is used to access a PWM control signal, and the anode of the driving diode is connected to the front end ground through a second driving resistor.
  • the isolated double-switch forward converter further includes a third rectifier diode, the cathode of the third rectifier diode is connected to the first end of the transformer secondary winding, and the anode of the third rectifier diode is connected to The second end of the secondary winding of the transformer.
  • an MCU control unit is further included, the gate of the first switch tube, the gate of the second switch tube and the gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is used for respectively
  • the PWM signal is output to the first switch tube, the second switch tube and the third switch tube to control the on/off state of the first switch tube, the second switch tube and the third switch tube.
  • the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
  • the method further includes an AC sampling unit connected between the input end of the input unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input unit and feed back to the MCU control unit.
  • the AC sampling unit comprises an operational amplifier, and the two input ends of the operational amplifier are respectively connected to the input end of the input unit through a current limiting resistor, and the output end of the operational amplifier is connected to the MCU control unit.
  • a first sampling resistor is connected between the source and the front end of the third switching tube, and the third switch
  • the source of the tube is connected to the MCU control unit, and the MCU control unit acquires an electrical signal of the source of the third switching tube by the first sampling resistor.
  • the DC voltage sampling unit further includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to a rear end of the second filter inductor.
  • the back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal of the back end of the second filter inductor by the second sampling resistor and the third sampling resistor.
  • the input unit is used for rectifying and filtering the grid voltage, and then outputting the pulsating DC voltage, and then using the PFC boosting unit to boost the pulsating DC voltage.
  • the voltage isolation transmission is realized, which can effectively improve the PF value of the step-up/step-down converter, and also improve the output voltage quality, making the voltage conversion process more secure and reliable.
  • the first filter inductor is disposed at the output end of the inverter inverting unit, and the high frequency pulse of the alternating current can be filtered by using the first filter inductor, so that the load can obtain high quality power frequency sinusoidal alternating current.
  • the output voltage quality is improved to meet the power supply requirements.
  • Figure 1 is a circuit schematic of a sinusoidal voltage conversion circuit.
  • FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
  • the invention discloses an intelligent sinusoidal voltage conversion circuit based on a PFC forward full bridge, which is combined with FIG. 1 to FIG. 3 and includes:
  • a PFC boosting unit 20 is connected to the output end of the input unit 10 for boosting the output voltage of the input unit 10;
  • An isolated double-switch forward converter 30 includes a first switching transistor Q6, a second switching transistor Q7, a first freewheeling diode D3, a second freewheeling diode D2, a second rectifier diode D5, a transformer T1, and a filter inductor.
  • L3 and the first electrolytic capacitor C3, the drain of the first switching transistor Q6 is connected to the output end of the PFC boosting unit 20, and the source of the first switching transistor Q6 is connected to the first end of the primary winding of the transformer T1.
  • the second end of the primary winding of the transformer T1 is connected to the drain of the second switching transistor Q7, the source of the second switching transistor Q7 is connected to the front end, the gate of the first switching transistor Q6 and the second The gate of the switching transistor Q7 is used to access the same PWM signal, the cathode of the first freewheeling diode D3 is connected to the drain of the first switching transistor Q6, and the anode of the first freewheeling diode D3 is connected to the transformer T1.
  • a cathode of the second freewheeling diode D2 is connected to a first end of the primary winding of the transformer T1, an anode of the second freewheeling diode D2 is connected to the front end, and a secondary side of the transformer T1
  • the first end of the winding is connected to the anode of the second rectifier diode D5
  • the second end of the secondary winding of the transformer T1 is connected to the rear end
  • the cathode of the second rectifier diode D5 is connected to the front end of the filter inductor L3.
  • the rear end of the filter inductor L3 is connected to the anode of the first electrolytic capacitor C3, the cathode of the first electrolytic capacitor C3 is connected to the rear end, and the rear end of the filter inductor L3 is used as the output end of the isolated double-tube forward converter 30. ;
  • An inverter inverting unit 60 is connected to the output end of the isolated double-switch forward converter 30, and the inverter inverting unit 60 is used for inverter-converting the output voltage of the isolated double-switch forward converter 30.
  • the output of the inverter inverting unit 60 is connected to the front end of the first filter inductor L4, the rear end of the first filter inductor L4 is connected to the load, and the first filter inductor L4 is used for filtering A high frequency pulse of alternating current and a power frequency sinusoidal alternating current for the load.
  • the input voltage is rectified and filtered by the input unit 10, and then the pulsating DC voltage is output, and then the pulsating DC voltage is boosted by the PFC boosting unit 20, and the isolated double-switch forward converter is used.
  • the first switching transistor Q6 and the second switching transistor Q7 are PWM control signals of the same pair of signals; the first switching transistor Q6 and the second switching transistor Q7 are simultaneously turned on, and the primary winding of the transformer T1 is coupled through the magnetic core.
  • the secondary coil To the secondary coil, rectified by the second rectifier diode D5 and filtered by the first electrolytic capacitor C3 into DC and output to the inverter inverting unit 60; when the first switching transistor Q6 and the second switching transistor Q7 are turned off, in order to maintain the transformer
  • the primary coil current direction of T1 is the same, the first freewheeling diode D3 is electrically connected to the second freewheeling diode D2, and the magnetic core is magnetically reset, and the secondary voltage can be made by changing the turns ratio of the primary and secondary sides of the transformer T1. Below or above the primary input voltage, in order to achieve buck or boost purposes.
  • the invention realizes the isolated transmission of voltage, can effectively improve the PF value of the step-up/step-down conversion device, and also improves the output voltage quality, so that the voltage conversion process is more safe and reliable.
  • the first filter inductor L4 is disposed at the output end of the inverter inverting unit 60, and the high frequency pulse of the alternating current can be filtered by the first filter inductor L4, so that the load can obtain a high quality power frequency. Sinusoidal AC power, which in turn increases the output voltage quality to meet power supply requirements.
  • the input unit 10 includes a socket, an insurance F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1.
  • the fuse F2 is connected to the neutral or the live line of the socket.
  • the front end of the common mode suppression inductor L1 is connected in parallel to the socket, the lightning protection resistor RV1 is connected in parallel to the front end of the common mode suppression inductor L1, and the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel to the common mode rejection.
  • the rear end of the inductor L1 has a filter capacitor C1 connected in parallel with the output end of the rectifier bridge DB1.
  • the PFC boosting unit 20 includes a boosting inductor L2 and a third switching transistor Q5.
  • a rectifier diode D1 and a second electrolytic capacitor C2 a front end of the boosting inductor L2 is connected to an output end of the input unit 10, and a rear end of the boosting inductor L2 is connected to a drain of the third switching transistor Q5.
  • the source of the third switching transistor Q5 is connected to the front end, the gate of the third switching transistor Q5 is used to connect a PWM control signal, and the drain of the third switching transistor Q5 is connected to the anode of the first rectifier diode D1.
  • the cathode of the first rectifier diode D1 serves as an output terminal of the PFC boosting unit 20, and the cathode of the first rectifier diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
  • the PFC when the AC input voltage is sampled to the AC voltage, the PFC enters the boost mode to improve the PF value of the AC-to-AC intelligent buck conversion topology circuit.
  • the specific boosting principle is as follows: When Q5 is turned on The current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy. When Q5 is turned off, the induced inductor has a much higher induced electromotive force than the input voltage, and the induced electromotive force continues.
  • the flow tube D1 is rectified to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering and energy storage.
  • Q5 is to increase or decrease the on-time of Q5 according to the input AC sine wave change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
  • the PFC boosting unit 20 further includes a first driving resistor R18, a second driving resistor R22 and a driving diode D4, and the gate of the third switching transistor Q5 is connected to Driving the anode of the diode D4, the first driving resistor R18 is connected in parallel to the two ends of the driving diode D4, the cathode of the driving diode D4 is used to access the PWM control signal, and the anode of the driving diode D4 is passed through the second driving resistor R22 Connected to the front end.
  • the isolated double-switch forward converter 30 further includes a third rectifier diode D6, and the cathode of the third rectifier diode D6 is connected to the first end of the secondary winding of the transformer T1.
  • the anode of the third rectifier diode D6 is connected to the second end of the secondary winding of the transformer T1.
  • the embodiment further includes an MCU control unit 80.
  • the gate of the first switch Q6, the gate of the second switch Q7, and the gate of the third switch Q5 are respectively connected to the MCU control.
  • the unit 80, the MCU control unit 80 is configured to respectively output PWM signals to the first switch tube Q6, the second switch tube Q7 and the third switch tube Q5 to control the first switch tube Q6, the second switch tube Q7 and the third unit
  • the switch tube Q5 is on and off.
  • the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
  • an AC sampling unit 70 is further included.
  • the AC sampling unit 70 is connected between the input end of the input unit 10 and the MCU control unit 80.
  • the AC sampling unit 70 is used to collect the input unit.
  • the voltage on the AC side is fed back to the MCU control unit 80.
  • the AC sampling unit 70 includes an operational amplifier U9B, and the two input ends of the operational amplifier U9B are respectively connected to the input end of the input unit 10 through a current limiting resistor. Put U9B The output is connected to the MCU control unit 80.
  • a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
  • the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
  • the embodiment further includes a DC voltage sampling unit 40, and the DC voltage sampling unit 40 includes a second sampling resistor R13 and a third sampling resistor R15 connected in series.
  • the front end of the second sampling resistor R13 is connected to the rear end of the filter inductor L3, and the rear end of the third sampling resistor R15 is connected to the MCU control unit 80, and the second sampling resistor R13 and the third sampling resistor are connected.
  • R15 causes the MCU control unit 80 to acquire an electrical signal at the rear end of the filter inductor L3.
  • the MCU control unit 80 controls the duty ratio of the inverter inverting unit 60.
  • the inverter inverting unit 60 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor Q1
  • the gate, the gate of the fifth switch Q2, the gate of the sixth switch Q3, and the gate of the seventh switch Q4 are respectively connected to the MCU control unit 80, and the fourth control unit 80 controls the fourth The switching transistor Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 60 to output an alternating current.
  • the invention has a high PF value, realizes isolation between the power grid and the output end, and has high security.
  • the output voltage can be automatically adjusted within the input full voltage range, and the output frequency is fixed.
  • the output voltage is a modified wave output, and has an automatic shaping function for the AC voltage.
  • the output of the inverter inverting unit 60 is output.
  • the terminal is connected to the first filter inductor L4.
  • the rear end of the first filter inductor L4 is used to supply power to the load.
  • the first filter inductor L4 can filter high frequency pulses in the alternating current to provide power frequency sinusoidal alternating current for the load.

Abstract

一种基于PFC正激全桥的智能型正弦波电压转换电路,其包括有:输入单元(10);PFC升压单元(20);隔离型双管正激变换器(30),包括有第一开关管(Q6)、第二开关管(Q7)、第一续流二极管(D3)、第二续流二极管(D2)、第二整流二极管(D5)、变压器(T1)、滤波电感(L3)和第一电解电容(C3);逆变倒相单元(60),连接于隔离型双管正激变换器的输出端,用于对隔离型双管正激变换器的输出电压进行逆变转换后输出交流电,逆变倒相单元的输出端连接于第一滤波电感(L4)的前端,第一滤波电感的后端连接负载,第一滤波电感用于滤除交流电的高频脉冲,并为负载提供工频正弦交流电。该基于PFC正激全桥的智能型正弦波电压转换电路可提高PF值以及提高输出电压质量。

Description

一种基于PFC正激全桥的智能型正弦波电压转换电路
技术领域
本发明涉及电压转换电路,尤其涉及一种基于PFC正激全桥的智能型正弦波电压转换电路。
背景技术
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,正弦波电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。实际应用中,由于电压转换过程中存在开关管的高速切换,使得电路的输出侧会存在一定的高频脉冲信号,进而影响输出电压的质量,因而难以满足转换要求。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种可提高电压转换装置的PF值、可提高输出电压质量,并且能够滤除输出侧的高频脉冲,进而为负载提供优质工频正弦交流电的正弦波电压转换电路。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC正激全桥的智能型正弦波电压转换电路,其包括有:一输入单元,用于输出直流电压;一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;一隔离型双管正激变换器,包括有第一开关管、第二开关管、第一续流二极管、第二续流二极管、第二整流二极管、变压器、第二滤波电感和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器原边绕组的第一端,所述变压器原边绕组的第二端连接于第二开关管的漏极,所述第二开关管的源极接前端地,所述第一开关管的栅极和第二开关管的栅极用于接入相同的PWM信号,所述第一续流二极管的阴极连接于第一开关管的漏极,所述第一续流二极管的阳极连接于变压器原边绕组的第二端,所述第二续流二极管的阴极连接于变压器原边绕组的第一端,所述第二续流二极管的阳极接前端地,所述变压器副边绕组的第一端连接于第二整流二极管的阳极,所述变压器副边绕组的第二端接后端地,所述第二整流二极管的阴极连接于第二滤波电 感的前端,所述第二滤波电感的后端连接第一电解电容的正极,所述第一电解电容的负极连接后端地,所述第二滤波电感的后端作为隔离型双管正激变换器的输出端;一逆变倒相单元,连接于隔离型双管正激变换器的输出端,所述逆变倒相单元用于对隔离型双管正激变换器的输出电压进行逆变转换后输出交流电,所述逆变倒相单元的输出端连接有第一滤波电感的前端,所述第一滤波电感的后端连接负载,所述第一滤波电感用于滤除所述交流电的高频脉冲,并为负载提供工频正弦交流电。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,所述PFC升压单元还包括有第一驱动电阻、第二驱动电阻和驱动二极管,所述第三开关管的栅极连接于驱动二极管的阳极,所述第一驱动电阻并联于驱动二极管的两端,所述驱动二极管的阴极用于接入PWM控制信号,所述驱动二极管的阳极通过第二驱动电阻连接于前端地。
优选地,所述隔离型双管正激变换器还包括有一第三整流二极管,所述第三整流二极管的阴极连接于变压器副边绕组的第一端,所述第三整流二极管的阳极连接于变压器副边绕组的第二端。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管和第三开关管,以控制第一开关管、第二开关管和第三开关管通断状态。
优选地,所述MCU控制单元包括有单片机及其外围电路。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
优选地,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入单元的输入端,所述运放的输出端连接于MCU控制单元。
优选地,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关 管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
优选地,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于第二滤波电感的后端,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集第二滤波电感后端的电信号。
本发明公开的基于PFC正激全桥的智能型正弦波电压转换电路中,利用输入单元对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元对脉动直流电压进行升压处理,在隔离型双管正激变换器的作用下,实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元的输出端设置了第一滤波电感,利用第一滤波电感可滤除所述交流电的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
附图说明
图1为正弦波电压转换电路的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC正激全桥的智能型正弦波电压转换电路,结合图1至图3所示,其包括有:
一输入单元10,用于输出直流电压;
一PFC升压单元20,连接于输入单元10的输出端,用于对输入单元10的输出电压进行升压转换;
一隔离型双管正激变换器30,包括有第一开关管Q6、第二开关管Q7、第一续流二极管D3、第二续流二极管D2、第二整流二极管D5、变压器T1、滤波电感L3和第一电解电容C3,所述第一开关管Q6的漏极连接于PFC升压单元20的输出端,所述第一开关管Q6的源极连接于变压器T1原边绕组的第一端,所述变压器T1原边绕组的第二端连接于第二开关管Q7的漏极,所述第二开关管Q7的源极接前端地,所述第一开关管Q6的栅极和第二 开关管Q7的栅极用于接入相同的PWM信号,所述第一续流二极管D3的阴极连接于第一开关管Q6的漏极,所述第一续流二极管D3的阳极连接于变压器T1原边绕组的第二端,所述第二续流二极管D2的阴极连接于变压器T1原边绕组的第一端,所述第二续流二极管D2的阳极接前端地,所述变压器T1副边绕组的第一端连接于第二整流二极管D5的阳极,所述变压器T1副边绕组的第二端接后端地,所述第二整流二极管D5的阴极连接于滤波电感L3的前端,所述滤波电感L3的后端连接第一电解电容C3的正极,所述第一电解电容C3的负极连接后端地,所述滤波电感L3的后端作为隔离型双管正激变换器30的输出端;
一逆变倒相单元60,连接于隔离型双管正激变换器30的输出端,所述逆变倒相单元60用于对隔离型双管正激变换器30的输出电压进行逆变转换后输出交流电,所述逆变倒相单元60的输出端连接有第一滤波电感L4的前端,所述第一滤波电感L4的后端连接负载,所述第一滤波电感L4用于滤除所述交流电的高频脉冲,并为负载提供工频正弦交流电。
上述正弦波电压转换电路中,利用输入单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在隔离型双管正激变换器30中,第一开关管Q6与第二开关管Q7是一对信号相同的PWM控制信号;第一开关管Q6与第二开关管Q7同时导通,变压器T1的原边线圈经过磁芯藕合至副线圈,通过第二整流二极管D5整流以及经过第一电解电容C3滤波成直流后输出给逆变倒相单元60;当第一开关管Q6与第二开关管Q7关断时,为了保持变压器T1的原边线圈电流方向相同,所述第一续流二极管D3与第二续流二极管D2导通,并对磁芯进行磁复位,通过改变变压器T1原副边的匝比可以使副边电压低于或高于原边输入电压,进而达到降压或升压目的。基于上述结构,本发明实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时还提高了输出电压质量,使得电压转换过程更加安全可靠。在此基础上,本发明在逆变倒相单元60的输出端设置了第一滤波电感L4,利用第一滤波电感L4可滤除所述交流电的高频脉冲,使得负载能够获得优质的工频正弦交流电,进而提高输出电压质量,以满足供电需求。
本实施例中,所述输入单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
作为一种优选方式,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第 一整流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一整流二极管D1的阳极,所述第一整流二极管D1的阴极作为PFC升压单元20的输出端,且该第一整流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20中,当交流输入电压采样到AC电压时PFC进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值.当具体的升压原理如下:Q5导通时,C1上的电流经升压电感L2、Q5到GND形成回路,升压电感L2储存能量;当Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单向脉冲电压再送给C2电容进滤及储能。并且Q5是根据控制芯片采到的输入交流正弦波变化来加大或减少Q5的导通时间,以使电流与电压相位变一致来提高PF值。
进一步地,为了提高对开关管的驱动能力,所述PFC升压单元20还包括有第一驱动电阻R18、第二驱动电阻R22和驱动二极管D4,所述第三开关管Q5的栅极连接于驱动二极管D4的阳极,所述第一驱动电阻R18并联于驱动二极管D4的两端,所述驱动二极管D4的阴极用于接入PWM控制信号,所述驱动二极管D4的阳极通过第二驱动电阻R22连接于前端地。
为了更好地实现整流,所述隔离型双管正激变换器30还包括有一第三整流二极管D6,所述第三整流二极管D6的阴极连接于变压器T1副边绕组的第一端,所述第三整流二极管D6的阳极连接于变压器T1副边绕组的第二端。
作为一种优选方式,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极、第二开关管Q7的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6、第二开关管Q7和第三开关管Q5,以控制第一开关管Q6、第二开关管Q7和第三开关管Q5通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
为了便于监测交流侧的电信号,还包括有一交流采样单元70,所述交流采样单元70连接于输入单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入单元10交流侧的电压并反馈至MCU控制单元80。
关于该交流采样单元70的具体组成,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入单元10的输入端,所述运放U9B 的输出端连接于MCU控制单元80。
为了便于对电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
作为一种优选方式,为了对直流侧电信号进行采集,本实施例还包括有一DC电压采样单元40,所述DC电压采样单元40包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于滤波电感L3的后端,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻R15而令MCU控制单元80采集滤波电感L3后端的电信号。以供MCU控制单元80控制逆变倒相单元60的占空比。
关于逆变部分,所述逆变倒相单元60包括第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4导通或截止,以令所述逆变倒相单元60输出交流电。
本发明公开的基于PFC正激全桥的智能型正弦波电压转换电路中,相比现有技术而言,首先,本发明具有高PF值,实现了电网与输出端隔离,安全性非常高,同时,在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,再次,输出电压是以修正波输出,对交流电压有自动整形功能,此外,所述逆变倒相单元60的输出端连接于第一滤波电感L4,第一滤波电感L4的后端用于为负载供电,利用第一滤波电感L4可滤除交流电中的高频脉冲,从而为负载提供工频正弦交流电。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,包括有:
    一输入单元,用于输出直流电压;
    一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;
    一隔离型双管正激变换器,包括有第一开关管、第二开关管、第一续流二极管、第二续流二极管、第二整流二极管、变压器、第二滤波电感和第一电解电容,所述第一开关管的漏极连接于PFC升压单元的输出端,所述第一开关管的源极连接于变压器原边绕组的第一端,所述变压器原边绕组的第二端连接于第二开关管的漏极,所述第二开关管的源极接前端地,所述第一开关管的栅极和第二开关管的栅极用于接入相同的PWM信号,所述第一续流二极管的阴极连接于第一开关管的漏极,所述第一续流二极管的阳极连接于变压器原边绕组的第二端,所述第二续流二极管的阴极连接于变压器原边绕组的第一端,所述第二续流二极管的阳极接前端地,所述变压器副边绕组的第一端连接于第二整流二极管的阳极,所述变压器副边绕组的第二端接后端地,所述第二整流二极管的阴极连接于第二滤波电感的前端,所述第二滤波电感的后端连接第一电解电容的正极,所述第一电解电容的负极连接后端地,所述第二滤波电感的后端作为隔离型双管正激变换器的输出端;
    一逆变倒相单元,连接于隔离型双管正激变换器的输出端,所述逆变倒相单元用于对隔离型双管正激变换器的输出电压进行逆变转换后输出交流电,所述逆变倒相单元的输出端连接有第一滤波电感的前端,所述第一滤波电感的后端连接负载,所述第一滤波电感用于滤除所述交流电的高频脉冲,并为负载提供工频正弦交流电。
  2. 如权利要求1所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述PFC升压单元包括有升压电感、第三开关管、第一整流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一整流二极管的阳极,所述第一整流二极管的阴极作为PFC升压单元的输出端,且该第一整流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
  3. 如权利要求2所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述PFC升压单元还包括有第一驱动电阻、第二驱动电阻和驱动二极管,所述第三开关管的栅极连接于驱动二极管的阳极,所述第一驱动电阻并联于驱动二极管的两端,所述驱动二极管的阴极用于接入PWM控制信号,所述驱动二极管的阳极通过第二驱动电阻连接于前端地。
  4. 如权利要求1所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述隔离型双管正激变换器还包括有一第三整流二极管,所述第三整流二极管的阴极连接于变压器副边绕组的第一端,所述第三整流二极管的阳极连接于变压器副边绕组的第二端。
  5. 如权利要求3所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管、第二开关管和第三开关管,以控制第一开关管、第二开关管和第三开关管通断状态。
  6. 如权利要求5所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述MCU控制单元包括有单片机及其外围电路。
  7. 如权利要求5所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
  8. 如权利要求7所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述交流采样单元包括有运放,所述运放的两个输入端分别通过限流电阻而连接于输入单元的输入端,所述运放的输出端连接于MCU控制单元。
  9. 如权利要求5所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,所述第三开关管的源极与前端地之间连接有第一采样电阻,所述第三开关管的源极连接于MCU控制单元,藉由所述第一采样电阻而令MCU控制单元采集第三开关管源极的电信号。
  10. 如权利要求5所述的基于PFC正激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于第二滤波电感的后端,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集第二滤波电感后端的电信号。
PCT/CN2017/076867 2016-12-15 2017-03-16 一种基于pfc正激全桥的智能型正弦波电压转换电路 WO2018107599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611160064.3 2016-12-15
CN201611160064.3A CN106655801A (zh) 2016-12-15 2016-12-15 一种基于pfc正激全桥的智能型正弦波电压转换电路

Publications (1)

Publication Number Publication Date
WO2018107599A1 true WO2018107599A1 (zh) 2018-06-21

Family

ID=58822370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076867 WO2018107599A1 (zh) 2016-12-15 2017-03-16 一种基于pfc正激全桥的智能型正弦波电压转换电路

Country Status (2)

Country Link
CN (1) CN106655801A (zh)
WO (1) WO2018107599A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355431A (zh) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器
CN111555340A (zh) * 2020-04-13 2020-08-18 阳光电源股份有限公司 一种双向电源电路、pid修复装置及光伏系统
CN113169562A (zh) * 2019-09-30 2021-07-23 华为技术有限公司 一种车载充、放电装置及其充放电系统和新能源汽车
CN114079281A (zh) * 2021-11-22 2022-02-22 中国南方电网有限责任公司超高压输电公司广州局 低压直流系统及供电系统
CN114679064A (zh) * 2022-04-12 2022-06-28 中国工程物理研究院流体物理研究所 一体化充电电源
CN115133779A (zh) * 2022-07-25 2022-09-30 西安微电子技术研究所 一种隔离供电、电流采样控制电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560710A (zh) * 2018-12-29 2019-04-02 惠州华科电器有限公司 正极直流叠加电路
CN111565489B (zh) * 2020-05-28 2022-09-09 宁波工程学院 一种照明和可见光通信可独立控制的led驱动电路
CN117614273A (zh) * 2023-11-22 2024-02-27 上海鳗微科技有限公司 用于射频电源设备的供电电路、射频电源设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409555C (zh) * 2005-04-20 2008-08-06 陈威伦 一种集成开关电源及其工作方法
CN102035416A (zh) * 2010-12-14 2011-04-27 北京理工大学 一种输入串联输出串联高频链逆变器功率均分控制方法
CN202918023U (zh) * 2012-11-21 2013-05-01 上海华通自动化设备有限公司 一种电池组管理功率模块
CN103259397A (zh) * 2012-02-17 2013-08-21 Tdk株式会社 开关电源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481939B2 (ja) * 2009-05-29 2014-04-23 ソニー株式会社 電源装置
CN201536275U (zh) * 2009-11-18 2010-07-28 陆乐 一种多功能开关电源
CN102064712A (zh) * 2010-12-24 2011-05-18 东南大学 一种基于简易pfc的电力电子变压器
CN208424216U (zh) * 2016-12-15 2019-01-22 广东百事泰电子商务股份有限公司 一种基于pfc正激全桥的智能型正弦波电压转换电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409555C (zh) * 2005-04-20 2008-08-06 陈威伦 一种集成开关电源及其工作方法
CN102035416A (zh) * 2010-12-14 2011-04-27 北京理工大学 一种输入串联输出串联高频链逆变器功率均分控制方法
CN103259397A (zh) * 2012-02-17 2013-08-21 Tdk株式会社 开关电源装置
CN202918023U (zh) * 2012-11-21 2013-05-01 上海华通自动化设备有限公司 一种电池组管理功率模块

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169562B (zh) * 2019-09-30 2023-09-08 华为数字能源技术有限公司 一种车载充、放电装置及其充放电系统和新能源汽车
CN113169562A (zh) * 2019-09-30 2021-07-23 华为技术有限公司 一种车载充、放电装置及其充放电系统和新能源汽车
US11780342B2 (en) 2019-09-30 2023-10-10 Huawei Digital Power Technologies Co., Ltd. On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
CN111555340A (zh) * 2020-04-13 2020-08-18 阳光电源股份有限公司 一种双向电源电路、pid修复装置及光伏系统
CN111555340B (zh) * 2020-04-13 2023-10-31 阳光电源股份有限公司 一种双向电源电路、pid修复装置及光伏系统
CN111355431A (zh) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器
CN111355431B (zh) * 2020-04-16 2023-06-16 邯郸美的制冷设备有限公司 电机驱动控制电路、线路板及空调器
CN114079281A (zh) * 2021-11-22 2022-02-22 中国南方电网有限责任公司超高压输电公司广州局 低压直流系统及供电系统
CN114079281B (zh) * 2021-11-22 2023-09-26 中国南方电网有限责任公司超高压输电公司广州局 低压直流系统及供电系统
CN114679064B (zh) * 2022-04-12 2023-08-01 中国工程物理研究院流体物理研究所 一体化充电电源
CN114679064A (zh) * 2022-04-12 2022-06-28 中国工程物理研究院流体物理研究所 一体化充电电源
CN115133779A (zh) * 2022-07-25 2022-09-30 西安微电子技术研究所 一种隔离供电、电流采样控制电路
CN115133779B (zh) * 2022-07-25 2024-03-19 西安微电子技术研究所 一种隔离供电、电流采样控制电路

Also Published As

Publication number Publication date
CN106655801A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
WO2018107599A1 (zh) 一种基于pfc正激全桥的智能型正弦波电压转换电路
WO2018107600A1 (zh) 一种基于pfc正激全桥的智能型修正波电压转换电路
WO2018120523A1 (zh) 一种基于pfc正激半桥的智能型正弦波电压转换电路
WO2018129825A1 (zh) 基于pfc交错反激的智能型半桥正弦波电压转换电路
WO2018107621A1 (zh) 一种基于pfc反激全桥的智能型正弦波电压转换电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
WO2018126554A1 (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018129824A1 (zh) 基于pfc交错反激的智能型半桥修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
WO2018120482A1 (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
WO2018126556A1 (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206620058U (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN208508805U (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN206364711U (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN206364708U (zh) 基于pfc交错反激全桥的智能型修正波电压转换电路
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路
CN206402114U (zh) 一种基于pfc正激半桥的智能型修正波电压转换电路
CN206620057U (zh) 基于pfc、全桥和半桥的智能型修正波电压转换电路
CN204131401U (zh) 一种光伏逆变器dc/dc升压电路
WO2018129832A1 (zh) 一种基于维也纳pfc的智能型半桥修正波电压转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881963

Country of ref document: EP

Kind code of ref document: A1