WO2018105511A1 - 冷凍装置 - Google Patents
冷凍装置 Download PDFInfo
- Publication number
- WO2018105511A1 WO2018105511A1 PCT/JP2017/043248 JP2017043248W WO2018105511A1 WO 2018105511 A1 WO2018105511 A1 WO 2018105511A1 JP 2017043248 W JP2017043248 W JP 2017043248W WO 2018105511 A1 WO2018105511 A1 WO 2018105511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- heat medium
- detection unit
- condenser
- detected
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/02—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/043—Condensers made by assembling plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0251—Compressor control by controlling speed with on-off operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/191—Pressures near an expansion valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/195—Pressures of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/007—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0008—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
- F28D7/0025—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/003—Multiple wall conduits, e.g. for leak detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/16—Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage
Definitions
- the present invention relates to a refrigeration apparatus capable of detecting leakage of a heat medium.
- a compressor, a condenser, an expansion valve, and an evaporator are connected by piping so as to circulate the heat medium in this order.
- the condenser in such a refrigeration apparatus can be roughly classified into an air cooling type and a liquid cooling type.
- an air-cooled condenser cools a heat medium with wind from a blower, and is mainly used in home air conditioners.
- the liquid-cooled condenser cools the heat medium with cooling water such as tap water or groundwater, and is mainly used in large facilities such as factories.
- dust can be wound up by a blower. Therefore, a liquid-cooled condenser is usually used in a semiconductor manufacturing facility or the like where this can be a problem.
- a plate heat exchanger may be used as a liquid-cooled condenser.
- the plate type heat exchanger includes a convection type in which a heat medium and cooling water flow in opposite directions through a partition in the heat exchanger, and a heat medium and cooling water in the heat exchanger. There are parallel flow types that flow in the same direction through each other. Since the convection type has a high heat exchange rate, it is advantageous in terms of downsizing and the like.
- an evaporator may be comprised with a plate type heat exchanger.
- the pressure of the heat medium passed through the condenser is usually larger than the pressure of the cooling water.
- the heat medium breaks the partition wall starting from a corroded portion or the like, and is easily mixed into the cooling water. If the heat medium breaks the partition wall, for example, the heat medium mixed in the cooling water may flow out as drainage, which may cause undesired environmental destruction.
- the compressor is easily baked. Therefore, when the partition wall is broken, it is necessary to quickly stop the outflow of the heat medium to the outside.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigeration apparatus that can quickly detect leakage of a heat medium from a condenser or an evaporator with a simple configuration.
- the present invention is a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping so as to circulate the heating medium in this order, and detects the pressure of the heating medium flowing through the piping. And a control unit that determines that leakage of the heat medium from the condenser or the evaporator has occurred when the pressure detected by the pressure detection unit is equal to or lower than a predetermined value.
- a refrigeration apparatus characterized by that.
- the control unit detects the pressure drop caused by the leakage of the heat medium from the condenser or the evaporator based on the detection result of the pressure detection unit provided in the refrigeration apparatus. Therefore, it is possible to determine the occurrence of the leakage of the heat medium from the condenser or the evaporator without requiring a complicated calculation process. Thereby, the leakage of the heat medium from the condenser or the evaporator can be quickly detected with a simple configuration.
- the condenser includes a plurality of condensers such that a heat medium flow path and a cooling water flow path, which are formed between adjacent plate members with the main surfaces facing each other, are alternately arranged.
- These plate members are plate-type heat exchangers arranged at intervals, and the plate member may have a configuration in which two plates are laminated.
- the pressure detection unit may detect a pressure of a heat medium flowing through a portion of the pipe between the condenser and the expansion valve.
- the pressure detection unit may detect a pressure of a heat medium flowing through a portion of the pipe between the evaporator and the compressor.
- control unit is configured to flow the heat medium in the plate member in the condenser when the pressure detected by the pressure detection unit is equal to or lower than a predetermined value for preliminary determination.
- a predetermined value for preliminary determination When it is determined that the heat medium has leaked between the two plates from the side plate, and the pressure detected by the pressure detection unit is less than the predetermined value for main determination which is smaller than the predetermined value for preliminary determination, it may be determined that the heat medium has leaked from the heat medium flow path in the condenser to the cooling water flow path through the plate member.
- the pressure detection unit includes a high-pressure side pressure detection unit that detects a pressure of a heat medium flowing through a portion of the pipe between the condenser and the expansion valve, and the pipe.
- a low pressure side pressure detection unit that detects a pressure of a heat medium that flows through a portion between the evaporator and the compressor in the compressor, and the control unit detects the pressure detected by the high pressure side pressure detection unit.
- the pressure detection unit includes a first high-pressure side pressure detection unit that detects a pressure of a heat medium that flows through a portion of the pipe between the compressor and the condenser; A second high-pressure side pressure detection unit that detects a pressure of a heat medium that flows through a portion of the pipe between the condenser and the expansion valve, and the control unit detects the first high-pressure side pressure.
- a third predetermined value it is determined that the heat medium has leaked from the condenser. It may be like this.
- control unit is configured such that a difference between the pressure detected by the first high pressure side pressure detection unit and the pressure detected by the second high pressure side pressure detection unit is less than the third predetermined value, and When each of the pressure detected by the first high pressure side pressure detection unit and the pressure detected by the second high pressure side pressure detection unit is equal to or less than a fourth predetermined value, leakage of the heat medium from the evaporator occurred. It may be determined to be a thing.
- the pressure detection unit includes a first low-pressure side pressure detection unit that detects a pressure of a heat medium flowing through a portion of the pipe between the expansion valve and the evaporator, A second low-pressure side pressure detection unit that detects a pressure of a heat medium flowing through a portion of the pipe between the evaporator and the compressor, and the control unit detects the first low-pressure side pressure.
- a first low-pressure side pressure detection unit that detects a pressure of a heat medium flowing through a portion of the pipe between the expansion valve and the evaporator
- a second low-pressure side pressure detection unit that detects a pressure of a heat medium flowing through a portion of the pipe between the evaporator and the compressor
- the control unit detects the first low-pressure side pressure.
- control unit is configured such that a difference between the pressure detected by the first low pressure side pressure detection unit and the pressure detected by the second low pressure side pressure detection unit is less than the fifth predetermined value, and When each of the pressure detected by the first low-pressure side pressure detector and the pressure detected by the second low-pressure side pressure detector is equal to or less than a sixth predetermined value, the heat medium leaked from the condenser. You may come to judge with a thing.
- the heat medium leakage from the condenser and the heat medium leakage from the evaporator can be separately determined while suppressing the number of pressure detection units, and thus an abnormality has occurred efficiently.
- the location can be identified, and the subsequent repair work can proceed smoothly.
- control unit stops the circulation of the heat medium in the refrigeration apparatus or notifies a warning when it is determined that the leakage of the heat medium has occurred. It may be.
- leakage of the heat medium from the condenser or the evaporator can be quickly detected with a simple configuration.
- FIG. 1 is a circuit diagram of a refrigeration apparatus according to a first embodiment of the present invention. It is a circuit diagram of the freezing apparatus which concerns on the 2nd Embodiment of this invention. It is a circuit diagram of the freezing apparatus which concerns on the 3rd Embodiment of this invention. It is sectional drawing of the condenser in the freezing apparatus comprised as a plate type heat exchanger.
- FIG. 1 shows a circuit diagram of a refrigeration apparatus 1 according to the first embodiment.
- the refrigeration apparatus 1 is configured such that a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14 are connected by a pipe 15 so as to circulate a heat medium in this order.
- the pipe 15 includes a first portion 15A that connects the compressor 11 and the condenser 12, a second portion 15B that connects the condenser 12 and the expansion valve 13, and a third portion that connects the expansion valve 13 and the evaporator 14. 15C, and a fourth portion 15D that connects the evaporator 14 and the compressor 11.
- the refrigeration apparatus 1 according to the present embodiment further includes an abnormality detection device 21 for detecting leakage of the heat medium.
- the abnormality detection device 21 includes pressure detection units 31 and 32 and a control unit 41.
- the compressor 11 compresses the heat medium in a low-temperature and low-pressure gas state that has flowed out of the evaporator 14, and supplies the compressed heat medium to a condenser 12 as a high-temperature (for example, 80 ° C.) and high-pressure gas state. .
- the condenser 12 cools and condenses the heat medium compressed by the compressor 11 with cooling water, and supplies it to the expansion valve 13 as a high-pressure liquid at a predetermined cooling temperature (for example, 40 ° C.). It has become.
- Water may be used for the cooling water of the condenser 12, or other refrigerants may be used.
- the condenser 12 in the present embodiment is configured by a plate heat exchanger, and includes a first flow path 12A through which a heat medium flows and a second flow path 12B through which cooling water flows.
- the first portion 15A of the pipe 15 is connected to the upstream end of the first flow path 12A
- the second portion 15B of the pipe 15 is connected to the downstream end of the first flow path 12A.
- a cooling water pipe 18 is connected to the second flow path 12 ⁇ / b> B, and the condenser 12 is supplied with cooling water from the cooling water pipe 18.
- the heat medium can be cooled by the cooling water and condensed by exchanging heat between the heat medium and the cooling water.
- FIG. 4 shows a cross-sectional view of the condenser 12 configured as a plate heat exchanger.
- the condenser 12 includes a first flow path 12 ⁇ / b> A for a heat medium and a second flow path 12 ⁇ / b> B for cooling water that are formed between adjacent plate members 121 with the main surfaces facing each other.
- a plurality of plate members 121 are arranged at intervals so as to be alternately arranged.
- the plate member 121 has a configuration in which two plates 122 and 122 are laminated.
- the two plates 122 and 122 are joined at their outer peripheral edges by brazing or the like, while the heat exchange region set inside the outer peripheral edge is in a non-joined state. Therefore, a minute air layer is formed between the two plates 122 and 122.
- the expansion valve 13 is decompressed by expanding the heat medium supplied from the condenser 12, and is supplied to the evaporator 14 as a low-temperature (for example, 2 ° C.) and low-pressure liquid state. It has become.
- the evaporator 14 heats the supplied heat medium with air to be temperature controlled to cool the air.
- the heat medium exchanged with air becomes a low-temperature and low-pressure gas, flows out of the evaporator 14, and is compressed again by the compressor 11.
- the evaporator 14 may be configured to cool the liquid with a heat medium. In this case, the evaporator 14 may be configured by a plate heat exchanger.
- the abnormality detection apparatus 21 detects the pressure of the heat medium which flows through the part (2nd part 15B) between the condenser 12 and the expansion valve 13 in the piping 15,
- the high pressure side pressure detection part 31 and a low-pressure side pressure detector 32 that detects the pressure of the heat medium flowing through the portion (fourth portion 15D) between the evaporator 14 and the compressor 11 in the pipe 15.
- the pressure detection units 31 and 32 are electrically connected to the control unit 41.
- these pressure detection units 31 and 32 and the control unit 41 constitute the abnormality detection device 21.
- the pressure detection units 31 and 32 convert the detected pressure into a voltage signal and output the voltage signal to the control unit 41.
- the control unit 41 determines whether or not a leakage of the heat medium from the condenser 12 or the evaporator 14 has occurred based on the pressure detected by the pressure detection units 31 and 32.
- the control unit 41 may be an arithmetic device including a CPU, for example.
- control unit 41 in the present embodiment is configured such that the pressure detected by the high pressure side pressure detection unit 31 is equal to or lower than the first predetermined value, or the pressure detected by the low pressure side pressure detection unit 32 is the second value. When it becomes below a predetermined value, it determines with the leakage of the heat medium from the condenser 12 or the evaporator 14 having generate
- reference numeral 16 indicates a shutoff valve 16 provided in the first portion 15 ⁇ / b> A of the pipe 15.
- the control unit 41 turns off the shutoff valve 16 and stops the circulation of the heat medium.
- the control unit 41 outputs (notifies) a warning sound and stops the compressor 11.
- the control unit 41 may display (notify) a warning on a display device or the like.
- the above-mentioned first predetermined value is a pressure value smaller than the pressure of the heat medium compressed by the compressor 11 in a normal operation state where there is no leakage of the heat medium
- the above-mentioned second predetermined value is The pressure value is smaller than the pressure of the heat medium exiting the evaporator 14 after the expansion valve 13 is expanded in a normal operation state.
- These 1st predetermined value and 2nd predetermined value are set to the value which can be considered that possibility that the leakage of the heat medium from the condenser 12 or the evaporator 14 has generate
- the pressure detected by the low pressure side pressure detector 32 particularly the pressure downstream of the evaporator 14 is detected by the high pressure side pressure detector 31.
- the present inventor has found through intensive research that the pressure is more likely to fluctuate depending on the influence of leakage than the applied pressure. Therefore, when the pressure detected by the high pressure side pressure detection unit 31 is equal to or lower than the first predetermined value, the control unit 41 determines that there is a risk of leakage, and the pressure detected by the low pressure side pressure detection unit 32 is A configuration may be adopted in which it is determined that a leak has occurred when the second predetermined value or less is reached.
- the control unit 41 detects the pressure drop caused by the leakage of the heat medium from the condenser 12 or the evaporator 14 by the pressure detection provided in the refrigeration apparatus 1. By detecting based on the detection results of the units 31 and 32, it is possible to determine the occurrence of the leakage of the heat medium from the condenser 12 or the evaporator 14 without requiring complicated arithmetic processing. Thereby, the leakage of the heat medium from the condenser 12 or the evaporator 14 can be quickly detected with a simple configuration.
- the condenser 12 has a plurality of heat medium channels and cooling water channels formed alternately between adjacent plate members 121 with the main surfaces facing each other.
- the plate member 121 is a plate heat exchanger in which the plate members 121 are arranged at intervals, and the plate member 121 is formed by laminating two plates 122 and 122. Thereby, even if one of the two plates in the plate member 121 is damaged, the heat medium and the cooling water are not mixed, so that leakage of the heat medium or the cooling water can be effectively suppressed.
- the pressure detected by the high pressure side pressure detection unit 31 when the pressure detected by the high pressure side pressure detection unit 31 is equal to or lower than the first predetermined value, or the pressure detected by the low pressure side pressure detection unit 32 is equal to or lower than the second predetermined value. In this case, it is determined that the heat medium has leaked. However, instead of this, when the pressure detected by the high pressure side pressure detector 31 is equal to or lower than the first predetermined value and the pressure detected by the low pressure side pressure detector 32 is equal to or lower than the second predetermined value, It may be determined that a medium leak has occurred.
- control unit 41 includes the first flow path 12A of the plate member 121 in the condenser 12 when the pressure detected by the low pressure side pressure detection unit 32 is equal to or less than the predetermined value for preliminary determination. It is determined that the heat medium has leaked between the two plates 122, 122 from the second plate 122, and the pressure detected by the low pressure side pressure detector 32 is smaller than the predetermined value for main determination. In the case of the following, it is determined that the heat medium has leaked from the first flow path 12A in the condenser 12 to the second flow path 12B via the plate member 121.
- control unit 41 may perform different processing depending on the case where it is determined that the heat medium has leaked from 12A to the second flow path 12B via the plate member 121. For example, the control unit 41 may notify only a warning to that effect when the former occurs, notify the warning to the effect when the latter occurs, and stop the circulation of the heat medium. Further, the control unit 41 may stop the circulation of the heat medium in both the former case and the latter case.
- the leakage of the heat medium is detected at the stage of the predetermined value for preliminary determination, so that it is possible to avoid a situation in which the heat medium leaks in large quantities thereafter.
- the configuration according to this modification may be applied to the high-pressure side pressure detection unit 31.
- the abnormality detection device 22 detects the pressure of the heat medium flowing through the portion (first portion 15 ⁇ / b> A) between the compressor 11 and the condenser 12 in the pipe 15.
- the first high pressure side pressure detector 31A that detects the pressure of the heat medium that flows through the portion (second portion 15B) between the condenser 12 and the expansion valve 13 in the pipe 15. It is comprised by 31B and the control part 41 electrically connected with these pressure detection parts 31A and 31B.
- the controller 41 starts from the condenser 12. It is determined that leakage of the heat medium has occurred.
- the third predetermined value is set to a value that can be regarded as a high possibility that the heat medium leaks from the condenser 12.
- control unit 41 in the present embodiment has a difference between the pressure detected by the first high pressure side pressure detection unit 31A and the pressure detected by the second high pressure side pressure detection unit 31B being less than a third predetermined value, and When the pressure detected by the first high pressure side pressure detector 31A and the pressure detected by the second high pressure side pressure detector 31B are each equal to or lower than the fourth predetermined value, the leakage of the heat medium from the evaporator 14 occurs. It is determined that it has occurred.
- the condenser 12 when the difference between the pressure detected by the first high pressure side pressure detector 31A and the pressure detected by the second high pressure side pressure detector 31B is less than the third predetermined value, the condenser 12 It is not determined that the heat medium leaks from the air. However, even in this case, there is a possibility that the heat medium leaks from the evaporator 14. If the heat medium leaks from the evaporator 14, the pressure detected by the first high pressure side pressure detector 31A and the pressure detected by the second high pressure side pressure detector 31B are the same as those of the heat medium. The pressure is smaller than the pressure of the heat medium in a normal operation state without leakage.
- the value of the pressure of the heat medium compressed by the compressor 11 in a normal operation state in which no heat medium leaks is smaller, and the heat medium leaks from the evaporator 14.
- the fourth predetermined value is set as the pressure value that can be considered to be high. Accordingly, when each of the pressure detected by the first high pressure side pressure detector 31A and the pressure detected by the second high pressure side pressure detector 31B is equal to or lower than the fourth predetermined value, the heat medium from the evaporator 14 It can be determined that a leak has occurred.
- the second embodiment it is possible to quickly detect the leakage of the heat medium from the condenser 12 or the evaporator 14 with a simple configuration.
- the abnormality detection device 23 detects the pressure of the heat medium flowing through the portion (third portion 15 ⁇ / b> C) between the expansion valve 13 and the evaporator 14 in the pipe 15.
- the control unit 41 starts from the evaporator 14. It is determined that leakage of the heat medium has occurred. If the difference between the pressure detected by the first low pressure side pressure detector 32A and the pressure detected by the second low pressure side pressure detector 32B is large, it can be assumed that the heat medium is likely to have leaked from the evaporator 14. Therefore, the fifth predetermined value is set to a value that can be regarded as a high possibility that the heat medium leaks from the evaporator 14.
- control unit 41 in the present embodiment has a difference between the pressure detected by the first low pressure side pressure detection unit 32A and the pressure detected by the second low pressure side pressure detection unit 32B being less than a fifth predetermined value, and When the pressure detected by the first low pressure side pressure detection unit 32A and the pressure detected by the second low pressure side pressure detection unit 32B are each equal to or lower than the sixth predetermined value, the leakage of the heat medium from the condenser 12 occurs. It is determined that it has occurred. According to such 3rd Embodiment, the effect similar to 2nd Embodiment is acquired.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Air-Conditioning For Vehicles (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
[課題]凝縮器又は蒸発器からの熱媒体の漏れを簡易な構成で迅速に検出する。 [解決手段]本発明に係る冷凍装置1は、圧縮機11、凝縮器12、膨張弁13、及び蒸発器14が熱媒体をこの順で循環させるように配管15により接続されて構成される。冷凍装置1は、配管15を通流する熱媒体の圧力を検出する圧力検出部31,32と、圧力検出部31,32が検出した圧力が所定値以下になった場合に、凝縮器12又は蒸発器14からの熱媒体の漏れが発生したものと判定する制御部41と、をさらに備えている。
Description
本発明は、熱媒体の漏れを検出可能な冷凍装置に関する。
冷凍装置では、圧縮機、凝縮器、膨張弁、及び蒸発器が熱媒体をこの順で循環させるように配管により接続されている。このような冷凍装置における凝縮器は、空冷式と液冷式とに大別することができる。空冷式の凝縮器は、一般に、送風機からの風によって熱媒体を冷却し、主に家庭用の空気調和装置で採用されている。一方、液冷式の凝縮器は、水道水や地下水等の冷却水によって熱媒体を冷却し、主に工場等の大型設備で採用されている。空冷式の凝縮器では、送風機による塵埃の巻き上げが生じ得ることから、これが問題となり得る半導体製造設備等では、通常、液冷式の凝縮器が用いられる。
冷凍装置においては、液冷式の凝縮器として、プレート式熱交換器が用いられる場合がある。プレート式熱交換器の形式には、熱媒体と冷却水とが熱交換器内で隔壁を介して互いに逆方向に通流する対流式や、熱媒体と冷却水とが熱交換器内で隔壁を介して互いに同方向に通流する並流式等がある。対流式は、熱交換率が高いため、小型化等の点で有利である。なお、蒸発器が液体の冷却のために用いられる場合には、蒸発器をプレート式熱交換器によって構成する場合もある。
プレート式熱交換器を凝縮器として用いる場合、凝縮器で通流させる熱媒体の圧力は、通常、冷却水の圧力よりも大きくなる。これにより、例えば腐食箇所等を起点として熱媒体が隔壁を破って冷却水に混入し易くなる。仮に熱媒体が隔壁を破った場合には、例えば、冷却水に混入した熱媒体が排水として流出することによって不所望な環境破壊が生じ得る。また冷凍装置における熱媒体が減ることによって、圧縮機の焼付けが生じ易くなる。そのため、隔壁の破損が生じた場合には、熱媒体の外部への流出を迅速に停止する必要性が生じる。
本発明は、上記実情に鑑みてなされたものであり、凝縮器又は蒸発器からの熱媒体の漏れを簡易な構成で迅速に検出することができる冷凍装置を提供することを目的とする。
本発明は、圧縮機、凝縮器、膨張弁、及び蒸発器が熱媒体をこの順で循環させるように配管により接続された冷凍装置であって、前記配管を通流する熱媒体の圧力を検出する圧力検出部と、前記圧力検出部が検出した圧力が所定値以下となった場合に、前記凝縮器又は前記蒸発器からの熱媒体の漏れが発生したものと判定する制御部と、を備えている、ことを特徴とする冷凍装置、である。
本発明に係る冷凍装置によれば、凝縮器又は蒸発器からの熱媒体の漏れによって生じる圧力低下を、制御部が、冷凍装置に設けられた圧力検出部の検出結果に基づいて検出することで、複雑な演算処理を要することなく凝縮器又は蒸発器からの熱媒体の漏れの発生を判定することが可能となる。これにより、凝縮器又は蒸発器からの熱媒体の漏れを簡易な構成で迅速に検出することができる。
また本発明に係る冷凍装置において、前記凝縮器は、主面を対向させて隣り合うプレート部材の間に形成される熱媒体の流路と冷却水の流路とが交互に並ぶように、複数のプレート部材が間隔を空けて配置されたプレート式熱交換器であり、前記プレート部材は、二枚のプレートを積層させてなる構成を有していてもよい。
この場合、プレート部材における二枚のプレートのうちの一方が破損したとしても、熱媒体と冷却水とが混合しないため、熱媒体又は冷却水の漏れを効果的に抑制することができる。
また本発明に係る冷凍装置において、前記圧力検出部は、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出するようになっていてもよい。
また本発明に係る冷凍装置において、前記圧力検出部は、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出するようになっていてもよい。
また本発明に係る冷凍装置において、前記制御部は、前記圧力検出部が検出した圧力が予備判定用所定値以下となった場合に、前記凝縮器における前記プレート部材のうちの熱媒体の流路の側のプレートから二枚のプレートの間に熱媒体が漏れたものと判定し、前記圧力検出部が検出した圧力が前記予備判定用所定値よりも小さい主判定用所定値以下となった場合に、前記凝縮器における熱媒体の流路から前記プレート部材を介して冷却水の流路に熱媒体が漏れたものと判定するようになっていてもよい。
この場合、予備判定用所定値の段階で、熱媒体の漏れが検出されることで、その後に、熱媒体が多量に漏れる事態を回避することができる。
また本発明に係る冷凍装置において、前記圧力検出部は、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出する高圧側圧力検出部と、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出する低圧側圧力検出部と、を含み、前記制御部は、前記高圧側圧力検出部が検出した圧力が第1所定値以下となり、且つ、前記低圧側圧力検出部が検出した圧力が第2所定値以下となった場合に、前記凝縮器又は前記蒸発器からの熱媒体の漏れが発生したものと判定するようになっていてもよい。
また本発明に係る冷凍装置において、前記圧力検出部は、前記配管における前記圧縮機と前記凝縮器との間の部分を通流する熱媒体の圧力を検出する第1高圧側圧力検出部と、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出する第2高圧側圧力検出部と、を含み、前記制御部は、前記第1高圧側圧力検出部が検出した圧力と前記第2高圧側圧力検出部が検出した圧力との差分が、第3所定値以上となった場合に、前記凝縮器からの熱媒体の漏れが発生したものと判定するようになっていてもよい。
この場合、前記制御部は、前記第1高圧側圧力検出部が検出した圧力と前記第2高圧側圧力検出部が検出した圧力との差分が、前記第3所定値未満であり、且つ、前記第1高圧側圧力検出部が検出した圧力及び前記第2高圧側圧力検出部が検出した圧力のそれぞれが、第4所定値以下である場合に、前記蒸発器からの熱媒体の漏れが発生したものと判定する、ようになっていてもよい。
また本発明に係る冷凍装置において、前記圧力検出部は、前記配管における前記膨張弁と前記蒸発器との間の部分を通流する熱媒体の圧力を検出する第1低圧側圧力検出部と、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出する第2低圧側圧力検出部と、を含み、前記制御部は、前記第1低圧側圧力検出部が検出した圧力と前記第2低圧側圧力検出部が検出した圧力との差分が、第5所定値以上となった場合に、前記蒸発器からの熱媒体の漏れが発生したものと判定するようになっていてもよい。
この場合、前記制御部は、前記第1低圧側圧力検出部が検出した圧力と前記第2低圧側圧力検出部が検出した圧力との差分が、前記第5所定値未満であり、且つ、前記第1低圧側圧力検出部が検出した圧力及び前記第2低圧側圧力検出部が検出した圧力のそれぞれが、第6所定値以下である場合に、前記凝縮器からの熱媒体の漏れが発生したものと判定するようになっていてもよい。
以上の構成によれば、圧力検出部の個数を抑えつつ、凝縮器からの熱媒体の漏れと、蒸発器からの熱媒体の漏れと、を分けて判定できるため、効率的に異常が生じた箇所を特定することができ、その後の補修作業を円滑に進めることができる。
また、本発明に係る冷凍装置において、前記制御部は、熱媒体の漏れが発生したものと判定した場合に、冷凍装置における熱媒体の循環を停止させるか、又は、警告を通知するようになっていてもよい。
この構成によれば、熱媒体の漏れの進行を抑制できる。
本発明によれば、凝縮器又は蒸発器からの熱媒体の漏れを簡易な構成で迅速に検出することができる。
以下に、添付の図面を参照して、本発明の各実施の形態を詳細に説明する。
(第1の実施の形態)
図1は、第1の実施の形態に係る冷凍装置1の回路図を示している。冷凍装置1は、圧縮機11、凝縮器12、膨張弁13、及び蒸発器14が熱媒体をこの順で循環させるように配管15により接続されて構成されている。配管15は、圧縮機11と凝縮器12とを接続する第1部分15A、凝縮器12と膨張弁13とを接続する第2部分15B、膨張弁13と蒸発器14とを接続する第3部分15C、及び蒸発器14と圧縮機11とを接続する第4部分15Dを有している。また本実施の形態に係る冷凍装置1は、熱媒体の漏れを検出するための異常検出装置21をさらに備えている。異常検出装置21は、圧力検出部31,32と、制御部41とを有している。
図1は、第1の実施の形態に係る冷凍装置1の回路図を示している。冷凍装置1は、圧縮機11、凝縮器12、膨張弁13、及び蒸発器14が熱媒体をこの順で循環させるように配管15により接続されて構成されている。配管15は、圧縮機11と凝縮器12とを接続する第1部分15A、凝縮器12と膨張弁13とを接続する第2部分15B、膨張弁13と蒸発器14とを接続する第3部分15C、及び蒸発器14と圧縮機11とを接続する第4部分15Dを有している。また本実施の形態に係る冷凍装置1は、熱媒体の漏れを検出するための異常検出装置21をさらに備えている。異常検出装置21は、圧力検出部31,32と、制御部41とを有している。
圧縮機11は、蒸発器14から流出した低温且つ低圧の気体の状態の熱媒体を圧縮し、高温(例えば80℃)且つ高圧の気体の状態として、凝縮器12に供給するようになっている。凝縮器12は、圧縮機11で圧縮された熱媒体を冷却水によって冷却すると共に凝縮し、所定の冷却温度(例えば、40℃)の高圧の液体の状態として、膨張弁13に供給するようになっている。凝縮器12の冷却水には、水が用いられてよいし、その他の冷媒が用いられてもよい。
本実施の形態における凝縮器12は、プレート式熱交換器によって構成され、熱媒体を通流させる第1流路12Aと、冷却水を通流させる第2流路12Bと、を有する。このうち、第1流路12Aの上流端に配管15の第1部分15Aが接続され、第1流路12Aの下流端に配管15の第2部分15Bが接続されている。また第2流路12Bに冷却水用配管18が接続され、凝縮器12は、冷却水用配管18から冷却水を供給される。このような凝縮器12では、熱媒体と冷却水とを熱交換させることにより、熱媒体を冷却水によって冷却すると共に凝縮することができる。
図4はプレート式熱交換器として構成された凝縮器12の断面図を示している。図4に示すように、凝縮器12は、主面を対向させて隣り合うプレート部材121の間に形成される熱媒体用の第1流路12Aと冷却水用の第2流路12Bとが交互に並ぶように、複数のプレート部材121が間隔を空けて配置されて構成されたプレート式熱交換器である。ここで、本実施の形態では、プレート部材121が、二枚のプレート122,122を積層させてなる構成を有する。より詳しくは、二枚のプレート122,122は、外周縁を互いにろう付け等で接合される一方で、外周縁の内側に設定される熱交換領域は非接合状態となっている。そのため、二枚のプレート122,122の間には微小な空気層が形成されるようになっている。
図1に戻り、膨張弁13は、凝縮器12から供給された熱媒体を膨張させることにより減圧させて、低温(例えば、2℃)且つ低圧の液体状態として、蒸発器14に供給するようになっている。蒸発器14は、本実施の形態において、供給された熱媒体を温度制御対象の空気と熱交換させて空気を冷却するようになっている。空気と熱交換した熱媒体は、低温且つ低圧の気体の状態となって蒸発器14から流出して再び圧縮機11で圧縮される。なお、蒸発器14は、熱媒体によって液体を冷却するように構成されてもよい。この場合、蒸発器14は、プレート式熱交換器によって構成されてもよい。
また本実施の形態では、異常検出装置21が、配管15における凝縮器12と膨張弁13との間の部分(第2部分15B)を通流する熱媒体の圧力を検出する高圧側圧力検出部31と、配管15における蒸発器14と圧縮機11との間の部分(第4部分15D)を通流する熱媒体の圧力を検出する低圧側圧力検出部32と、を有する。圧力検出部31,32は、制御部41に電気的に接続されている。本実施の形態では、これら圧力検出部31,32及び制御部41が、異常検出装置21を構成している。圧力検出部31,32は、本実施の形態において、検出した圧力を電圧信号に変換して、制御部41に出力する。制御部41は、圧力検出部31,32が検出した圧力に基づいて、凝縮器12又は蒸発器14からの熱媒体の漏れが発生したか否かを判定するようになっている。制御部41は、例えばCPU等を含む演算装置であってもよい。
より詳しくは、本実施の形態における制御部41は、高圧側圧力検出部31が検出した圧力が第1所定値以下となった場合、又は、低圧側圧力検出部32が検出した圧力が第2所定値以下となった場合に、凝縮器12又は蒸発器14からの熱媒体の漏れが発生したものと判定する。また制御部41は、熱媒体の漏れが発生したものと判定した場合に、冷凍装置1における熱媒体の循環を停止させるとともに、警告を通知するようにもなっている。
図1において、符号16は、配管15の第1部分15Aに設けられた遮断弁16を示している。具体的に本実施の形態では、高圧側圧力検出部31が検出した圧力が第1所定値以下となった場合、又は、低圧側圧力検出部32が検出した圧力が第2所定値以下となった場合に、制御部41が遮断弁16を遮断状態として、熱媒体の循環を停止させる。また同時に、制御部41は、警告音を出力(通知)するとともに、圧縮機11を停止させる。なお、制御部41は、表示装置等において警告を表示(通知)してもよい。ここで、上述の第1所定値は、熱媒体の漏れのない通常の運転状態において圧縮機11によって圧縮された熱媒体の圧力よりも小さい圧力の値であり、上述の第2所定値は、通常の運転状態において膨張弁13が膨張させた後に蒸発器14を出る熱媒体の圧力よりも小さい圧力の値である。これら第1所定値及び第2所定値は、凝縮器12又は蒸発器14からの熱媒体の漏れが発生している可能性が高いと見做すことのできる値に設定されている。これらの所定値は、熱媒体の種別等に応じて適正な値が変動するため、制御部41においては所定値の設定を任意に変更可能となっている。
なお凝縮器12又は蒸発器14からの熱媒体の漏れが生じている場合、低圧側圧力検出部32で検出される圧力、特に蒸発器14の下流の圧力は、高圧側圧力検出部31で検出される圧力よりも、漏れの影響に応じて変動し易くなることを、本件発明者は鋭意研究によって見出した。したがって、高圧側圧力検出部31が検出した圧力が第1所定値以下となった場合には、制御部41によって漏れの虞があるものと判定し、低圧側圧力検出部32が検出した圧力が第2所定値以下となった場合に、漏れが発生したと判定する構成が採用されてもよい。
以上に説明した本実施の形態に係る冷凍装置1によれば、凝縮器12又は蒸発器14からの熱媒体の漏れによって生じる圧力低下を、制御部41が、冷凍装置1に設けられた圧力検出部31,32の検出結果に基づいて検出することで、複雑な演算処理を要することなく凝縮器12又は蒸発器14からの熱媒体の漏れの発生を判定することが可能となる。これにより、凝縮器12又は蒸発器14からの熱媒体の漏れを簡易な構成で迅速に検出することができる。
また本実施の形態では、凝縮器12が、主面を対向させて隣り合うプレート部材121の間に形成される熱媒体の流路と冷却水の流路とが交互に並ぶように、複数のプレート部材121が間隔を空けて配置されたプレート式熱交換器であり、プレート部材121は、二枚のプレート122,122を積層させてなる。これにより、プレート部材121における二枚のプレートのうちの一方が破損したとしても、熱媒体と冷却水とが混合しないため、熱媒体又は冷却水の漏れを効果的に抑制することができる。
なお、本実施の形態では、高圧側圧力検出部31が検出した圧力が第1所定値以下となった場合、又は、低圧側圧力検出部32が検出した圧力が第2所定値以下となった場合に、熱媒体の漏れが発生したものと判定される。しかしながら、これに代えて、高圧側圧力検出部31が検出した圧力が第1所定値以下となり、且つ、低圧側圧力検出部32が検出した圧力が第2所定値以下となった場合に、熱媒体の漏れが発生したと判定されてもよい。
以下においては、第1の実施の形態の変形例について説明する。本変形例では、制御部41の構成が第1の実施の形態と異なっている。
すなわち、本変形例に係る制御部41は、低圧側圧力検出部32が検出した圧力が予備判定用所定値以下となった場合に、凝縮器12におけるプレート部材121のうちの第1流路12Aの側のプレート122から二枚のプレート122,122の間に熱媒体が漏れたものと判定し、低圧側圧力検出部32が検出した圧力が予備判定用所定値よりも小さい主判定用所定値以下となった場合に、凝縮器12における第1流路12Aからプレート部材121を介して第2流路12Bに熱媒体が漏れたものと判定するようになっている。
このような本例においては、第1流路12Aの側のプレート122から二枚のプレート122,122の間に熱媒体が漏れたものと判定された場合と、凝縮器12における第1流路12Aからプレート部材121を介して第2流路12Bに熱媒体が漏れたものと判定された場合とで、制御部41が異なる処理を行ってもよい。例えば、制御部41は、前者が生じた場合にその旨の警告のみを通知し、後者が生じた場合にその旨の警告を通知し且つ熱媒体の循環を停止させてもよい。また制御部41は、前者及び後者の場合の両方で、熱媒体の循環を停止させてもよい。
以上の構成によれば、予備判定用所定値の段階で、熱媒体の漏れが検出されることで、その後に熱媒体が多量に漏れる事態を回避することができるようになる。なお、本変形例に係る構成は、高圧側圧力検出部31に対して適用されてもよい。
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。本実施の形態における構成部分のうちの第1の実施の形態の構成部分と同様のものについては、同一の符号を付し、その説明を省略する。本実施の形態では、圧力検出部の構成が第1の実施の形態と異なっている。
次に、本発明の第2の実施の形態について説明する。本実施の形態における構成部分のうちの第1の実施の形態の構成部分と同様のものについては、同一の符号を付し、その説明を省略する。本実施の形態では、圧力検出部の構成が第1の実施の形態と異なっている。
図2に示すように、本実施の形態に係る異常検出装置22は、配管15における圧縮機11と凝縮器12との間の部分(第1部分15A)を通流する熱媒体の圧力を検出する第1高圧側圧力検出部31Aと、配管15における凝縮器12と膨張弁13との間の部分(第2部分15B)を通流する熱媒体の圧力を検出する第2高圧側圧力検出部31Bと、これら圧力検出部31A,31Bと電気的に接続された制御部41と、で構成されている。
制御部41は、第1高圧側圧力検出部31Aが検出した圧力と第2高圧側圧力検出部31Bが検出した圧力との差分が、第3所定値以上となった場合に、凝縮器12からの熱媒体の漏れが発生したものと判定する。第1高圧側圧力検出部31Aが検出した圧力と第2高圧側圧力検出部31Bが検出した圧力との差分が大きい場合、凝縮器12から熱媒体が漏れた可能性が高いものと推認できる。したがって、第3所定値は、凝縮器12からの熱媒体の漏れが発生している可能性が高いと見做すことのできる値に設定されている。
また本実施の形態における制御部41は、第1高圧側圧力検出部31Aが検出した圧力と第2高圧側圧力検出部31Bが検出した圧力との差分が、第3所定値未満であり、且つ、第1高圧側圧力検出部31Aが検出した圧力及び第2高圧側圧力検出部31Bが検出した圧力のそれぞれが、第4所定値以下である場合に、蒸発器14からの熱媒体の漏れが発生したものと判定するようになっている。
本実施の形態では、第1高圧側圧力検出部31Aが検出した圧力と第2高圧側圧力検出部31Bが検出した圧力との差分が、第3所定値未満である場合には、凝縮器12からの熱媒体の漏れが発生しているとは判定されない。しかしながら、この場合であっても、蒸発器14からの熱媒体の漏れが発生している可能性がある。仮に、蒸発器14からの熱媒体の漏れが発生している場合には、第1高圧側圧力検出部31Aが検出する圧力及び第2高圧側圧力検出部31Bが検出する圧力は、熱媒体の漏れのない通常の運転状態における熱媒体の圧力よりも小さい圧力となる。
そこで本実施の形態では、熱媒体の漏れのない通常の運転状態において圧縮機11によって圧縮された熱媒体の圧力よりも小さい値であって、蒸発器14からの熱媒体の漏れが発生している可能性が高いと見做すことのできる圧力の値に、第4所定値が設定されている。これにより、第1高圧側圧力検出部31Aが検出した圧力及び第2高圧側圧力検出部31Bが検出した圧力のそれぞれが、第4所定値以下である場合に、蒸発器14からの熱媒体の漏れが発生したものと判定することが可能となる。
このような第2の実施の形態によっても、凝縮器12又は蒸発器14からの熱媒体の漏れを簡易な構成で迅速に検出することができる。とりわけ圧力検出部の個数を抑えつつ、凝縮器12からの熱媒体の漏れと、蒸発器14からの熱媒体の漏れと、を分けて判定できるため、効率的に異常が生じた箇所を特定することができ、その後の補修作業を円滑に進めることができる。
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。本実施の形態における構成部分のうちの第1及び第2の実施の形態の構成部分と同様のものについては、同一の符号を付し、その説明を省略する。本実施の形態では、圧力検出部の構成が第1及び第2の実施の形態と異なっている。
次に、本発明の第3の実施の形態について説明する。本実施の形態における構成部分のうちの第1及び第2の実施の形態の構成部分と同様のものについては、同一の符号を付し、その説明を省略する。本実施の形態では、圧力検出部の構成が第1及び第2の実施の形態と異なっている。
図3に示すように、本実施の形態に係る異常検出装置23は、配管15における膨張弁13と蒸発器14との間の部分(第3部分15C)を通流する熱媒体の圧力を検出する第1低圧側圧力検出部32Aと、配管15における蒸発器14と圧縮機11との間の部分(第4部分15D)を通流する熱媒体の圧力を検出する第2低圧側圧力検出部32Bと、これら圧力検出部32A,32Bと電気的に接続された制御部41と、で構成されている。
制御部41は、第1低圧側圧力検出部32Aが検出した圧力と第2低圧側圧力検出部32Bが検出した圧力との差分が、第5所定値以上となった場合に、蒸発器14からの熱媒体の漏れが発生したものと判定する。第1低圧側圧力検出部32Aが検出した圧力と第2低圧側圧力検出部32Bが検出した圧力との差分が大きい場合、蒸発器14から熱媒体が漏れた可能性が高いものと推認できる。したがって、第5所定値は、蒸発器14からの熱媒体の漏れが発生している可能性が高いと見做すことのできる値に設定されている。
また本実施の形態における制御部41は、第1低圧側圧力検出部32Aが検出した圧力と第2低圧側圧力検出部32Bが検出した圧力との差分が、第5所定値未満であり、且つ、第1低圧側圧力検出部32Aが検出した圧力及び第2低圧側圧力検出部32Bが検出した圧力のそれぞれが、第6所定値以下である場合に、凝縮器12からの熱媒体の漏れが発生したものと判定する。このような第3の実施の形態によれば、第2の実施の形態と同様の効果が得られる。
1…冷凍装置、11…圧縮機、12…凝縮器、12A…第1流路、12B…第2流路、121…プレート部材、122…プレート、13…膨張弁、14…蒸発器、15…配管、15A…第1部分、15B…第2部分、15C…第3部分、15D…第4部分、16…遮断弁、21,22,23…異常検出装置、31…高圧側圧力検出部、31A…第1高圧側圧力検出部、31B…第2高圧側圧力検出部、32…低圧側圧力検出部、32A…第1低圧側圧力検出部、32B…第2低圧側圧力検出部、41…制御部。
Claims (11)
- 圧縮機、凝縮器、膨張弁、及び蒸発器が熱媒体をこの順で循環させるように配管により接続された冷凍装置であって、
前記配管を通流する熱媒体の圧力を検出する圧力検出部と、
前記圧力検出部が検出した圧力が所定値以下となった場合に、前記凝縮器又は前記蒸発器からの熱媒体の漏れが発生したものと判定する制御部と、を備えている、ことを特徴とする冷凍装置。 - 前記凝縮器は、主面を対向させて隣り合うプレート部材の間に形成される熱媒体の流路と冷却水の流路とが交互に並ぶように、複数のプレート部材が間隔を空けて配置されたプレート式熱交換器であり、
前記プレート部材は、二枚のプレートを積層させてなる、ことを特徴とする請求項1に記載の冷凍装置。 - 前記圧力検出部は、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出する、ことを特徴とする請求項1又は2に記載の冷凍装置。
- 前記圧力検出部は、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出する、ことを特徴とする請求項1又は2に記載の冷凍装置。
- 前記制御部は、前記圧力検出部が検出した圧力が予備判定用所定値以下となった場合に、前記凝縮器における前記プレート部材のうちの熱媒体の流路の側のプレートから二枚のプレートの間に熱媒体が漏れたものと判定し、前記圧力検出部が検出した圧力が前記予備判定用所定値よりも小さい主判定用所定値以下となった場合に、前記凝縮器における熱媒体の流路から前記プレート部材を介して冷却水の流路に熱媒体が漏れたものと判定する、ことを特徴とする請求項2に記載の冷凍装置。
- 前記圧力検出部は、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出する高圧側圧力検出部と、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出する低圧側圧力検出部と、を含み、
前記制御部は、前記高圧側圧力検出部が検出した圧力が第1所定値以下となり、且つ、前記低圧側圧力検出部が検出した圧力が第2所定値以下となった場合に、前記凝縮器又は前記蒸発器からの熱媒体の漏れが発生したものと判定する、ことを特徴とする請求項1に記載の冷凍装置。 - 前記圧力検出部は、前記配管における前記圧縮機と前記凝縮器との間の部分を通流する熱媒体の圧力を検出する第1高圧側圧力検出部と、前記配管における前記凝縮器と前記膨張弁との間の部分を通流する熱媒体の圧力を検出する第2高圧側圧力検出部と、を含み、
前記制御部は、前記第1高圧側圧力検出部が検出した圧力と前記第2高圧側圧力検出部が検出した圧力との差分が、第3所定値以上となった場合に、前記凝縮器からの熱媒体の漏れが発生したものと判定する、ことを特徴とする請求項1に記載の冷凍装置。 - 前記制御部は、前記第1高圧側圧力検出部が検出した圧力と前記第2高圧側圧力検出部が検出した圧力との差分が、前記第3所定値未満であり、且つ、前記第1高圧側圧力検出部が検出した圧力及び前記第2高圧側圧力検出部が検出した圧力のそれぞれが、第4所定値以下である場合に、前記蒸発器からの熱媒体の漏れが発生したものと判定する、ことを特徴とする請求項7に記載の冷凍装置。
- 前記圧力検出部は、前記配管における前記膨張弁と前記蒸発器との間の部分を通流する熱媒体の圧力を検出する第1低圧側圧力検出部と、前記配管における前記蒸発器と前記圧縮機との間の部分を通流する熱媒体の圧力を検出する第2低圧側圧力検出部と、を含み、
前記制御部は、前記第1低圧側圧力検出部が検出した圧力と前記第2低圧側圧力検出部が検出した圧力との差分が、第5所定値以上となった場合に、前記蒸発器からの熱媒体の漏れが発生したものと判定する、ことを特徴とする請求項1に記載の冷凍装置。 - 前記制御部は、前記第1低圧側圧力検出部が検出した圧力と前記第2低圧側圧力検出部が検出した圧力との差分が、前記第5所定値未満であり、且つ、前記第1低圧側圧力検出部が検出した圧力及び前記第2低圧側圧力検出部が検出した圧力のそれぞれが、第6所定値以下である場合に、前記凝縮器からの熱媒体の漏れが発生したものと判定する、ことを特徴とする請求項9に記載の冷凍装置。
- 前記制御部は、熱媒体の漏れが発生したものと判定した場合に、冷凍装置における熱媒体の循環を停止させるか、又は、警告を通知する、ことを特徴とする請求項1に記載の冷凍装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780074999.6A CN110114623B (zh) | 2016-12-06 | 2017-12-01 | 制冷装置 |
US16/462,282 US11204193B2 (en) | 2016-12-06 | 2017-12-01 | Refrigeration apparatus |
KR1020197016435A KR102173063B1 (ko) | 2016-12-06 | 2017-12-01 | 냉동 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-236998 | 2016-12-06 | ||
JP2016236998A JP6433968B2 (ja) | 2016-12-06 | 2016-12-06 | 冷凍装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105511A1 true WO2018105511A1 (ja) | 2018-06-14 |
Family
ID=62491068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043248 WO2018105511A1 (ja) | 2016-12-06 | 2017-12-01 | 冷凍装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11204193B2 (ja) |
JP (1) | JP6433968B2 (ja) |
KR (1) | KR102173063B1 (ja) |
CN (1) | CN110114623B (ja) |
TW (1) | TWI722261B (ja) |
WO (1) | WO2018105511A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11835270B1 (en) * | 2018-06-22 | 2023-12-05 | Booz Allen Hamilton Inc. | Thermal management systems |
KR20210108241A (ko) * | 2020-02-25 | 2021-09-02 | 엘지전자 주식회사 | 히트펌프 및 그 동작방법 |
CN112856715A (zh) * | 2021-02-23 | 2021-05-28 | 珠海拓芯科技有限公司 | 空调器冷媒泄漏检测方法、装置、存储介质以及空调器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000274894A (ja) * | 1999-03-18 | 2000-10-06 | Sanyo Electric Co Ltd | ヒートポンプ |
JP2007232337A (ja) * | 2006-02-28 | 2007-09-13 | Atago Seisakusho:Kk | プレート式熱交換器 |
JP2012215368A (ja) * | 2011-04-01 | 2012-11-08 | Toshiba Corp | 冷媒漏洩防止機能を有する冷凍機システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100783433B1 (ko) | 2006-09-26 | 2007-12-07 | 현대자동차주식회사 | 에어컨의 냉매 누설 검출장치 및 그 제어방법 |
GR1006642B (el) * | 2008-07-14 | 2009-12-22 | Θεοδωρος Ευθυμιου Ευθυμιου | Συστημα εμμεσης ανιχνευσης διαρροης ψυκτικων μεσων σε ψυκτικες διαταξεις επι μεσων μεταφορας |
JP5960955B2 (ja) * | 2010-12-03 | 2016-08-02 | 現代自動車株式会社Hyundai Motor Company | 車両用コンデンサ |
JP6086213B2 (ja) * | 2013-01-30 | 2017-03-01 | 三浦工業株式会社 | 冷凍機を用いたチラー |
JP6146798B2 (ja) | 2013-02-26 | 2017-06-14 | 群馬県 | 冷凍装置の冷媒漏れ検出方法及び冷媒漏洩検知システム |
JP6341808B2 (ja) * | 2014-08-28 | 2018-06-13 | 三菱電機株式会社 | 冷凍空調装置 |
-
2016
- 2016-12-06 JP JP2016236998A patent/JP6433968B2/ja active Active
-
2017
- 2017-12-01 WO PCT/JP2017/043248 patent/WO2018105511A1/ja active Application Filing
- 2017-12-01 CN CN201780074999.6A patent/CN110114623B/zh active Active
- 2017-12-01 KR KR1020197016435A patent/KR102173063B1/ko active IP Right Grant
- 2017-12-01 US US16/462,282 patent/US11204193B2/en active Active
- 2017-12-05 TW TW106142511A patent/TWI722261B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000274894A (ja) * | 1999-03-18 | 2000-10-06 | Sanyo Electric Co Ltd | ヒートポンプ |
JP2007232337A (ja) * | 2006-02-28 | 2007-09-13 | Atago Seisakusho:Kk | プレート式熱交換器 |
JP2012215368A (ja) * | 2011-04-01 | 2012-11-08 | Toshiba Corp | 冷媒漏洩防止機能を有する冷凍機システム |
Also Published As
Publication number | Publication date |
---|---|
JP6433968B2 (ja) | 2018-12-05 |
CN110114623B (zh) | 2021-05-11 |
US11204193B2 (en) | 2021-12-21 |
KR20190085013A (ko) | 2019-07-17 |
CN110114623A (zh) | 2019-08-09 |
JP2018091581A (ja) | 2018-06-14 |
KR102173063B1 (ko) | 2020-11-02 |
US20190338993A1 (en) | 2019-11-07 |
TW201829967A (zh) | 2018-08-16 |
TWI722261B (zh) | 2021-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018105511A1 (ja) | 冷凍装置 | |
EP3228951B1 (en) | Refrigeration cycle apparatus | |
JP6521571B2 (ja) | 冷温熱機器 | |
JPWO2016088167A1 (ja) | 空気調和装置 | |
EP3361190B1 (en) | Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device | |
JP2012189238A (ja) | 冷凍空調装置 | |
JP6422590B2 (ja) | 熱源システム | |
JP2007187353A (ja) | 冷凍装置 | |
JP6570745B2 (ja) | 空気調和装置 | |
JP2009287912A (ja) | 冷媒切替型冷温熱供給システム | |
WO2018155513A1 (ja) | 組成異常検知装置及び組成異常検知方法 | |
JP2009109060A (ja) | 空気調和装置 | |
KR100911218B1 (ko) | 통신장비용 냉방장치 및 그 제어방법 | |
WO2020230641A1 (ja) | 冷媒状態検知装置、冷媒状態検知方法及び温調システム | |
JP6621277B2 (ja) | 冷凍装置 | |
JP2007024320A (ja) | 冷凍装置 | |
JP2011094915A (ja) | 空気調和装置 | |
JP2018091581A5 (ja) | ||
JP2018009768A (ja) | 冷凍システム | |
WO2022249424A1 (ja) | 冷凍サイクルシステム | |
JP2009109059A (ja) | 空気調和装置 | |
JP2014074583A (ja) | 冷凍空調装置 | |
JP2004232905A (ja) | 冷凍装置 | |
KR101859038B1 (ko) | 공기조화기 및 그 제어방법 | |
JP2013072579A (ja) | ヒートポンプの運転方法およびヒートポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877555 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197016435 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877555 Country of ref document: EP Kind code of ref document: A1 |