WO2018105383A1 - 車載用電源装置 - Google Patents

車載用電源装置 Download PDF

Info

Publication number
WO2018105383A1
WO2018105383A1 PCT/JP2017/041803 JP2017041803W WO2018105383A1 WO 2018105383 A1 WO2018105383 A1 WO 2018105383A1 JP 2017041803 W JP2017041803 W JP 2017041803W WO 2018105383 A1 WO2018105383 A1 WO 2018105383A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
conductive path
external terminal
unit
Prior art date
Application number
PCT/JP2017/041803
Other languages
English (en)
French (fr)
Inventor
伊藤 貴則
成治 高橋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112017006219.5T priority Critical patent/DE112017006219B4/de
Priority to CN201780073936.9A priority patent/CN110073568A/zh
Priority to US16/467,552 priority patent/US11052771B2/en
Publication of WO2018105383A1 publication Critical patent/WO2018105383A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to an in-vehicle power supply device.
  • Patent Document 1 As a vehicle-mounted system, a system that supplies power to two systems of a low-voltage system and a high-voltage system is known, and a technique such as Patent Document 1 has been proposed as a technique related to this system.
  • the power supply circuit disclosed in Patent Document 1 includes a small-capacity DC-DC converter and a large-capacity DC-DC converter as a voltage drop DC-DC converter between a high-voltage DC power supply and a low-voltage load. The converter is switched and used according to the required supply power.
  • a power storage unit is provided in the high-voltage system, and the output of the power storage unit of the high-voltage system is stepped down to a low-voltage system load.
  • the starter can be operated by the electric power of the high-voltage power storage unit, the low-voltage power storage unit is not required when starting the engine, and the low-voltage power storage unit can be easily omitted or downsized.
  • the starter cannot be operated as it is and the engine cannot be started.
  • a battery for example, a 12V battery mounted on another vehicle or the like
  • the high-voltage power storage unit must be charged using an external power source.
  • the charging operation cannot be performed even if it is connected as it is, so the output of the external power supply is boosted after reliably detecting the connection of the external power supply.
  • a configuration for supplying the high-voltage power storage unit is required.
  • the present invention has been made based on the above-described circumstances, and provides an in-vehicle power supply device that can reliably detect connection of an external power supply and boost a supply voltage based on the external power supply to charge a power storage unit. It is for the purpose.
  • An in-vehicle power supply device that is an example of the present invention, A step-down operation that is connected to a first conductive path and a second conductive path that are electrically connected to an in-vehicle power storage unit, and that steps down a voltage applied to the first conductive path and applies the voltage to the second conductive path; A voltage conversion unit that boosts a voltage applied to the second conductive path and performs a boost operation to apply the voltage to the first conductive path; An external terminal to be a connection target part when connecting a power supply path from an external power source; A detection unit for detecting that the power supply path is connected to the external terminal; A power feeding circuit unit that allows current to flow from the external terminal side to the second conductive path side when the power supply path is connected to at least the external terminal; and A control unit that controls the step-down operation and the step-up operation of the voltage conversion unit, and performs the step-up operation when the detection unit detects a connection between the external terminal and the power supply path; Have
  • the detection unit detects that the power supply path is connected to the external terminal, and the power supply circuit unit has an external terminal side when at least the external power supply path is connected to the external terminal. Current is allowed to flow from the first to the second conductive path side. Then, the control unit causes the voltage conversion unit to perform a boosting operation in a state where electric power is supplied from the outside to the second conductive path side through the external terminal in this way, so that the first electrically connected to the power storage unit A relatively high voltage can be applied to the conductive path, and the power storage unit can be charged satisfactorily.
  • the connection of the external power source is reliably detected and the supply voltage based on the external power source is boosted. Since charging is possible, proper recovery is possible in such a situation.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle power supply system including the in-vehicle power supply device according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing a state in which a power supply path from an external power source is connected to an external terminal in the in-vehicle power supply system of FIG.
  • FIG. 3 is a timing chart conceptually showing a control sequence in the in-vehicle power supply system of FIG.
  • FIG. 4 is a circuit diagram schematically illustrating an in-vehicle power supply system including the in-vehicle power supply device according to the second embodiment.
  • FIG. 5 is a circuit diagram schematically illustrating an in-vehicle power supply system including an in-vehicle power supply device according to another embodiment.
  • the power feeding circuit block cuts off the flow of current from the second conductive path to the external terminal side at least when the second conductive path is in a predetermined normal output state, and externally when the power supply path is connected to the external terminal. It may be configured that current flows from the terminal side to the second conductive path side.
  • the in-vehicle power supply device configured as described above prevents the current from flowing from the second conductive path to the external terminal side, and the second conductive path External terminals can be maintained in a state that is not easily affected.
  • the power supply path is connected to the external terminal (that is, when power can be supplied from the external power supply via the external terminal)
  • a current flows from the external terminal side to the second conductive path side, It is possible to perform a boosting operation in which the input voltage based on the external power source is boosted and applied to the first conductive path.
  • the power feeding circuit unit includes a diode unit in which an anode is electrically connected to an external terminal and a cathode is electrically connected to a second conductive path, and a conductive state and a non-conductive state between the second conductive path and the external terminal.
  • the detection unit does not detect the connection between the external switch and the power supply path, the switch unit is turned off and the connection between the external terminal and the power supply path is detected. And a switching unit that switches the switch unit to a conductive state when the unit detects the signal.
  • the detection unit when the detection unit does not detect the connection between the external terminal and the power supply path (that is, the state where power is supplied from the external power supply via the external terminal).
  • the current can be prevented from flowing from the second conductive path to the external terminal side, and when the detection unit detects the connection between the external terminal and the power supply path, the switch unit can be in a conductive state.
  • a current can flow to the second conductive path side, and conduction loss at that time can be suppressed.
  • the power feeding circuit unit may be configured by a diode having an anode electrically connected to an external terminal and a cathode electrically connected to the second conductive path.
  • the on-vehicle power supply device configured as described above blocks current from flowing from the second conductive path to the external terminal when the second conductive path is in a predetermined normal output state, and the power supply path is connected to the external terminal.
  • a circuit that can flow current from the external terminal side to the second conductive path side when connected is more easily configured.
  • a generator may be connected to the first conductive path.
  • the control unit causes the voltage conversion unit to perform a boosting operation so that a voltage lower than the output voltage of the generator is output to the first conductive path. May be.
  • the in-vehicle power supply device configured as described above charges the power storage unit by preferentially using the power of the generator when, for example, the power generation of the generator and the boosting operation by the voltage conversion unit are performed simultaneously. Therefore, it becomes easy to suppress the power consumption of the external power supply.
  • the voltage converter may include a step-up / step-down circuit unit that selectively performs a step-down operation or a step-up operation.
  • the in-vehicle power supply device configured as described above can perform a step-down operation in which the voltage applied to the first conductive path is stepped down and applied to the second conductive path when the step-down operation should be performed normally.
  • a configuration capable of performing the boosting operation on condition that the power supply path is connected to the external terminal can be realized more easily.
  • the voltage conversion unit is configured as a path different from the step-down circuit unit for performing a step-down operation for stepping down the voltage applied to the first conductive path and applying the voltage to the second conductive path, and the second conductive path.
  • a booster circuit unit that boosts the voltage applied to the first conductive path and applies the boosted voltage to the first conductive path.
  • This in-vehicle power supply device can perform a step-down operation by the step-down circuit unit so as to step down the voltage applied to the first conductive path and apply it to the second conductive path in a normal state.
  • the boosting operation can be performed by the boosting circuit unit so as to boost the voltage applied to the second conductive path and apply it to the first conductive path. Since the step-down operation and the step-up operation can be performed independently by separate circuit units, one of the operations is not easily restricted by the other operation.
  • the control unit causes the step-down circuit unit to perform a step-down operation while performing the step-up operation to the step-up circuit unit. Either of them may function to generate an operating period.
  • this in-vehicle power supply device can perform the step-down operation in parallel during the step-up operation that can charge the power storage unit, even when charging, appropriate power is supplied to the device connected to the second conductive path. Can be supplied.
  • the in-vehicle power supply system 100 (hereinafter also referred to as the power supply system 100) shown in FIG. 1 is configured as a system that can supply power to two systems of a high-voltage power supply path 81 and a low-voltage power supply path 82.
  • the power supply system 100 is a power supply system that applies a relatively high voltage (for example, about 48 V) to the high-voltage power supply path 81 and applies a relatively low voltage (for example, about 12 V) to the low-voltage power supply path 82. It is configured as a system that can supply power to the electrical equipment connected to the power supply paths 81 and 82.
  • the power supply system 100 mainly includes a generator 92, a power storage device 94, power supply paths 81 and 82, an in-vehicle power supply device 1 (hereinafter also referred to as a power supply device 1), etc., and one or a plurality of control devices (example of FIG. 1). Then, the structure controlled by vehicle control ECU70) is made.
  • a generator 92 and a power storage device 94 are electrically connected to the high-voltage power supply path 81, and a low-voltage load 98 is connected to the low-voltage power supply path 82.
  • a high-voltage load such as a heater may be connected to the high-voltage power supply path 81.
  • the power supply path 81 and the power supply path 82 are wiring units that function as power paths for transmitting power.
  • the vehicle control ECU 70 is an on-vehicle electronic control device that can receive information from the generator 92, the power storage device 94, and the power supply device 1 and transmit information thereto, and includes one or more information processing devices, storage devices, and AD converters. It is equipped with various devices such as containers.
  • the vehicle control ECU 70 has a function of instructing the starter 93 to start operation, a function of instructing the power storage device 94 to turn on and off the relay 94B, and a function of instructing the control device 10 to perform step-up and step-down operations.
  • the vehicle control ECU 70 may be configured by a single electronic control device or may be configured by a plurality of electronic control devices.
  • the generator 92 is configured as a known in-vehicle generator and has a function of generating electric power by rotation of a rotating shaft of an engine (not shown).
  • the starter 93 is configured as a known in-vehicle starter, and has a function as a starter that gives a rotational force to the rotation shaft of the engine.
  • the generator 92 operates, the power generated by the power generation of the generator 92 is supplied to the power storage device 94 as DC power after rectification.
  • the generator 92 applies an output voltage of, for example, a predetermined value V1 (for example, about 48V) to the power supply path 81 during power generation.
  • the starter 93 operates by receiving power supply from the power storage device 94 when the engine is stopped, and gives a starting rotational force to the engine.
  • the power storage device 94 includes an in-vehicle power storage unit 94A (hereinafter also referred to as a power storage unit 94A) and a relay 94B.
  • the power storage unit 94 ⁇ / b> A is configured by known in-vehicle power storage means such as an electric double layer capacitor, a lead battery, or a lithium ion battery, and is electrically connected to the power supply path 81 via a relay 94 ⁇ / b> B and a fuse 96. Yes.
  • the power storage unit 94A has an output voltage of, for example, 48V when fully charged, and the high potential side terminal is maintained at about 48V when fully charged.
  • the terminal on the low potential side of the power storage unit 94A is maintained at, for example, the ground potential (0 V).
  • the relay 94B is provided between the output terminal (high potential side terminal) of the power storage unit 94A and the power supply path 81, and operates to switch between conduction and non-conduction between the power storage unit 94A and the power supply path 81.
  • a power storage control device (not shown) is provided inside the power storage device 94 or inside the power supply device 1 so that overdischarge of the power storage unit 94A can be monitored.
  • the power storage control device monitors the output voltage of the power storage unit 94A, and when the output voltage of the power storage unit 94A is equal to or higher than the threshold voltage Vth1 (threshold value set lower than the predetermined value V1), the relay 94B Is maintained in an ON state, and the power supply section 94A and the power supply path 81 are energized.
  • the threshold voltage Vth1 threshold value set lower than the predetermined value V1
  • power storage control device turns off relay 94B and cuts off power supply between power storage unit 94A and power supply path 81.
  • a fuse 96 is provided between the relay 94B and the power supply path 81 to cut off the current when overcurrent occurs.
  • the low-voltage load 98 is a known in-vehicle electric device mounted on the vehicle, and may be any device that can be operated by electric power supplied via the power supply path 82 connected to the second conductive path 22. Therefore, the type and number of loads 98 are not limited.
  • the power supply device 1 is configured as a switching power supply device that can perform a step-up operation and a step-down operation.
  • the power supply device 1 includes a first conductive path 21, a second conductive path 22, a control device 10, a voltage conversion unit 12, a detection unit 30, an auxiliary circuit unit 42, a diode 32, terminals P1 and P2, an external terminal P3, and a first current.
  • a sensor, a second current sensor (not shown), a first voltage sensor, a second voltage sensor (not shown), and the like are provided.
  • the first conductive path 21 is a conductive path to which a generator 92 that outputs a DC voltage of a predetermined voltage V1 is electrically connected. A relatively higher voltage than the second conductive path 22 is applied during vehicle operation. It is configured as a high-voltage power line.
  • the first conductive path 21 is connected to the power supply path 81 and is electrically connected to the generator 92 and the power storage unit 94 ⁇ / b> A via the power supply path 81.
  • a voltage corresponding to the output of the generator 92 or the power storage unit 94A is applied to the first conductive path 21.
  • a terminal P1 is provided at the end of the first conductive path 21, and an external power supply path 81 is connected to the terminal P1.
  • the second conductive path 22 is configured as a low-voltage power supply line to which a relatively lower voltage than the first conductive path 21 is applied during vehicle operation.
  • the second conductive path 22 is applied with an output voltage (for example, an output voltage of about 12 V) from the voltage conversion unit 12 when the voltage conversion unit 12 performs a step-down operation in the step-down mode.
  • an output voltage for example, an output voltage of about 12 V
  • a terminal P2 is provided at the end of the second conductive path 22, and an external power supply path 82 is connected to the terminal P2.
  • the control device 10 includes a part that functions as a control unit 10A that controls the voltage conversion unit 12, and a part that functions as a switching unit 10B that switches the auxiliary circuit unit 42.
  • the control apparatus 10 includes a control circuit having an arithmetic function and a drive circuit that outputs a PWM signal corresponding to a signal from the control circuit.
  • the control circuit is configured as a microcomputer, for example, and includes an arithmetic device such as a CPU, a memory such as a ROM or a RAM, an A / D converter, and the like.
  • the drive circuit outputs a PWM signal having a duty ratio determined by the control circuit, and functions to cause the voltage conversion unit 12 to perform a step-up operation or a step-down operation.
  • control circuit and drive circuit function as the control unit 10A.
  • the control circuit also functions as the switching unit 10 ⁇ / b> B and can control the on / off state of the semiconductor switch 44.
  • the control device 10 has a configuration in which a detection signal and a non-detection signal can be input from the detection unit 30 described later.
  • Control device 10 may be configured to receive an output voltage (charging voltage) of power storage unit 94A from a voltage detection circuit (not shown), and can specify whether relay 94B is in an on state or an off state. A signal may be input.
  • the control circuit functions as the control unit 10A and also functions as the switching unit 10B.
  • the control unit 10A and the switching unit 10B are configured as separate circuits, each of which is a detection unit 30. It is also possible to obtain a signal from
  • the power supply device 1 is provided with a first current sensor and a second current sensor (not shown), and can detect each current value of the first conductive path 21 and the second conductive path 22.
  • the first current sensor is configured by a known current detection circuit, detects a current value flowing through the first conductive path 21, and inputs an analog voltage signal indicating the current value to the control device 10.
  • the second current sensor is also configured by a known current detection circuit, detects a current value flowing through the second conductive path 22, and inputs an analog voltage signal indicating the current value to the control device 10.
  • the control unit 10A in the control device 10 can acquire these analog voltage signals.
  • the power supply device 1 is provided with a first voltage sensor and a second voltage sensor (not shown), and can detect each voltage value of the first conductive path 21 and the second conductive path 22.
  • the first voltage sensor is configured by a known voltage detection circuit, detects the voltage value of the first conductive path 21, and inputs an analog voltage signal indicating the voltage value to the control device 10.
  • the second voltage sensor is also configured by a known voltage detection circuit, detects the voltage value of the second conductive path 22, and inputs an analog voltage signal indicating the voltage value to the control device 10.
  • the control unit 10A in the control device 10 can acquire these analog voltage signals.
  • the voltage conversion unit 12 is provided between the first conductive path 21 and the second conductive path 22 that are electrically connected to the power storage unit 94A and connected to these conductive paths.
  • the voltage conversion unit 12 corresponds to an example of a step-up / step-down circuit unit.
  • the voltage conversion unit 12 steps down a voltage applied to the first conductive path 21 and applies it to the second conductive path 22, and is applied to the second conductive path 22.
  • the circuit is configured to selectively perform a boosting operation of boosting the voltage to be applied to the first conductive path 21.
  • the voltage conversion unit 12 is configured as a known bidirectional step-up / step-down DCDC converter including a semiconductor switching element and an inductor, for example.
  • the voltage conversion unit 12 is configured as, for example, a synchronous rectification type non-insulated DCDC converter, and when performing a step-down operation, the voltage conversion unit 12 steps down the input voltage applied to the first conductive path 21 using a synchronous rectification method.
  • the voltage is output to the second conductive path 22 and the boosting operation is performed, the input voltage applied to the second conductive path 22 is boosted by the synchronous rectification method and output to the first conductive path 21.
  • the part of the control device 10 that functions as the control unit 10A can perform a step-down mode control that causes the voltage conversion unit 12 to perform a step-down operation and a step-up mode control that causes the voltage conversion unit 12 to perform a step-up operation.
  • the control unit 10A When performing control in the step-down mode, the control unit 10A provides a control signal (PWM signal) for step-down operation to the voltage conversion unit 12 to step down the voltage applied to the first conductive path 21 and perform second conduction.
  • the voltage converter 12 is caused to perform a step-down operation so as to be applied to the path 22.
  • feedback control of the control signal (PWM signal) is performed so that the output voltage output from the voltage converter 12 to the second conductive path 22 becomes a predetermined target voltage Va (for example, 12 V), and the control signal (PWM Signal) is adjusted by feedback calculation.
  • the control unit 10A When controlling the boosting mode, the control unit 10A gives a control signal (PWM signal) for boosting operation to the voltage converting unit 12, boosts the voltage applied to the second conductive path 22, and performs the first conduction.
  • the voltage converter 12 is caused to perform a boost operation so as to be applied to the path 21.
  • the control signal (PWM signal) is output so that the output voltage output from the voltage converter 12 to the first conductive path 21 becomes a predetermined target voltage Vb (a value slightly lower than the output voltage V1 of the generator 92). Feedback control is performed, and the duty of the control signal (PWM signal) is adjusted by feedback calculation.
  • the external terminal P3 is a terminal that becomes a connection target part when connecting the power supply path Lp from the external power source Bp.
  • the external power source Bp may be a power source that can supply power via the power supply path Lp.
  • a known storage battery such as a lead battery having an output voltage of about 12 V can be used.
  • the power supply path Lp may be a conductive path that can electrically connect the output terminal on the positive side of the external power source Bp and the external terminal P3, and may be a known booster cable or the like. It may be.
  • the external terminal P3 is applied with the output voltage of the external power supply Bp when the positive electrode portion of the external power supply Bp is electrically connected by the power supply path Lp.
  • the power feeding circuit unit 40 includes the auxiliary circuit unit 42 and the control device 10 described above (specifically, the switching unit 10B of the control device 10).
  • the auxiliary circuit unit 42 includes a semiconductor switch 44 and a conductive path that electrically connects the semiconductor switch 44 to each part (second conductive path 22, external terminal P3, control device 10).
  • the semiconductor switch 44 is configured as, for example, an N-channel type MOSFET, the drain is electrically connected to the second conductive path 22, the source is electrically connected to the external terminal P 3 and the anode of the diode 32, and the gate Is connected to a signal line from the control device 10.
  • the semiconductor switch 44 includes a diode portion 44B, which is a body diode having an anode electrically connected to the external terminal P3 and a cathode electrically connected to the second conductive path 22, and a second conductive path 22 and the external terminal P3. 44A (a portion excluding the body diode) that switches between a conductive state and a non-conductive state.
  • a portion of the control device 10 that functions as the switching unit 10 ⁇ / b> B selectively outputs an on signal and an off signal to the gate of the semiconductor switch 44. When an on signal is given from the switching unit 10B to the gate of the semiconductor switch 44, the semiconductor switch 44 is turned on, and when an off signal is given, the semiconductor switch 44 is turned off.
  • the switching unit 10B has a configuration capable of detecting a signal from the detection unit 30, and when the detection unit 30 has not detected the connection between the external terminal P3 and the power supply path Lp, the switching unit 10B is switched on.
  • the switch unit 44A When the detection unit 30 detects the connection between the external terminal P3 and the power supply path Lp, the switch unit 44A is set in a conductive state. 1 illustrates the semiconductor switch 44, the semiconductor switch 44 or the switch unit 44A may be replaced with another switch such as a mechanical relay.
  • the power supply circuit unit 40 configured in this way is allowed to flow a current from the external terminal P3 side to the second conductive path 22 side at least when the power supply path Lp is connected to the external terminal P3. Specifically, when the second conductive path 22 is in a predetermined normal output state, the power feeding circuit unit 40 (a voltage equal to or higher than a predetermined threshold is applied to the second conductive path 22 and the power supply path is connected to the external terminal P3. (When Lp is not connected), the flow of current from the second conductive path 22 to the external terminal P3 side is interrupted, and when the power supply path Lp is connected to the external terminal P3, the second conductive path is connected from the external terminal P3 side. The current flows to the path 22 side.
  • the diode 32 is an element that allows current to flow from the external terminal P3 side to the detection unit 30 side and restricts current from flowing in the opposite direction.
  • the output voltage of the external power supply Bp when the output voltage of the external power supply Bp is applied to the external terminal P3 by connecting the power supply path Lp to the external terminal P3, the output voltage of the external power supply Bp depends on the conductive path 34.
  • the voltage (the voltage obtained by subtracting the voltage drop of the diode 32) is applied.
  • a threshold voltage Vth2 which will be described later, is lower than the assumed output voltage (for example, 12V) of the external power supply Bp, and the assumed output voltage (for example, 12V) of the external power supply Bp is applied to the external terminal P3.
  • the voltage of the conductive path 34 is sufficiently larger than the threshold voltage Vth2.
  • the conductive path 34 is at a low level that is sufficiently smaller than a threshold voltage Vth2 described later.
  • the detection unit 30 is a circuit that detects that the power supply path Lp is connected to the external terminal P3.
  • the detection unit 30 is configured as a determination circuit that determines whether or not the voltage applied to the conductive path 34 is equal to or higher than the threshold voltage Vth2, and the voltage applied to the conductive path 34 is equal to or higher than the threshold voltage Vth2. In this case, a predetermined detection signal is output to the control device 10.
  • the detection unit 30 When the voltage applied to the conductive path 34 is less than the threshold voltage Vth2, the detection unit 30 outputs a predetermined non-detection signal to the control device 10.
  • the control unit 10 ⁇ / b> A and the switching unit 10 ⁇ / b> B can recognize which of the detection signal and the non-detection signal is output from the detection unit 30.
  • a battery is not connected to the low-voltage power supply path 82, and the output of the power storage unit 94 ⁇ / b> A connected to the high-voltage power supply path 81 is stepped down. It is a system to supply to. Further, a generator 92 and a starter 93 are provided in the high-voltage power supply path 81. In such a configuration, when the output of the power storage unit 94A is reduced or stopped for some reason, there is a possibility that the starter 93 cannot perform the starter operation and the engine cannot be started. Therefore, in such an emergency, the power supply device 1 performs a boosting operation using power from the external power supply Bp so that the power storage unit 94A can be restored to an appropriate charging voltage.
  • FIG. 3 is a timing chart showing a control sequence in the power supply system 100 of FIG.
  • the first stage shows the change over time of the state of the second conductive path 22
  • the second stage shows the change over time of the state of the external terminal
  • the third stage shows the change over time of the state of the voltage converter 12.
  • the fourth stage shows the change over time of the state of the vehicle control ECU 70
  • the fifth stage shows the change over time of the state of the power storage device 94.
  • the time zone before the time t1 is a state where the output voltage of the power storage unit 94A is equal to or higher than the threshold voltage Vth1 (a state where no overdischarge occurs).
  • the vehicle control ECU 70 may be maintained in a predetermined sleep state or may be in a stopped state.
  • the voltage conversion unit 12 is stepped down in the dark current mode by the control unit 10A of the control device 10, and the minimum device such as the vehicle control ECU 70 is provided via the second conductive path 22. Operating power is supplied.
  • the time zone before the time t1 is a normal stop state (a state where a voltage equal to or higher than the threshold voltage Vth1 is applied from the power storage unit 94A to the power supply path 81 and power is supplied by the voltage conversion unit 12). Since power for starting the starter 93 is secured, it is not necessary to connect the external power supply Bp to the external terminal P3.
  • the output voltage of the power storage unit 94A becomes less than the threshold voltage Vth1 at time t1, and the relay 94B is switched to the OFF state from time t1 by the power storage control device. That is, the output from the power storage unit 94 ⁇ / b> A stops after time t ⁇ b> 1, and power is not supplied to the power supply path 81 and the first conductive path 21. Thus, when an appropriate input is not made to the voltage conversion unit 12, an appropriate output voltage (for example, 12V) cannot be output from the voltage conversion unit 12 to the second conductive path 22, and the voltage conversion unit 12 is stopped. . After time t1, the output from the power storage unit 94A continues to stop and the output stop state of the voltage conversion unit 12 continues, so that no power is supplied to the vehicle control ECU 70 and the operation of the vehicle control ECU 70 also stops. .
  • the control device 10 is connected to the external terminal P3 or the conductive path 34 when the power supply path Lp is connected to the external terminal P3 and the external power supply Bp is electrically connected to the external terminal P3.
  • the power from the external power source Bp can be received through a non-path. That is, when the external power supply Bp is electrically connected to the external terminal P3, the control device 10 is in an operable state (a “start-up” state shown in FIG. 3) by supplying power from the external power supply Bp.
  • the control unit 10A notifies the vehicle control ECU 70 of a predetermined notification.
  • the predetermined notification signal is output at least until the vehicle control ECU 70 is activated and receives this signal, and the ON signal for the semiconductor switch 44 is continued at least until a step-down operation described later is executed.
  • the semiconductor switch 44 When the switching unit 10B outputs an on signal to the semiconductor switch 44, the semiconductor switch 44 is turned on at time t3 when the output of the on signal is started, and the power from the external power source Bp passes through the semiconductor switch 44 to the second conductive path 22. To be supplied. After the semiconductor switch 44 is turned on, a voltage of about the output voltage (for example, 12 V) of the external power supply Bp is applied to the second conductive path 22. Note that power is also supplied through the diode portion 44B (body diode) from time t2 to time t3. However, after time t3, more current can flow while the loss is suppressed. .
  • the vehicle control ECU 70 is in an operable state (the “started” state shown in FIG. 3) because the operating voltage is supplied via the second conductive path 22 at least at the time t3.
  • the vehicle control ECU 70 receives the predetermined notification signal transmitted from the control unit 10A after being in an operable state in this way, whether or not the power storage unit 94A is to be charged according to the notification signal. Determine whether or not.
  • the vehicle control ECU 70 charges the control unit 10A when a predetermined charging start condition is satisfied (for example, when it is determined that the output voltage (charging voltage) of the power storage unit 94A is equal to or lower than a predetermined charging determination threshold).
  • a charging instruction signal for instructing is output, and an ON operation instruction signal for instructing an ON operation of the relay 94B is output to the above-described power storage control device (not shown).
  • the charging instruction signal and the on-operation instruction signal are output from the vehicle control ECU 70 at time t4.
  • the ON operation of the relay 94B and the charging operation (step-up operation) by the control unit 10A are started.
  • the vehicle control ECU 70 may immediately output a charge instruction signal for the control unit 10A and an ON operation instruction signal for the power storage control device.
  • the relay 94B is switched to the ON state from that point, and the control unit 10A performs control for causing the voltage conversion unit 12 to perform a boost operation.
  • the voltage applied to the second conductive path 22 (voltage based on power supply from the external power supply Bp) is used as an input voltage, and this input voltage is boosted to obtain a desired target value (output voltage of the generator 92).
  • the voltage converter 12 is caused to perform a boost operation so as to output a voltage Vb) lower than V1 to the first conductive path 21.
  • the control unit 10A detects that the voltage conversion unit 12 is in response to the detection by the detection unit 30.
  • the voltage Vb is lower than the output voltage V ⁇ b> 1 of the generator 92 and is output to the first conductive path 21.
  • the control unit 10A starts the boost operation of the voltage conversion unit 12 at time t4, and then a predetermined end condition is satisfied (for example, the output voltage of the power storage unit 94A causes the starter 93 to perform the starter operation).
  • a predetermined end condition for example, the output voltage of the power storage unit 94A causes the starter 93 to perform the starter operation.
  • the voltage converter 12 stops the boosting operation. In the example of FIG. 3, the voltage boosting operation of the voltage conversion unit 12 is stopped at time t5, and charging of the power storage unit 94A by the voltage conversion unit 12 is stopped.
  • the vehicle control ECU 70 determines when a predetermined start condition is satisfied (for example, when the output voltage (charge voltage) of the power storage unit 94A reaches a predetermined charge stop threshold (operable threshold) that can cause the starter 93 to perform a starter operation, or The starter 93 is instructed to start, for example, when the voltage converter 12 is stopped from the time t4, and the engine is started. Note that the vehicle control ECU 70 may automatically start the engine by causing the generator 92 to start the engine when a predetermined start condition is satisfied. On the assumption that the predetermined start condition is satisfied, a predetermined operation switch (ignition switch) When the on switch is turned on, the starter 93 may perform a starter operation to start the engine.
  • a predetermined start condition for example, when the output voltage (charge voltage) of the power storage unit 94A reaches a predetermined charge stop threshold (operable threshold) that can cause the starter 93 to perform a starter operation, or The starter 93 is instructed to start, for example, when the voltage converter 12 is stopped from the
  • the control unit 10A causes the voltage conversion unit 12 to perform a step-down operation after the power generation operation of the generator 92 is started in this way.
  • the control unit 10 ⁇ / b> A causes the voltage conversion unit 12 to perform a step-down operation (step-down operation for outputting a predetermined target voltage (for example, 12 V) to the second conductive path 22) from time t ⁇ b> 6.
  • the switching unit 10B switches the semiconductor switch 44 to the off state. After the switching unit 10B switches the semiconductor switch 44 to the OFF state, there is no problem even if the power supply path Lp is removed from the external terminal P3.
  • a voltage based on the power of the external power supply Bp is applied to the second conductive path 22 from when the semiconductor switch 44 is switched on at time t3 until the step-down operation is started at time t6.
  • a voltage based on the output of the voltage conversion unit 12 can be applied to the second conductive path 22.
  • the voltage conversion unit 12 performs a step-down operation in which a predetermined output voltage (for example, 12 V) is applied to the second conductive path 22 and the semiconductor switch 44 is in the OFF state.
  • a predetermined output voltage for example, 12 V
  • the voltage converter 12 stops the voltage boosting operation at time t5 before the generator 92 is started and performs the power generation operation, but the voltage converter 12 starts the voltage boosting operation at time t4. Then, after the generator 92 is started and the power generation operation is performed, the voltage boosting operation of the voltage conversion unit 12 may be stopped. For example, after the time t4, when the output voltage of the power storage unit 94A reaches a predetermined threshold value (operable threshold value) that allows the starter 93 to perform a starter operation, the voltage converter 12 continues the boosting operation in the state where the boosting operation continues. The start-up operation may be performed in 93 and the engine may be started. After the generator 92 starts power generation in response to the start of the engine, the voltage converter 12 may stop the boosting operation.
  • a predetermined threshold value operble threshold value
  • the detection unit 30 detects that the power supply path Lp is connected to the external terminal P 3, and the power supply circuit unit 40 has at least the external power supply path Lp connected to the external terminal P 3. In the case where there is, current is allowed to flow from the external terminal P3 side to the second conductive path 22 side.
  • the control unit 10A causes the voltage conversion unit 12 (buck-boost circuit unit) to perform a boosting operation in a state where power is supplied from the outside to the second conductive path 22 side through the external terminal P3 in this way.
  • a relatively high voltage can be applied to the first conductive path 21 electrically connected to the power storage unit 94A, and the power storage unit 94A can be charged satisfactorily.
  • the connection of the external power supply Bp is reliably detected, and the supply voltage based on the external power supply Bp is boosted. Since the power storage unit 94A can be charged, an appropriate return can be performed in such a situation.
  • the power feeding circuit unit 40 blocks current from flowing from the second conductive path 22 to the external terminal P3 when at least the second conductive path 22 is in a predetermined normal output state, and the power supply path Lp is connected to the external terminal P3. When connected, a current flows from the external terminal P3 side to the second conductive path 22 side.
  • the in-vehicle power supply device 1 configured as described above prevents current from flowing from the second conductive path 22 to the external terminal P3 side, and the second conductive path 22
  • the external terminal P3 can be maintained in a state that is not easily affected.
  • the power supply path Lp is connected to the external terminal P3 (that is, when power can be supplied from the external power supply Bp via the external terminal P3)
  • the second conductive path 22 side from the external terminal P3 side.
  • the power feeding circuit section 40 is electrically connected between the second conductive path 22 and the external terminal P3, and the diode section 44B whose anode is electrically connected to the external terminal P3 and whose cathode is electrically connected to the second conductive path 22.
  • the detection unit 30 does not detect the connection between the semiconductor switch 44 including the switch unit 44A that switches between the state and the non-conduction state, and the external terminal P3 and the power supply path Lp
  • the switch unit 44A is set to the non-conduction state.
  • the switching unit 10B brings the switch unit 44A into a conductive state when the detection unit 30 detects the connection between the external terminal P3 and the power supply path Lp.
  • the detection unit 30 detects the connection between the external terminal P3 and the power supply path Lp (that is, a state in which power is supplied from the external power supply Bp via the external terminal P3). If not, the current is prevented from flowing from the second conductive path 22 to the external terminal P3 side.
  • the switch unit 44A is Since it can be made into a conduction
  • the first conductive path 21 is a conductive path to which a generator 92 that outputs a predetermined voltage V1 is electrically connected.
  • the detection unit 30 detects the connection between the external terminal P3 and the power supply path Lp.
  • the voltage conversion unit 12 (the step-up / step-down circuit unit) is caused to perform a boosting operation so that the voltage Vb lower than the output voltage V1 of the generator 92 is output to the first conductive path 21.
  • the in-vehicle power supply device 1 configured as described above, for example, performs the power generation operation of the generator 92 and the voltage boosting operation of the voltage conversion unit 12 at the same time (for example, the voltage conversion unit 12 after the power generation operation of the generator 92).
  • the power storage unit 94A can be charged preferentially using the power of the generator 92 in the case of adopting a method of stopping the voltage boosting operation), so that the power consumption of the external power supply Bp can be easily suppressed. .
  • the voltage conversion unit 12 is configured as a step-up / step-down circuit unit that selectively performs a step-down operation or a step-up operation.
  • This on-vehicle power supply device 1 can perform a step-down operation in which the voltage applied to the first conductive path 21 is stepped down and applied to the second conductive path 22 when the step-down operation is to be performed normally.
  • the power supply Bp should be connected and charged, a configuration capable of performing the boosting operation on the condition that the power supply path Lp is connected to the external terminal P3 can be realized more easily.
  • FIG. 4 conceptually shows an in-vehicle power supply system 200 including the in-vehicle power supply device 201 (hereinafter also referred to as a power supply device 201) according to the second embodiment.
  • the in-vehicle power supply system 200 is the same as the in-vehicle power supply system 100 of the first embodiment except that the power supply device 201 is used instead of the power supply device 1. That is, in the example of FIG. 4, the configuration and functions of parts other than the power supply device 201 are the same as those in the first embodiment.
  • the voltage conversion unit 212 is provided instead of the voltage conversion unit 12, and the control unit 10A individually controls the boost operation of the boost circuit unit 212A and the step-down operation of the step-down circuit unit 212B. Except for this point, the power supply device 1 is the same as that of the first embodiment.
  • the voltage conversion unit 212 provided in the power supply device 201 is provided between the first conductive path 21 and the second conductive path 22 that are electrically connected to the power storage unit 94A and connected to these conductive paths. It has been.
  • the step-down circuit unit 212B that performs a step-down operation of stepping down the voltage applied to the first conductive path 21 and applying the voltage to the second conductive path 22 is configured as a path different from the step-down circuit unit 212B.
  • a step-up circuit unit 212A for stepping up a voltage applied to the first conductive path 21 and applying the voltage to the first conductive path 21.
  • the step-down circuit unit 212B and the step-up circuit unit 212A are located between the first conductive path 21 and the second conductive path 22. Are provided in parallel.
  • the step-up circuit unit 212A is configured as a known step-up DCDC converter including, for example, a semiconductor switching element and an inductor.
  • the booster circuit unit 212A is configured as, for example, a synchronous rectification type non-insulated DCDC converter, and when performing a boosting operation, boosts the input voltage applied to the second conductive path 22 by a synchronous rectification method. Output to the first conductive path 21.
  • the step-down circuit unit 212B is configured as a known step-down DCDC converter including, for example, a semiconductor switching element and an inductor. Specifically, the step-down circuit unit 212B is configured as, for example, a synchronous rectification type non-insulated DCDC converter, and when performing a step-down operation, the input voltage applied to the first conductive path 21 is stepped down by the synchronous rectification method. Output to the second conductive path 22.
  • control of the control unit 10A is the same as that of the first embodiment except that the control in the step-up mode and the control in the step-down mode are slightly different from those in the first embodiment.
  • the control unit 10A steps down the voltage applied to the first conductive path 21 and applies the output voltage to the second conductive path 22, and the output voltage is the target voltage value Va (for example, , 12V), feedback control using the PWM signal as a control signal is performed on the step-down circuit unit 212B.
  • Va for example, 12V
  • the control unit 10A steps down the voltage applied to the second conductive path 22 and applies the output voltage to the first conductive path 21, and the output voltage is the target voltage value Vb (for example, , Feedback control using the PWM signal as a control signal is performed on the booster circuit unit 212A so as to be a value slightly lower than the output voltage of the generator 92).
  • control can be performed with the same flow (flow shown in FIG. 3) as in the first embodiment.
  • the second embodiment is different from the first embodiment only in that the step-up circuit unit 212A is operated when the step-up operation is performed after the time t4, and the step-down circuit unit 212B is operated when the step-down operation is performed before the time t1 or after the time t6.
  • the in-vehicle power supply device 201 of this configuration steps down the voltage applied to the first conductive path 21 to the second conductive path 22 in a normal state where a voltage equal to or higher than the threshold voltage Vth1 is output from the power storage unit 94A.
  • the step-down operation can be performed by the step-down circuit unit 212B so as to be applied, and at this time, appropriate power can be supplied to the load 98 and the like via the second conductive path 22.
  • the power supply path Lp is connected to the external terminal P3 by the operator's work, for example, when the output of the power storage unit 94A is stopped (that is, power from the external power supply Bp is supplied via the external terminal P3).
  • the voltage applied to the second conductive path 22 can be boosted and applied to the first conductive path 21 by the boost circuit 212A.
  • the step-down operation and the step-up operation can be performed independently by separate circuit units, one of the operations is less likely to be restricted by the other operation.
  • FIG. 3 shows an example in which the step-up operation and the step-down operation are performed at different times
  • the present invention is not limited to this example.
  • the control unit 10A causes the step-down circuit unit 212B to perform the step-down operation while causing the step-up circuit unit 212A to perform the step-up operation. You may control.
  • the step-down operation can be performed in parallel at the time of the step-up operation that can charge the power storage unit 94A, an appropriate power is supplied to the device connected to the second conductive path 22 even during the charge. Can be supplied.
  • the control after time t4 is slightly changed in the sequence shown in FIG.
  • the control unit 10A controls the boosting circuit unit 212A after time t4 in FIG. 3 to perform the boosting operation
  • the control unit 10A starts a predetermined stepping-down operation (for example, the relay 94B of the power storage device 94 is turned on).
  • the output voltage (charging voltage) of the power storage unit 94A exceeds a certain value (a predetermined value lower than the above-described charging stop threshold)
  • the boosting circuit unit 212A is performing a boosting operation.
  • Control may be performed so that the step-down circuit unit 212B performs the step-down operation.
  • the start timing of the step-down operation can be advanced from time t6 shown in FIG. 3 to the start of the step-down operation.
  • the end timing of the boosting operation may be the time t5 (time before starting the generator 92) shown in FIG. 3 or after starting the generator 92, as in the first embodiment.
  • the power supply circuit unit 40 mainly configured by the semiconductor switch 44 is illustrated.
  • the in-vehicle power supply device 301 shown in FIG. 5 is the same as the in-vehicle power supply device 1 of the first embodiment, except that the power supply circuit unit 40 is changed to the power supply circuit unit 340 and the on / off control of the semiconductor switch 44 is omitted. It is the composition.
  • the in-vehicle power supply device 301 in FIG. 5 when the second conductive path 22 is in a predetermined normal output state (an output voltage of a predetermined value (for example, 12 V) is applied to the second conductive path 22 by the step-down operation of the voltage conversion unit 12.
  • a predetermined normal output state an output voltage of a predetermined value (for example, 12 V) is applied to the second conductive path 22 by the step-down operation of the voltage conversion unit 12.
  • the potential of the external terminal P3 can be kept sufficiently lower than the potential of the second conductive path 22.
  • a current can flow from the external terminal P3 side to the second conductive path 22 side based on the power supply from the external power supply Bp.
  • Such a function can be realized with a simpler configuration. 5 is the same as that in the first embodiment except that the on / off control of the semiconductor switch 44 in FIG. 1 is omitted, and the control unit 10A performs the same control as that in the first embodiment. Will do.
  • the generator 92 and the starter 93 are separately provided in the form of being electrically connected to the power supply path 81.
  • a generator / starter in which a generator and a starter are integrated may be used.
  • the detection unit 30 configured as a determination circuit is illustrated.
  • the detection unit includes an external power supply Bp connected to the external terminal P3. Any configuration may be used as long as it is capable of detecting that the connection has been made and can output a detection signal to the control device 10 at the time of detection.
  • any power storage means may be electrically connected to the second conductive path 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

外部電源の接続を確実に検知し、外部電源に基づく供給電圧を昇圧して蓄電部の充電を行い得る車載用電源装置を提供する。 車載用電源装置(1)は、外部電源(Bp)からの電力供給路(Lp)を接続するときの接続対象部位となる外部端子(P3)と、外部端子(P3)に電力供給路(Lp)が接続されたことを検知する検知部(30)と、少なくとも外部端子(P3)に電力供給路(Lp)が接続されている場合に、外部端子(P3)側から第2導電路(22)側に電流が流れることが許容される給電回路部(40)とを有する。制御部(10A)は、電圧変換部(12)の降圧動作及び昇圧動作を制御し、外部端子(P3)と電力供給路(Lp)との接続を検知部(30)が検知した場合に電圧変換部(12)に昇圧動作を行わせる。

Description

車載用電源装置
 本発明は、車載用電源装置に関するものである。
 車載用のシステムとして、低圧系と高圧系の二系統に電力を供給するシステムが知られており、このシステムに関連する技術として、特許文献1のような技術が提案されている。特許文献1で開示される給電回路は、高電圧直流電源と低電圧用負荷との間に電圧降下用のDC-DCコンバータとして小容量DC-DCコンバータ及び大容量DC-DCコンバータを設けており、必要供給電力に応じてコンバータを切り替えて用いる構成となっている。
特開2001-204137号公報
 特許文献1のように、低圧系と高圧系の二系統に電力を供給するシステムでは、高圧系に蓄電部を設け、この高圧系の蓄電部の出力を降圧して低圧系の負荷に対しても利用できるようにすれば、低圧系の蓄電部の必要性を低減又は無くすことができ、低圧系の蓄電部の削減又は小型化が可能となる。例えば、高圧系の蓄電部の電力によってスタータを動作させることができれば、エンジン始動時に低圧系の蓄電部が不要となるため、低圧系の蓄電部を省略又は小型化しやすくなる。
 しかし、このように高圧系の蓄電部に依存する構成では、高圧系の蓄電部の容量が著しく低下した場合に対応しにくいという問題がある。
 高圧系の蓄電部の容量が著しく低下した場合、このままではスタータを動作させることができず、エンジンを始動させることができないため、例えば、他の車両に搭載されたバッテリ(例えば、12Vバッテリ)などの外部電源を用いて高圧系の蓄電部を充電しなければならない。しかし、出力電圧が低いバッテリを外部電源として用いる場合、そのまま接続しても充電動作を行うことができないため、外部電源が接続されたことを確実に検知した上で、外部電源の出力を昇圧し、高圧系の蓄電部に供給するような構成が必要となる。
 本発明は、上述した事情に基づいてなされたものであり、外部電源の接続を確実に検知し、外部電源に基づく供給電圧を昇圧して蓄電部の充電を行い得る車載用電源装置を提供することを目的とするものである。
 本発明の一例である車載用電源装置は、
 車載用の蓄電部に電気的に接続される第1導電路及び第2導電路に接続され、前記第1導電路に印加された電圧を降圧して前記第2導電路に印加する降圧動作と、前記第2導電路に印加された電圧を昇圧して前記第1導電路に印加する昇圧動作とを行う電圧変換部と、
 外部電源からの電力供給路を接続するときの接続対象部位となる外部端子と、
 前記外部端子に前記電力供給路が接続されたことを検知する検知部と、
 少なくとも前記外部端子に前記電力供給路が接続されている場合に、前記外部端子側から前記第2導電路側に電流が流れることが許容される給電回路部と、
 前記電圧変換部の前記降圧動作及び前記昇圧動作を制御し、前記外部端子と前記電力供給路との接続を前記検知部が検知した場合に前記昇圧動作を行わせる制御部と、
を有する。
 上記車載用電源装置では、外部端子に電力供給路が接続されたことを検知部が検知し、給電回路部では、少なくとも外部端子に外部の電力供給路が接続されている場合に、外部端子側から第2導電路側に電流が流れることが許容される。そして、制御部は、このように外部端子を介して外部から第2導電路側に電力が供給される状態で電圧変換部に昇圧動作を行わせるため、蓄電部に電気的に接続された第1導電路に対して相対的に高い電圧を印加することができ、蓄電部の充電を良好に行うことができる。特に、蓄電部の充電電圧が低下して車載機器を動作させることに支障が生じるような場面において、外部電源の接続を確実に検知し、外部電源に基づく供給電圧を昇圧した形で蓄電部の充電が可能となるため、このような場面で適正な復帰が可能となる。
図1は、実施例1の車載用電源装置を備えた車載用電源システムを概略的に示す回路図である。 図2は、図1の車載用電源システムにおいて外部端子に外部電源からの電力供給路が接続された状態を示す説明図である。 図3は、図1の車載用電源システムにおける制御シーケンスを概念的に示すタイミングチャートである。 図4は、実施例2の車載用電源装置を備えた車載用電源システムを概略的に示す回路図である。 図5は、他の実施例の車載用電源装置を備えた車載用電源システムを概略的に示す回路図である。
 ここで、発明の望ましい例を示す。
 給電回路部は、少なくとも第2導電路が所定の正常出力状態である場合に第2導電路から外部端子側に電流が流れることを遮断し、外部端子に電力供給路が接続された場合に外部端子側から第2導電路側に電流が流れる構成であってもよい。
 このように構成された車載用電源装置は、第2導電路に印加される電圧が正常出力状態であるときには、第2導電路から外部端子側に電流が流れることを防ぎ、第2導電路の影響を受けにくい状態で外部端子を維持することができる。一方で、外部端子に電力供給路が接続された場合(即ち、外部電源から外部端子を介して電力が供給され得る場合)には、外部端子側から第2導電路側に電流が流れる状態となり、外部電源に基づく入力電圧を昇圧して第1導電路に印加する昇圧動作を行うことが可能となる。
 給電回路部は、外部端子にアノードが電気的に接続され第2導電路にカソードが電気的に接続されたダイオード部と、第2導電路と外部端子との間で導通状態と非導通状態とに切り替わるスイッチ部とを備えた半導体スイッチと、外部端子と電力供給路との接続を検知部が検知していない場合にスイッチ部を非導通状態とし、外部端子と電力供給路との接続を検知部が検知した場合にスイッチ部を導通状態とする切替部と、を有していてもよい。
 このように構成された車載用電源装置は、外部端子と電力供給路との接続(即ち、外部電源から外部端子を介して電力が供給される状態)を検知部が検知していない場合には第2導電路から外部端子側に電流が流れることを防ぎ、外部端子と電力供給路との接続を検知部が検知した場合には、スイッチ部を導通状態とすることができるため、外部端子側から第2導電路側に電流を流すことができ、且つその際の導通損失を抑えることができる。
 給電回路部は、外部端子にアノードが電気的に接続され第2導電路にカソードが電気的に接続されたダイオードによって構成されていてもよい。
 このように構成された車載用電源装置は、第2導電路が所定の正常出力状態である場合に第2導電路から外部端子側に電流が流れることを遮断し、外部端子に電力供給路が接続された場合に外部端子側から第2導電路側に電流を流し得る回路を、より簡易に構成することができる。
 第1導電路には発電機が接続されていてもよい。制御部は、外部端子と電力供給路との接続を検知部が検知した場合に、発電機の出力電圧よりも低い電圧を第1導電路に出力するように電圧変換部に昇圧動作を行わせてもよい。
 このように構成された車載用電源装置は、例えば、発電機の発電と電圧変換部による昇圧動作とを同時期に行う場合に、発電機の電力を優先的に利用して蓄電部を充電することができるため、外部電源の電力消費を抑えやすくなる。
 電圧変換部は、降圧動作又は昇圧動作を選択的に行う昇降圧回路部を備えていてもよい。
 このように構成された車載用電源装置は、降圧動作を行うべき正常時には第1導電路に印加された電圧を降圧して第2導電路に印加する降圧動作を行うことができ、外部端子に外部電源を電気的に接続させて充電させるべき場合には外部端子に電力供給路が接続されたことを条件として昇圧動作を行うことができる構成を、より簡易に実現することができる。
 電圧変換部は、第1導電路に印加された電圧を降圧して第2導電路に印加する降圧動作を行う降圧回路部と、降圧回路部とは別の経路として構成され、第2導電路に印加された電圧を昇圧して第1導電路に印加する昇圧回路部と、を備えていてもよい。
 この車載用電源装置は、正常状態のときに、第1導電路に印加された電圧を降圧して第2導電路に印加するように降圧回路部によって降圧動作を行うことができ、外部端子に電力供給路が接続されたときには、第2導電路に印加された電圧を昇圧して第1導電路に印加するように昇圧回路部によって昇圧動作を行うことができる。降圧動作と昇圧動作とを別々の回路部で独立して行うことができるため、いずれか一方の動作が他方の動作の制約を受けにくくなる。
 制御部は、外部端子と電力供給路との接続を検知部が検知した場合に、昇圧回路部に昇圧動作を行わせつつ降圧回路部に降圧動作を行わせ、昇圧回路部及び降圧回路部がいずれも動作する期間を生じさせるように機能してもよい。
 この車載用電源装置は、蓄電部を充電し得る昇圧動作時に降圧動作を並行して行うことができるため、充電時であっても第2導電路に接続された機器に対して適正な電力を供給することができる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載用電源システム100(以下、電源システム100ともいう)は、高圧系の電源路81と低圧系の電源路82の二系統に電力を供給し得るシステムとして構成されている。電源システム100は、高圧系の電源路81に相対的に高い電圧(例えば48V程度)を印加し、低圧系の電源路82に相対的に低い電圧(例えば12V程度)を印加する電源システムとなっており、電源路81,82に接続された電気機器に電力を供給し得るシステムとして構成されている。
 電源システム100は、主として、発電機92、蓄電装置94、電源路81,82、車載用電源装置1(以下、電源装置1ともいう)などを備え、1又は複数の制御装置(図1の例では、車両制御ECU70)によって制御される構成をなす。電源システム100において、高圧系の電源路81には発電機92や蓄電装置94が電気的に接続され、低圧系の電源路82には低圧系の負荷98が接続されている。なお、図示はしていないが、高圧系の電源路81に、ヒータなどの高圧系の負荷が接続されていてもよい。電源路81及び電源路82は、電力を伝送する電力路として機能する配線部である。
 車両制御ECU70は、発電機92、蓄電装置94、電源装置1からの情報受信及びこれらに対する情報送信を行い得る車載用の電子制御装置であり、1又は複数の情報処理装置、記憶装置、AD変換器など、様々な装置を備えてなる。車両制御ECU70は、スタータ93にスタータ動作を指示する機能、蓄電装置94にリレー94Bのオンオフ動作を指示する機能、制御装置10に対し、昇圧動作や降圧動作を指示する機能などを有する。なお、車両制御ECU70は、単一の電子制御装置によって構成されていてもよく、複数の電子制御装置によって構成されていてもよい。
 発電機92は、公知の車載用発電機として構成され、エンジン(図示略)の回転軸の回転によって発電する機能を備える。スタータ93は、公知の車載用スタータとして構成され、エンジンの回転軸に対して回転力を与えるスタータとしての機能とを備える。発電機92が動作する場合、発電機92の発電によって生じた電力は整流後に直流電力として蓄電装置94に供給される。発電機92は、発電時に、例えば所定値V1(例えば、48V程度)の出力電圧を電源路81に印加する。スタータ93は、エンジンが停止状態であるときに蓄電装置94から電力供給を受けて動作し、エンジンに対し始動用の回転力を与える。
 蓄電装置94は、車載用の蓄電部94A(以下、蓄電部94Aともいう)とリレー94Bとを備える。
 蓄電部94Aは、例えば、電気二重層コンデンサ、鉛バッテリ、リチウムイオン電池などの公知の車載用蓄電手段によって構成されており、リレー94B及びヒューズ96を介して電源路81に電気的に接続されている。蓄電部94Aは、満充電時の出力電圧が例えば48Vであり、満充電時には高電位側の端子が48V程度に保たれる。蓄電部94Aの低電位側の端子は、例えばグラウンド電位(0V)に保たれている。
 リレー94Bは、蓄電部94Aの出力端子(高電位側の端子)と電源路81との間に設けられ、蓄電部94Aと電源路81との間の導通及び非導通を切り替えるように動作する。例えば、蓄電装置94の内部或いは電源装置1の内部に図示しない蓄電制御装置が設けられ、蓄電部94Aの過放電を監視し得るように構成されている。例えば、この蓄電制御装置は、蓄電部94Aの出力電圧を監視し、蓄電部94Aの出力電圧が閾値電圧Vth1(上記所定値V1よりも低く設定された閾値)以上である場合には、リレー94Bをオン状態で維持し、蓄電部94Aと電源路81との間を通電状態とする。一方、蓄電制御装置は、蓄電部94Aの出力電圧が閾値電圧Vth1未満となった場合にリレー94Bをオフ状態とし、蓄電部94Aと電源路81との間の通電を遮断する。なお、リレー94Bと電源路81との間には、過電流時に電流を遮断するヒューズ96が設けられている。
 低圧系の負荷98は、車両に搭載される公知の車載用電気機器であり、第2導電路22に接続された電源路82を介して供給される電力によって動作し得る機器であればよい。従って、負荷98の種類や数は限定されない。
 電源装置1は、昇圧動作及び降圧動作を行い得るスイッチング電源装置として構成されている。
 電源装置1は、第1導電路21、第2導電路22、制御装置10、電圧変換部12、検知部30、補助回路部42、ダイオード32、端子P1,P2、外部端子P3、第1電流センサ及び第2電流センサ(図示略)、第1電圧センサ及び第2電圧センサ(図示略)などを備える。
 第1導電路21は、所定電圧V1の直流電圧を出力する発電機92が電気的に接続された導電路であり、車両動作中に第2導電路22よりも相対的に高い電圧が印加される高圧側の電源ラインとして構成されている。第1導電路21は、電源路81に接続されるとともに、この電源路81を介して発電機92及び蓄電部94Aに電気的に接続されている。第1導電路21には、発電機92又は蓄電部94Aの出力に応じた電圧が印加される。図1の例では、第1導電路21の端部に端子P1が設けられ、この端子P1に外部の電源路81が接続されている。
 第2導電路22は、車両動作中に第1導電路21よりも相対的に低い電圧が印加される低圧側の電源ラインとして構成されている。第2導電路22は、電圧変換部12が降圧モードで降圧動作を行っているときに電圧変換部12からの出力電圧(例えば12V程度の出力電圧)が印加される。図1の例では、第2導電路22の端部に端子P2が設けられ、この端子P2に外部の電源路82が接続されている。
 制御装置10は、電圧変換部12を制御する制御部10Aとして機能する部分と、補助回路部42を切り替える切替部10Bとして機能する部分とを備える。この制御装置10は、具体的には、演算機能を有する制御回路と、制御回路からの信号に応じたPWM信号を出力する駆動回路とを有する。制御回路は、例えば、マイクロコンピュータとして構成され、CPU等の演算装置、ROMやRAM等のメモリ、A/D変換器などを有する。駆動回路は、制御回路で決定されたデューティ比のPWM信号を出力し、電圧変換部12に昇圧動作又は降圧動作を行わせるように機能する。これら制御回路及び駆動回路が制御部10Aとして機能する。また、制御回路は、切替部10Bとしても機能し、半導体スイッチ44のオンオフを制御し得る構成となっている。更に、制御装置10は、後述する検知部30から検知信号や非検出信号が入力され得る構成となっている。制御装置10は、図示しない電圧検出回路から蓄電部94Aの出力電圧(充電電圧)が入力されるようになっていてもよく、リレー94Bがオン状態であるかオフ状態であるかを特定し得る信号が入力されるようになっていてもよい。なお、ここでは、制御回路が制御部10Aとしても機能し、切替部10Bとしても機能する例を挙げたが、制御部10Aと切替部10Bとが別々の回路として構成され、それぞれが検知部30からの信号を取得し得る構成となっていてもよい。
 電源装置1には、図示しない第1電流センサ及び第2電流センサが設けられ、第1導電路21及び第2導電路22の各電流値を検出し得る。第1電流センサは、公知の電流検出回路によって構成され、第1導電路21を流れる電流値を検出し、その電流値を示すアナログ電圧信号を制御装置10に入力する。同様に、第2電流センサも、公知の電流検出回路によって構成され、第2導電路22を流れる電流値を検出し、その電流値を示すアナログ電圧信号を制御装置10に入力する。制御装置10における制御部10Aは、これらアナログ電圧信号を取得し得る。
 電源装置1には、図示しない第1電圧センサ及び第2電圧センサが設けられ、第1導電路21及び第2導電路22の各電圧値を検出し得る。第1電圧センサは、公知の電圧検出回路によって構成され、第1導電路21の電圧値を検出し、その電圧値を示すアナログ電圧信号を制御装置10に入力する。同様に、第2電圧センサも、公知の電圧検出回路によって構成され、第2導電路22の電圧値を検出し、その電圧値を示すアナログ電圧信号を制御装置10に入力する。制御装置10における制御部10Aは、これらアナログ電圧信号を取得し得る。
 電圧変換部12は、蓄電部94Aに電気的に接続される第1導電路21と第2導電路22との間において、これらの導電路に接続された形で設けられている。電圧変換部12は、昇降圧回路部の一例に相当し、第1導電路21に印加された電圧を降圧して第2導電路22に印加する降圧動作と、第2導電路22に印加された電圧を昇圧して第1導電路21に印加する昇圧動作とを選択的に行う回路として構成されている。電圧変換部12は、例えば、半導体スイッチング素子及びインダクタなどを備えてなる公知の双方向型昇降圧DCDCコンバータとして構成されている。具体的には、電圧変換部12は、例えば同期整流方式の非絶縁型DCDCコンバータとして構成され、降圧動作を行う場合、第1導電路21に印加された入力電圧を同期整流方式で降圧して第2導電路22に出力し、昇圧動作を行う場合、第2導電路22に印加された入力電圧を同期整流方式で昇圧して第1導電路21に出力する。
 制御装置10のうち、制御部10Aとして機能する部分は、電圧変換部12に降圧動作を行わせる降圧モードの制御と、電圧変換部12に昇圧動作を行わせる昇圧モードの制御とを行いうる。
 制御部10Aは、降圧モードの制御を行う場合、電圧変換部12に対して降圧動作用の制御信号(PWM信号)を与え、第1導電路21に印加された電圧を降圧して第2導電路22に印加するように電圧変換部12に降圧動作を行わせる。降圧モードでは、電圧変換部12から第2導電路22に出力する出力電圧が所定の目標電圧Va(例えば、12V)となるように制御信号(PWM信号)のフィードバック制御がなされ、制御信号(PWM信号)のデューティはフィードバック演算によって調整される。
 制御部10Aは、昇圧モードの制御を行う場合、電圧変換部12に対して昇圧動作用の制御信号(PWM信号)を与え、第2導電路22に印加された電圧を昇圧して第1導電路21に印加するように電圧変換部12に昇圧動作を行わせる。昇圧モードでは、電圧変換部12から第1導電路21に出力する出力電圧が所定の目標電圧Vb(発電機92の出力電圧V1よりも少し低い値)となるように制御信号(PWM信号)のフィードバック制御がなされ、制御信号(PWM信号)のデューティはフィードバック演算によって調整される。
 外部端子P3は、外部電源Bpからの電力供給路Lpを接続するときの接続対象部位となる端子である。外部電源Bpは、電力供給路Lpを介して電力を供給し得る電源であればよく、例えば、出力電圧が12V程度の鉛バッテリなど、公知の蓄電池が挙げられる。電力供給路Lpは、外部電源Bpの正側の出力端子と外部端子P3とを電気的に接続し得る導電路であればよく、公知のブースタケーブルなどであってもよく、これ以外の配線部であってもよい。外部端子P3は、図2のように、電力供給路Lpによって外部電源Bpの正側の電極部が電気的に接続された場合に、外部電源Bpの出力電圧が印加される。
 給電回路部40は、補助回路部42と上述した制御装置10(具体的には制御装置10のうちの切替部10B)とによって構成されている。補助回路部42は、半導体スイッチ44及び半導体スイッチ44を各部位(第2導電路22、外部端子P3、制御装置10)に電気的に接続する導電路によって構成されている。半導体スイッチ44は、例えば、Nチャンネル型のMOSFETとして構成されており、ドレインが第2導電路22に電気的に接続され、ソースが外部端子P3及びダイオード32のアノードに電気的に接続され、ゲートは制御装置10からの信号線に接続されている。
 半導体スイッチ44は、外部端子P3にアノードが電気的に接続され第2導電路22にカソードが電気的に接続されたボディダイオードであるダイオード部44Bと、第2導電路22と外部端子P3との間で導通状態と非導通状態とに切り替わるスイッチ部44A(ボディダイオードを除く部分)とを備える。制御装置10のうちの切替部10Bとして機能する部分は、半導体スイッチ44のゲートに対して、オン信号及びオフ信号を選択的に出力する。切替部10Bから半導体スイッチ44のゲートにオン信号が与えられた場合には、半導体スイッチ44がオン状態となり、オフ信号が与えられた場合には、半導体スイッチ44がオフ状態となる。具体的には、切替部10Bは、検知部30からの信号を検出し得る構成をなし、外部端子P3と電力供給路Lpとの接続を検知部30が検知していない場合にスイッチ部44Aを非導通状態とし、外部端子P3と電力供給路Lpとの接続を検知部30が検知した場合にスイッチ部44Aを導通状態とする。なお、図1では、半導体スイッチ44を例示したが、半導体スイッチ44又はスイッチ部44Aを機械式リレーなどの他のスイッチに置き換えてもよい。
 このように構成された給電回路部40は、少なくとも外部端子P3に電力供給路Lpが接続されている場合に、外部端子P3側から第2導電路22側に電流が流れることが許容される。具体的には、給電回路部40は、第2導電路22が所定の正常出力状態である場合(第2導電路22に所定閾値以上の電圧が印加され、且つ、外部端子P3に電力供給路Lpが接続されていない場合)に第2導電路22から外部端子P3側に電流が流れることを遮断し、外部端子P3に電力供給路Lpが接続された場合に外部端子P3側から第2導電路22側に電流が流れる構成となっている。
 ダイオード32は、外部端子P3側から検知部30側に電流が流れることを許容し、その逆方向に電流が流れることを規制する素子である。図1の構成では、外部端子P3に電力供給路Lpが接続されることで外部端子P3に外部電源Bpの出力電圧が印加された場合、導電路34に対して外部電源Bpの出力電圧に応じた電圧(ダイオード32の電圧降下分を差し引いた電圧)が印加される。後述の閾値電圧Vth2は、想定される外部電源Bpの出力電圧(例えば、12V)よりも低い値となっており、想定される外部電源Bpの出力電圧(例えば、12V)が外部端子P3に印加された場合、導電路34の電圧は閾値電圧Vth2よりも十分大きくなる。一方、外部端子P3に電力供給路Lpが接続されないオープン状態のときには、導電路34は、後述の閾値電圧Vth2よりも十分小さい低レベルとなる。
 検知部30は、外部端子P3に電力供給路Lpが接続されたことを検知する回路である。この検知部30は、例えば、導電路34に印加される電圧が閾値電圧Vth2以上であるか否かを判定する判定回路として構成され、導電路34に印加される電圧が閾値電圧Vth2以上である場合には、制御装置10に所定の検知信号を出力する。導電路34に印加される電圧が閾値電圧Vth2未満の場合、検知部30は、制御装置10に所定の非検知信号を出力する。制御装置10において、制御部10A及び切替部10Bは、検知部30から検知信号及び非検知信号のいずれが出力されているかを認識し得る。
 次に、電源システム100でなされる具体的な動作を詳述する。
 図1の電源システム100は、例えば、低圧系の電源路82にバッテリが接続されておらず、高圧系の電源路81に接続された蓄電部94Aの出力を降圧して低圧系の電源路82に供給するシステムとなっている。更に、高圧系の電源路81に発電機92及びスタータ93が設けられている。このような構成では、何らかの理由で蓄電部94Aの出力が低下或いは停止した場合、スタータ93にスタータ動作を行わせることができずにエンジンを始動できない虞がある。そこで、電源装置1では、このような非常時に、外部電源Bpからの電力を用いて昇圧動作を行い、蓄電部94Aを適正な充電電圧まで復帰できるようにしている。
 図3は、図1の電源システム100における制御シーケンスを示すタイミングチャートである。図3において、第1段は第2導電路22の状態の経時変化を示し、第2段は、外部端子の状態の経時変化を示し、第3段は、電圧変換部12の状態の経時変化を示し、第4段は、車両制御ECU70の状態の経時変化を示し、第5段は、蓄電装置94の状態の経時変化を示す。
 図3の例では、時間t1より前の時間帯は、イグニッションスイッチがオフの状態であり、エンジン及び発電機92が停止している状態である。時間t1より前の時間帯は、蓄電部94Aの出力電圧が閾値電圧Vth1以上となっている状態(過放電となっていない状態)である。この時間帯では、蓄電部94Aの出力電圧が閾値電圧Vth1以上であるため、蓄電制御装置によってリレー94Bがオン状態で維持され、蓄電部94Aの出力に応じた電圧が電源路81に印加される。時間t1より前の時間帯では、車両制御ECU70は所定のスリープ状態で維持されていてもよく、停止状態となっていてもよい。また、時間t1より前の時間帯では、制御装置10の制御部10Aによって電圧変換部12が暗電流モードで降圧制御され、第2導電路22を介して車両制御ECU70などの最低限の機器に動作電力が供給される。時間t1よりも前の時間帯は、正常な停止状態(蓄電部94Aから電源路81に閾値電圧Vth1以上の電圧が印加され、且つ電圧変換部12によって電力供給がなされている状態)であり、スタータ93に対してスタータ動作させる電力が確保されている状態であるため、外部端子P3に外部電源Bpを接続する必要はない。
 図3の例では、時間t1の時点で蓄電部94Aの出力電圧が閾値電圧Vth1未満となり、蓄電制御装置によって時間t1からリレー94Bがオフ状態に切り替えられている。つまり、時間t1以降に蓄電部94Aからの出力が停止し、電源路81及び第1導電路21に電力が供給されなくなっている。このように電圧変換部12に適正な入力がなされなくなると、電圧変換部12から第2導電路22に適正な出力電圧(例えば、12V)が出力できなくなり、電圧変換部12は停止状態となる。時間t1以降は、蓄電部94Aからの出力が停止し続け、電圧変換部12の出力停止状態が継続するため、車両制御ECU70に対しても電力供給がなされず、車両制御ECU70の動作も停止する。
 このように、時間t2の後、後述する時間t3の前には、第1導電路21及び第2導電路22のいずれにも電力が供給されない状態となり、第1導電路21及び第2導電路22のいずれにも適正な電圧が印加されない状態となる。この状態では、スタータ93の動作電力が確保できず、エンジンを始動させることができない。つまり、発電機92を動作させて蓄電部94Aを充電することができず、蓄電装置94を復帰させることができない。
 このような状態を解消するために、図2のように外部端子P3に対して外部電源Bpに接続された電力供給路Lpを接続すると、外部端子P3を介して外部電源Bpからの電力が供給される。所定電圧(例えば12V)を出力し得る外部電源Bpが外部端子P3に対して電気的に接続されると、導電路34の電圧が、上述した閾値電圧Vth2以上となるため、検知部30がこの状態(外部端子P3に外部電源Bpが電気的に接続された状態であり、導電路34の電圧が閾値電圧Vth2以上となった状態)を検知し、制御装置10に対して上述した検知信号を出力する。
 一方、制御装置10は、外部端子P3に対して電力供給路Lpが接続され、外部端子P3に外部電源Bpが電気的に接続されたときに、外部端子P3又は導電路34に接続された図示しない経路を介して外部電源Bpからの電力を受け得る構成となっている。つまり、外部端子P3に外部電源Bpが電気的に接続された場合、制御装置10は外部電源Bpからの電力供給によって動作可能状態(図3で示す「起動」の状態)となる。そして、制御装置10は、このように動作可能状態となった後、検知部30から検知信号を受けた場合には、この受信に応じて、制御部10Aにより車両制御ECU70に対して所定の通知信号を出力する動作と、切替部10Bにより半導体スイッチ44にオン信号を出力する動作とを行う。なお、所定の通知信号は、少なくとも車両制御ECU70が起動してこの信号を受信するまでは出力され、半導体スイッチ44に対するオン信号は、少なくとも後述する降圧動作が実行されるまでは継続される。
 切替部10Bが半導体スイッチ44にオン信号を出力すると、オン信号の出力を開始した時間t3で半導体スイッチ44がオン状態となり、外部電源Bpからの電力が半導体スイッチ44を介して第2導電路22に供給される。半導体スイッチ44がオン状態となった後には、第2導電路22に外部電源Bpの出力電圧(例えば12V)程度の電圧が印加される。なお、時間t2から時間t3の間にもダイオード部44B(ボディダイオード)を介して電力が供給されるが、時間t3の後は、損失が抑えられた状態でより多くの電流を流すことができる。
 一方、車両制御ECU70は、少なくとも時間t3の時点で第2導電路22を介して動作電圧が供給されるため、動作可能状態(図3で示す「起動」の状態)となる。車両制御ECU70は、このように動作可能状態となった後、制御部10Aから送信された上記所定の通知信号を受信すると、この通知信号に応じて、蓄電部94Aが充電すべき状態であるか否かを判定する。車両制御ECU70は、所定の充電開始条件の成立時(例えば、蓄電部94Aの出力電圧(充電電圧)が所定の充電判定閾値以下であると判定した場合)に、制御部10Aに対して充電を指示する充電指示信号を出力するとともに、上述した蓄電制御装置(図示略)に対してリレー94Bのオン動作を指示するオン動作指示信号を出力する。図3の例では、時間t4に、車両制御ECU70から充電指示信号及びオン動作指示信号が出力されている。このような制御によって、リレー94Bのオン動作及び制御部10Aによる充電動作(昇圧動作)が開始することになる。なお、車両制御ECU70は、起動後に上記所定の通知信号を受信した場合、即座に、制御部10Aに対する充電指示信号及び蓄電制御装置に対するオン動作指示信号を出力してもよい。
 時間t4で車両制御ECU70から充電指示信号及びオン動作指示信号が出力されると、その時点から、リレー94Bがオン状態に切り替えられ、制御部10Aは電圧変換部12に昇圧動作を行わせる制御を実行する。具体的には、第2導電路22に印加される電圧(外部電源Bpからの電力供給に基づく電圧)を入力電圧とし、この入力電圧を昇圧して所望の目標値(発電機92の出力電圧V1よりも低い電圧Vb)を第1導電路21に出力するように電圧変換部12に昇圧動作を行わせる。
 このように、本構成では、時間t2の直後に検知部30が外部端子P3と電力供給路Lpとの接続を検知すると、この検知部30の検知に応じて、制御部10Aが電圧変換部12に昇圧動作を行わせ、発電機92の出力電圧V1よりも低い電圧Vbを第1導電路21に出力することになる。
 制御部10Aは、時間t4に電圧変換部12の昇圧動作を開始した後、所定の終了条件が成立した場合(例えば、蓄電部94Aの出力電圧が、スタータ93にスタータ動作を行わせ得る所定の充電停止閾値(動作可能閾値)に達した場合)に、電圧変換部12の昇圧動作を停止させる。図3の例では、時間t5の時点で電圧変換部12の昇圧動作を停止させ、電圧変換部12による蓄電部94Aの充電を停止している。
 車両制御ECU70は、所定の始動条件成立時(例えば、蓄電部94Aの出力電圧(充電電圧)がスタータ93にスタータ動作を行わせ得る所定の充電停止閾値(動作可能閾値)に達した場合、或いは、時間t4から行われた電圧変換部12の昇圧動作が停止した場合など)に、スタータ93に対して始動を指示し、スタータ動作を行わせるとともにエンジンを始動させる。なお、車両制御ECU70は、所定の始動条件成立時に自動的に発電機92にスタータ動作を行わせエンジンを始動してもよく、所定の始動条件成立を前提とし、所定の操作スイッチ(イグニッションスイッチのオンオフを切り替える操作スイッチ)にオン操作がなされた時にスタータ93にスタータ動作を行わせエンジンを始動してもよい。
 スタータ93によってスタータ動作が行われてエンジンが始動すると、発電機92は発電動作を行う。制御部10Aは、このように発電機92の発電動作が開始した後、電圧変換部12に降圧動作を行わせる。図3の例では、制御部10Aが時間t6から電圧変換部12に降圧動作(所定の目標電圧(例えば、12V)を第2導電路22に出力する降圧動作)を行わせている。このように電圧変換部12が降圧動作を開始した後、切替部10Bは、半導体スイッチ44をオフ状態に切り替える。切替部10Bが半導体スイッチ44をオフ状態に切り替えた後には、外部端子P3から電力供給路Lpを取り外しても支障はない。
 図3の例では、時間t3で半導体スイッチ44がオン状態に切り替えられてから、時間t6で降圧動作が開始されるまで、第2導電路22には外部電源Bpの電力に基づく電圧が印加され、時間t6で降圧動作が開始された後は、第2導電路22に対して電圧変換部12の出力に基づく電圧を印加することができる。そして、このように電圧変換部12が第2導電路22に所定の出力電圧(例えば、12V)を印加する降圧動作を行い且つ半導体スイッチ44がオフ状態となっている状態が電圧変換部12の正常出力状態(通常状態)であり、車両動作中は、イグニッションスイッチがオフ状態に切り替わるまで、このような正常出力状態(通常状態)が継続する。
 なお、図3の例では、発電機92が始動して発電動作を行う前の時間t5で電圧変換部12の昇圧動作を停止させているが、時間t4で電圧変換部12が昇圧動作を開始した後、発電機92が始動して発電動作を行った後に、電圧変換部12の昇圧動作を停止させてもよい。例えば、時間t4の後、蓄電部94Aの出力電圧がスタータ93にスタータ動作を行わせ得る所定閾値(動作可能閾値)に達した場合に電圧変換部12の昇圧動作が継続している状態でスタータ93にスタータ動作を行わせるとともにエンジンを始動させ、エンジンの始動に応じて発電機92が発電を開始した後に、電圧変換部12の昇圧動作を停止させてもよい。
 次に、本構成の効果を例示する。
 上記車載用電源装置1では、外部端子P3に電力供給路Lpが接続されたことを検知部30が検知し、給電回路部40では、少なくとも外部端子P3に外部の電力供給路Lpが接続されている場合に、外部端子P3側から第2導電路22側に電流が流れることが許容される。そして、制御部10Aは、このように外部端子P3を介して外部から第2導電路22側に電力が供給される状態で電圧変換部12(昇降圧回路部)に昇圧動作を行わせるため、蓄電部94Aに電気的に接続された第1導電路21に対して相対的に高い電圧を印加することができ、蓄電部94Aの充電を良好に行うことができる。特に、蓄電部94Aの充電電圧が低下して車載機器を動作させることに支障が生じるような場面において、外部電源Bpの接続を確実に検知し、外部電源Bpに基づく供給電圧を昇圧した形で蓄電部94Aの充電が可能となるため、このような場面で適正な復帰が可能となる。
 給電回路部40は、少なくとも第2導電路22が所定の正常出力状態である場合に第2導電路22から外部端子P3側に電流が流れることを遮断し、外部端子P3に電力供給路Lpが接続された場合に外部端子P3側から第2導電路22側に電流が流れる構成となっている。
 このように構成された車載用電源装置1は、第2導電路22が正常出力状態であるときには、第2導電路22から外部端子P3側に電流が流れることを防ぎ、第2導電路22の影響を受けにくい状態で外部端子P3を維持することができる。一方で、外部端子P3に電力供給路Lpが接続された場合(即ち、外部電源Bpから外部端子P3を介して電力が供給され得る場合)には、外部端子P3側から第2導電路22側に電流が流れる状態となり、外部電源Bpに基づく入力電圧を昇圧して第1導電路21に印加する昇圧動作を行うことが可能となる。
 給電回路部40は、外部端子P3にアノードが電気的に接続され第2導電路22にカソードが電気的に接続されたダイオード部44Bと、第2導電路22と外部端子P3との間で導通状態と非導通状態とに切り替わるスイッチ部44Aとを備えた半導体スイッチ44と、外部端子P3と電力供給路Lpとの接続を検知部30が検知していない場合にスイッチ部44Aを非導通状態とし、外部端子P3と電力供給路Lpとの接続を検知部30が検知した場合にスイッチ部44Aを導通状態とする切替部10Bとを有する。
 このように構成された車載用電源装置1は、外部端子P3と電力供給路Lpとの接続(即ち、外部電源Bpから外部端子P3を介して電力が供給される状態)を検知部30が検知していない場合には第2導電路22から外部端子P3側に電流が流れることを防ぎ、外部端子P3と電力供給路Lpとの接続を検知部30が検知した場合には、スイッチ部44Aを導通状態とすることができるため、外部端子P3側から第2導電路22側に電流を流すことができ、且つその際の導通損失を抑えることができる。
 第1導電路21は所定電圧V1を出力する発電機92が電気的に接続された導電路であり、制御部10Aは、外部端子P3と電力供給路Lpとの接続を検知部30が検知した場合に、発電機92の出力電圧V1よりも低い電圧Vbを第1導電路21に出力するように電圧変換部12(昇降圧回路部)に昇圧動作を行わせる。
 このように構成された車載用電源装置1は、例えば、発電機92の発電動作と電圧変換部12の昇圧動作とを同時期に行う場合(例えば、発電機92の発電動作後に電圧変換部12の昇圧動作を停止させるような方法を採用する場合など)に、発電機92の電力を優先的に利用して蓄電部94Aを充電することができるため、外部電源Bpの電力消費を抑えやすくなる。
 電圧変換部12は、降圧動作又は昇圧動作を選択的に行う昇降圧回路部として構成されている。
 この車載用電源装置1は、降圧動作を行うべき正常時には第1導電路21に印加された電圧を降圧して第2導電路22に印加する降圧動作を行うことができ、外部端子P3に外部電源Bpを接続させて充電させるべき場合には外部端子P3に電力供給路Lpが接続されたことを条件として昇圧動作を行うことができる構成を、より簡易に実現することができる。
 <実施例2>
 次に、実施例2について説明する。
 図4は、実施例2の車載用電源装置201(以下電源装置201ともいう)を備えた車載用電源システム200を概念的に示すものである。車載用電源システム200は、電源装置1に代えて電源装置201を用いている点以外は実施例1の車載用電源システム100と同一である。即ち、図4の例において、電源装置201以外の部分の構成及び機能は実施例1と同様である。実施例2の電源装置201は、電圧変換部12に代えて電圧変換部212を設けた点、及び制御部10Aが昇圧回路部212Aの昇圧動作及び降圧回路部212Bの降圧動作を個別に制御する点以外は実施例1の電源装置1と同一である。
 電源装置201に設けられた電圧変換部212は、蓄電部94Aに電気的に接続される第1導電路21と第2導電路22との間において、これらの導電路に接続された形で設けられている。第1導電路21に印加された電圧を降圧して第2導電路22に印加する降圧動作を行う降圧回路部212Bと、降圧回路部212Bとは別の経路として構成され、第2導電路22に印加された電圧を昇圧して第1導電路21に印加する昇圧回路部212Aとを備え、降圧回路部212Bと昇圧回路部212Aとが第1導電路21と第2導電路22との間に並列に設けられている。
 昇圧回路部212Aは、例えば、半導体スイッチング素子及びインダクタなどを備えてなる公知の昇圧型DCDCコンバータとして構成されている。具体的には、昇圧回路部212Aは、例えば同期整流方式の非絶縁型DCDCコンバータとして構成され、昇圧動作を行う場合、第2導電路22に印加された入力電圧を同期整流方式で昇圧して第1導電路21に出力する。
 降圧回路部212Bは、例えば、半導体スイッチング素子及びインダクタなどを備えてなる公知の降圧型DCDCコンバータとして構成されている。具体的には、降圧回路部212Bは、例えば同期整流方式の非絶縁型DCDCコンバータとして構成され、降圧動作を行う場合、第1導電路21に印加された入力電圧を同期整流方式で降圧して第2導電路22に出力する。
 制御部10Aの制御は、昇圧モードの制御と降圧モードの制御とが実施例1と若干異なるだけであり、昇圧動作及び降圧動作を行わせる制御以外は実施例1と同一である。制御部10Aは、降圧モードの制御を行う場合、第1導電路21に印加された電圧を降圧して第2導電路22に出力電圧を印加し、出力電圧が上述した目標電圧値Va(例えば、12V)となるように降圧回路部212Bに対しPWM信号を制御信号としたフィードバック制御を行う。制御部10Aは、昇圧モードの制御を行う場合、第2導電路22に印加された電圧を降圧して第1導電路21に出力電圧を印加し、出力電圧が上述した目標電圧値Vb(例えば、発電機92の出力電圧よりも少し低い値)となるように昇圧回路部212Aに対しPWM信号を制御信号としたフィードバック制御を行う。
 本構成でも、実施例1と同様の流れ(図3で示す流れ)で制御を行うことができる。但し、時間t4以降に昇圧動作を行う場合に昇圧回路部212Aを動作させ、時間t1前又は時間t6以降に降圧動作を行う場合に降圧回路部212Bを動作させる点のみが実施例1と異なる。
 本構成の車載用電源装置201は、蓄電部94Aから閾値電圧Vth1以上の電圧が出力される正常状態のときに、第1導電路21に印加された電圧を降圧して第2導電路22に印加するように降圧回路部212Bによって降圧動作を行うことができ、このときには第2導電路22を介して負荷98などに適正な電力を供給することができる。一方、蓄電部94Aの出力停止時などにおいて、作業者の作業により、外部端子P3に電力供給路Lpが接続されたとき(即ち、外部端子P3を介して外部電源Bpからの電力が供給されるとき)には、第2導電路22に印加された電圧を昇圧して第1導電路21に印加するように昇圧回路部212Aによって昇圧動作を行うことができる。しかも、降圧動作と昇圧動作とを別々の回路部で独立して行うことができるため、いずれか一方の動作が他方の動作の制約を受けにくくなる。
 なお、図3では、昇圧動作と降圧動作を別々の時期に行う例を示したが、この例に限定されない。例えば、制御部10Aは、外部端子P3と電力供給路Lpとの接続を検知部30が検知した場合に、昇圧回路部212Aに昇圧動作を行わせつつ降圧回路部212Bに降圧動作を行わせるように制御を行ってもよい。このようにすれば、蓄電部94Aを充電し得る昇圧動作時に降圧動作を並行して行うことができるため、充電時であっても第2導電路22に接続された機器に対して適正な電力を供給することができる。
 このように昇圧動作と降圧動作とを並行して行う例としては、例えば、図3で示すシーケンスにおいて、時間t4以降の制御を若干変更した例などが挙げられる。例えば、制御部10Aは、図3の時間t4以降に昇圧回路部212Aを制御して昇圧動作を行わせた場合、所定の降圧動作開始時(例えば、蓄電装置94のリレー94Bがオン状態になった時、或いは、蓄電部94Aの出力電圧(充電電圧)が一定値(上述した充電停止閾値よりも低い所定値)を超えた時など)以降は、昇圧回路部212Aに昇圧動作を行わせつつ降圧回路部212Bに降圧動作を行わせるように制御を行ってもよい。この場合、降圧動作の開始タイミングを図3で示す時間t6から上記降圧動作開始時まで早めることができる。なお、この場合、昇圧動作の終了タイミングは、実施例1と同様、図3で示す時間t5(発電機92の始動前の時期)としてもよく、発電機92の始動後としてもよい。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。また、上述した実施例や後述する実施例は矛盾しない範囲で組み合わせることが可能である。
 実施例1、2では、図1のように、半導体スイッチ44を主体として構成された給電回路部40を例示したが、実施例1、2又はこれらを変更したいずれの例においても、図5のような給電回路部340に変更してもよい。なお、図5で示す車載用電源装置301は、給電回路部40を給電回路部340に変更し、半導体スイッチ44のオンオフ制御を省略した点以外は、実施例1の車載用電源装置1と同様の構成である。図5で示す給電回路部340は、外部端子P3にアノードが電気的に接続され第2導電路22にカソードが電気的に接続されたダイオード342によって構成され、スイッチ部が存在しない構成となっている。図5の車載用電源装置301でも、第2導電路22が所定の正常出力状態である場合(電圧変換部12の降圧動作によって第2導電路22に所定値(例えば、12V)の出力電圧が印加され、外部端子P3と電力供給路Lpが接続されていない状態である場合)に第2導電路22から外部端子P3側に電流が流れることを遮断することができ、上記正常出力状態のときに外部端子P3の電位を第2導電路22の電位よりも十分低い値に保つことができる。そして、外部端子P3に電力供給路Lpが接続された場合には、外部電源Bpからの電力供給に基づいて外部端子P3側から第2導電路22側に電流を流すことができる。そして、このような機能を、より簡易な構成で実現できる。なお、図5の構成における制御装置10の制御は、図1における半導体スイッチ44のオンオフ制御が省略された点以外は実施例1と同様であり、制御部10Aが実施例1と同様な制御を行うことになる。
 実施例1、2では、発電機92とスタータ93が電源路81に電気的に接続された形で別々に設けられていたが、実施例1、2又はこれらを変更したいずれの例においても、発電機とスタータとが一体となった発電機兼スタータでもよい。
 実施例1、2では、判定回路として構成される検知部30を例示したが、施例1、2又はこれらを変更したいずれの例においても、検知部は、外部端子P3に外部電源Bpが電気的に接続されたことを検知することができ、検知時に制御装置10に対して検知信号を出力し得る構成であればよい。
 実施例1では、出力側となる第2導電路22にバッテリ(蓄電部94Aとは異なるバッテリ)が接続されていない構成を例示したが、実施例1、2又はこれらを変更したいずれの例においても、何らかの蓄電手段が第2導電路22に電気的に接続されていてもよい。
 1,201,301…車載用電源装置
 10A…制御部
 10B…切替部
 12…電圧変換部(昇降圧回路部)
 21…第1導電路
 22…第2導電路
 30…検知部
 40,340…給電回路部
 44…半導体スイッチ
 92…発電機
 212…電圧変換部
 212A…昇圧回路部
 212B…降圧回路部
 342…ダイオード
 Bp…外部電源
 Lp…電力供給路
 P3…外部端子

Claims (8)

  1.  車載用の蓄電部に電気的に接続される第1導電路及び第2導電路に接続され、前記第1導電路に印加された電圧を降圧して前記第2導電路に印加する降圧動作と、前記第2導電路に印加された電圧を昇圧して前記第1導電路に印加する昇圧動作とを行う電圧変換部と、
     外部電源からの電力供給路を接続するときの接続対象部位となる外部端子と、
     前記外部端子に前記電力供給路が接続されたことを検知する検知部と、
     少なくとも前記外部端子に前記電力供給路が接続されている場合に、前記外部端子側から前記第2導電路側に電流が流れることが許容される給電回路部と、
     前記電圧変換部の前記降圧動作及び前記昇圧動作を制御し、前記外部端子と前記電力供給路との接続を前記検知部が検知した場合に前記昇圧動作を行わせる制御部と、
    を有する車載用電源装置。
  2.  前記給電回路部は、少なくとも前記第2導電路が所定の正常出力状態である場合に前記第2導電路から前記外部端子側に電流が流れることを遮断し、前記外部端子に前記電力供給路が接続された場合に前記外部端子側から前記第2導電路側に電流が流れる請求項1に記載の車載用電源装置。
  3.  前記給電回路部は、
     前記外部端子にアノードが電気的に接続され前記第2導電路にカソードが電気的に接続されたダイオード部と、前記第2導電路と前記外部端子との間で導通状態と非導通状態とに切り替わるスイッチ部とを備えた半導体スイッチと、
     前記外部端子と前記電力供給路との接続を前記検知部が検知していない場合に前記スイッチ部を非導通状態とし、前記外部端子と前記電力供給路との接続を前記検知部が検知した場合に前記スイッチ部を導通状態とする切替部と、
    を有する請求項2に記載の車載用電源装置。
  4.  前記給電回路部は、前記外部端子にアノードが電気的に接続され前記第2導電路にカソードが電気的に接続されたダイオードによって構成されている請求項2に記載の車載用電源装置。
  5.  前記第1導電路には発電機が接続され、
     前記制御部は、前記外部端子と前記電力供給路との接続を前記検知部が検知した場合に、前記発電機の出力電圧よりも低い電圧を前記第1導電路に出力するように前記電圧変換部に前記昇圧動作を行わせる請求項1から請求項4のいずれか一項に記載の車載用電源装置。
  6.  前記電圧変換部は、前記降圧動作又は前記昇圧動作を選択的に行う昇降圧回路部を備える請求項1から請求項5のいずれか一項に記載の車載用電源装置。
  7.  前記電圧変換部は、
     前記第1導電路に印加された電圧を降圧して前記第2導電路に印加する前記降圧動作を行う降圧回路部と、
     前記降圧回路部とは別の経路として構成され、前記第2導電路に印加された電圧を昇圧して前記第1導電路に印加する昇圧回路部と、
    を備える請求項1から請求項5のいずれか一項に記載の車載用電源装置。
  8.  前記制御部は、前記外部端子と前記電力供給路との接続を前記検知部が検知した場合に、前記昇圧回路部に前記昇圧動作を行わせつつ前記降圧回路部に前記降圧動作を行わせ、前記昇圧回路部及び前記降圧回路部がいずれも動作する期間を生じさせる請求項7に記載の車載用電源装置。
PCT/JP2017/041803 2016-12-08 2017-11-21 車載用電源装置 WO2018105383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017006219.5T DE112017006219B4 (de) 2016-12-08 2017-11-21 Fahrzeugmontierte Energieversorgungsvorrichtung
CN201780073936.9A CN110073568A (zh) 2016-12-08 2017-11-21 车载用电源装置
US16/467,552 US11052771B2 (en) 2016-12-08 2017-11-21 Vehicle-mounted power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238537 2016-12-08
JP2016238537A JP6751512B2 (ja) 2016-12-08 2016-12-08 車載用電源装置

Publications (1)

Publication Number Publication Date
WO2018105383A1 true WO2018105383A1 (ja) 2018-06-14

Family

ID=62490935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041803 WO2018105383A1 (ja) 2016-12-08 2017-11-21 車載用電源装置

Country Status (5)

Country Link
US (1) US11052771B2 (ja)
JP (1) JP6751512B2 (ja)
CN (1) CN110073568A (ja)
DE (1) DE112017006219B4 (ja)
WO (1) WO2018105383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195413A1 (ja) * 2023-03-20 2024-09-26 株式会社デンソー 回転電機の制御装置、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893181B2 (ja) * 2018-01-12 2021-06-23 日立Astemo株式会社 電力線通信装置、車載装置および車載システム
JP2021034839A (ja) 2019-08-22 2021-03-01 株式会社オートネットワーク技術研究所 スイッチ装置
JP7226190B2 (ja) * 2019-08-27 2023-02-21 住友電装株式会社 電気接続箱
JPWO2022024508A1 (ja) * 2020-07-31 2022-02-03
CN114649934B (zh) * 2020-12-17 2024-07-02 日立安斯泰莫汽车系统(苏州)有限公司 升压装置、升压装置的控制方法及存储介质
CN112421738A (zh) * 2021-01-25 2021-02-26 理工全盛(北京)科技有限公司 一种直流输出车载电源控制板及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071898A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 蓄電機構の充電制御システムおよびその制御方法
JP2010098779A (ja) * 2008-10-14 2010-04-30 Toyota Motor Corp 制御装置及び充電制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204137A (ja) 2000-01-18 2001-07-27 Auto Network Gijutsu Kenkyusho:Kk 車両の給電回路
JP4905300B2 (ja) * 2006-09-28 2012-03-28 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US8039987B2 (en) 2006-09-29 2011-10-18 Toyota Jidosha Kabushiki Kaisha Power source device and vehicle with power source device
DE102007047619A1 (de) 2007-10-04 2009-04-09 Robert Bosch Gmbh Hybridantrieb mit Notstart- und Fremdstartmöglichkeit
JP4285578B1 (ja) * 2008-01-15 2009-06-24 トヨタ自動車株式会社 車両の充電装置
JP4525809B2 (ja) * 2008-07-28 2010-08-18 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
EP2353920B1 (en) * 2008-10-31 2019-01-23 Toyota Jidosha Kabushiki Kaisha Electrically driven vehicle and electrically driven vehicle control method
CN102368930A (zh) 2009-01-15 2012-03-07 菲斯科汽车公司 用于车辆的太阳能动力充电及分布
US20120055727A1 (en) * 2009-05-13 2012-03-08 Toyota Jidosha Kabushiki Kaisha Power converting apparatus for vehicle and vehicle including same
JP5886734B2 (ja) * 2012-01-10 2016-03-16 本田技研工業株式会社 電動車両
JP2014115882A (ja) * 2012-12-11 2014-06-26 Denso Corp 車載用緊急通報装置
CN105103404A (zh) * 2013-04-03 2015-11-25 株式会社自动网络技术研究所 控制装置、供电控制装置、充电控制方法、充电控制装置以及车辆用电源装置
DE102014201354A1 (de) 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz
DE102014201348A1 (de) 2014-01-27 2015-07-30 Robert Bosch Gmbh Verfahren zum Betrieb eines Bordnetzes
JP6361686B2 (ja) * 2016-04-22 2018-07-25 トヨタ自動車株式会社 燃料電池システム
JP6610439B2 (ja) * 2016-05-31 2019-11-27 株式会社オートネットワーク技術研究所 電源装置
JP6358304B2 (ja) * 2016-09-30 2018-07-18 株式会社オートネットワーク技術研究所 車両用電源装置
JP6904283B2 (ja) * 2018-03-12 2021-07-14 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071898A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 蓄電機構の充電制御システムおよびその制御方法
JP2010098779A (ja) * 2008-10-14 2010-04-30 Toyota Motor Corp 制御装置及び充電制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195413A1 (ja) * 2023-03-20 2024-09-26 株式会社デンソー 回転電機の制御装置、及びプログラム

Also Published As

Publication number Publication date
CN110073568A (zh) 2019-07-30
DE112017006219T5 (de) 2019-08-29
JP2018094954A (ja) 2018-06-21
US11052771B2 (en) 2021-07-06
DE112017006219B4 (de) 2023-07-13
US20190308573A1 (en) 2019-10-10
JP6751512B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2018105383A1 (ja) 車載用電源装置
CN109792160B (zh) 车载用的备用装置
US11173857B2 (en) Control device for on-board power supply unit, and on-board power supply device with a protective relay
JP6451708B2 (ja) 車載用のバックアップ装置
US9843184B2 (en) Voltage conversion apparatus
WO2019208203A1 (ja) 車載用のバックアップ回路及び車載用のバックアップ装置
JP6545230B2 (ja) 車両の電源システム
WO2017154778A1 (ja) ハイブリッド車両の制御装置
JP3661630B2 (ja) ハイブリッド車の駆動装置及びその制御方法
JP2017163736A (ja) 電動車両の起動補助装置
US20140292077A1 (en) Method for operating an energy supply unit for a motor vehicle electrical system
CN112218788A (zh) 车载用的电源控制装置和车载用电源系统
US10906484B2 (en) In-vehicle power supply device
JP6748921B2 (ja) 車載用電源回路及び車載用電源装置
JP2008221958A (ja) 車両用電源装置
JP6375977B2 (ja) 電源装置
JP6541414B2 (ja) 電源供給装置
JP2007306778A (ja) Dc/dcコンバータ及びdc/dcコンバータの電源切替え方法
JP6372382B2 (ja) 電源装置
WO2023228287A1 (ja) 給電制御装置
WO2024105905A1 (ja) 給電制御装置
JP2010068648A (ja) 電源システム
JP7107159B2 (ja) 車両用バックアップ電源装置
JP2006271078A (ja) 車両の電源装置
JP2018117445A (ja) 車載用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878144

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17878144

Country of ref document: EP

Kind code of ref document: A1