WO2018103184A1 - 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机 - Google Patents

一种基于无人机螺旋桨的桨叶角度调节的方法及无人机 Download PDF

Info

Publication number
WO2018103184A1
WO2018103184A1 PCT/CN2017/071381 CN2017071381W WO2018103184A1 WO 2018103184 A1 WO2018103184 A1 WO 2018103184A1 CN 2017071381 W CN2017071381 W CN 2017071381W WO 2018103184 A1 WO2018103184 A1 WO 2018103184A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
wind speed
grade
mode
uav
Prior art date
Application number
PCT/CN2017/071381
Other languages
English (en)
French (fr)
Inventor
刘均
宋朝忠
Original Assignee
深圳市元征科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征科技股份有限公司 filed Critical 深圳市元征科技股份有限公司
Publication of WO2018103184A1 publication Critical patent/WO2018103184A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • B64C27/57Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • G05D1/0204Control of position or course in two dimensions specially adapted to aircraft to counteract a sudden perturbation, e.g. cross-wind, gust
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of terminal technologies, and in particular, to a method for adjusting blade angle based on a propeller of a drone and a drone.
  • propellers As the driving device of the equipment.
  • ships, underwater robots, and drones use propellers as the power drive mechanism.
  • the blades of the propeller are fixed and immovable, especially the propellers equipped with propellers.
  • the propellers are fixed and immobile, and only serve as drones.
  • the power unit has no other functions; this implementation is single and cannot meet the needs of users.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for adjusting the blade angle of the UAV propeller and the UAV, which can improve the variability and practicability of the UAV propeller.
  • an embodiment of the present invention provides a method for adjusting a blade angle based on an unmanned aerial vehicle propeller, wherein the propeller of the UAV is provided with a regulator for adjusting the propeller of the UAV Blade angle and rotation rate, the method comprising:
  • the UAV propeller is controlled to perform adjustment and operation of the blade angle and the rotation rate indicated by the operating mode.
  • the determining, according to the control instruction, determining an operating mode of the UAV propeller includes:
  • the working mode of the UAV propeller includes a power supply mode and a wind speed providing mode, and the UAV propeller is controlled to perform adjustment and operation of a blade angle and a rotation rate indicated by the working mode.
  • the specific treatment includes:
  • the working mode of the UAV propeller is a power supply mode, controlling the UAV propeller to perform a rotation process of setting a power blade angle and setting a power rotation rate indicated by the power supply mode to generate Corresponding lifting power; or,
  • the working mode of the UAV propeller is a wind speed providing mode
  • determining a wind speed providing level of the wind speed providing mode according to the acquired environmental information in the target area and performing the wind speed providing level indicated by the wind speed providing mode
  • the wind speed blade angle and the rotation process of setting the wind speed rotation rate are set to generate wind power corresponding to the wind speed.
  • the determining the wind speed providing level of the wind speed providing mode according to the environmental information in the acquired target area, and setting the wind speed blade angle and the setting indicated by the wind speed providing level of the wind speed providing mode specifically includes:
  • the environmental information including at least temperature data
  • the wind speed providing grade including a first grade and a second grade
  • the first grade is smaller than the second grade, and the first A wind speed rotation rate is less than the second wind speed rotation rate.
  • the method further includes:
  • an embodiment of the present invention further provides a drone, the drone is configured with a propeller for providing driving power, and a regulator is disposed on a propeller of the drone, and the regulator is used by the regulator.
  • the UAV includes:
  • a receiving module configured to receive a control command, where the control command is used to control the unmanned aerial vehicle propeller to perform a rotating operation
  • a determining module configured to determine an operating mode of the unmanned aerial vehicle propeller in response to the control instruction
  • control module configured to control the UAV propeller to perform adjustment and operation processing of the blade angle and the rotation rate indicated by the working mode.
  • the determining module is specifically configured to parse the control instruction to determine an operating mode of the unmanned aerial vehicle propeller;
  • the determining module is specifically configured to acquire posture information of the unmanned aerial vehicle propeller, and analyze the posture information to determine an operating mode of the unmanned aerial vehicle propeller.
  • the working mode of the UAV propeller includes a power supply mode and a wind speed providing mode.
  • the control module is specifically configured to: if the working mode of the UAV propeller is a power supply mode, control the UAV propeller to perform a set power blade angle and set power indicated by the power supply mode Rotational processing of the rotation rate to generate corresponding lifting power; or,
  • the control module is specifically configured to: if the working mode of the unmanned aerial vehicle propeller is a wind speed providing mode, determine a wind speed providing level of the wind speed providing mode according to the obtained environmental information in the target area, and perform the wind speed providing The mode wind speed provides a set of wind speed blade angles as indicated by the grade and a rotational process of setting the wind speed rotation rate to produce a wind that provides a grade corresponding to the wind speed.
  • control module includes:
  • An acquiring unit configured to acquire environment information in a target area where the drone is currently located, where the environment information includes at least temperature data;
  • a determining unit configured to analyze temperature data in the environmental information in the target area to determine a corresponding required wind speed providing level, the wind speed providing level including a first grade and a second grade;
  • a first control unit configured to control the UAV propeller to operate according to a first wind speed blade angle and a first wind speed rotation rate corresponding to the first gear when the wind speed is provided as a first gear And rotating to generate a wind force that matches the first grade;
  • a second control unit configured to control the UAV propeller to operate according to a second wind speed blade angle and a second wind speed rotation rate corresponding to the second gear when the wind speed is provided as a second gear And rotating to generate a wind force that matches the second grade;
  • the first grade is smaller than the second grade, and the first A wind speed rotation rate is less than the second wind speed rotation rate.
  • the drone further includes:
  • a judging module configured to determine whether a blade angle in a current working mode of the UAV propeller is pre-stored when receiving a verification command for a blade angle in an operating mode of the UAV propeller Matching the verification angle corresponding to the current working mode;
  • the alarm module is configured to generate and issue corresponding alarm information if the determination result of the determining module is negative.
  • the propeller of the UAV is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller, first receiving a control command, and the control command is used to control the
  • the man-machine propeller performs a rotating operation, and then determines an operation mode of the unmanned aerial vehicle propeller in response to the control command, and finally controls the unmanned aerial vehicle propeller to perform adjustment of a blade angle and a rotation rate indicated by the working mode.
  • the operation process can be adjusted by the regulator so that the propeller of the drone can be operated in multiple working modes, which improves the utility of the drone.
  • FIG. 1 is a schematic flow chart of a method for adjusting a blade angle of an unmanned aerial vehicle propeller according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of another blade angle adjustment method based on an unmanned aerial vehicle propeller according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of another method for adjusting a blade angle of an unmanned aerial vehicle propeller according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a drone according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another UAV according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control module according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of another drone according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for adjusting a blade angle of an unmanned aerial vehicle propeller according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may include the following steps.
  • a regulator (or controller) is mounted on the propeller of the drone, the regulator is used to adjust the blade angle and/or the rotation speed of the propeller of the drone; or, the drone is
  • the propeller is designed as a rotatable structure/mechanism so that the propeller of the drone can not only traditionally act as the drone
  • the power drive can also have other functions by adjusting the blade angle and/or the rotation rate of the propeller of the drone, exemplarily as the blade angle of the propeller of the drone
  • the adjustment makes it act as a fan for the user to use, further enriching the functions of the drone, enabling the drone to use more space and improving the user experience.
  • the user can operate the drone, such as rotating a button on the drone to send a corresponding control command to the drone; or the drone can be wired/wireless (such as WIFI) , Bluetooth, data line, etc.) receive control commands sent by other terminals, the control commands are used to indicate that the propeller of the drone performs a rotating operation.
  • the drone can be wired/wireless (such as WIFI) , Bluetooth, data line, etc.) receive control commands sent by other terminals, the control commands are used to indicate that the propeller of the drone performs a rotating operation.
  • the UAV when the UAV receives the control command, the UAV can respond to the control command to determine the working mode of the UAV propeller.
  • the determining, according to the control instruction, determining an operating mode of the UAV propeller includes:
  • the UAV when the control instruction carries an operation mode for indicating the propeller of the UAV, the UAV can directly obtain/determine by parsing the control instruction.
  • the working mode of the drone propeller when the control instruction carries an operation mode for indicating the propeller of the UAV, the UAV can directly obtain/determine by parsing the control instruction. The working mode of the drone propeller.
  • the UAV can determine an operation mode of the UAV propeller by detecting posture information of the UAV (or a propeller of the UAV), the posture The information refers to the angle or attitude angle information of the propeller of the drone relative to the horizontal plane (ground). For example, when the propeller of the drone is parallel to the horizontal plane, it can be considered that the drone will fly at this time, and the propeller of the drone will be used as a power driving device, and the propeller of the drone is determined at this time.
  • the working mode is a power supply mode; when the attitude angle between the propeller and the horizontal plane of the drone is within a set angle threshold range, it is determined that the working mode of the propeller of the drone is the wind speed providing mode, or It is understood that the user adjusts the propeller of the drone to a certain attitude angle with the horizontal plane at this time, and it is hoped that the propeller of the drone acts as a fan, and the spiral of the drone is at this time.
  • the mode of operation of the paddle provides a mode for wind speed.
  • the drone after determining the working mode of the propeller of the drone or the drone, the drone can make the drone propeller by adjusting the regulator according to the drone.
  • the blade angle is at a blade angle indicated by the operational mode
  • the rotational speed of the drone propeller is at a rotational rate indicated by the operational mode for normal operational operation.
  • the working mode of the UAV propeller includes a power supply mode and a wind speed providing mode, and the UAV propeller is controlled to perform adjustment and operation of a blade angle and a rotation rate indicated by the working mode.
  • the specific treatment includes:
  • the working mode of the UAV propeller is a power supply mode, controlling the UAV propeller to perform a rotation process of setting a power blade angle and setting a power rotation rate indicated by the power supply mode to generate Corresponding lifting power; or,
  • the working mode of the UAV propeller is a wind speed providing mode
  • determining a wind speed providing level of the wind speed providing mode according to the acquired environmental information in the target area and performing the wind speed providing level indicated by the wind speed providing mode
  • the wind speed blade angle and the rotation process of setting the wind speed rotation rate are set to generate wind power corresponding to the wind speed.
  • the regulator is provided by the UAV propeller
  • the blade angle of the man-machine propeller is adjusted to a set power blade angle indicated by the power supply mode, and a rotational operation of the set power rotation rate indicated by the power supply mode is performed, so that the unmanned The propeller is used as a power drive device to generate corresponding lifting power for the drone to prepare for the normal operation of the drone.
  • the propeller of the UAV propeller When the working mode of the propeller of the drone (ie, the working mode of the UAV propeller) is the power supply mode, then the propeller of the UAV propeller is passed through a regulator provided on the UAV propeller Adjusting the blade angle to the blade angle indicated by the wind speed providing mode, and performing a rotational running operation of the rotation rate indicated by the power supply mode, so that the UAV propeller is provided as a wind power supply device to the drone Producing a corresponding wind force can also be understood as a function of acting as a fan.
  • the drone may obtain the environmental information in the target area where the drone is currently located through a sensor or through a network.
  • the environmental information may include weather information such as temperature, air pressure, and wind power within the target area.
  • the drone may determine that the wind speed is provided in the wind speed providing mode corresponding to the environmental information of the target area, and finally the drone will provide the matched matching blade according to the wind speed.
  • the angle and the rotation rate are used to perform the operation to generate the wind speed that the wind speed provides the grade matching; wherein the mapping relationship between the environment information and the wind speed providing grade may be preset, and the different wind speeds provide different grades.
  • Environmental information is used to perform the operation to generate the wind speed that the wind speed provides the grade matching; wherein the mapping relationship between the environment information and the wind speed providing grade may be preset, and the different wind speeds provide different grades.
  • the determining the wind speed providing level of the wind speed providing mode according to the environmental information in the acquired target area, and setting the wind speed blade angle and the setting indicated by the wind speed providing level of the wind speed providing mode specifically includes:
  • the environmental information including at least temperature data
  • the wind speed providing grade including a first grade and a second grade
  • the first grade is smaller than the second grade, and the first A wind speed rotation rate is less than the second wind speed rotation rate.
  • the drone determines that the working mode of the propeller or the drone of the drone is in the wind speed providing mode
  • the drone detects the current position of the drone through the sensor.
  • the environmental data here may be the temperature data; and further, according to the mapping relationship between the pre-stored temperature data and the wind speed providing grades in the wind speed providing mode, determining the temperature data of the current environment of the drone is matched/ The corresponding wind speed is provided with a grade; then the propeller of the drone is controlled to perform a rotary operation of the blade angle and the rotation rate corresponding thereto.
  • the wind speed provides a first grade (such as one of the fans)
  • the drone may adjust or control the drone propeller according to the first grade by a regulator.
  • the first wind speed blade angle and the first wind speed rotation rate are operated and rotated to generate a wind force matched with the first gear; and when the wind speed is provided to the second gear level, the unmanned The machine may be adjusted or controlled by the regulator to operate and rotate the UAV propeller according to a second wind speed blade angle and a second wind speed rotation rate corresponding to the second gear to generate and the second The wind power matched by the grade, wherein when the first grade is smaller than the second grade, the temperature data in the environmental information corresponding to the first grade is smaller than the environmental information corresponding to the second grade Temperature data, and the first wind speed rotation rate is less than the second wind speed rotation rate.
  • the method further includes:
  • the drone can periodically/timely detect if the currently operating blade angle meets the requirements.
  • the UAV detects/receives a calibration command for a blade angle in an operating mode of the UAV propeller
  • the UAV acquires a current working mode of the UAV propeller
  • the blade angle is matched with the pre-stored standard/verification angle (which may be an angle region) corresponding to the current working mode; if the matching is inconsistent, the drone may automatically generate corresponding prompt information.
  • the pre-stored standard/verification angle which may be an angle region
  • the propeller of the UAV is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller, first receiving a control command, and the control command is used to control the
  • the man-machine propeller performs a rotating operation, and then determines an operation mode of the unmanned aerial vehicle propeller in response to the control command, and finally controls the unmanned aerial vehicle propeller to perform adjustment of a blade angle and a rotation rate indicated by the working mode. Run processing; this can be adjusted by the regulator to make the drone
  • the propeller can be operated in multiple operating modes, improving the utility of the drone.
  • FIG. 2 it is a schematic flowchart of another method for adjusting a blade angle of an unmanned aerial vehicle propeller according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may include the following steps.
  • the drone determines the working mode of the unmanned aerial vehicle propeller by analyzing the control command; or determining the posture information of the unmanned aerial vehicle propeller and analyzing the posture information to determine The working mode of the drone propeller.
  • the working mode of the UAV propeller is a power supply mode, controlling the UAV propeller to perform a rotation process of setting a power blade angle and setting a power rotation rate indicated by the power supply mode, To generate the corresponding lifting power.
  • the working mode of the UAV propeller is a wind speed providing mode
  • determine a wind speed providing level of the wind speed providing mode according to the acquired environmental information in the target area and perform a wind speed providing level of the wind speed providing mode.
  • the indicated setting of the wind speed blade angle and the rotation process of setting the wind speed rotation rate are performed to generate a wind force that provides a grade corresponding to the wind speed.
  • step S203 and the step S204 are parallel and optional, that is, the drone can be arbitrarily selected from the step S203 and the step S204, which is not limited in the embodiment of the present invention.
  • the steps are continued. S206; otherwise, the process ends.
  • FIG. 3 it is a schematic flowchart of another method for adjusting the blade angle of the UAV propeller according to the embodiment of the present invention.
  • the method of the embodiment of the present invention may include the above steps S201-S206, wherein the steps are S204 specifically includes the following steps.
  • the working mode of the unmanned aerial vehicle propeller is a wind speed providing mode, acquiring the drone Environmental information within the target area in which it is located, the environmental information including at least temperature data.
  • the first grade is smaller than the second grade, and the first A wind speed rotation rate is less than the second wind speed rotation rate.
  • the propeller of the UAV is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller, first receiving a control command, and the control command is used to control the
  • the man-machine propeller performs a rotating operation, and then determines an operation mode of the unmanned aerial vehicle propeller in response to the control command, and finally controls the unmanned aerial vehicle propeller to perform adjustment of a blade angle and a rotation rate indicated by the working mode.
  • the operation process can be adjusted by the regulator so that the propeller of the drone can be operated in multiple working modes, which improves the utility of the drone.
  • the drone 4 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • the drone 4 of the embodiment of the present invention is provided with a propeller for providing driving power, and is disposed on a propeller of the drone.
  • the receiving module 40 is configured to receive a control instruction, where the control instruction is used to control the unmanned aerial vehicle propeller to perform a rotating operation;
  • a determining module 41 configured to determine an operating mode of the unmanned aerial vehicle propeller in response to the control instruction
  • the control module 42 is configured to control the UAV propeller to perform adjustment and operation processing of the blade angle and the rotation rate indicated by the working mode.
  • FIG. 5 it is a schematic structural diagram of another UAV according to an embodiment of the present invention.
  • the UAV 4 of the embodiment of the present invention is provided with a propeller for providing driving power, and the UAV in the UAV
  • the propeller is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller.
  • the UAV 4 includes: the receiving module 40, the determining module 41, and the control module 42, wherein ,
  • the determining module 41 is specifically configured to parse the control instruction to determine an operating mode of the UAV propeller; or
  • the determining module 41 is specifically configured to acquire posture information of the unmanned aerial vehicle propeller, and analyze the posture information to determine an operating mode of the unmanned aerial vehicle propeller.
  • the working mode of the UAV propeller includes a power supply mode and a wind speed providing mode.
  • the control module 42 is specifically configured to: if the working mode of the unmanned aerial vehicle propeller is a power supply mode, control the unmanned aerial vehicle propeller to perform a set power blade angle and setting indicated by the power supply mode Rotation processing of the power rotation rate to generate corresponding lifting power; or
  • the control module 42 is specifically configured to: if the working mode of the unmanned aerial vehicle propeller is a wind speed providing mode, determine a wind speed providing level of the wind speed providing mode according to the acquired environmental information in the target area, and perform the wind speed The provided wind speed provides a set of wind speed blade angles as indicated by the grade and a rotational process of setting the wind speed rotation rate to produce a wind that provides a grade corresponding to the wind speed.
  • FIG. 6 is a schematic structural diagram of a control module according to an embodiment of the present invention, where the control module 42 includes:
  • the obtaining unit 420 is configured to obtain environment information in a target area where the drone is currently located, where the environment information includes at least temperature data;
  • a determining unit 421, configured to analyze temperature data in the environmental information in the target area to determine a corresponding required wind speed providing level, the wind speed providing level includes a first grade and a second grade;
  • a first control unit 422 configured to control the UAV propeller according to a first wind speed blade angle and a first wind speed rotation rate corresponding to the first gear when the wind speed is provided as a first gear Running and rotating to generate a wind force that matches the first grade;
  • a second control unit 423 configured to control the drone when the wind speed provides a second grade
  • the propeller is operated and rotated according to a second wind speed blade angle and a second wind speed rotation rate corresponding to the second gear to generate a wind force matched with the second gear;
  • the first grade is smaller than the second grade, and the first A wind speed rotation rate is less than the second wind speed rotation rate.
  • the drone further includes:
  • the determining module 43 is configured to determine, when the calibration command for the blade angle in the working mode of the UAV propeller is received, whether the blade angle in the current working mode in which the UAV propeller is located is Pre-stored matching with the verification angle corresponding to the current working mode;
  • the alarm module 44 is configured to generate and issue corresponding alarm information if the determination result of the determination module 43 is negative.
  • the propeller of the UAV is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller, first receiving a control command, and the control command is used to control the
  • the man-machine propeller performs a rotating operation, and then determines an operation mode of the unmanned aerial vehicle propeller in response to the control command, and finally controls the unmanned aerial vehicle propeller to perform adjustment of a blade angle and a rotation rate indicated by the working mode.
  • the operation process can be adjusted by the regulator so that the propeller of the drone can be operated in multiple working modes, which improves the utility of the drone.
  • FIG. 7 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • the drone of the embodiment of the present invention may include a display screen, a button, a speaker, a pickup, and the like, and further includes: at least one bus 501, at least one processor 502 connected to the bus 501, and At least one memory 503 to which the bus 501 is connected, a communication device 505 that implements a communication function, and a power supply device 504 that supplies power to each power consumption module of the terminal.
  • the processor 502 can call the code stored in the memory 503 to perform related functions via the bus 501, wherein the memory 503 includes an operating system, a data transfer application.
  • the propeller of the drone is provided with a regulator for adjusting a blade angle and a rotation rate of the UAV propeller, and the processor 502 is configured to:
  • the UAV propeller is controlled to perform adjustment and operation of the blade angle and the rotation rate indicated by the operating mode.
  • processor 502 is specifically configured to:
  • processor 502 is specifically configured to:
  • the working mode of the UAV propeller is a power supply mode, controlling the UAV propeller to perform a rotation process of setting a power blade angle and setting a power rotation rate indicated by the power supply mode to generate Corresponding lifting power; or,
  • the working mode of the UAV propeller is a wind speed providing mode
  • determining a wind speed providing level of the wind speed providing mode according to the acquired environmental information in the target area and performing the wind speed providing level indicated by the wind speed providing mode
  • the wind speed blade angle and the rotation process of setting the wind speed rotation rate are set to generate wind power corresponding to the wind speed.
  • processor 502 is specifically configured to:
  • the environmental information including at least temperature data
  • the wind speed providing grade including a first grade and a second grade
  • the first gear is smaller than the second gear, and the first wind speed rotation rate is smaller than the second wind speed rotation rate.
  • processor 502 is further configured to:
  • the propeller of the UAV is provided with a regulator for adjusting the blade angle and the rotation rate of the UAV propeller, first receiving a control command, and the control command is used to control the
  • the man-machine propeller performs a rotating operation, and then determines an operation mode of the unmanned aerial vehicle propeller in response to the control command, and finally controls the unmanned aerial vehicle propeller to perform adjustment of a blade angle and a rotation rate indicated by the working mode.
  • the operation process can be adjusted by the regulator so that the propeller of the drone can be operated in multiple working modes, which improves the utility of the drone.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, where the program includes some or all of the blade angle adjustment method based on the UAV propeller described in the foregoing method embodiment. step.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be It is an indirect coupling or communication connection through some interface, device or unit, and may be in electrical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例提供了一种基于无人机螺旋桨的桨叶角度调节的方法及无人机,其中,所述无人机的螺旋桨设有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述方法包括:接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;响应所述控制指令,确定所述无人机螺旋桨的工作模式;控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。采用本发明,可给无人机螺旋桨提供多种工作模式,且不同工作模式对其充当的功能不同,实现螺旋桨的多样化和实用性。

Description

一种基于无人机螺旋桨的桨叶角度调节的方法及无人机 技术领域
本发明涉及终端技术领域,尤其涉及一种基于无人机螺旋桨的桨叶角度调节的方法及无人机。
背景技术
目前,在航海、航天等行业中,大多数都采用螺旋桨来作为设备的驱动装置,诸如船舶、水下机器人、以及无人机等设备都利用螺旋桨来作动力驱动机构。
然而在实践中发现,这些螺旋桨安装到设备后,螺旋桨的桨叶都是固定、不可移动的,特别是安装有螺旋桨的无人机,该螺旋桨是固定不可变的,仅充当无人机起落的动力装置,没有其他的功能;这样的实现方式单一、无法满足用户的需求。
发明内容
本发明实施例所要解决的技术问题在于,提供一种基于无人机螺旋桨的桨叶角度调节的方法及无人机,可提升无人机螺旋桨的多变性和实用性。
一方面,本发明实施例公开提供了一种基于无人机螺旋桨的桨叶角度调节的方法,所述无人机的螺旋桨设有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述方法包括:
接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
响应所述控制指令,确定所述无人机螺旋桨的工作模式;
控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
其中可选地,所述响应所述控制指令,确定所述无人机螺旋桨的工作模式具体包括:
解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
其中可选地,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,所述控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理具体包括:
若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
其中可选地,所述根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理具体包括:
获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
其中可选地,所述方法还包括:
当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断 所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
若否,则生成并发出对应的报警信息。
另一方面,本发明实施例还公开提供了一种无人机,所述无人机配置有用于提供驱动动力的螺旋桨,在所述无人机的螺旋桨上设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述无人机包括:
接收模块,用于接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
确定模块,用于响应所述控制指令,确定所述无人机螺旋桨的工作模式;
控制模块,用于控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
其中可选地,
所述确定模块,具体用于解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
所述确定模块,具体用于获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
其中可选地,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,
所述控制模块,具体用于若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
所述控制模块,具体用于若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
其中可选地,所述控制模块包括:
获取单元,用于获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
确定单元,用于分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
第一控制单元,用于当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
第二控制单元,用于当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
其中可选地,所述无人机还包括:
判断模块,用于当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
报警模块,用于若所述判断模块的判断结果为否,则生成并发出对应的报警信息。
本发明实施例中无人机的螺旋桨设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,首先接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作,接着响应所述控制指令,确定所述无人机螺旋桨的工作模式,最后控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理;这样可以经过调节器的调节使得无人机的螺旋桨可以处于多个工作模式进行运行,提升了无人机的实用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图;
图2是本发明实施例的另一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图;
图3是本发明实施例的另一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图;
图4是本发明实施例的一种无人机的结构示意图;
图5是本发明实施例的另一种无人机的结构示意图;
图6是本发明实施例的一种控制模块的结构示意图;
图7是本发明实施例的另一种无人机的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”(如果存在)等是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参见图1,是本发明实施例的一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图,本发明实施例的所述方法可以包括如下步骤。
S101、接收控制指令,所述控制指令用于控制无人机的螺旋桨进行旋转工作。
本发明实施例中,在无人机的螺旋桨上安装调节器(或控制器),所述调节器用于调节该无人机的螺旋桨的桨叶角度和/或旋转速度;或者,将无人机的螺旋桨设计成可转动结构/机构,使得该无人机的螺旋桨不仅能传统地充当该无人机 的动力驱动装置,还能通过对该无人机的螺旋桨的桨叶角度和/或旋转速率的调节使其可以拥有其他的功能,示例性地如对该无人机的螺旋桨的桨叶角度的调节使其充当为风扇,以供用户使用,进一步丰富了无人机的功能,使无人机的使用得到更大的空间,提升用户体验。
在实际应用中,用户可以对无人机进行操作,如旋转无人机上的按钮等向该无人机发送对应的控制指令;或者,该无人机可以通过有线/无线通讯的方式(如WIFI、蓝牙、数据线等)接收其他终端发送的控制指令,所述控制指令用于指示该无人机的螺旋桨进行旋转工作。
S102、响应所述控制指令,确定所述无人机螺旋桨的工作模式。
本发明实施例中,无人机接收到该控制指令时,可以响应该控制指令,进而确定该无人机螺旋桨的工作模式。
其中可选地,所述响应所述控制指令,确定所述无人机螺旋桨的工作模式具体包括:
解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
作为本发明实施例一种可能的实现方式,当所述控制指令中携带有用于指示该无人机的螺旋桨的工作模式时,所述无人机可以直接通过解析所述控制指令来得到/确定所述无人机螺旋桨的工作模式。
作为本发明实施例另一种可能的实现方式,所述无人机可以通过检测该无人机(或无人机的螺旋桨)的姿态信息来确定该无人机螺旋桨的工作模式,所述姿态信息是指所述无人机的螺旋桨相对水平面(地面)的夹角或姿态角度信息。示例性地如,当所述无人机的螺旋桨与水平面平行时,可以认为该无人机此时会飞行,无人机的螺旋桨将作为动力驱动装置使用,此时确定该无人机的螺旋桨的工作模式为动力提供模式;当所述无人机的螺旋桨与水平面之间的姿态角度处于设定夹角阈值范围时,则确定该无人机的螺旋桨的工作模式为风速提供模式,也可以理解为用户此时将无人机的螺旋桨调节至与水平面存在一定的姿态角度情况下,希望该无人机的螺旋桨充当风扇来使用,此时该无人机的螺旋 桨的工作模式为风速提供模式。
S103、控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
本发明实施例中,无人机在确定到该无人机或无人机的螺旋桨的工作模式后,所述无人机可以通过调节本无人机上按照的调节器来使该无人机螺旋桨的桨叶角度处于所述工作模式所指示的桨叶角度,以及该无人机螺旋桨的旋转速率处于所述工作模式所指示的旋转速率,进行正常运行工作。
其中可选地,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,所述控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理具体包括:
若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
在实际应用中,当所述无人机的螺旋桨的工作模式(即该无人机螺旋桨的工作模式)为动力提供模式时,那么通过所述无人机螺旋桨上设置的调节器将所述无人机螺旋桨的桨叶角度调节至所述动力提供模式所指示的设定动力桨叶角度,并进行所述动力提供模式所指示的设定动力旋转速率的旋转运行工作,以使所述无人机螺旋桨作为动力驱动装置给无人机产生对应的升降动力,以备该无人机正常运行工作。
当所述无人机的螺旋桨的工作模式(即该无人机螺旋桨的工作模式)为动力提供模式时,那么通过所述无人机螺旋桨上设置的调节器将所述无人机螺旋桨的桨叶角度调节至所述为风速提供模式所指示的桨叶角度,并进行所述动力提供模式所指示的旋转速率的旋转运行工作,以使所述无人机螺旋桨作为风力提供装置给无人机产生对应的风力,也可以理解为充当风扇的功能。
可选地,当所述无人机的螺旋桨的工作模式为动力提供模式时,所述无人机还可以通过传感器或通过网络来获取该无人机当前所处的目标区域内的环境信息,所述环境信息可以包括该目标区域内的气温、气压、风力大小等气象信息。进而,所述无人机可以确定与所述目标区域的环境信息所对应在所述风速提供模式下的风速提供档次,最后所述无人机将按照所述风速提供档次所对应匹配的桨叶角度和旋转速率来进行运行工作,以产生该风速提供档次所匹配的风力;其中,环境信息与风速提供档次之间的映射关系,可以是预先设置好的,且不同的风速提供档次对应不同的环境信息。
其中可选地,所述根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理具体包括:
获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
示例性地如,当所述无人机确定到该无人机或无人机的螺旋桨所处的工作模式为风速提供模式时,所述无人机通过传感器检测该无人机当前所处的环境数据,这里可以是气温数据;进而根据预存各气温数据与风速提供模式下的各风速提供档次之间的映射关系,确定出所述无人机当前所处环境的气温数据所匹配/ 对应的风速提供档次;接着控制所述无人机的螺旋桨进行与之相对应的桨叶角度和旋转速率的旋转运行工作。如当所述风速提供档次为第一档次(如风扇中的一档)时,则所述无人机可以通过调节器来调节或控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;又如当所述风速提供档次为第二档次时,则所述无人机可以通过调节器来调节或控制控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力,其中,当所述第一档次小于所述第二档次时,则与所述第一档次对应的环境信息中的气温数据小于与所述第二档次对应的环境信息中的气温数据,且所述第一风速旋转速率小于所述第二风速旋转速率。
其中可选地,所述方法还包括:
当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
若否,则生成并发出对应的报警信息。
为防止桨叶角度不在正确的工作角度范围内,所述无人机可以周期性/定时性地来检测当前工作的桨叶角度是否符合要求。具体实现中,所述无人机在检测/接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,所述无人机获取该无人机螺旋桨当前工作模式下的桨叶角度,并与预存的与所述当前工作模式所对应的标准/验证角度(可以是一个角度区域)进行匹配;如果匹配不一致,则所述无人机可以自动生成对应的提示信息,以提示该无人机螺旋桨当前工作的桨叶角度有误,请及时调整,以免出现事故。
本发明实施例中无人机的螺旋桨设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,首先接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作,接着响应所述控制指令,确定所述无人机螺旋桨的工作模式,最后控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理;这样可以经过调节器的调节使得无人机的 螺旋桨可以处于多个工作模式进行运行,提升了无人机的实用性。
请参见图2,是本发明实施例的另一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图,本发明实施例的所述方法可以包括如下步骤。
S201、接收控制指令,所述控制指令用于控制无人机螺旋桨进行旋转工作。
S202、响应所述控制指令,确定所述无人机螺旋桨的工作模式。
本发明实施例中,无人机通过解析所述控制指令,来确定所述无人机螺旋桨的工作模式;或者,通过获取所述无人机螺旋桨的姿态信息,并分析所述姿态信息来确定所述无人机螺旋桨的工作模式。
S203、若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力。
S204、若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
需要说明的是,步骤S203和步骤S204是并列可选地,也即是无人机可以从步骤S203和步骤S204中任意选取一个步骤进行执行,本发明实施例不作限定。
S205、当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配。
本发明实施例中,当无人机判断到所述无人机螺旋桨所处的当前工作模式下的桨叶角度和预存的与所述当前工作模式所对应的验证角度匹配不一致时,继续执行步骤S206;否则,结束流程。
S206、生成并发出对应的报警信息。
请一并参见图3,是本发明实施例的另一种基于无人机螺旋桨的桨叶角度调节方法的流程示意图,本发明实施例的所述方法可以包括如上步骤S201-步骤S206,其中步骤S204具体包括如下步骤。
S301、若所述无人机螺旋桨的工作模式为风速提供模式,则获取所述无人机当 前所处的目标区域内的环境信息,所述环境信息至少包括温度数据。
S302、分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次。
S303、当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力。
S304、当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
本发明实施例中无人机的螺旋桨设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,首先接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作,接着响应所述控制指令,确定所述无人机螺旋桨的工作模式,最后控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理;这样可以经过调节器的调节使得无人机的螺旋桨可以处于多个工作模式进行运行,提升了无人机的实用性。
请参见图4,是本发明实施例的一种无人机的结构示意图,本发明实施例的所述无人机4配置有用于提供驱动动力的螺旋桨,在所述无人机的螺旋桨上设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述无人机4包括:
接收模块40,用于接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
确定模块41,用于响应所述控制指令,确定所述无人机螺旋桨的工作模式;
控制模块42,用于控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
本发明实施例中涉及的各个模块的具体实现可参考图1至图3对应实施例中相关 功能模块或者实施步骤的描述,在此不赘述。
请一并参见图5,是本发明实施例的另一种无人机的结构示意图,本发明实施例的所述无人机4配置有用于提供驱动动力的螺旋桨,在所述无人机的螺旋桨上设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述无人机4包括:上述的接收模块40、确定模块41、控制模块42,其中,
所述确定模块41,具体用于解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
所述确定模块41,具体用于获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
其中可选地,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,
所述控制模块42,具体用于若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
所述控制模块42,具体用于若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
在一种可能的实现方式,具体参见图6,是本发明实施例的一种控制模块的结构示意图,其中,所述控制模块42包括:
获取单元420,用于获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
确定单元421,用于分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
第一控制单元422,用于当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
第二控制单元423,用于当所述风速提供档次为第二档次时,控制所述无人机 螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
其中可选地,所述无人机还包括:
判断模块43,用于当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
报警模块44,用于若所述判断模块43的判断结果为否,则生成并发出对应的报警信息。
本发明实施例中涉及的各个模块的具体实现可参考图1至图6对应实施例中相关功能模块或者实施步骤的描述,在此不赘述。
本发明实施例中无人机的螺旋桨设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,首先接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作,接着响应所述控制指令,确定所述无人机螺旋桨的工作模式,最后控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理;这样可以经过调节器的调节使得无人机的螺旋桨可以处于多个工作模式进行运行,提升了无人机的实用性。
再请参见图7,是本发明实施例的一种无人机的结构示意图。如图7所示,本发明实施例的所述无人机可以包括显示屏、按键、扬声器、拾音器等模块,并且还包括:至少一个总线501、与总线501相连的至少一个处理器502以及与总线501相连的至少一个存储器503,实现通信功能的通信装置505,为终端各耗电模块供电的电源装置504。
所述处理器502可通过总线501,调用存储器503中存储的代码以执行相关的功能,其中,存储器503包括操作系统、数据传输应用程序。
所述无人机的螺旋桨设有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述处理器502,用于:
接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
响应所述控制指令,确定所述无人机螺旋桨的工作模式;
控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
进一步可选地,所述处理器502具体用于:
解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
进一步可选地,所述处理器502具体用于:
若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
进一步可选地,所述处理器502具体用于:
获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次 对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
进一步可选地,所述处理器502还用于:
当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
若否,则生成并发出对应的报警信息。
本发明实施例中无人机的螺旋桨设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,首先接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作,接着响应所述控制指令,确定所述无人机螺旋桨的工作模式,最后控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理;这样可以经过调节器的调节使得无人机的螺旋桨可以处于多个工作模式进行运行,提升了无人机的实用性。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的基于无人机螺旋桨的桨叶角度调节方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明的各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
技术问题
问题的解决方案
发明的有益效果

Claims (11)

  1. 一种基于无人机螺旋桨的桨叶角度调节的方法,其特征在于,所述无人机的螺旋桨设有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述方法包括:
    接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
    响应所述控制指令,确定所述无人机螺旋桨的工作模式;
    控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
  2. 如权利要求1所述的方法,其特征在于,所述响应所述控制指令,确定所述无人机螺旋桨的工作模式具体包括:
    解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
    获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
  3. 如权利要求1所述的方法,其特征在于,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,所述控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理具体包括:
    若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
    若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档 次的风力。
  4. 如权利要求3所述的方法,其特征在于,所述根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理具体包括:
    获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
    分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
    当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
    当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
    其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
  5. 如权利要求1-4中任意一项所述的方法,其特征在于,所述方法还包括:
    当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
    若否,则生成并发出对应的报警信息。
  6. 一种无人机,其特征在于,所述无人机配置有用于提供驱动动力的螺旋桨,在所述无人机的螺旋桨上设置有调节器,所述调节器用于调节所述无人机螺旋桨的桨叶角度和旋转速率,所述无人机包括:
    接收模块,用于接收控制指令,所述控制指令用于控制所述无人机螺旋桨进行旋转工作;
    确定模块,用于响应所述控制指令,确定所述无人机螺旋桨的工作模式;
    控制模块,用于控制所述无人机螺旋桨进行所述工作模式所指示的桨叶角度和旋转速率的调节和运行处理。
  7. 如权利要求6所述的无人机,其特征在于,
    所述确定模块,具体用于解析所述控制指令,以确定所述无人机螺旋桨的工作模式;或者,
    所述确定模块,具体用于获取所述无人机螺旋桨的姿态信息,分析所述姿态信息以确定所述无人机螺旋桨的工作模式。
  8. 如权利要求6所述的无人机,其特征在于,所述无人机螺旋桨的工作模式包括动力提供模式和风速提供模式,
    所述控制模块,具体用于若所述无人机螺旋桨的工作模式为动力提供模式,则控制所述无人机螺旋桨进行所述动力提供模式所指示的设定动力桨叶角度和设定动力旋转速率的旋转处理,以产生对应的升降动力;或者,
    所述控制模块,具体用于若所述无人机螺旋桨的工作模式为风速提供模式,则根据获取的目标区域内的环境信息确定所述风速提供模式的风速提供档次,并进行所述风速提供模式的风速提供档次所指示的设定风速桨叶角度以及设定风速旋转速率的旋转处理,以产生对应风速提供档次的风力。
  9. 如权利要求8所述的无人机,其特征在于,所述控制模块包括:
    获取单元,用于获取所述无人机当前所处的目标区域内的环境信息,所述环境信息至少包括温度数据;
    确定单元,用于分析所述目标区域内的环境信息中的温度数据,以确定对应所需的风速提供档次,所述风速提供档次包括第一档次和第二档次;
    第一控制单元,用于当所述风速提供档次为第一档次时,控制所述无人机螺旋桨按照与所述第一档次所对应的第一风速桨叶角度和第一风速旋转速率进行运行和旋转,以产生与所述第一档次所匹配的风力;
    第二控制单元,用于当所述风速提供档次为第二档次时,控制所述无人机螺旋桨按照与所述第二档次所对应的第二风速桨叶角度和第二风速旋转速率进行运行和旋转,以产生与所述第二档次所匹配的风力;
    其中,如果与所述第一档次对应的环境信息中的温度数据小于与所述第二档次对应的环境信息中的温度数据,则所述第一档次小于所述第二档次,且所述第一风速旋转速率小于所述第二风速旋转速率。
  10. 如权利要求6-9中任意一项所述的无人机,其特征在于,所述无人机还包括:
    判断模块,用于当接收到针对所述无人机螺旋桨的工作模式下的桨叶角度的校验指令时,判断所述无人机螺旋桨所处的当前工作模式下的桨叶角度是否和预存的与所述当前工作模式所对应的验证角度匹配;
    报警模块,用于若所述判断模块的判断结果为否,则生成并发出对应的报警信息。
  11. 一种终端,其特征在于,所述终端包括:通信装置、电源装置、存储器和处理器,其中,所述处理器用于执行如上权利要求1-5任一项所述的方法。
PCT/CN2017/071381 2016-12-07 2017-01-17 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机 WO2018103184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611117081.9 2016-12-07
CN201611117081.9A CN106585979B (zh) 2016-12-07 2016-12-07 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机

Publications (1)

Publication Number Publication Date
WO2018103184A1 true WO2018103184A1 (zh) 2018-06-14

Family

ID=58596442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071381 WO2018103184A1 (zh) 2016-12-07 2017-01-17 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机

Country Status (2)

Country Link
CN (1) CN106585979B (zh)
WO (1) WO2018103184A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961921B2 (en) 2018-09-19 2021-03-30 Pratt & Whitney Canada Corp. Model-based control system and method for a turboprop engine
CN112758315A (zh) * 2019-10-21 2021-05-07 北京京东乾石科技有限公司 一种螺旋桨桨叶角度调节方法和装置
CN113252933A (zh) * 2021-05-12 2021-08-13 北京航空航天大学 一种螺旋桨来流速度检测装置及方法
CN115583363A (zh) * 2022-01-06 2023-01-10 南昌三瑞智能科技有限公司 无人机电机和螺旋桨的组合测试方法、装置及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437542B (zh) * 2020-04-01 2021-11-09 广东中科瑞泰智能科技有限公司 一种灭火无人机的喷射增稳方法及装置
CN113993784A (zh) * 2020-05-19 2022-01-28 深圳市大疆创新科技有限公司 一种无人飞行器启动方法、装置及无人飞行器
CN114313252B (zh) * 2021-12-16 2023-02-14 广州极飞科技股份有限公司 一种无人设备控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104608924A (zh) * 2015-02-12 2015-05-13 中电科(德阳广汉)特种飞机系统工程有限公司 带倾转固定翼的多旋翼飞行器及其控制方法
CN204489181U (zh) * 2015-03-10 2015-07-22 广州天翔航空科技有限公司 可变电机角度四轴垂直起降固定翼复合无人机
WO2016085610A1 (en) * 2014-11-26 2016-06-02 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
CN105836108A (zh) * 2016-03-29 2016-08-10 李新 飞行器、飞行控制方法及系统
CN106043696A (zh) * 2016-06-30 2016-10-26 天津曙光天成科技有限公司 一种无人机飞行系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336266A (zh) * 2010-07-21 2012-02-01 贵州贵航无人机有限责任公司 一种螺旋桨无人机电动变桨距的方法及装置
CN104991562B (zh) * 2015-05-05 2017-11-07 杨珊珊 一种飞行器用操作系统、飞行器的操控方法及飞行器
CN105676866A (zh) * 2016-04-20 2016-06-15 北京博瑞爱飞科技发展有限公司 无人机的飞行控制方法和装置
CN105867416A (zh) * 2016-04-20 2016-08-17 北京博瑞爱飞科技发展有限公司 无人机的飞行控制方法、装置和无人机
CN106020220B (zh) * 2016-05-24 2023-12-08 零度智控(北京)智能科技有限公司 无人机、无人机飞行控制方法及装置
CN106054908A (zh) * 2016-06-17 2016-10-26 上海惠盛科技有限公司 无人机姿态调节装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085610A1 (en) * 2014-11-26 2016-06-02 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
CN104608924A (zh) * 2015-02-12 2015-05-13 中电科(德阳广汉)特种飞机系统工程有限公司 带倾转固定翼的多旋翼飞行器及其控制方法
CN204489181U (zh) * 2015-03-10 2015-07-22 广州天翔航空科技有限公司 可变电机角度四轴垂直起降固定翼复合无人机
CN105836108A (zh) * 2016-03-29 2016-08-10 李新 飞行器、飞行控制方法及系统
CN106043696A (zh) * 2016-06-30 2016-10-26 天津曙光天成科技有限公司 一种无人机飞行系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961921B2 (en) 2018-09-19 2021-03-30 Pratt & Whitney Canada Corp. Model-based control system and method for a turboprop engine
CN112758315A (zh) * 2019-10-21 2021-05-07 北京京东乾石科技有限公司 一种螺旋桨桨叶角度调节方法和装置
CN112758315B (zh) * 2019-10-21 2023-12-05 北京京东乾石科技有限公司 一种螺旋桨桨叶角度调节方法和装置
CN113252933A (zh) * 2021-05-12 2021-08-13 北京航空航天大学 一种螺旋桨来流速度检测装置及方法
CN113252933B (zh) * 2021-05-12 2022-03-11 北京航空航天大学 一种螺旋桨来流速度检测装置及方法
CN115583363A (zh) * 2022-01-06 2023-01-10 南昌三瑞智能科技有限公司 无人机电机和螺旋桨的组合测试方法、装置及介质
CN115583363B (zh) * 2022-01-06 2024-04-12 南昌三瑞智能科技有限公司 无人机电机和螺旋桨的组合测试方法、装置及介质

Also Published As

Publication number Publication date
CN106585979B (zh) 2019-07-09
CN106585979A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018103184A1 (zh) 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机
CN108279694B (zh) 电子设备及其控制方法
CN106843245B (zh) 一种无人机姿态控制方法、装置及无人机
WO2019119829A1 (zh) 一种无人机控制方法、装置、遥控设备和无人机系统
US11809204B2 (en) Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
US10551853B2 (en) Aerial vehicle control method and aerial vehicle
CN109668278B (zh) 空调器的控制方法、空调器及存储介质
US20170344026A1 (en) Uav, uav flight control method and device
KR20180030826A (ko) 무인 자율 시스템들에 대한 제어 정규화
US11472038B2 (en) Multi-device robot control
CN109878715B (zh) 无人飞行器的故障监测预警方法及无人飞行器
US11153494B2 (en) Maximum temperature point tracking method, device and unmanned aerial vehicle
CN114779796A (zh) 飞行控制方法及装置、监测方法及装置、存储介质
WO2018094682A1 (zh) 无人飞行器的风速检测方法、系统和无人飞行器
WO2023173307A1 (zh) 可移动平台及其控制方法、信息提示方法、装置、电子设备、计算机可读存储介质
CN113302128A (zh) 螺旋桨异常检测方法、无人机、控制终端、系统及介质
WO2019210639A1 (zh) 一种油门控制的方法、装置及无人机
WO2021142594A1 (zh) 参数更新方法、设备、系统及计算机可读存储介质
WO2021072733A1 (zh) 无人机的控制所述方法、装置以及无人机
WO2018152827A1 (zh) 无人机的远程控制方法、设备和系统
WO2018053816A1 (zh) 遥控器的控制方法及遥控器
CN111963473B (zh) 一种风扇控制方法、装置及风扇
WO2023221558A1 (zh) 用于控制新风机的方法及装置、新风机、存储介质
WO2022237841A1 (zh) 空调的控制方法、装置及设备
WO2020107451A1 (zh) 可移动平台的控制方法、可移动平台及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879001

Country of ref document: EP

Kind code of ref document: A1