WO2018053816A1 - 遥控器的控制方法及遥控器 - Google Patents

遥控器的控制方法及遥控器 Download PDF

Info

Publication number
WO2018053816A1
WO2018053816A1 PCT/CN2016/099966 CN2016099966W WO2018053816A1 WO 2018053816 A1 WO2018053816 A1 WO 2018053816A1 CN 2016099966 W CN2016099966 W CN 2016099966W WO 2018053816 A1 WO2018053816 A1 WO 2018053816A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
remote controller
rocker
detected
detection information
Prior art date
Application number
PCT/CN2016/099966
Other languages
English (en)
French (fr)
Inventor
张益�
万日栋
蒋宁
尤中乾
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680002591.3A priority Critical patent/CN107077147B/zh
Priority to PCT/CN2016/099966 priority patent/WO2018053816A1/zh
Publication of WO2018053816A1 publication Critical patent/WO2018053816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0016Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the embodiment of the invention relates to the field of drones, and in particular to a control method of a remote controller and a remote controller.
  • the user's handheld remote control can control the flight of the unmanned aerial vehicle
  • the joystick is mounted on the remote controller, and the user controls the flying speed and the flight direction of the unmanned aerial vehicle by manipulating the joystick.
  • a Hall element is mounted on the bottom of the rocker, and the Hall element is used to sense the rotation angle of the rocker.
  • the rotation angle of the rocker represents the control information of the UAV by the remote controller, but if the Hall element is subjected to the surrounding magnetic field When the interference is large, the Hall element will not be able to accurately sense the rotation angle of the rocker, which may result in the remote control of the drone not being able to accurately control the drone, or even the consequences of the uncontrollable drone.
  • Embodiments of the present invention provide a remote control control method and a remote controller to improve the safety of a drone flight.
  • An aspect of an embodiment of the present invention is to provide a control method of a remote controller including a joystick, a position sensor for detecting position information of the joystick, and an interference detecting sensor for detecting an interference signal of the surrounding environment. , the method includes:
  • a remote controller including: a rocker, a position sensor for detecting motion position information of the joystick, an interference detecting sensor for detecting an interference signal of the surrounding environment, and one or more A processor, working collectively or separately, the one or more processors being used to:
  • the control method and the remote controller of the remote controller provided by the embodiment of the present invention determine whether there is an interference signal in the surrounding environment according to the detection information of the interference detecting sensor by setting an interference detecting sensor for detecting an interference signal of the surrounding environment on the remote controller. And the strength of the interference signal, according to the strength of the interference signal, determine whether the position sensor for detecting the position information of the joystick in the remote controller is greatly affected by the interference signal, thereby determining the motion position information of the joystick detected by the position sensor. Whether it is accurate, if it is not accurate, it can prompt the user or carry out correction processing, so that the user can control the drone instantaneously and accurately, and ensure the safety of the drone during flight.
  • FIG. 1 is a flowchart of a method for controlling a remote controller according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention.
  • FIG. 5 is a structural diagram of a remote controller according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a remote controller according to another embodiment of the present invention.
  • FIG. 7 is a structural diagram of a remote controller according to another embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • Embodiments of the present invention provide a method for controlling a remote controller.
  • the remote controller described in this embodiment includes a rocker, a position sensor for detecting position information of the rocker, and an interference detecting sensor for detecting an interference signal of the surrounding environment.
  • FIG. 1 is a flowchart of a method for controlling a remote controller according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step S101 Acquire detection information of the interference detecting sensor.
  • the user controls the drone by manipulating the joystick of the remote controller, and the bottom of the rocker is mounted with a position sensor for detecting the position information of the rocker.
  • the position sensor can sense the rotation angle and rotation of the rocker.
  • Speed the user controls the rocker to make the rocker in different directions and angles, and the remote controller generates a control command for controlling the drone according to the motion position information of the rocker sensed by the position sensor, so as to realize the drone control.
  • the present embodiment is provided with an interference detecting sensor for detecting an interference signal of the surrounding environment on the remote controller.
  • Step S102 Determine, according to the detection information, an accuracy of the motion position information of the joystick detected by the position sensor.
  • the remote controller determines whether there is an interference signal in the surrounding environment and the strength of the interference signal according to the detection information of the interference detection sensor. Since the interference signal can cause interference to the position sensor, the position sensor detection can be determined according to the strength of the interference signal. Whether the motion position information of the joystick is accurate, and when the intensity of the interference signal is greater than a threshold, it may be determined that the motion position information of the joystick detected by the position sensor is not accurate.
  • an interference detecting sensor for detecting an interference signal of the surrounding environment on the remote controller determining whether there is an interference signal in the surrounding environment and the strength of the interference signal according to the detection information of the interference detecting sensor, according to the interference signal Strength and weakness, determine whether the position sensor used to detect the position information of the joystick in the remote controller is greatly affected by the interference signal, and further determine whether the motion position information of the joystick detected by the position sensor is accurate, and if not accurate, may prompt the user or perform
  • the correction process enables the user to control the drone instantaneously and accurately to ensure the safety of the drone during flight.
  • FIG. 2 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention. As shown in FIG. 2, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S201 Acquire detection information of the interference detecting sensor.
  • Step S201 is consistent with the method of step S101, and details are not described herein again.
  • Step S202 Determine, according to the detection information, an accuracy of the motion position information of the joystick detected by the position sensor.
  • Step S202 is consistent with the method of step S102, and details are not described herein again.
  • Step S203 If the motion position information of the joystick detected by the position sensor is inaccurate, correct the motion position information of the joystick detected by the position sensor according to the detection information.
  • the detection signal of the interference detecting sensor may be And calculating a compensation amount of the movement position information of the rocker, and correcting the movement position information of the rocker detected by the position sensor according to the compensation amount of the movement position information of the rocker.
  • the compensation information of the motion position information of the joystick is calculated by the detection information of the interference detection sensor, and the motion position information of the joystick detected by the position sensor is corrected according to the compensation amount of the motion position information of the joystick, and the remote controller can be
  • the corrected position information of the joystick, the drone is controlled, and the position sensor is disturbed by the interference signal, and the position information of the joystick cannot be accurately detected.
  • the remote controller cannot accurately control the problem of the drone.
  • FIG. 3 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention. As shown in FIG. 3, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S301 Acquire detection information of the interference detecting sensor.
  • the interference detecting sensor may specifically be an electric field sensor for detecting the electric field strength of the surrounding environment, and the magnetic field sensor for detecting the magnetic field strength of the surrounding environment.
  • the interference detecting sensor is an electric field sensor
  • the detecting information is specifically an electric field strength
  • the interference detecting sensor is a magnetic field sensor
  • the detecting information is specifically a magnetic field strength
  • Step S302 If the detection information is greater than the first threshold, the warning is prompted.
  • the embodiment provides a first threshold and a second threshold.
  • the first threshold may be an alarm threshold
  • the second threshold may be a severe alarm threshold.
  • the method of alerting prompts can prompt the user by using various prompting manners, and various prompting manners can be selected from visual prompts, auditory prompts, and tactile prompts, and visual reminders can be realized through display display, blinking lights, etc., and the auditory prompts can be passed through speakers and speakers.
  • the buzzer sounds and the tactile prompt can be realized by motor vibration and vibration motor vibration.
  • the warning prompt mode can also adopt a plurality of prompt manners to prompt simultaneously, or a plurality of prompt manners can be used to promptly prompt.
  • this embodiment does not limit the number of thresholds, and specific values.
  • Step S303 If the detection information is greater than the second threshold, the position sensor is turned off.
  • the remote controller can directly close the position sensor to avoid the serious impact of the position sensor receiving the interference signal.
  • the remote controller can also directly open the position sensor to ensure that the position sensor works in a stable environment.
  • the electric field sensor detects the electric field intensity of the surrounding environment or the magnetic field sensor detects the magnetic field strength of the surrounding environment.
  • the remote controller issues an early warning prompt to the user, so that the user gives up the start of the drone, or Control the drone to return to avoid possible losses.
  • the remote controller can also directly open the position sensor to ensure that the position sensor works in a stable environment.
  • FIG. 4 is a flowchart of a method for controlling a remote controller according to another embodiment of the present invention. As shown in FIG. 4, on the basis of the embodiment shown in FIG. 3, the method in this embodiment may include:
  • Step S401 Acquire an output voltage of the Hall effect sensor.
  • Step S402 determining the magnetic field strength according to the output voltage.
  • Step S403 If the magnetic field strength is greater than the first threshold, the warning is prompted.
  • Step S404 if the magnetic field strength is greater than the second threshold, the position sensor is turned off.
  • the position sensor may be a Hall effect-based component or an Inertial Measurement Unit (IMU).
  • IMU Inertial Measurement Unit
  • the Hall effect-based component uses the Hall effect to detect the motion position information of the rocker, which is easily interfered by the magnetic field. Therefore, the method of the embodiment can be applied to the Hall effect-based component to solve the Hall effect based on the Hall effect. The component is disturbed by the magnetic field, and the problem of the angle of rotation of the rocker cannot be accurately sensed.
  • Step S405 Acquire a position and a posture of the remote controller detected by the inertial measurement unit.
  • Step S406 Control the drone by means of a somatosensory control according to the position and posture of the remote controller.
  • the remote controller may also be equipped with a Hall effect-based component and an IMU, and when the Hall effect-based component is disturbed by a magnetic field, the rotation angle of the rocker cannot be accurately sensed, or the shutdown is as described in step S404.
  • the IMU can sense the posture and position of the remote controller, and then control the drone according to the posture and position of the remote controller, that is, the remote controller can be used as a somatosensory device to sense the movement information of the user's handheld remote controller.
  • the posture change and position change of the remote controller are caused, and the drone is controlled according to the posture information and the position information of the remote controller.
  • the IMU is set in the remote controller, and when the component based on the Hall effect is interfered by the magnetic field, When the angle of rotation of the rocker cannot be accurately sensed, the remote controller can control the drone according to the posture and position of the remote controller sensed by the IMU, thereby further improving the safety of the drone during flight.
  • FIG. 5 is a structural diagram of a remote controller according to an embodiment of the present invention.
  • the remote controller 50 includes a rocker 51, a position sensor 52 for detecting the position information of the rocker movement, an interference detecting sensor 53 for detecting an interference signal of the surrounding environment, and one or more processors 54,
  • the one or more processors 54 are configured to: acquire detection information of the interference detection sensor; and determine accuracy of motion position information of the joystick detected by the position sensor according to the detection information.
  • an interference detecting sensor for detecting an interference signal of the surrounding environment on the remote controller determining whether there is an interference signal in the surrounding environment and the strength of the interference signal according to the detection information of the interference detecting sensor, according to the interference signal Strength and weakness, determine whether the position sensor used to detect the position information of the joystick in the remote controller is greatly affected by the interference signal, and further determine whether the motion position information of the joystick detected by the position sensor is accurate, and if not accurate, may prompt the user or perform
  • the correction process enables the user to control the drone instantaneously and accurately to ensure the safety of the drone during flight.
  • Embodiments of the present invention provide a remote controller.
  • the one or more processors 54 are configured to: when the motion position information of the joystick detected by the position sensor is inaccurate, detect the position sensor according to the detection information. The motion position information of the rocker is corrected.
  • the method for correcting the motion position information of the rocker detected by the position sensor by the one or more processors 54 may be implemented as: calculating a compensation amount of the motion position information of the rocker according to the detection information; The compensation amount of the movement position information of the rocker corrects the movement position information of the rocker detected by the position sensor.
  • the motion position information of the joystick is calculated by the detection information of the interference detecting sensor.
  • the compensation amount is corrected according to the compensation amount of the movement position information of the joystick, and the movement position information of the rocker detected by the position sensor is corrected, and the remote controller can control the drone according to the corrected movement position information of the joystick, and solve the position.
  • the remote controller cannot accurately control the problem of the drone.
  • FIG. 6 is a structural diagram of a remote controller according to another embodiment of the present invention. As shown in FIG. 6, on the basis of FIG. 5, the remote controller 50 further includes at least one of a display screen 55, an indicator light 56, a speaker 57, and a motor 58.
  • the display screen 55, the indicator light 56, the speaker 57 and the motor 58 are respectively connected to the processor 54.
  • the processor 54 is configured to: determine whether the detection information is greater than a threshold, and if the detection information is greater than a threshold, control display At least one of the screen 55, the indicator light 56, the speaker 57, and the motor 58 issues an alert prompt.
  • the processor 54 is configured to: determine whether the detection information is greater than a threshold, and if the detection information is greater than a threshold, turn off the position sensor 52.
  • the electric field sensor detects the electric field intensity of the surrounding environment or the magnetic field sensor detects the magnetic field strength of the surrounding environment.
  • the remote controller issues an early warning prompt to the user, so that the user gives up the start of the drone, or Control the drone to return to avoid possible losses.
  • the remote controller can also directly open the position sensor to ensure that the position sensor works in a stable environment.
  • FIG. 7 is a structural diagram of a remote controller according to another embodiment of the present invention.
  • the interference detecting sensor 53 may specifically be an electric field sensor, and the detection information includes an electric field strength.
  • the interference detecting sensor 53 may also be a magnetic field sensor, and the detection information includes the magnetic field strength.
  • the magnetic field sensor may specifically be a Hall effect sensor.
  • the processor 54 is configured to: acquire an output voltage of the Hall effect sensor; and determine the magnetic field strength according to the output voltage.
  • the position sensor 52 detects the movement position information of the rocker using a Hall effect.
  • the remote controller 50 further includes: an inertial measurement unit 70 communicatively coupled to the processor 54, the inertial measurement unit 70 is configured to detect the position and posture of the remote controller 50; when the position sensor 52 detects the shake When the motion position information of the lever is inaccurate, the processor 54 controls the drone by means of a somatosensory control according to the position and posture of the remote controller.
  • the remote controller when the IMU is set in the remote controller, when the component based on the Hall effect is disturbed by the magnetic field and the rotation angle of the rocker cannot be accurately sensed, the remote controller can control the unmanned person according to the posture and position of the remote controller sensed by the IMU. The machine further improves the safety of the drone during flight.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (Random Access).
  • ROM read-only memory
  • Random Access random access memory

Abstract

一种遥控器的控制方法,包括:获取用于检测周围环境的干扰信号的干扰检测传感器(53)的检测信息;根据检测信息,确定位置传感器(52)检测的摇杆(51)的运动位置信息的准确性。本实施例通过在遥控器(50)上设置用于检测周围环境的干扰信号的干扰检测传感器(53),根据干扰检测传感器(53)的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器(50)中用于检测摇杆(51)运动位置信息的位置传感器(52)是否受干扰信号影响较大,进而确定位置传感器(52)检测的摇杆(51)的运动位置信息是否准确,以保证无人机在飞行过程中的安全性。

Description

遥控器的控制方法及遥控器 技术领域
本发明实施例涉及无人机领域,尤其涉及一种遥控器的控制方法及遥控器。
背景技术
现有技术中用户手持遥控器可控制无人飞行器飞行,遥控器上安装有摇杆,用户通过操纵摇杆控制无人飞行器的飞行速度以及飞行方向。
摇杆底部安装有霍尔元件,该霍尔元件用于感测摇杆的转动角度,摇杆的转动角度表示用户通过遥控器对无人飞行器的控制信息,但是,若霍尔元件受周围磁场干扰较大时,霍尔元件将无法准确感测摇杆的转动角度,导致无人机的遥控器无法精准的控制无人机,甚至造成无法控制无人机的后果。
发明内容
本发明实施例提供一种遥控器的控制方法及遥控器,以提高无人机飞行的安全性。
本发明实施例的一个方面是提供一种遥控器的控制方法,所述遥控器包括摇杆、用于检测摇杆运动位置信息的位置传感器、以及用于检测周围环境的干扰信号的干扰检测传感器,所述方法包括:
获取所述干扰检测传感器的检测信息;
根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
本发明实施例的另一个方面是提供一种遥控器,包括:摇杆、用于检测摇杆运动位置信息的位置传感器、用于检测周围环境的干扰信号的干扰检测传感器、以及一个或多个处理器,共同地或单独地工作,所述一个或多个处理器用于:
获取所述干扰检测传感器的检测信息;
根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
本发明实施例提供的遥控器的控制方法及遥控器,通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的遥控器的控制方法的流程图;
图2为本发明另一实施例提供的遥控器的控制方法的流程图;
图3为本发明另一实施例提供的遥控器的控制方法的流程图;
图4为本发明另一实施例提供的遥控器的控制方法的流程图;
图5为本发明实施例提供的遥控器的结构图;
图6为本发明另一实施例提供的遥控器的结构图;
图7为本发明另一实施例提供的遥控器的结构图。
附图标记:
50-遥控器          51-摇杆    52-位置传感器
53-干扰检测传感器  54-处理器  55-显示屏
56-指示灯          57-扬声器  58-马达
70-惯性测量单元
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种遥控器的控制方法。本实施例所述的遥控器包括摇杆、用于检测摇杆运动位置信息的位置传感器、以及用于检测周围环境的干扰信号的干扰检测传感器。图1为本发明实施例提供的遥控器的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、获取所述干扰检测传感器的检测信息。
在本实施例中,用户通过操纵遥控器的摇杆控制无人机,摇杆底部安装有检测摇杆运动位置信息的位置传感器,具体的,该位置传感器可以感测摇杆的转动角度、转动速度,用户通过控制摇杆,使摇杆位于不同的方向和角度,遥控器根据位置传感器感测的摇杆的运动位置信息,生成用于控制无人机的控制命令,以实现对无人机的控制。
由于遥控器容易受周围环境中干扰信号的干扰,导致位置传感器无法准确的感测摇杆的运动位置信息,造成位置传感器感测到的摇杆的转动角度与摇杆实际的转动角度有偏差,进而导致遥控器生成的控制命令不准 确。针对该问题,本实施例在遥控器上设置有干扰检测传感器,该干扰检测传感器用于检测周围环境的干扰信号。
步骤S102、根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
遥控器根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,由于干扰信号可对位置传感器造成干扰,因此,根据干扰信号的强弱,可确定位置传感器检测的所述摇杆的运动位置信息是否准确,当干扰信号的强度大于阈值时,可确定位置传感器检测的所述摇杆的运动位置信息准确性不高。
本实施例通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。
本发明实施例提供一种遥控器的控制方法。图2为本发明另一实施例提供的遥控器的控制方法的流程图。如图2所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S201、获取所述干扰检测传感器的检测信息。
步骤S201与步骤S101的方法一致,此处不再赘述。
步骤S202、根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
步骤S202与步骤S102的方法一致,此处不再赘述。
步骤S203、若所述位置传感器检测的所述摇杆的运动位置信息不准确,则根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。
若遥控器周围环境的干扰信号较为强,导致摇杆底部安装的位置传感器无法准确检测摇杆的运动位置信息,则可根据干扰检测传感器的检测信 息,计算所述摇杆的运动位置信息的补偿量,根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。
本实施例通过干扰检测传感器的检测信息,计算摇杆的运动位置信息的补偿量,并根据摇杆的运动位置信息的补偿量,修正位置传感器检测的摇杆的运动位置信息,遥控器可根据修正后的摇杆的运动位置信息,控制无人机,解决了位置传感器受干扰信号的干扰而无法准确检测摇杆运动位置信息的情况下,遥控器无法准确控制无人机的问题。
本发明实施例提供一种遥控器的控制方法。图3为本发明另一实施例提供的遥控器的控制方法的流程图。如图3所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S301、获取所述干扰检测传感器的检测信息。
在本实施例中,干扰检测传感器具体可以是电场传感器或磁场传感器,电场传感器用于检测周围环境的电场强度,磁场传感器用于检测周围环境的磁场强度。当干扰检测传感器是电场传感器时,检测信息具体为电场强度,当干扰检测传感器是磁场传感器时,检测信息具体为磁场强度。
步骤S302、若所述检测信息大于第一阈值,则预警提示。
为了表示干扰信号的强弱,本实施例提供了第一阈值和第二阈值,第一阈值可以是报警阈值,第二阈值可以是严重报警阈值,当电场强度或磁场强度大于报警阈值时,遥控器发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失。
预警提示的方式可以采用多种提示方式提示用户,多种提示方式可选自视觉提示、听觉提示、触觉提示,视觉提示可通过显示屏显示、指示灯闪烁等实现,听觉提示可通过喇叭、扬声器、蜂鸣器发声实现,触觉提示可通过马达震动、震动电机震动实现。另外,预警提示方式还可以采用多种提示方式同时提示的方式,也可以采用多种提示方式依次提示的方式。
另外,本实施例不限定阈值的个数,以及具体的值。
步骤S303、若所述检测信息大于第二阈值,则关闭所述位置传感器。
当电场强度或磁场强度大于严重报警阈值时,遥控器可直接关闭位置传感器,避免位置传感器收到干扰信号的严重影响。
另外,当电场强度或磁场强度低于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。
本实施例通过电场传感器检测周围环境的电场强度或磁场传感器检测周围环境的磁场强度,当电场强度或磁场强度大于报警阈值时,遥控器向用户发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失,当电场强度或磁场强度大于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。
本发明实施例提供一种遥控器的控制方法。图4为本发明另一实施例提供的遥控器的控制方法的流程图。如图4所示,在图3所示实施例的基础上,本实施例中的方法,可以包括:
步骤S401、获取霍尔效应传感器的输出电压。
步骤S402、根据所述输出电压,确定所述磁场强度。
步骤S403、若所述磁场强度大于第一阈值,则预警提示。
步骤S404、若所述磁场强度大于第二阈值,则关闭所述位置传感器。
在本实施例中,位置传感器可以是基于霍尔效应的元件,也可以是惯性测量单元(Inertial Measurement Unit,简称IMU)。基于霍尔效应的元件采用霍尔效应检测所述摇杆的运动位置信息,容易受磁场干扰,因此,本实施例的方法可适用于基于霍尔效应的元件,解决遥控器中基于霍尔效应的元件受磁场干扰,而导致的无法准确感测摇杆的转动角度的问题。
步骤S405、获取所述惯性测量单元检测的所述遥控器的位置和姿态。
步骤S406、根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。
另外,遥控器还可同时安装有基于霍尔效应的元件和IMU,当基于霍尔效应的元件受磁场干扰,无法准确感测摇杆的转动角度时,或者如步骤S404所述的关闭所述位置传感器后,可通过IMU感测遥控器的姿态、位置,进而根据遥控器的姿态、位置,控制无人机,即遥控器可作为一个体感设备,感测由于用户手持遥控器的运动信息,而引起的遥控器的姿态变化、位置变化,进而根据遥控器的姿态信息、位置信息,控制无人机。
本实施例通过遥控器中设置IMU,当基于霍尔效应的元件受磁场干扰, 无法准确感测摇杆的转动角度时,遥控器可根据IMU感测的遥控器的姿态、位置,控制无人机,进一步提高了无人机飞行过程中的安全性。
本发明实施例提供一种遥控器。图5为本发明实施例提供的遥控器的结构图。如图5所示,遥控器50包括摇杆51、用于检测摇杆运动位置信息的位置传感器52、用于检测周围环境的干扰信号的干扰检测传感器53、以及一个或多个处理器54,所述一个或多个处理器54用于:获取所述干扰检测传感器的检测信息;根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
本发明实施例提供的遥控器的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。
本发明实施例提供一种遥控器。在图5的基础上,所述一个或多个处理器54用于:当所述位置传感器检测的所述摇杆的运动位置信息不准确时,根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。
一个或多个处理器54对所述位置传感器检测的所述摇杆的运动位置信息进行修正的方法可实现为:根据所述检测信息,计算所述摇杆的运动位置信息的补偿量;根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。
本发明实施例提供的遥控器的具体原理和实现方式均与图2所示实施例类似,此处不再赘述。
本实施例通过干扰检测传感器的检测信息,计算摇杆的运动位置信息 的补偿量,并根据摇杆的运动位置信息的补偿量,修正位置传感器检测的摇杆的运动位置信息,遥控器可根据修正后的摇杆的运动位置信息,控制无人机,解决了位置传感器受干扰信号的干扰而无法准确检测摇杆运动位置信息的情况下,遥控器无法准确控制无人机的问题。
本发明实施例提供一种遥控器。图6为本发明另一实施例提供的遥控器的结构图。如图6所示,在图5的基础上,遥控器50还包括显示屏55、指示灯56、扬声器57和马达58中的至少一个。
显示屏55、指示灯56、扬声器57和马达58分别与所述处理器通54讯连接;处理器54用于:判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则控制显示屏55、指示灯56、扬声器57和马达58中的至少一个发出预警提示。
或者,处理器54用于:判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则关闭位置传感器52。
本发明实施例提供的遥控器的具体原理和实现方式均与图3所示实施例类似,此处不再赘述。
本实施例通过电场传感器检测周围环境的电场强度或磁场传感器检测周围环境的磁场强度,当电场强度或磁场强度大于报警阈值时,遥控器向用户发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失,当电场强度或磁场强度大于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。
本发明实施例提供一种遥控器。图7为本发明另一实施例提供的遥控器的结构图。如图7所示,在上述任一遥控器实施例的基础上,以图6所示实施例为例,干扰检测传感器53具体可以是电场传感器,检测信息包括电场强度。干扰检测传感器53还可以是磁场传感器,检测信息包括磁场强度。磁场传感器具体可以是霍尔效应传感器。
可选的,所述处理器54用于:获取所述霍尔效应传感器的输出电压;根据所述输出电压,确定所述磁场强度。所述位置传感器52采用霍尔效应检测所述摇杆的运动位置信息。
另外,遥控器50还包括:与所述处理器54通讯连接的惯性测量单元70,惯性测量单元70用于检测所述遥控器50的位置和姿态;当所述位置传感器52检测的所述摇杆的运动位置信息不准确时,所述处理器54根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。
本发明实施例提供的遥控器的具体原理和实现方式均与图4所示实施例类似,此处不再赘述。
本实施例通过遥控器中设置IMU,当基于霍尔效应的元件受磁场干扰,无法准确感测摇杆的转动角度时,遥控器可根据IMU感测的遥控器的姿态、位置,控制无人机,进一步提高了无人机飞行过程中的安全性。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access  Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种遥控器的控制方法,其特征在于,所述遥控器包括摇杆、用于检测摇杆运动位置信息的位置传感器、以及用于检测周围环境的干扰信号的干扰检测传感器,所述方法包括:
    获取所述干扰检测传感器的检测信息;
    根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
  2. 根据权利要求1所述的方法,其特征在于,若所述位置传感器检测的所述摇杆的运动位置信息不准确,则根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正,包括:
    根据所述检测信息,计算所述摇杆的运动位置信息的补偿量;
    根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述检测信息大于阈值,则预警提示。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述检测信息大于阈值,则关闭所述位置传感器。
  6. 根据权利要求4或5所述的方法,其特征在于,所述获取所述干扰检测传感器的检测信息,包括:
    获取电场传感器检测的电场强度。
  7. 根据权利要求4或5所述的方法,其特征在于,所述获取所述干扰检测传感器的检测信息,包括:
    获取磁场传感器检测的磁场强度。
  8. 根据权利要求7所述的方法,其特征在于,所述磁场传感器包括霍尔效应传感器。
  9. 根据权利要求8所述的方法,其特征在于,所述获取磁场传感器检测的磁场强度,包括:
    获取所述霍尔效应传感器的输出电压;
    根据所述输出电压,确定所述磁场强度。
  10. 根据权利要求8所述的方法,其特征在于,所述位置传感器采用霍尔效应检测所述摇杆的运动位置信息。
  11. 根据权利要求1所述的方法,其特征在于,所述遥控器还包括:惯性测量单元;
    所述方法还包括:
    当所述位置传感器检测的所述摇杆的运动位置信息不准确时,获取所述惯性测量单元检测的所述遥控器的位置和姿态;
    根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。
  12. 一种遥控器,其特征在于,包括:摇杆、用于检测摇杆运动位置信息的位置传感器、用于检测周围环境的干扰信号的干扰检测传感器、以及一个或多个处理器,共同地或单独地工作,所述一个或多个处理器用于:
    获取所述干扰检测传感器的检测信息;
    根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。
  13. 根据权利要求12所述的遥控器,其特征在于,所述一个或多个处理器用于:
    当所述位置传感器检测的所述摇杆的运动位置信息不准确时,根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。
  14. 根据权利要求13所述的遥控器,其特征在于,所述一个或多个处理器用于:
    根据所述检测信息,计算所述摇杆的运动位置信息的补偿量;
    根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。
  15. 根据权利要求12所述的遥控器,其特征在于,还包括如下至少一种:
    显示屏、指示灯、扬声器和马达;
    所述显示屏、所述指示灯、所述扬声器、所述马达分别与所述处理器 通讯连接;
    所述处理器用于:
    判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则控制所述显示屏、所述指示灯、所述扬声器和所述马达中的至少一个发出预警提示。
  16. 根据权利要求12所述的遥控器,其特征在于,所述处理器用于:
    判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则关闭所述位置传感器。
  17. 根据权利要求15或16所述的遥控器,其特征在于,所述干扰检测传感器包括电场传感器;
    所述检测信息包括电场强度。
  18. 根据权利要求15或16所述的遥控器,其特征在于,所述干扰检测传感器包括磁场传感器;
    所述检测信息包括磁场强度。
  19. 根据权利要求18所述的遥控器,其特征在于,所述磁场传感器包括霍尔效应传感器。
  20. 根据权利要求19所述的遥控器,其特征在于,所述处理器用于:
    获取所述霍尔效应传感器的输出电压;
    根据所述输出电压,确定所述磁场强度。
  21. 根据权利要求19所述的遥控器,其特征在于,所述位置传感器采用霍尔效应检测所述摇杆的运动位置信息。
  22. 根据权利要求12所述的遥控器,其特征在于,还包括:
    与所述处理器通讯连接的惯性测量单元,所述惯性测量单元用于检测所述遥控器的位置和姿态;
    当所述位置传感器检测的所述摇杆的运动位置信息不准确时,所述处理器根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。
PCT/CN2016/099966 2016-09-23 2016-09-23 遥控器的控制方法及遥控器 WO2018053816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002591.3A CN107077147B (zh) 2016-09-23 2016-09-23 遥控器的控制方法及遥控器
PCT/CN2016/099966 WO2018053816A1 (zh) 2016-09-23 2016-09-23 遥控器的控制方法及遥控器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099966 WO2018053816A1 (zh) 2016-09-23 2016-09-23 遥控器的控制方法及遥控器

Publications (1)

Publication Number Publication Date
WO2018053816A1 true WO2018053816A1 (zh) 2018-03-29

Family

ID=59624487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099966 WO2018053816A1 (zh) 2016-09-23 2016-09-23 遥控器的控制方法及遥控器

Country Status (2)

Country Link
CN (1) CN107077147B (zh)
WO (1) WO2018053816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508614A (zh) * 2022-11-18 2022-12-23 中国电力科学研究院有限公司 一种机载非接触式高压验电方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112274345B (zh) * 2020-11-02 2023-07-21 南京康尼智控技术有限公司 一种二维霍尔摇杆装置及校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101704411A (zh) * 2009-11-04 2010-05-12 北京航空航天大学 一种适用于无人机的飞行遥控器
CN203232300U (zh) * 2013-03-22 2013-10-09 贵州电网公司输电运行检修分公司 多通道混合遥控控制系统
US20140034776A1 (en) * 2012-08-02 2014-02-06 Neurosciences Research Foundation Vehicle capable of in-air and on-ground mobility
CN103869811A (zh) * 2014-03-05 2014-06-18 西南交通大学 一种四旋翼飞行器的遥控和伺服信号的监控方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713385B2 (ja) * 1998-08-05 2005-11-09 光洋精工株式会社 車両の操舵装置
US6189836B1 (en) * 1998-09-25 2001-02-20 Sikorsky Aircraft Corporation Model-following control system using acceleration feedback
DE10013196B4 (de) * 2000-03-17 2004-02-26 Festo Ag & Co. Positionserfassungseinrichtung
JP4358678B2 (ja) * 2004-05-14 2009-11-04 株式会社小松製作所 変位量測定装置
WO2010098884A1 (en) * 2009-02-26 2010-09-02 Jian-Ping Wang High magnetic moment particle detection
EP2407081A4 (en) * 2009-03-10 2013-03-13 Olympus Medical Systems Corp POSITION DETECTING SYSTEM AND POSITION DETECTING METHOD
US8531180B2 (en) * 2010-03-30 2013-09-10 Apple Inc. Determining heading using magnetometer data and angular rate data
US9778225B2 (en) * 2010-11-15 2017-10-03 Regents Of The University Of Minnesota Magnetic search coil for measuring real-time brownian relaxation of magnetic nanoparticles
CN102999049B (zh) * 2012-11-09 2016-04-27 国家电网公司 一种无线遥控架空线路巡检飞行器
CN103217983B (zh) * 2013-04-22 2015-09-23 北京航空航天大学 一种多旋翼多功能空中机器人远程控制装置
CN205311920U (zh) * 2015-11-19 2016-06-15 深圳市大疆创新科技有限公司 一种无人飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101704411A (zh) * 2009-11-04 2010-05-12 北京航空航天大学 一种适用于无人机的飞行遥控器
US20140034776A1 (en) * 2012-08-02 2014-02-06 Neurosciences Research Foundation Vehicle capable of in-air and on-ground mobility
CN203232300U (zh) * 2013-03-22 2013-10-09 贵州电网公司输电运行检修分公司 多通道混合遥控控制系统
CN103869811A (zh) * 2014-03-05 2014-06-18 西南交通大学 一种四旋翼飞行器的遥控和伺服信号的监控方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508614A (zh) * 2022-11-18 2022-12-23 中国电力科学研究院有限公司 一种机载非接触式高压验电方法及系统

Also Published As

Publication number Publication date
CN107077147A (zh) 2017-08-18
CN107077147B (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
EP3240715B1 (en) Adaptive user interface for an autonomous vehicle
US20190064637A1 (en) Gimbal control method, gimbal control apparatus, and gimbal
JP6223624B2 (ja) 車両を運転するための方法と装置
US20170336805A1 (en) Method an apparatus for controlling unmanned aerial vehicle to land on landing platform
WO2019119201A1 (zh) 一种云台控制方法、无人机、云台及存储介质
US20170344026A1 (en) Uav, uav flight control method and device
JP6255117B2 (ja) 撮像制御方法、装置および雲台装置
EP3655865B1 (en) Multi-device robot control
EP2685339A3 (en) Navigation system and method for autonomous mowers
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
US10850727B2 (en) System, method, and apparatus for parking assistance
WO2018103184A1 (zh) 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机
WO2020233607A1 (zh) 一种无人机控制方法与装置、计算机可读存储介质
US20210276700A1 (en) Control method and device for unmanned aerial vehicle, and unmanned aerial vehicle
US10081387B2 (en) Non-autonomous steering modes
WO2018053816A1 (zh) 遥控器的控制方法及遥控器
US20200249703A1 (en) Unmanned aerial vehicle control method, device and system
KR20190000771A (ko) 모바일 플랫폼 기반 ahrs 비행제어 장치
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
KR20240035960A (ko) 자율 주행 장치 및 방법
WO2023173307A1 (zh) 可移动平台及其控制方法、信息提示方法、装置、电子设备、计算机可读存储介质
WO2018072693A1 (zh) 飞行器的控制方法、装置及飞行器
KR101710364B1 (ko) 부하 추정 피드백을 받는 무인비행체용 원격 조종 시스템
WO2021039387A1 (ja) 制御装置、制御方法、無人飛行体、情報処理装置、情報処理方法、およびプログラム
JP2021136009A (ja) 情報処理装置、情報処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916555

Country of ref document: EP

Kind code of ref document: A1