WO2019000328A1 - 无人机的控制方法、控制终端和无人机 - Google Patents

无人机的控制方法、控制终端和无人机 Download PDF

Info

Publication number
WO2019000328A1
WO2019000328A1 PCT/CN2017/090828 CN2017090828W WO2019000328A1 WO 2019000328 A1 WO2019000328 A1 WO 2019000328A1 CN 2017090828 W CN2017090828 W CN 2017090828W WO 2019000328 A1 WO2019000328 A1 WO 2019000328A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
state information
flight state
information
drone
Prior art date
Application number
PCT/CN2017/090828
Other languages
English (en)
French (fr)
Inventor
张志鹏
王乃博
陈明
杨亮亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780007010.XA priority Critical patent/CN108521802A/zh
Priority to PCT/CN2017/090828 priority patent/WO2019000328A1/zh
Publication of WO2019000328A1 publication Critical patent/WO2019000328A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiment of the invention relates to the technical field of drones, and in particular to a control method, a control terminal and a drone of a drone.
  • an automatic Dependent Surveillance Broadcast (ADS-B) receiver is installed on an aircraft (such as a passenger airliner, a small work aircraft, a part of a drone, etc.), and the ADS-B device can broadcast the aircraft itself in real time. Longitude, latitude, altitude, speed, heading and other information.
  • the UDS is equipped with the corresponding ADS-B equipment.
  • the ADS-B equipment can receive the above information broadcast by the aircraft's ADS-B equipment.
  • the drone controls the drone according to the above information received by the ADS-B equipment or gives the ground.
  • the user prompts the information to prevent the drone from colliding with the aircraft.
  • ADS-B devices broadcast information to the ground, which can be received by ADS-B devices with flying heights lower than that of the aircraft, while the flying height of the drone is higher than the flight of the aircraft.
  • the ADS-B equipment of the drone may not receive the broadcast information of the ADS-B equipment of the aircraft, which may increase the drone and the aircraft. The risk of colliding.
  • Embodiments of the present invention provide a control method for a drone, a control terminal, and a drone for determining an aircraft that is not detected by an aircraft detecting device on the drone, and reducing a collision probability between the drone and the aircraft.
  • an embodiment of the present invention provides a method for controlling a drone, including:
  • the collision preventing operation is performed.
  • an embodiment of the present invention provides a control terminal, including: a memory and a processor;
  • the memory is for storing program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • an anti-collision operation is performed.
  • an embodiment of the present invention provides a drone, including: a memory and a processor;
  • the memory is for storing program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • an anti-collision operation is performed.
  • Embodiments of the present invention provide a control method for a drone, a control terminal, and a drone, acquiring first flight state information of an aircraft issued through the Internet; and acquiring an aircraft detected by the aircraft detecting device on the drone Second flight state information; and when it is determined that the aircraft detecting device does not detect the aircraft indicated by the first flight state information based on the first flight state information and the second flight state information, performing a collision avoidance operation.
  • the first flight state information of the aircraft issued by the Internet is used to supplement the second flight state information of the aircraft detected by the aircraft detection detecting device on the drone to determine that the aircraft detecting device on the drone is not detected.
  • the aircraft improves the collision accuracy of the drone, reduces the collision probability between the drone and the aircraft, and ensures the flight safety of the drone and the aircraft.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for controlling a drone according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a control terminal 500 according to an embodiment of the present invention.
  • FIG. 6 is another schematic structural diagram of a control terminal 500 according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a drone 700 according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a drone 700 according to an embodiment of the present invention.
  • Embodiments of the present invention provide a control method, a control terminal, and a drone of a drone.
  • the following description of the invention uses a drone as an example. It will be apparent to those skilled in the art that other types of drones can be used without limitation, and embodiments of the present invention can be applied to various types of drones.
  • the drone can be a small or large drone.
  • the drone may be a rotorcraft, for example, a multi-rotor drone powered by air by a plurality of pushing devices, embodiments of the invention are not limited thereto, drones It can also be other types of drones.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention. This embodiment is described by taking a rotorless drone as an example.
  • the unmanned flight system 100 can include a drone 110, a pan/tilt 120, and a control terminal 140.
  • the drone 110 may include a power system 150, a flight control system 160, and a rack.
  • the drone 110 can communicate wirelessly with the control terminal 140.
  • the rack can include a fuselage and a tripod (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is coupled to the fuselage for supporting when the drone 110 is landing.
  • Power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more electric machines 152 corresponding to one or more propellers 153, wherein motor 152 is coupled Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the corresponding arm; the electronic governor 151 is configured to receive the driving signal generated by the flight control system 160, and provide a driving current to the motor according to the driving signal. 152 to control the rotational speed of the motor 152. Motor 152 is used to drive the propeller to rotate to power the flight of drone 110, which enables drone 110 to achieve one or more degrees of freedom of motion.
  • ESCs electronic governors
  • the drone 110 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 152 can be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brush motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system can be a global positioning system (English: Global Positioning System, referred to as: GPS) or.
  • the flight controller 161 is used to control the flight of the drone 110, for example, the flight of the drone 110 can be controlled based on the attitude information measured by the sensing system 162. It should be understood that the flight controller 161 may control the drone 110 in accordance with pre-programmed program instructions, or may control the drone 110 in response to one or more control commands from the control terminal 140.
  • the pan/tilt 120 can include a motor 122.
  • the pan/tilt is used to carry the photographing device 123.
  • the flight controller 161 can control the motion of the platform 120 via the motor 122.
  • the platform 120 may further include a controller for controlling the motion of the platform 120 by controlling the motor 122.
  • the platform 120 can be independent of the drone 110 or a portion of the drone 110.
  • the motor 122 can be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brush motor.
  • the gimbal can be located at the top of the drone or at the bottom of the drone.
  • the photographing device 123 may be, for example, a device for capturing an image such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and perform photographing under the control of the flight controller.
  • the control terminal 140 is located at the ground end of the unmanned flight system 100, and the control terminal may include one or more of a remote controller, a smart phone, a tablet computer, a laptop computer, a wearable device (watch, wristband).
  • the control terminal 140 can communicate with the drone 110 wirelessly for remote manipulation of the drone 110.
  • the interaction device 130 of the control terminal 140 can be used to display status information (pose information, power information, etc.) of the drone 110. In addition, it is also possible to display an image taken by the photographing device on the interactive device.
  • FIG. 2 is a flowchart of a method for controlling a drone according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the flight state information broadcasting device is disposed on the aircraft, and the flight state information broadcasting device can broadcast the flight state information of the aircraft to the outside.
  • the aircraft detecting device is provided on the drone, and the aircraft detecting device can detect the flight state information of the aircraft.
  • the aircraft detecting device can also broadcast the flight state information of the drone, and the flight state information broadcasting device can be an ADS-B device.
  • the Internet will release the flight status information of the aircraft.
  • the flight status information published through the Internet may be flight status information of an airport, a city, a certain country, or even a global aircraft.
  • the flight state information of the aircraft released through the Internet can be obtained, and the mutual The flight state information of the aircraft released by the network is referred to as first flight state information
  • acquiring the first flight state information of the aircraft transmitted through the Internet may include: acquiring, by using a preset website, first flight state information of the released aircraft,
  • the preset website may be, for example, a status inquiry or a published website of some professional aircraft (for example, www.flightradar24.com, zh.flightaware.com, etc.).
  • the first flight state information includes one or more of speed information, location information, heading information, acceleration information, altitude information, and identity information.
  • the embodiment also acquires flight state information of the aircraft detected by the aircraft detecting device on the drone, where the flight state information of the aircraft detected by the aircraft detecting device is referred to as second flight state information, for example, the aircraft detecting device, for example. It can be an ADS-B device.
  • the second flight state information includes one or more of speed information, location information, heading information, acceleration information, altitude information, and identity information.
  • the embodiment further determines, according to the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information, and determines the aircraft detection according to the first flight state information and the second flight state information.
  • the device does not detect the aircraft indicated by the first flight state information, it indicates that the aircraft detecting device on the drone does not detect the aircraft indicated by the first flight state information, and the aircraft indicated by the first flight state information is likely to be given to the embodiment.
  • the drone brings a hidden danger of flight safety, and therefore, the present embodiment performs an anti-collision operation that can be directed to the aircraft indicated by the first flight state information.
  • the embodiment performs the prior art and the first Two flight state information related collision prevention operations.
  • the method of the embodiment can be applied to the control terminal of the drone or can also be applied to the drone.
  • a feasible manner is: the control terminal can configure the network communication interface, and the control terminal connects to the Internet through the network communication interface, and obtains the release through the Internet.
  • the first flight state information of the aircraft another feasible way is that the drone is equipped with a network communication interface, and the drone can obtain the first flight state information of the aircraft released through the Internet through the network communication interface, and the control terminal can Acquiring the flight issued via the Internet through a wireless link with the drone First flight status information of the device.
  • the control terminal acquires the second flight state information from the drone, for example, the control terminal may acquire the second flight state information by using a wireless link with the drone.
  • the control terminal performing the collision avoidance operation may include the following several possible ways.
  • the control terminal displays the prompt information on the interaction device of the control terminal, for example, the prompt information is used to prompt the aircraft indicated by the first flight state information not to be detected by the aircraft on the drone, and then the user A corresponding operation is performed according to the prompt information to prevent the drone from colliding with the aircraft.
  • the control terminal sends control commands to the drone to limit the flight of the drone to prevent the drone from colliding with the aircraft. Limiting the flight of the drone may include limiting one or more of the flight time, flight distance, and flight altitude of the drone, and may also include controlling the drone to return.
  • a feasible way is that the drone can configure a network communication interface, and the drone is connected to the Internet through the network communication interface, and is obtained through the Internet.
  • the first flight state information of the aircraft another feasible manner is that the control terminal is configured with a network communication interface, and the control terminal can obtain the first flight state information of the aircraft released through the Internet through the network communication interface, and the drone can pass A wireless link with the control terminal acquires first flight state information of the aircraft issued via the Internet.
  • the drone acquires second flight state information of the aircraft detected by the aircraft detecting device on the drone.
  • the drone Determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device detects an aircraft indicated by the first flight state information, according to the first flight state information and the When the flight state information determines that the aircraft detecting device does not detect the aircraft indicated by the first flight state information, the drone performs a collision avoidance operation.
  • the drone's execution of the collision avoidance operation can include the following several possible ways.
  • the drone sends the prompt information to the control terminal, and the control terminal displays the prompt information on the interaction device of the control terminal after receiving the prompt information, for example, the prompt information is used to prompt the first
  • the aircraft indicated by the flight status information is not detected by the aircraft on the drone, and then the user performs a corresponding operation according to the prompt information to prevent the drone from colliding with the aircraft.
  • the drone limits the flight of the drone to prevent the drone from colliding with the aircraft. Limiting the flight of the drone may include limiting one or more of the flight time, flight distance, and flight altitude of the drone, and may also include controlling the drone to return.
  • the control method of the UAV provided by the embodiment obtains the first flight state information of the aircraft issued through the Internet; and acquires the second flight state information of the aircraft detected by the aircraft detecting device on the drone; The first flight state information and the second flight state information determine that the aircraft detecting device does not detect the aircraft indicated by the first flight state information, and performs a collision avoidance operation.
  • the first flight state information of the aircraft issued by the Internet is used to supplement the second flight state information of the aircraft detected by the aircraft detection detecting device on the drone to determine that the aircraft detecting device on the drone is not detected.
  • the aircraft improves the collision accuracy of the drone, reduces the collision probability between the drone and the aircraft, and ensures the flight safety of the drone and the aircraft.
  • FIG. 3 is a flowchart of a method for controlling a drone according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • S303 Determine, according to the first state information of the aircraft in the first range and the second flight state information, whether the aircraft detecting device detects an aircraft indicated by the first flight state information in the first range.
  • the acquiring flight state information issued by the Internet may be flight state information in a certain range, for example, first flight state information of the aircraft in the first range, and the embodiment determines whether the aircraft detecting device detects the first An aircraft indicated by a first flight state information within a range.
  • This embodiment reduces the aircraft detected by the aircraft detecting device to the first In this context, this reduces the complexity of the process and increases the efficiency of the aircraft not detected by the aircraft detection device.
  • the first range is determined according to the location information of the drone.
  • the embodiment further acquires location information output by the positioning device of the drone.
  • the location information includes the longitude and latitude of the drone currently located.
  • the processor of the drone reads the position information of the drone from the positioning device of the drone, such as a GPS, a Beidou, a Galileo satellite navigation system, and the like.
  • the positioning device on the drone acquires the position information of the drone, and the position information of the drone to the control terminal, and between the control terminal and the drone
  • the wireless communication link acquires location information of the drone.
  • An implementation manner of determining the first range by using the location information of the UAV may be: determining the long range of the first range is (current longitude - first longitude threshold, current longitude + first longitude threshold), first The latitude range of the range is (current latitude - second latitude threshold, current latitude + second latitude threshold).
  • the determining, by the first state information and the second state information, whether the aircraft detecting device detects the first flight state information indicating the aircraft includes: according to the identity information in the first flight state information and the second flight state information The identity information determines whether the aircraft detection device detects an aircraft indicated by the first flight state information.
  • the identity information in the second flight state information of all the aircrafts detected by the aircraft detecting device includes the identity information in the first flight state information of the aircraft, if the second flight state information of all the aircrafts is The identity information does not include the identity information in the first flight state information, determining that the aircraft detecting device does not detect the aircraft indicated by the first flight state information, if the identity information in the second flight state information of all the aircraft includes the first The identity information in the flight status information determines that the aircraft detecting device detects the aircraft indicated by the first flight state information.
  • step S303 it is determined whether the aircraft detecting device detects the first range according to the identity information in the first flight state information of the aircraft in the first range and the identity information in the second flight state information.
  • the first flight state information indicates the aircraft.
  • the first flight status letter of the aircraft in the first range issued by the Internet in this embodiment Information to supplement the second flight state information of the aircraft detected by the aircraft detection and detection device on the drone to determine the aircraft within the first range that is not detected by the aircraft detection device on the drone, reducing the processing
  • the complexity improves the determination efficiency of the aircraft not detected by the aircraft detection equipment, improves the collision accuracy of the drone, reduces the collision probability between the drone and the aircraft, and ensures the flight safety of the drone and the aircraft.
  • FIG. 4 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • the embodiment further acquires location information of the drone, and the location information includes at least the longitude and latitude of the UAV.
  • the implementation manner of the S401 is: the positioning device on the drone acquires the position information of the drone, and then the processor of the drone reads from the positioning device of the drone. Location information of the man-machine.
  • the implementation manner of the S402 is: the positioning device on the drone acquires the location information of the drone, and then the control terminal receives the wireless data link with the drone. The location information sent by the drone.
  • the Internet acquires the flight state information of the aircraft to release the flight state information of the aircraft is not completely real-time, that is, there is a certain delay, usually the delay is about several minutes, and therefore, the flight state of the aircraft
  • the information broadcasting device broadcasts the flight state information
  • the location where the aircraft is located and the position where the aircraft is located when the drone or the control terminal receives the flight state information of the aircraft is separated by a distance, and therefore, the embodiment is released according to the Internet.
  • the first flight state information of the aircraft determines expected position information of the aircraft, the expected position information being a position at which the aircraft is located when the drone or control terminal receives the flight state information of the aircraft.
  • One implementation manner is: determining the expected location information of the corresponding aircraft according to the first flight state information and the delay of the Internet to release the first flight state information.
  • determining the expected position information of the aircraft requires reference to the delay of the Internet to issue the first flight state information to reduce the error of the determined aircraft position information and the actual position information of the aircraft.
  • the delay may be obtained by experimental measurement or by a website that issues flight status information of the aircraft.
  • determining, according to the first flight state information and the delay of the first flight state information issued by the Internet, determining the expected location information of the corresponding aircraft may include: according to the location information, the heading information, the speed information, and the acceleration in the first flight state information. At least one of the information and a delay of the Internet to issue the first flight state information determine the expected location information of the aircraft.
  • one possible implementation manner of S402 is: acquiring first state information of an aircraft in a second range that is published through the Internet.
  • a possible implementation manner of S404 is: determining, according to the first flight state information of the aircraft in the second range, the expected position information of the corresponding aircraft.
  • the first flight state information of the aircraft in the second range in the flight state information published by the Internet is obtained in this embodiment.
  • the embodiment determines the expected position information of the corresponding aircraft based on the first flight state information in the second range. This embodiment reduces the aircraft that determines the positional relationship with the drone to the second range, thus reducing the complexity of the process.
  • the aircraft detecting device detects the aircraft of the first flight status indication. If the positional relationship does not meet the preset requirements, it indicates that there is a collision between the aircraft and the drone. The possibility is small, and the embodiment does not need to determine whether the aircraft detecting device detects the first flight state indicating the aircraft according to the first state information of the aircraft and the second state information.
  • the foregoing preset requirement may be that the distance between the aircraft and the drone is less than or equal to a preset distance threshold. Therefore, the present embodiment can calculate and obtain the aircraft according to the expected position information of the aircraft (including the expected longitude, expected latitude, and expected height of the aircraft) and the position information of the drone (including the longitude, latitude, and altitude of the drone). The distance between the drone and the drone is determined whether the distance is greater than a preset distance threshold. If the distance is less than or equal to the preset distance threshold, the distance between the aircraft and the drone is relatively close, and there is a possibility of collision.
  • the aircraft detecting device Larger, and then further determining, based on the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information. If the distance is greater than the preset distance threshold, it indicates that the distance between the aircraft and the drone is far apart, and there is less possibility of collision, and it is not necessary to further determine whether the aircraft detecting device is based on the first flight state information and the second flight state information. The aircraft indicated by the first flight state information is detected.
  • the preset requirement may be that the spherical distance between the aircraft and the drone on the surface is less than or equal to a preset spherical distance threshold. Therefore, the present embodiment is based on the expected position information of the aircraft (including the expected longitude and expected latitude of the aircraft) and the position information of the drone (including the longitude and latitude of the drone), due to the direct calculation of the drone and the aircraft. The distance between the two has a large amount of computation, so the distance between the aircraft and the drone on the surface of the surface can be calculated, and then the distance of the spherical surface on the surface is greater than the preset spherical distance threshold.
  • the aircraft detecting device is further determined according to the first flight state information and the second flight state information. Whether the aircraft indicated by the first flight state information is detected. If the spherical distance on the surface is greater than the preset spherical distance threshold, the distance between the aircraft and the drone is far from each other, and there is less possibility of collision, and it is not necessary to further determine the first flight state information and the second flight state information. Whether the aircraft detecting device detects the aircraft indicated by the first flight state information.
  • the control method of the drone provided by the embodiment can quickly determine the aircraft not detected by the aircraft detecting device on the drone, improve the anti-collision accuracy of the drone, and ensure the drone and the aircraft. Flight safety.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program execution may include the control method of the unmanned aerial vehicle in FIG. 2 to FIG. 4 and its corresponding embodiments. Part or all of the steps.
  • FIG. 5 is a schematic structural diagram of a control terminal 500 according to an embodiment of the present invention.
  • the control terminal 500 of this embodiment may include: a memory 501 and a processor 502.
  • the above memory 501 and processor 502 are connected by a bus.
  • Memory 501 can include read only memory and random access memory and provides instructions and data to processor 502.
  • a portion of the memory 501 may also include a non-volatile random access memory.
  • the processor 502 may be a central processing unit (CPU), and the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 501 is used to store program codes.
  • the processor 502 the program code is invoked, and when the program code is executed, is used to perform the following operations:
  • the second flight state information of the aircraft detected by the aircraft detecting device on the drone is acquired from the drone.
  • an anti-collision operation is performed.
  • the processor 502 is further configured to: according to the first flight state information and the location The second flight state information determines whether the aircraft detection device detects an aircraft indicated by the first flight state information.
  • the processor 502 when acquiring the first flight state information that is sent by using the Internet, is specifically configured to: acquire first flight state information of the aircraft in the first range that is released through the Internet;
  • the processor 502 when determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information, specifically, according to the first The flight status information and the second flight status information determine whether the aircraft detection device detects an aircraft indicated by the first flight status information within the first range.
  • the processor 502 is further configured to acquire, from the drone, location information output by the positioning device on the drone;
  • the first range is determined according to location information output by the positioning device of the drone.
  • the processor 502 is further configured to acquire location information of the drone from the drone;
  • the processor 502 when determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information, specifically, according to the first
  • the flight state information determines the expected location information of the corresponding aircraft; when it is determined according to the expected location information and the location information of the drone that the positional relationship between the corresponding aircraft and the drone meets the preset requirement, according to the first flight state information
  • the second flight state information determines whether the aircraft detection device detects the aircraft indicated by the first flight state information.
  • the processor 502 is configured to: when determining, according to the expected location information and the location information of the UAV, that the distance between the corresponding aircraft and the UAV is less than or equal to a preset distance threshold, Determining, based on the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information.
  • the processor 502 is configured to: when determining, according to the expected location information and the location information of the drone, that the corresponding spherical distance between the aircraft and the drone is less than or equal to a preset spherical distance threshold And determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device detects the aircraft indicated by the first flight state information.
  • the processor 502 is configured to: determine, according to the first flight state information and a delay of the first flight state information published by the Internet, the expected location information of the corresponding aircraft.
  • the processor 502 when acquiring the first flight state information of the aircraft issued through the Internet, is specifically configured to: acquire first state information of the aircraft in the second range issued through the Internet;
  • the processor 502 is configured to determine, according to the first flight state information of the aircraft in the second range, the expected location information of the corresponding aircraft, when determining the expected location information of the corresponding aircraft according to the first flight state information.
  • the second range is determined according to location information output by the positioning device of the drone.
  • the processor 502 is specifically configured to: determine, according to the identity information in the first flight state information and the identity information in the second flight state information, whether the aircraft detecting device detects the first flight state information indication Aircraft.
  • the flight state information includes one or more of speed information, location information, heading information, acceleration information, altitude information, and identity information.
  • the processor 502 is specifically configured to: acquire first flight state information of an aircraft that is published through a preset website.
  • the aircraft detection device is an ADS-B device.
  • control terminal of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the processor 502 is specifically configured to send a control command to the drone to limit the flight of the drone.
  • FIG. 6 is another schematic structural diagram of a control terminal 500 according to an embodiment of the present invention. As shown in FIG. 6, the control terminal 500 of this embodiment is based on the embodiment shown in FIG. Also included is an interaction device 503 that is coupled to the processor 502 via a bus.
  • the interaction device 503 is configured to display prompt information.
  • the processor 502 is specifically configured to control the interaction device 503 to display prompt information.
  • control terminal of this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a drone 700 according to an embodiment of the present invention.
  • the drone 700 of the present embodiment may include: a memory 701 and a processor 702.
  • the above memory 701 and processor 702 are connected by a bus.
  • Memory 701 can include read only memory and random access memory and provides instructions and data to processor 702.
  • a portion of the memory 701 may also include a non-volatile random access memory.
  • the processor 702 may be a CPU, and the processor may also be other general purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 701 is configured to store program code
  • the processor 702 calls the program code to perform the following operations when the program code is executed:
  • the aircraft detecting device 703 is configured to detect second flight state information of the aircraft;
  • the collision preventing operation is performed.
  • the processor 702 is further configured to: determine, according to the first flight state information and the second flight state information, whether the aircraft detecting device 703 detects an aircraft indicated by the first flight state information.
  • the processor 702 when acquiring the first flight state information of the aircraft issued through the Internet, is specifically configured to: acquire first flight state information of the aircraft in the first range issued through the Internet.
  • the processor 702 when determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device 703 detects the aircraft indicated by the first flight state information, specifically, according to the a flight state information and the second flight state information determining whether the aircraft detecting device 703 detects the first flight state information finger within the first range The aircraft shown.
  • the unmanned aerial vehicle of this embodiment can be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic diagram of another structure of the UAV 700 according to the embodiment of the present invention. As shown in FIG. 8, the UAV 700 of the present embodiment may further include: positioning on the basis of the embodiment shown in FIG. Device 704.
  • the positioning device 704 is configured to output location information of the drone.
  • the processor 702 is further configured to acquire location information of the drone from the positioning device 704.
  • the first range is determined according to location information output by the positioning device 704 of the drone.
  • the processor 702 when determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device 703 detects the aircraft indicated by the first flight state information, specifically: Determining, according to the first flight state information, the expected position information of the corresponding aircraft; when determining, according to the expected position information and the position information of the drone, that the positional relationship between the corresponding aircraft and the drone meets the preset requirement, according to The first flight state information and the second flight state information determine whether the aircraft detection device 703 detects the aircraft indicated by the first flight state information.
  • the processor 702 is specifically configured to: when determining, according to the expected location information and the location information of the UAV, that the distance between the corresponding aircraft and the UAV is less than or equal to a preset distance threshold, Determining, based on the first flight state information and the second flight state information, whether the aircraft detecting device 703 detects the aircraft indicated by the first flight state information.
  • the processor 702 is configured to: when determining, according to the expected location information and the location information of the drone, that the corresponding spherical distance between the aircraft and the drone is less than or equal to a preset spherical distance threshold And determining, according to the first flight state information and the second flight state information, whether the aircraft detecting device 703 detects the aircraft indicated by the first flight state information.
  • the processor 702 is specifically configured to: determine, according to the first flight state information and a delay of the first flight state information published by the Internet, the expected location information of the corresponding aircraft.
  • the processor 702 when acquiring the first flight state information of the aircraft issued through the Internet, is specifically configured to: acquire first state information of the aircraft in the second range issued through the Internet.
  • the processor 702 When determining the expected location information of the corresponding aircraft according to the first flight state information, the processor 702 is specifically configured to: determine, according to the first flight state information of the aircraft in the second range, the expected location information of the corresponding aircraft.
  • the second range is determined according to location information output by the positioning device 704 of the drone.
  • the processor 702 is specifically configured to: determine, according to the identity information in the first flight state information and the identity information in the second flight state information, whether the aircraft detecting device 703 detects the first flight state information. Indicated aircraft.
  • the flight state information includes one or more of speed information, location information, heading information, acceleration information, altitude information, and identity information.
  • the processor 702 is specifically configured to: acquire first flight state information of an aircraft that is published through a preset website.
  • the aircraft detection device 703 is an ADS-B device.
  • the processor 702 is specifically configured to send prompt information to the control terminal.
  • the processor 702 is specifically configured to limit the flight of the drone.
  • the unmanned aerial vehicle of this embodiment can be used to implement the technical solution of the foregoing method embodiment of the present invention, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无人机(110,700)的控制方法、控制终端(140,500)和无人机(110,700),控制方法包括:获取通过互联网发布的飞行器的第一飞行状态信息(S201);获取无人机(110,700)上的飞行器探测设备(703)探测到的飞行器的第二飞行状态信息(S202);当根据第一飞行状态信息和第二飞行状态信息确定飞行器探测设备(703)没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作(S203)。通过互联网发布的飞行器的第一飞行状态信息来对无人机(110,700)上的飞行器探测设备(703)探测到的飞行器的第二飞行状态信息进行补充,以确定出无人机(110,700)上的飞行器探测设备(703)未探测到的飞行器,提高无人机(110,700)的防撞精度,降低了无人机(110,700)与飞行器的碰撞概率,保证了无人机(110,700)和飞行器的飞行安全。

Description

无人机的控制方法、控制终端和无人机 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种无人机的控制方法、控制终端和无人机。
背景技术
无人机在空中飞行时,如果无人机可以实时获取周边飞机的信息,则可以及早采取措施来避免碰撞。目前,飞行器(例如民航客机、小型作业飞机、部分的无人机等)上安装有广播式自动相关监视(Automatic Dependent Surveillance Broadcast,ADS-B)接收机,ADS-B设备可以实时广播飞行器自身的经纬度、高度、速度、航向等信息。无人机上搭载了对应的ADS-B设备,ADS-B设备可以接收飞行器的ADS-B设备广播的上述信息,无人机根据ADS-B设备接收的上述信息对无人机进行控制或者给地面用户提示信息,避免无人机与飞行器相撞。但是,目前ADS-B设备是向地面广播信息,这些广播信息可以被飞行高度低于该飞行器的无人机的ADS-B设备接收到,而当无人机的飞行高度高于该飞行器的飞行高度,或者无人机的飞行高度与飞行器的飞行高度大致相同时,无人机的ADS-B设备可能接收不到该飞机的ADS-B设备的广播信息,这样可能会增加无人机与飞行器相撞的风险。
发明内容
本发明实施例提供一种无人机的控制方法、控制终端和无人机,用于确定出无人机上的飞行器探测设备未探测到的飞行器,降低了无人机与飞行器的碰撞概率。
第一方面,本发明实施例提供一种无人机的控制方法,包括:
获取通过互联网发布的飞行器的第一飞行状态信息;
获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;
当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞 行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
第二方面,本发明实施例提供一种控制终端,包括:存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取通过互联网发布的飞行器的第一飞行状态信息;
获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;
当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
第三方面,本发明实施例提供一种无人机,包括:存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取通过互联网发布的飞行器的第一飞行状态信息;
获取无人机的飞行器探测设备探测到的飞行器的第二飞行状态信息;
当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
本发明实施例提供一种无人机的控制方法、控制终端和无人机,获取通过互联网发布的飞行器的第一飞行状态信息;以及获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;且当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。本实施例通过互联网发布的飞行器的第一飞行状态信息来对无人机上的飞行器探测探测设备探测到的飞行器的第二飞行状态信息进行补充,以确定出无人机上的飞行器探测设备未探测到的飞行器,提高无人机的防撞精度,降低了无人机与飞行器的碰撞概率,保证了无人机和飞行器的飞行安全。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图;
图2为本发明一实施例提供的无人机的控制方法的流程图;
图3为本发明另一实施例提供的无人机的控制方法的流程图;
图4为本发明另一实施例提供的无人机的控制方法的流程图;
图5为本发明实施例提供的控制终端500的一种结构示意图;
图6为本发明实施例提供的控制终端500的另一种结构示意图;
图7为本发明实施例提供的无人机700的一种结构示意图;
图8为本发明实施例提供的无人机700的另一种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了无人机的控制方法、控制终端和无人机。以下对本发明的描述使用无人机作为示例。对于本领域技术人员将会显而易见的是,可以不受限制地使用其他类型的无人机,本发明的实施例可以应用于各种类型的无人机。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本发明的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人飞行系统100可以包括无人机110、云台120和控制终端140。其中,无人机110可以包括动力系统150、飞行控制系统160和机架。无人机110可以与控制终端140进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在对应的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(英文:Inertial Measurement Unit,简称:IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(英文:Global Positioning System,简称:GPS)或者。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自控制终端140的一个或多个控制指令对无人机110进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。 应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。
控制终端140位于无人飞行系统100的地面端,控制终端可以包括遥控器、智能手机、平板电脑、膝上型电脑、穿戴式设备(手表、手环)中的一种或多种。控制终端140可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。控制终端140的交互装置130可以用于显示无人机110的状态信息(姿态信息、电量信息等)。另外,还可以在交互装置上显示拍摄装置拍摄的图像。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
图2为本发明一实施例提供的无人机的控制方法的流程图,如图2所示,本实施例的方法可以包括:
S201、获取通过互联网发布的飞行器的第一飞行状态信息。
S202、获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息。
S203、当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
本实施例中,为了保证无人机的飞行安全,飞行器上配置了飞行状态信息广播设备,飞行状态信息广播设备可以向外广播该飞行器的飞行状态信息。无人机上设有飞行器探测设备,飞行器探测设备可以探测飞行器的飞行状态信息,所述飞行器探测设备也可以向外广播无人机的飞行状态信息,飞行状态信息广播设备可以为ADS-B设备。目前,互联网会向外发布飞行器的飞行状态信息,通过互联网发布的飞行状态信息可以是某个机场、某个城市、某个国家、甚至可以是全球的飞行器的飞行状态信息。在本实施例中可以获取通过互联网发布的飞行器的飞行状态信息,此处将互 联网发布的飞行器的飞行状态信息称为第一飞行状态信息,其中,获取通过互联网发送的飞行器的第一飞行状态信息可以包括:通过预设的网站获取发布的飞行器的第一飞行状态信息,该预设的网站例如可以是一些专业的飞行器的状态信息查询或者发布的网站(例如www.flightradar24.com、zh.flightaware.com等)。可选地,该第一飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
另外,本实施例还获取无人机上的飞行器探测设备探测到的飞行器的飞行状态信息,此处将飞行器探测设备探测到的飞行器的飞行状态信息称为第二飞行状态信息,该飞行器探测设备例如可以是ADS-B设备。可选地,该第二飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
本实施例再根据上述第一飞行状态信息和第二飞行状态信息确定该飞行器探测设备是否探测到第一飞行状态信息指示的飞行器,如果根据第一飞行状态信息和第二飞行状态信息确定飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,说明无人机上的飞行器探测设备未探测该第一飞行状态信息指示的飞行器,该第一飞行状态信息指示的飞行器很有可能给本实施例的无人机带来飞行安全的隐患,因此,本实施例执行防止碰撞操作,该防止碰撞操作可以针对该第一飞行状态信息指示的飞行器。如果根据第一飞行状态信息和第二飞行状态信息确定飞行器探测设备探测到第一飞行状态信息指示的飞行器时,说明飞行器探测设备没有漏探测飞行器,然后本实施例执行现有技术中与该第二飞行状态信息相关的防止碰撞操作。
需要说明的是,本实施例的方法可以应用于无人机的控制终端中,或者,也可以应用于无人机中。
在本实施例的方法应用于无人机的控制终端时,对于步骤S201,一种可行的方式是:控制终端可以配置网络通信接口,通过该网络通信接口,控制终端连接互联网,获取通过互联网发布的飞行器的第一飞行状态信息;另一种可行的方式是无人机上配置有网络通信接口,无人机可以通过该网络通信接口获取通过互联网发布的飞行器的第一飞行状态信息,控制终端可以通过与无人机之间的无线链路获取所述通过互联网发布的飞行 器的第一飞行状态信息。对于步骤S202,控制终端从无人机获取上述的第二飞行状态信息,例如:控制终端可以通过与无人机之间的无线链路获取上述第二飞行状态信息。控制终端根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器,当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,控制终端执行防止碰撞操作。
控制终端执行防止碰撞操作可以包括如下几种可行方式。在一种实现方式中,控制终端在该控制终端的交互装置上显示提示信息,例如:该提示信息用于提示该第一飞行状态信息指示的飞行器未被无人机上的飞行器探测设备,然后用户根据该提示信息执行相应的操作,以防止无人机碰撞飞行器。在另一种实现方式中,控制终端向无人机发送控制指令以限制无人机的飞行,以防止无人机碰撞飞行器。其中限制无人机的飞行可以包括限制无人机的飞行时间、飞行距离、飞行高度中的一种或多种,还可以包括控制无人机返航。
在本实施例的方法应用于无人机时,对于步骤S201,一种可行的方式是:无人机可以配置网络通信接口,通过该网络通信接口,无人机连接互联网,获取通过互联网发布的飞行器的第一飞行状态信息;另一种可行的方式是控制终端上配置有网络通信接口,控制终端可以通过该网络通信接口获取通过互联网发布的飞行器的第一飞行状态信息,无人机可以通过与控制终端之间的无线链路获取所述通过互联网发布的飞行器的第一飞行状态信息。对于步骤S202,无人机获取该无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息。无人机根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器,当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,无人机执行防止碰撞操作。
无人机执行防止碰撞操作可以包括如下几种可行方式。在一种实现方式中,无人机向控制终端发送提示信息,控制终端接收到提示信息后在该控制终端的交互装置上显示提示信息,例如:该提示信息用于提示该第一 飞行状态信息指示的飞行器未被无人机上的飞行器探测设备,然后用户根据该提示信息执行相应的操作,以防止无人机碰撞飞行器。在另一种实现方式中,无人机限制该无人机的飞行,以防止无人机碰撞飞行器。其中限制无人机的飞行可以包括限制无人机的飞行时间、飞行距离、飞行高度中的一种或多种,还可以包括控制无人机返航。
本实施例提供的无人机的控制方法,获取通过互联网发布的飞行器的第一飞行状态信息;以及获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;且当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
本实施例通过互联网发布的飞行器的第一飞行状态信息来对无人机上的飞行器探测探测设备探测到的飞行器的第二飞行状态信息进行补充,以确定出无人机上的飞行器探测设备未探测到的飞行器,提高无人机的防撞精度,降低了无人机与飞行器的碰撞概率,保证了无人机和飞行器的飞行安全。
在图2所述的实施例的基础上,图3为本发明一实施例提供的无人机的控制方法的流程图,如图3所示,本实施例的方法可以包括:
S301、获取通过互联网发布的第一范围内的飞行器的第一状态信息。
S302、获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息。
S303、根据所述第一范围内的飞行器的第一状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
S304、当根据所述第一范围内的飞行器的第一状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一范围内的第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
本实施例中,获取互联网发布的飞行状态信息可以是某个范围内的飞行状态信息,例如第一范围内的飞行器的第一飞行状态信息,而且本实施例判断该飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。本实施例将判断飞行器探测设备探测到的飞行器缩减至第一 范围内,这样减少了处理过程的复杂度,提高了飞行器探测设备未探测到的飞行器的确定效率。
其中,第一范围是根据无人机的位置信息确定的。具体地,本实施例在执行上述S301之前,还获取无人机的定位设备输出的位置信息。该位置信息包括无人机当前所处的经度和纬度。在本实施例应用于无人机时,无人机的处理器从该无人机的定位设备上读取无人机的位置信息,该定位设备例如是GPS、北斗、伽利略卫星导航系统等。在本实施例应用于无人机的控制终端时,无人机上的定位设备获取无人机的位置信息,无人机向控制终端方无人机的位置信息,控制终端与无人机之间的无线通信链路获取所述无人机的位置信息。通过无人机的位置信息确定第一范围,只获取通过互联网发布的第一范围内的飞行器的第一状态信息,只针对第一范围内的飞行器的状态信息进行判定,可以有效地减少计算量。通过无人机的位置信息确定第一范围的一种实现方式可以为:确定的第一范围的经度范围为(当前经度-第一经度阈值,当前经度+第一经度阈值),第一范围的纬度范围为(当前纬度-第二纬度阈值,当前纬度+第二纬度阈值)。
其中,根据第一状态信息和第二状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。其中,本实施例中判断飞行器探测设备探测到的所有飞行器的第二飞行状态信息中的身份信息是否包括飞行器的第一飞行状态信息中的身份信息,如果所有飞行器的该第二飞行状态信息中的身份信息不包括第一飞行状态信息中的身份信息,则确定该飞行器探测设备未探测到第一飞行状态信息指示的飞行器,如果所有飞行器的该第二飞行状态信息中的身份信息包括第一飞行状态信息中的身份信息,则确定该飞行器探测设备探测到第一飞行状态信息指示的飞行器。
对于步骤S303相应地方案为:根据第一范围内的飞行器的所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
本实施例通过互联网发布的第一范围内的飞行器的第一飞行状态信 息来对无人机上的飞行器探测探测设备探测到的飞行器的第二飞行状态信息进行补充,以确定出无人机上的飞行器探测设备未探测到的第一范围内的飞行器,减少了处理过程的复杂度,提高了飞行器探测设备未探测到的飞行器的确定效率,还提高无人机的防撞精度,降低了无人机与飞行器的碰撞概率,保证了无人机和飞行器的飞行安全。
图4为本发明另一实施例提供的无人机的控制方法的流程图,如图4所示,本实施例的方法可以包括:
S401、获取无人机的位置信息。
本实施例中,本实施例还获取无人机的位置信息,该位置信息至少包括无人机当前所处的经度和纬度。
在本实施例应用于无人机时,S401的实现方式为:无人机上的定位设备获取无人机的位置信息,然后无人机的处理器从该无人机的定位设备上读取无人机的位置信息。
在本实施例应用于无人机的控制终端时,S402的实现方式为:无人机上的定位设备获取无人机的位置信息,然后控制终端通过与无人机之间的无线数据链路接收无人机发送的所述位置信息。
S402、获取通过互联网发布的飞行器的第一飞行状态信息。
S403、获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息。
本实施例中,S402和S403的具体实现过程可以参见上述实施例中的相关描述,此处不再赘述。
S404、根据所述第一飞行状态信息确定对应飞行器的预期位置信息。
本实施例中,由于互联网获取飞行器的飞行状态信息到发布所述飞行器的飞行状态信息并不是完全实时的,即存在一定的延时,通常这个延时在数分钟左右,因此,飞行器的飞行状态信息广播设备广播飞行状态信息时飞行器所处的位置和无人机或控制终端接收到飞行器的飞行状态信息时飞行器所处的位置之间已经相隔了一段距离,因此,本实施例根据互联网发布的飞行器的第一飞行状态信息确定该飞行器的预期位置信息,该预期位置信息是无人机或控制终端接收到飞行器的飞行状态信息时飞行器所处的位置。
其中,一种实现方式为:根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。本实施例在确定飞行器的预期位置信息需要参考互联网发布第一飞行状态信息的延时,以减少确定的飞行器的预期位置信息与飞行器的实际位置信息的误差。其中所述延时可以通过实验测量得到,也可以由发布飞行器的飞行状态信息的网站提供。
进一步地,根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息可以包括:根据第一飞行状态信息中的位置信息、航向信息、速度信息、加速度信息中的至少一种和该互联网发布第一飞行状态信息的延时,确定该飞行器的预期位置信息。
可选地,S402的一种可能的实现方式为:获取通过互联网发布的第二范围内的飞行器的第一状态信息。相应地,S404的一种可能的实现方式为:根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
本实施例获取到的是互联网发布的飞行状态信息中第二范围内的飞行器的第一飞行状态信息,具体的确定第二范围的确定方式可以参见前述第一范围的确定过程。而且本实施例是根据第二范围内的第一飞行状态信息确定对应飞行器的预期位置信息。本实施例将判断与无人机的位置关系的飞行器缩减至第二范围内,这样减少了处理过程的复杂度。
S405、当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
本实施例中,在确定上述预期位置信息和无人机的位置信息之后,根据该上述预期位置信息和无人机的位置信息,确定第一飞行状态信息指示的飞行器与无人机之间的位置关系,并判断该位置关系是否满足预设要求,如果该位置关系满足预设要求时,说明该飞行器与无人机之间存在碰撞的可能性较大,然后再一步根据该飞行器的第一状态信息和上述第二状态信息确定该飞行器探测设备是否探测到第一飞行状态指示的该飞行器。如果该位置关系不满足预设要求时,说明该飞行器与无人机之间存在碰撞 的可能性较小,本实施例则无需根据该飞行器的第一状态信息和上述第二状态信息确定该飞行器探测设备是否探测到第一飞行状态指示的该飞行器。
其中,上述的预设要求可以是:飞行器与无人机之间的距离小于或等于预设的距离阈值。因此,本实施例是根据飞行器的预期位置信息(包括飞行器的预期经度、预期纬度、预期高度)以及无人机的位置信息(包括无人机的经度、纬度、高度),可以计算获得该飞行器与无人机之间的距离,再判断该距离是否大于预设的距离阈值,如果该距离小于或等于预设的距离阈值,说明飞行器与无人机之间相距较近,存在碰撞的可能性较大,然后进一步根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。如果该距离大于预设的距离阈值,说明飞行器与无人机之间距相远,存在碰撞的可能性较小,无需进一步根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
或者,上述的预设要求可以是:飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值。因此,本实施例是根据飞行器的预期位置信息(包括飞行器的预期经度、预期纬度)以及无人机的位置信息(包括无人机的经度、纬度),由于直接计算无人机与该飞行器之间的距离,存在运算量较大的问题,因此可以计算获得该飞行器与无人机在地表上球面距离,再判断该地表上球面距离是否大于预设的球面距离阈值,如果该地表上球面距离小于或等于预设的球面距离阈值,说明飞行器与无人机之间相距较近,存在碰撞的可能性较大,然后进一步根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。如果该地表上球面距离大于预设的球面距离阈值,说明飞行器与无人机之间距相远,存在碰撞的可能性较小,无需进一步根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
S406、当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
本实施例中,S406的具体实现过程可以参见上述实施例中的相关描述,此处不再赘述。
本实施例提供的无人机的控制方法,通过上述方案,可以快速地确定出无人机上的飞行器探测设备未探测到的飞行器,提高无人机的防撞精度,保证了无人机和飞行器的飞行安全。
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2-图4及其对应实施例中的无人机的控制方法的部分或全部步骤。
图5为本发明实施例提供的控制终端500的一种结构示意图,如图5所示,本实施例的控制终端500可以包括:存储器501和处理器502。上述存储器501和处理器502通过总线连接。存储器501可以包括只读存储器和随机存取存储器,并向处理器502提供指令和数据。存储器501的一部分还可以包括非易失性随机存取存储器。
上述处理器502可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
其中,所述存储器501用于存储程序代码。
所述处理器502,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取通过互联网发布的飞行器的第一飞行状态信息。
从无人机获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息。
当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
可选地,所述处理器502,还用于:根据所述第一飞行状态信息和所 述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器502在获取通过互联网发布的第一飞行状态信息时,具体用于:获取通过互联网发布的第一范围内的飞行器的第一飞行状态信息;
所述处理器502在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
可选地,所述处理器502,还用于从所述无人机获取所述无人机上的定位设备输出的位置信息;
所述第一范围是根据无人机的定位设备输出的位置信息确定的。
可选地,所述处理器502,还用于从所述无人机上获取所述无人机的位置信息;
所述处理器502在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息确定对应飞行器的预期位置信息;当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器502,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的距离小于或等于预设的距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器502,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器502,具体用于:根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。
可选地,所述处理器502在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第二范围内的飞行器的第一状态信息;
所述处理器502在根据所述第一飞行状态信息确定对应飞行器的预期位置信息时,具体用于:根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
可选地,所述第二范围是根据无人机的定位设备输出的位置信息确定的。
可选地,所述处理器502具体用于:根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
可选地,所述飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
可选地,所述处理器502,具体用于:获取通过预设的网站发布的飞行器的第一飞行状态信息。
可选地,所述飞行器探测设备为ADS-B设备。
本实施例的控制终端,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
下面对处理器502执行防止碰撞操作进行说明。
在一种方式中,所述处理器502,具体用于向无人机发送控制指令以限制无人机的飞行。
在另一种方式中,图6为本发明实施例提供的控制终端500的另一种结构示意图,如图6所示,本实施例的控制终端500在图5所示实施例的基础上,还包括:交互装置503,所述交互装置503与所述处理器502通过总线连接。
所述交互装置503,用于显示提示信息。
所述处理器502,具体用于控制所述交互装置503显示提示信息。
本实施例的控制终端,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明实施例提供的无人机700的一种结构示意图,如图7所示,本实施例的无人机700可以包括:存储器701和处理器702。上述存储器701和处理器702通过总线连接。存储器701可以包括只读存储器和随机存取存储器,并向处理器702提供指令和数据。存储器701的一部分还可以包括非易失性随机存取存储器。
上述处理器702可以是CPU,该处理器还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器701用于存储程序代码;
所述处理器702,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取通过互联网发布的飞行器的第一飞行状态信息。
获取所述无人机的所述飞行器探测设备703探测到的飞行器的第二飞行状态信息。其中,所述飞行器探测设备703,用于探测飞行器的第二飞行状态信息;
当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备703没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
可选地,所述处理器702,还用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器702在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第一范围内的飞行器的第一飞行状态信息。
所述处理器702在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备703是否探测到第一范围内的第一飞行状态信息指 示的飞行器。
本实施例的无人机,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明实施例提供的无人机700的另一种结构示意图,如图8所示,本实施例的无人机700在图7所示实施例的基础上,还可以包括:定位设备704。
所述定位设备704,用于输出所述无人机的位置信息。
所述处理器702,还用于从所述定位设备704中获取所述无人机的位置信息。
可选地,所述第一范围是根据无人机的定位设备704输出的位置信息确定的。
可选地,所述处理器702在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息确定对应飞行器的预期位置信息;当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器702,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的距离小于或等于预设的距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器702,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器。
可选地,所述处理器702,具体用于:根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。
可选地,所述处理器702在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第二范围内的飞行器的第一状态信息。
所述处理器702在根据所述第一飞行状态信息确定对应飞行器的预期位置信息时,具体用于:根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
可选地,所述第二范围是根据无人机的定位设备704输出的位置信息确定的。
可选地,所述处理器702具体用于:根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备703是否探测到第一飞行状态信息指示的飞行器。
可选地,所述飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
可选地,所述处理器702具体用于:获取通过预设的网站发布的飞行器的第一飞行状态信息。
可选地,所述飞行器探测设备703为ADS-B设备。
可选地,所述处理器702,具体用于向控制终端发送提示信息。
可选地,所述处理器702,具体用于限制无人机的飞行。
本实施例的无人机,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (50)

  1. 一种无人机的控制方法,其特征在于,包括:
    获取通过互联网发布的飞行器的第一飞行状态信息;
    获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;
    当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  3. 根据权利要求2所述的方法,其特征在于,所述获取通过互联网发布的第一飞行状态信息包括:获取通过互联网发布的第一范围内的飞行器的第一飞行状态信息;
    所述根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:
    根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取无人机的定位设备输出的位置信息;
    根据所述位置信息确定所述第一范围。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获取无人机的定位设备输出的位置信息;
    所述根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:
    根据所述第一飞行状态信息确定对应飞行器的预期位置信息;
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  6. 根据权利要求5所述的方法,其特征在于,
    所述当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的距离小于或等于预设的距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  7. 根据权利要求5所述的方法,其特征在于,
    所述当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,
    所述根据所述第一飞行状态信息确定对应飞行器的预期位置信息包括:
    根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,
    所述获取通过互联网发布的第一飞行状态信息包括:
    获取通过互联网发布的第二范围内的飞行器的第一状态信息;
    所述根据所述第一飞行状态信息确定对应飞行器的预期位置信息包括:
    根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据定位设备输出的位置信息确定第二范围。
  11. 根据权利要求2-10任一项所述的方法,其特征在于,
    所述根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器包括:
    根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,
    所述飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,
    所述获取通过互联网发布的第一飞行状态信息包括:
    获取通过预设的网站发布的飞行器的第一飞行状态信息。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,
    所述飞行器探测设备为ADS-B设备。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述执行防止碰撞操作包括:
    在控制终端的交互装置上显示提示信息。
  16. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述执行防止碰撞操作包括:
    向无人机发送控制指令以限制无人机的飞行。
  17. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述执行防止碰撞操作包括:
    向控制终端发送提示信息。
  18. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述执行防止碰撞操作包括:
    限制无人机的飞行。
  19. 一种控制终端,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取通过互联网发布的飞行器的第一飞行状态信息;
    从无人机上获取所述无人机上的飞行器探测设备探测到的飞行器的第二飞行状态信息;
    当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
  20. 根据权利要求19所述的控制终端,其特征在于,所述处理器,还用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  21. 根据权利要求20所述的控制终端,其特征在于,所述处理器在获取通过互联网发布的第一飞行状态信息时,具体用于:获取通过互联网发布的第一范围内的飞行器的第一飞行状态信息;
    所述处理器在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
  22. 根据权利要求21所述的控制终端,其特征在于,
    所述处理器,还用于:
    获取所述无人机的定位设备输出的位置信息;
    根据所述位置信息确定第一范围。
  23. 根据权利要求20所述的控制终端,其特征在于,所述处理器,还用于获取所述无人机的定位设备输出的位置信息;
    所述处理器在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:
    根据所述第一飞行状态信息确定对应飞行器的预期位置信息;
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  24. 根据权利要求23所述的控制终端,其特征在于,所述处理器,具体用于:
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的距离小于或等于预设的距离阈值时,根据第一飞行状态信息 和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  25. 根据权利要求23所述的控制终端,其特征在于,所述处理器,具体用于:
    当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  26. 根据权利要求23-25任一项所述的控制终端,其特征在于,
    所述处理器,具体用于:根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。
  27. 根据权利要求23-26任一项所述的控制终端,其特征在于,
    所述处理器在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第二范围内的飞行器的第一状态信息;
    所述处理器在根据所述第一飞行状态信息确定对应飞行器的预期位置信息时,具体用于:根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
  28. 根据权利要求27所述的控制终端,其特征在于,所述处理器,还用于根据所述定位设备输出的位置信息确定第二范围。
  29. 根据权利要求20-28任一项所述的控制终端,其特征在于,所述处理器具体用于:根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  30. 根据权利要求19-29任一项所述的控制终端,其特征在于,
    所述飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
  31. 根据权利要求19-30任一项所述的控制终端,其特征在于,所述处理器,具体用于:获取通过预设的网站发布的飞行器的第一飞行状态信息。
  32. 根据权利要求19-31任一项所述的控制终端,其特征在于,
    所述飞行器探测设备为ADS-B设备。
  33. 根据权利要求19-32任一项所述的控制终端,其特征在于,还包括:交互装置,所述处理器在防止碰撞操作时,具体用于控制所述交互装置显示提示信息。
  34. 根据权利要求19-32任一项所述的控制终端,其特征在于,
    所述处理器在防止碰撞操作时,具体用于向无人机发送控制指令以限制无人机的飞行。
  35. 一种无人机,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取通过互联网发布的飞行器的第一飞行状态信息;
    获取所述无人机的飞行器探测设备探测到的飞行器的第二飞行状态信息;
    当根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备没有探测到第一飞行状态信息指示的飞行器时,执行防止碰撞操作。
  36. 根据权利要求35所述的无人机,其特征在于,所述处理器,还用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器 探测设备是否探测到第一飞行状态信息指示的飞行器。
  37. 根据权利要求36所述的无人机,其特征在于,所述处理器在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第一范围内的飞行器的第一飞行状态信息;
    所述处理器在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一范围内的第一飞行状态信息指示的飞行器。
  38. 根据权利要求37所述的无人机,其特征在于,所述无人机还包括:定位设备;
    所述定位设备,用于输出所述无人机的位置信息;
    所述处理器,还用于根据所述定位设备输出的位置信息确定所述第一范围。
  39. 根据权利要求36所述的无人机,其特征在于,所述无人机还包括:定位设备;
    所述定位设备,用于输出所述无人机的位置信息;
    所述处理器在根据所述第一飞行状态信息和所述第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器时,具体用于:根据所述第一飞行状态信息确定对应飞行器的预期位置信息;当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机之间的位置关系满足预设要求时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  40. 根据权利要求39所述的无人机,其特征在于,所述处理器,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与 无人机之间的距离小于或等于预设的距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  41. 根据权利要求39所述的无人机,其特征在于,所述处理器,具体用于:当根据所述预期位置信息和无人机的位置信息确定对应的飞行器与无人机在地表上球面距离小于或等于预设的球面距离阈值时,根据第一飞行状态信息和第二飞行状态信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  42. 根据权利要求39-41任一项所述的无人机,其特征在于,
    所述处理器,具体用于:根据所述第一飞行状态信息和互联网发布第一飞行状态信息的延时确定对应飞行器的预期位置信息。
  43. 根据权利要求39-42任一项所述的无人机,其特征在于,
    所述处理器在获取通过互联网发布的飞行器的第一飞行状态信息时,具体用于:获取通过互联网发布的第二范围内的飞行器的第一状态信息;
    所述处理器在根据所述第一飞行状态信息确定对应飞行器的预期位置信息时,具体用于:根据所述第二范围内的飞行器的第一飞行状态信息确定对应飞行器的预期位置信息。
  44. 根据权利要求43所述的无人机,其特征在于,所述处理器,还用于根据所述定位设备输出的位置信息确定第二范围。
  45. 根据权利要求36-44任一项所述的无人机,其特征在于,所述处理器具体用于:根据所述第一飞行状态信息中的身份信息和第二飞行状态信息中的身份信息确定所述飞行器探测设备是否探测到第一飞行状态信息指示的飞行器。
  46. 根据权利要求35-45任一项所述的无人机,其特征在于,
    所述飞行状态信息包括速度信息、位置信息、航向信息、加速度信息、高度信息、身份信息中的一种或多种。
  47. 根据权利要求35-46任一项所述的无人机,其特征在于,所述处理器具体用于获取通过预设的网站发布的飞行器的第一飞行状态信息。
  48. 根据权利要求35-47任一项所述的无人机,其特征在于,
    所述飞行器探测设备为ADS-B设备。
  49. 根据权利要求35-48任一项所述的无人机,其特征在于,所述处理器在执行防止碰撞操作时,具体用于向控制终端发送提示信息。
  50. 根据权利要求35-48任一项所述的无人机,其特征在于,所述处理器在执行防止碰撞操作时,具体用于限制无人机的飞行。
PCT/CN2017/090828 2017-06-29 2017-06-29 无人机的控制方法、控制终端和无人机 WO2019000328A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780007010.XA CN108521802A (zh) 2017-06-29 2017-06-29 无人机的控制方法、控制终端和无人机
PCT/CN2017/090828 WO2019000328A1 (zh) 2017-06-29 2017-06-29 无人机的控制方法、控制终端和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090828 WO2019000328A1 (zh) 2017-06-29 2017-06-29 无人机的控制方法、控制终端和无人机

Publications (1)

Publication Number Publication Date
WO2019000328A1 true WO2019000328A1 (zh) 2019-01-03

Family

ID=63434121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090828 WO2019000328A1 (zh) 2017-06-29 2017-06-29 无人机的控制方法、控制终端和无人机

Country Status (2)

Country Link
CN (1) CN108521802A (zh)
WO (1) WO2019000328A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316186A (zh) * 2019-04-30 2020-06-19 深圳市大疆创新科技有限公司 无人机的控制方法和无人机
JP6924238B2 (ja) * 2019-09-30 2021-08-25 本田技研工業株式会社 無人飛行体、コントローラ及び管理装置
WO2021081907A1 (zh) * 2019-10-31 2021-05-06 深圳市大疆创新科技有限公司 一种无人机的飞行控制方法、设备、无人机及存储介质
CN113537198B (zh) * 2021-07-31 2023-09-01 北京晟天行科技有限公司 一种无人机图像采集时自动拍照的控制方法
WO2023201644A1 (zh) * 2022-04-21 2023-10-26 北京小米移动软件有限公司 信息传输方法及装置、存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097216A1 (en) * 2001-11-20 2003-05-22 United Parcel Service Systems and methods for correlation in an air traffic control system of interrogation-based target positional data and GPS-based intruder positional data
US20090248287A1 (en) * 2008-02-15 2009-10-01 Kutta Technologies, Inc. Unmanned aerial system position reporting system and related methods
CN102566581A (zh) * 2010-12-21 2012-07-11 通用电气公司 基于轨迹的感测与规避
EP2648174A2 (en) * 2012-03-19 2013-10-09 Hughey & Phillips, LLC Lighting and collision alerting system
CN105259912A (zh) * 2015-10-10 2016-01-20 成都川睿科技有限公司 一种基于智能交通的无人机通讯系统
CN105676249A (zh) * 2016-04-20 2016-06-15 中国民航大学 一种基于4g/3g/bds的通航飞机通信导航监视系统及方法
CN106355957A (zh) * 2015-07-15 2017-01-25 霍尼韦尔国际公司 监视邻近交通的飞行器系统和方法
CN106662879A (zh) * 2014-06-25 2017-05-10 亚马逊科技公司 用于自动空中交通工具的对象规避
CN106843273A (zh) * 2017-03-10 2017-06-13 湖北天专科技有限公司 无人机的飞行避让控制设备、系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783293B2 (en) * 2014-05-20 2017-10-10 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform
US10366616B2 (en) * 2015-01-09 2019-07-30 Botlink, Llc System and method of collision avoidance in unmanned aerial vehicles
CN105913692B (zh) * 2016-06-06 2018-06-29 北京威胜通达科技有限公司 一种飞行监视服务的方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097216A1 (en) * 2001-11-20 2003-05-22 United Parcel Service Systems and methods for correlation in an air traffic control system of interrogation-based target positional data and GPS-based intruder positional data
US20090248287A1 (en) * 2008-02-15 2009-10-01 Kutta Technologies, Inc. Unmanned aerial system position reporting system and related methods
CN102566581A (zh) * 2010-12-21 2012-07-11 通用电气公司 基于轨迹的感测与规避
EP2648174A2 (en) * 2012-03-19 2013-10-09 Hughey & Phillips, LLC Lighting and collision alerting system
CN106662879A (zh) * 2014-06-25 2017-05-10 亚马逊科技公司 用于自动空中交通工具的对象规避
CN106355957A (zh) * 2015-07-15 2017-01-25 霍尼韦尔国际公司 监视邻近交通的飞行器系统和方法
CN105259912A (zh) * 2015-10-10 2016-01-20 成都川睿科技有限公司 一种基于智能交通的无人机通讯系统
CN105676249A (zh) * 2016-04-20 2016-06-15 中国民航大学 一种基于4g/3g/bds的通航飞机通信导航监视系统及方法
CN106843273A (zh) * 2017-03-10 2017-06-13 湖北天专科技有限公司 无人机的飞行避让控制设备、系统和方法

Also Published As

Publication number Publication date
CN108521802A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
US11474516B2 (en) Flight aiding method and system for unmanned aerial vehicle, unmanned aerial vehicle, and mobile terminal
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
US11604479B2 (en) Methods and system for vision-based landing
US9448562B1 (en) Utilizing acceleration information for precision landing of unmanned aerial vehicles
US20170336805A1 (en) Method an apparatus for controlling unmanned aerial vehicle to land on landing platform
US20220244746A1 (en) Method of controlling an aircraft, flight control device for an aircraft, and aircraft with such flight control device
TWI686686B (zh) 飛行器的控制方法和裝置
WO2018094626A1 (zh) 无人飞行器的避障控制方法及无人飞行器
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、系统和无人机
CN109154815B (zh) 最高温度点跟踪方法、装置和无人机
US11670181B2 (en) Systems and methods for aiding landing of vertical takeoff and landing vehicle
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
WO2019023906A1 (zh) 同步方法、设备和系统
WO2018214155A1 (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
US20230419843A1 (en) Unmanned aerial vehicle dispatching method, server, base station, system, and readable storage medium
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
WO2018068193A1 (zh) 控制方法、控制装置、飞行控制系统与多旋翼无人机
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
CN110770539A (zh) 磁传感器校准方法、控制终端以及可移动平台
CN111684384B (zh) 一种无人机的飞行控制方法、设备及无人机
US20210229810A1 (en) Information processing device, flight control method, and flight control system
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
WO2022126397A1 (zh) 传感器的数据融合方法、设备及存储介质
WO2021223176A1 (zh) 无人机的控制方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916129

Country of ref document: EP

Kind code of ref document: A1