WO2018103161A1 - 柔性垂直沟道有机薄膜晶体管及其制作方法 - Google Patents

柔性垂直沟道有机薄膜晶体管及其制作方法 Download PDF

Info

Publication number
WO2018103161A1
WO2018103161A1 PCT/CN2016/113013 CN2016113013W WO2018103161A1 WO 2018103161 A1 WO2018103161 A1 WO 2018103161A1 CN 2016113013 W CN2016113013 W CN 2016113013W WO 2018103161 A1 WO2018103161 A1 WO 2018103161A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
film transistor
organic semiconductor
source
drain
Prior art date
Application number
PCT/CN2016/113013
Other languages
English (en)
French (fr)
Inventor
卜呈浩
胡国仁
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/506,239 priority Critical patent/US20180219055A1/en
Publication of WO2018103161A1 publication Critical patent/WO2018103161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/472Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible vertical channel organic thin film transistor and a method of fabricating the same.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • OLED Organic Light-Emitting Diode
  • organic electroluminescent display also known as an organic electroluminescent display
  • OLED Organic Light-Emitting Diode
  • High definition and contrast ratio, near 180° viewing angle, wide temperature range, flexible display and large-area full-color display, etc., are recognized by the industry as the most promising display device.
  • OLED displays Compared with LCD displays, OLED displays have received more attention in the current display market due to their higher brightness, wider viewing angle, faster response, higher contrast, and lighter weight.
  • OLED displays are current-driven devices that place higher demands on backplane technology with active arrays.
  • small-sized OLED displays mostly use low-temperature polysilicon (LTPS) as an active layer of a thin film transistor array (TFT array).
  • LTPS backplane technology increases process time, energy consumption and cost.
  • polysilicon has a large number of grain boundaries, and its preparation technology is difficult to ensure a uniform large-area film, which affects the electrical parameters of TFT components such as threshold voltage and leakage. Current, etc., so that the pixels it drives appear to be unstable.
  • OTFT organic thin film transistor
  • NVerpix of the United States has proposed an organic thin film transistor device based on a vertical channel structure, which has obtained a higher on-state current and a lower driving voltage, but uses a gate material and The edge layer material is difficult to make the device truly bend, which limits the application of the vertical channel structure OTFT in the flexible OLED display.
  • the leakage current is favorable for driving the OLED pixel to emit light at a low voltage, and has good bending performance.
  • the present invention first provides a method for fabricating a flexible vertical channel organic thin film transistor, comprising the following steps:
  • Step 1 providing a rigid substrate, forming a flexible substrate on the rigid substrate, forming a gate on the flexible substrate;
  • Step 2 forming a gate insulating layer on the gate, the size of the gate insulating layer is smaller than a size of the gate;
  • Step 3 forming an organic semiconductor layer on the source, the size of the organic semiconductor layer is smaller than the size of the source;
  • Step 4 peeling the flexible substrate from the rigid substrate to obtain a flexible vertical channel organic thin film transistor.
  • the material of the gate is graphene; the material of the gate insulating layer is hexagonal boron nitride.
  • the material of the source is carbon nanotubes; the material of the organic semiconductor layer is a P-type organic semiconductor material; and the thickness of the organic semiconductor layer is 80 nm to 120 nm.
  • the drain, the source contact electrode, and the gate contact electrode are simultaneously formed by evaporation by using a mask, so that the drain, the source contact electrode, and the gate contact electrode
  • the material is the same; the material of the drain, the source contact electrode, and the gate contact electrode is metal.
  • the step 3 further includes the step of fabricating an OLED display unit on the organic semiconductor layer and the drain, the OLED display unit including holes stacked in this order from the bottom to the top on the organic semiconductor layer and the drain.
  • the present invention also provides a flexible vertical channel organic thin film transistor, comprising: a flexible substrate, a gate disposed on the flexible substrate, a gate insulating layer and a gate disposed on the gate and spaced apart a contact electrode, a source provided on the gate insulating layer, an organic semiconductor layer and a source contact electrode provided on the source and spaced apart from each other, and a drain provided on the organic semiconductor layer.
  • the material of the gate is graphene; the material of the gate insulating layer is hexagonal boron nitride.
  • the material of the source is carbon nanotubes; the material of the organic semiconductor layer is a P-type organic semiconductor material; and the thickness of the organic semiconductor layer is 80 nm to 120 nm.
  • the drain, the source contact electrode, and the gate contact electrode are formed in the same vapor deposition process so that the materials are the same; the material of the drain, the source contact electrode, and the gate contact electrode is metal.
  • the flexible vertical channel organic thin film transistor further includes an OLED display unit disposed on the organic semiconductor layer and the drain, and the OLED display unit includes a stacked layer on the organic semiconductor layer and the drain from bottom to top.
  • the hole injection layer, the organic light-emitting layer, the electron injection layer, and the cathode, the drain serves as an OLED anode.
  • the present invention also provides a flexible vertical channel organic thin film transistor, comprising: a flexible substrate, a gate disposed on the flexible substrate, a gate insulating layer and a gate disposed on the gate and spaced apart a contact electrode, a source disposed on the gate insulating layer, an organic semiconductor layer and a source contact electrode disposed on the source and spaced apart from each other, and a drain provided on the organic semiconductor layer;
  • the material of the gate is graphene; the material of the gate insulating layer is hexagonal boron nitride;
  • the material of the source is carbon nanotubes; the material of the organic semiconductor layer is a P-type organic semiconductor material; and the thickness of the organic semiconductor layer is 80 nm to 120 nm.
  • the present invention provides a flexible vertical channel organic thin film transistor and a fabrication method thereof, which change the configuration of a conventional planar channel organic thin film transistor, and greatly shorten the trench by using a vertical channel configuration.
  • the length of the track enables the thin film transistor to obtain a large source-drain current at a lower driving voltage, which is advantageous for driving the OLED pixel to emit light at a low voltage, and does not require a high-resolution exposure technique, thereby saving production costs;
  • Defective, highly conductive and highly transparent graphene material to prepare the gate which makes the electrical performance of the thin film transistor better;
  • the hexagonal boron nitride material is used to prepare the gate insulating layer, which cooperates with the gate prepared by the graphene material to improve
  • the electrical properties of the thin film transistor and because the graphene material and the hexagonal boron nitride material are both two-dimensional atomic layer structural materials with good bending properties, and the channel layer is organic with flexibility.
  • the semiconductor material makes the bending
  • FIG. 1 is a flow chart of a method for fabricating a flexible vertical channel organic thin film transistor of the present invention
  • step 1 is a schematic diagram of step 1 of a method for fabricating a flexible vertical channel organic thin film transistor of the present invention
  • step 2 is a schematic diagram of step 2 of a method for fabricating a flexible vertical channel organic thin film transistor of the present invention
  • FIG. 4A is a schematic view showing a first embodiment of step 3 of a method for fabricating a flexible vertical channel organic thin film transistor of the present invention
  • 4B is a schematic view showing a second embodiment of step 3 of the method for fabricating a flexible vertical channel organic thin film transistor of the present invention.
  • 5A is a schematic view showing a first embodiment of step 4 of a method for fabricating a flexible vertical channel organic thin film transistor of the present invention
  • 5B is a schematic view showing a second embodiment of step 4 of the method for fabricating a flexible vertical channel organic thin film transistor of the present invention.
  • FIG. 6 is a side elevational view showing a first embodiment of a flexible vertical channel organic thin film transistor of the present invention.
  • FIG. 7 is a side view showing the flexible vertical channel organic thin film transistor of FIG. 6 when bent;
  • FIG. 8 is a perspective view of the flexible vertical channel organic thin film transistor of FIG. 6;
  • FIG. 9 is a perspective view showing the flexible vertical channel organic thin film transistor of FIG. 6 when bent;
  • FIG. 10 is a side elevational view showing a second embodiment of a flexible vertical channel organic thin film transistor of the present invention.
  • FIG. 11 is a schematic view showing the atomic structure of graphene used in the flexible vertical channel organic thin film transistor of the present invention.
  • FIG. 12 is a schematic view showing the atomic structure of hexagonal boron nitride used in the flexible vertical channel organic thin film transistor of the present invention.
  • the present invention first provides a method for fabricating a flexible vertical channel organic thin film transistor, comprising the following steps:
  • Step 1 As shown in FIG. 2, a rigid substrate 10 is provided, on which a flexible substrate 11 is formed, and a gate electrode 20 is formed on the flexible substrate 11.
  • the rigid substrate 10 is a glass substrate.
  • the flexible substrate 11 is a polyimide (PI) film.
  • PI polyimide
  • the material of the gate electrode 20 is graphene, preferably non-defective graphene.
  • the gate electrode 20 is prepared by depositing a graphene layer on the flexible substrate 11 by a chemical vapor deposition (CVD) method, and then patterning the graphene layer. The treatment is performed to obtain the gate electrode 20.
  • CVD chemical vapor deposition
  • Step 2 As shown in FIG. 3, a gate insulating layer 30 is formed on the gate electrode 20.
  • the size of the gate insulating layer 30 is smaller than the size of the gate electrode 20;
  • a source 40 is formed on the gate insulating layer 30, and the size of the source 40 is smaller than or equal to the size of the gate insulating layer 30.
  • the material of the gate insulating layer 30 is hexagonal boron nitride (h-BN).
  • the gate insulating layer 30 is a two-layer monoatomic layer of a hexagonal boron nitride film.
  • the gate insulating layer 30 is prepared by growing a hexagonal boron nitride film on a copper foil by a chemical vapor deposition (CVD) method, and growing the hexagonal film on the copper foil.
  • the boron nitride film is transferred to the gate electrode 20 prepared in the above step 1, and then the hexagonal boron nitride film is patterned to obtain the gate insulating layer 30.
  • the material of the source 40 is carbon nanotubes.
  • the source 40 includes a plurality of single-walled carbon nanotubes arranged sparsely, and the sparse arrangement is defined as an arrangement in which a plurality of single-walled carbon nanotubes have a gap therebetween.
  • the sparsely arranged single-walled carbon nanotubes are prepared by vacuum filtration.
  • Step 3 as shown in FIG. 4A, an organic semiconductor layer 50 is formed on the source electrode 40, and the size of the organic semiconductor layer 50 is smaller than the size of the source electrode 40;
  • a drain electrode 60 is formed on the organic semiconductor layer 50, and a size of the drain electrode 60 is smaller than or equal to a size of the organic semiconductor layer 50;
  • a gate contact electrode 21 spaced apart from the gate insulating layer 30 is formed on the gate electrode 20.
  • the organic semiconductor layer 50 is formed by a vapor deposition method.
  • the material of the organic semiconductor layer 50 is a P-type (hole-type) organic semiconductor material.
  • the P-type organic semiconductor material includes one or more of alkyl-substituted polythiophene, thiophene and derivatives thereof, pentacene, phenolphthalein compound, hydrazine, and rubrene.
  • the drain 60, the source contact electrode 41, and the gate contact electrode 21 are simultaneously formed by evaporation using a mask, so that the drain 60 and the source are in contact with each other.
  • the materials of the electrode 41 and the gate contact electrode 21 are the same.
  • the material of the drain 60, the source contact electrode 41, and the gate contact electrode 21 is metal.
  • the material of the drain 60, the source contact electrode 41, and the gate contact electrode 21 is gold (Au).
  • the gate contact electrode 21 is used to implement a connection between the gate 20 and an associated signal line such as a scan line.
  • the source contact electrode 41 is used for grounding to achieve grounding of the source 40.
  • the organic semiconductor layer 50 has a thickness of 80 nm to 120 nm.
  • the organic semiconductor layer 50 has a thickness of 100 nm.
  • the flexible vertical channel organic thin film transistor prepared by the present invention since the source 40 and the drain 60 are respectively disposed above and below the organic semiconductor layer 50, that is, corresponding to the direction of the channel (from the source 40 to the drain)
  • the direction of the pole 60 is perpendicular to the horizontal structure layer such as the organic semiconductor layer 50, and thus the length of the channel is equal to the thickness of the organic semiconductor layer 50, and the flexibility of the present invention is compared with a conventional planar channel organic thin film transistor.
  • the channel length of the vertical channel organic thin film transistor is greatly reduced, and a large source and drain current can be obtained at a lower driving voltage.
  • the step 3 may further include the step of fabricating the OLED display unit 90 on the organic semiconductor layer 50 and the drain 60, and the OLED display unit 90 is included in the organic semiconductor layer.
  • the OLED display unit 90 is integrated in the organic semiconductor layer 50 and the drain 60 to form an integrated vertical channel type organic light emitting diode.
  • the pixel defining layer and the OLED need not be prepared on the TFT.
  • the anode greatly reduces the manufacturing cost of the conventional OLED active matrix and improves the pixel aperture ratio of the OLED light emitting device.
  • Step 4 as shown in FIG. 5A and FIG. 5B, the flexible substrate 11 is peeled off from the rigid substrate 10 to obtain a flexible vertical channel organic thin film transistor 80.
  • the flexible substrate 11 is peeled off from the rigid substrate 10 by a laser lift-off technique (LLO).
  • LLO laser lift-off technique
  • the fabrication method of the above flexible vertical channel organic thin film transistor changes the configuration of the conventional planar channel organic thin film transistor, and the vertical channel configuration greatly shortens the channel length, so that the thin film transistor can be driven at a lower speed.
  • the material preparation gate 20 makes the electrical performance of the thin film transistor better; the gate insulating layer 30 is prepared by using a hexagonal boron nitride material, and the graphene gate 20 prepared by the graphene material acts together to improve the electrical performance of the thin film transistor.
  • the graphene material and the hexagonal boron nitride material are both two-dimensional atomic layer structural materials with good bending properties, and the channel layer is made of a flexible organic semiconductor material, the bending performance of the entire organic thin film transistor is greatly improved. The improvement is beneficial to the application of organic thin film transistors in flexible OLED displays.
  • the present invention further provides a flexible vertical channel organic thin film transistor 80, including: a flexible substrate 11 disposed on the flexible substrate, based on the manufacturing method of the flexible vertical channel organic thin film transistor. a gate electrode 20 on the gate electrode 20, a gate insulating layer 30 and a gate contact electrode 21 disposed on the gate electrode 20, and a source electrode 40 disposed on the gate insulating layer 30.
  • the organic semiconductor layer 50 and the source contact electrode 41 disposed on the source 40 and spaced apart from each other and the drain electrode 60 provided on the organic semiconductor layer 50.
  • the flexible substrate 11 is a polyimide (PI) film.
  • PI polyimide
  • the material of the gate electrode 20 is graphene, preferably non-defective graphene.
  • the atomic structure of the graphene is as shown in FIG. 11 , which has high carrier mobility, conductivity, and transparency, and has excellent elasticity and bendability, and is favorable for electron transport and flexible bottom. Preparation of an OLED type display device.
  • the material of the gate insulating layer 30 is hexagonal boron nitride (h-BN).
  • the gate insulating layer 30 is a two-layer monoatomic layer of a hexagonal boron nitride film.
  • the atomic structure of the hexagonal boron nitride is as shown in FIG. 12, and the insulating layer prepared by using hexagonal boron nitride has a very flat and smooth surface, has a small density of surface defects, and has a high dielectric breakdown strength. It has been confirmed that it is an ideal insulating layer for graphene-based electronic devices.
  • the gate electrode 20 made of graphene material is used together with the gate insulating layer 30 made of hexagonal boron nitride material, good electrical properties can be obtained, and Graphene and hexagonal boron nitride are two-dimensional atomic layer structure materials, and the organic thin film transistor of the invention can obtain better bending performance than the organic thin film transistor based on the metal electrode and the inorganic material insulating layer, and can be used for preparation.
  • Flexible OLED display device based on organic thin film transistor increasing organic thin film transistor in flexible OLED display field The potential of the application.
  • the material of the source 40 is carbon nanotubes.
  • the source 40 includes a plurality of single-walled carbon nanotubes arranged sparsely, and the sparse arrangement is defined as a plurality of single-walled carbon nanotubes. There are gaps in the arrangement.
  • the sparsely arranged single-walled carbon nanotube structure can play a conductive role on the one hand, and the sparse mesh structure does not completely shield the gate electric field line on the other hand.
  • the material of the organic semiconductor layer 50 is a P-type organic semiconductor material
  • the P-type organic semiconductor material has a high carrier mobility and can increase an on-state current of the organic thin film transistor.
  • the P-type organic semiconductor material includes one or more of alkyl-substituted polythiophene, thiophene and derivatives thereof, pentacene, phenolphthalein compound, hydrazine, and rubrene.
  • the drain 60, the source contact electrode 41, and the gate contact electrode 21 are formed in the same vapor deposition process, and the materials are the same.
  • the material of the drain 60, the source contact electrode 41, and the gate contact electrode 21 is metal.
  • the material of the drain 60, the source contact electrode 41, and the gate contact electrode 21 is gold (Au).
  • the gate contact electrode 21 is used to implement a connection between the gate 20 and an associated signal line such as a scan line.
  • the source contact electrode 41 is used for grounding to achieve grounding of the source 40.
  • the flexible vertical channel organic thin film transistor of the present invention works on the principle of forming a Schottky contact between the source 40 and the organic semiconductor layer 50 prepared by using the carbon nanotube material, and is regulated during operation.
  • the voltage applied to the gate electrode 20 adjusts the size of the Schottky barrier between the source electrode 40 and the organic semiconductor layer 50, thereby achieving the purpose of controlling the switching performance of the thin film transistor, and the organic semiconductor layer 50 is made of a P-type organic semiconductor material.
  • gate source voltage Vgs ⁇ 0 When a negative voltage (gate source voltage Vgs ⁇ 0) is applied to the gate electrode 20, since the source electrode 40 includes a plurality of single-walled carbon nanotubes arranged sparsely, the gate electric field lines are not completely shielded, and the gate electric field lines can be worn.
  • the source 40 is lowered, and the Schottky barrier between the source 40 and the organic semiconductor layer 50 is lowered, so that the number of holes injected from the source 40 into the organic semiconductor layer 50 is increased to form a flow from the source 40 to the organic semiconductor layer 50.
  • the thin film transistor is regarded as an open state, and the larger the absolute value of the negative voltage (gate-source voltage) applied to the gate 20, the Schottky barrier The more the reduction, the larger the forward current (on-state current/source leakage current);
  • the gate electric field line can also pass through the source 40, increasing the Schottky barrier between the source 40 and the organic semiconductor layer 50, the organic semiconductor
  • the holes in the layer 50 need to pass over a very high barrier to be implanted into the source 40, so the reverse current flowing from the organic semiconductor layer 50 to the source 40 is very very small, and the thin film transistor is regarded as turned off. status.
  • the flexible vertical channel organic thin film transistor 80 may further include an OLED display unit 90 disposed on the organic semiconductor layer 50 and the drain 60, and the OLED display unit 90 is included in the A layer of a hole injection layer 91, an organic light-emitting layer 92, an electron injection layer 93, and a cathode 94 which are stacked in this order from the bottom to the top of the organic semiconductor layer 50 and the drain electrode 60, the drain electrode 60 directly serving as an OLED anode
  • the OLED display unit 90 in situ on the organic semiconductor layer 50 and the drain 60 to form an integrated vertical channel type organic light emitting diode, it is not required to be fabricated on the TFT compared with the conventional organic light emitting diode.
  • the pixel defining layer and the OLED anode greatly reduce the manufacturing cost of the conventional OLED active matrix and improve the pixel aperture ratio of the OLED light emitting device.
  • the above flexible vertical channel organic thin film transistor obtains a high on-state current by adopting a vertical channel configuration, which is favorable for driving OLED pixel illumination at a low voltage, and does not require high-resolution exposure technology, thereby saving production cost;
  • the gate electrode 20 prepared by using the graphene material is used together with the gate insulating layer 30 prepared by using the hexagonal boron nitride material, thereby ensuring good electrical performance and bending performance of the thin film transistor, and is advantageous for preparing the flexible OLED light emitting device in situ.
  • the present invention provides a flexible vertical channel organic thin film transistor and a fabrication method thereof, which change the configuration of a conventional planar channel organic thin film transistor, and greatly shorten the channel length by using a vertical channel configuration. Therefore, the thin film transistor can obtain a large source-drain current at a lower driving voltage, which is favorable for driving the OLED pixel to emit light at a low voltage, and does not require a high-resolution exposure technology, thereby saving production cost; using no defect,
  • the graphene material with high conductivity and high transparency is used to prepare the gate electrode, so that the electrical performance of the thin film transistor is better; the gate insulating layer is prepared by using the hexagonal boron nitride material, and the gate electrode prepared by the graphene material acts together to improve the film.
  • the electrical properties of the transistor and because the graphene material and the hexagonal boron nitride material are both two-dimensional atomic layer structural materials with good bending properties, and the channel layer adopts a flexible organic semiconductor material, so that the entire organic thin film transistor is bent.
  • the folding performance is greatly improved, which is beneficial to the application of organic thin film transistors in flexible OLED displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种柔性垂直沟道有机薄膜晶体管及其制作方法,改变了传统的平面沟道有机薄膜晶体管的构型,使用垂直沟道构型极大的缩短了沟道长度,使得薄膜晶体管可以在较低的驱动电压下获得较大的源漏电流;使用无缺陷、具有高导电性及高透明度的石墨烯材料制备栅极,使得薄膜晶体管的电学性能更好;使用六方氮化硼材料制备栅极绝缘层,与石墨烯材料制备的栅极共同作用,提高了薄膜晶体管的电学性能,并且由于石墨烯材料与六方氮化硼材料均为弯折性能较好的二维原子层结构材料,同时沟道层采用具有柔性的有机半导体材料,使得整个有机薄膜晶体管的弯折性能得到大幅度提高,有利于有机薄膜晶体管在柔性OLED显示屏中的应用。

Description

柔性垂直沟道有机薄膜晶体管及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性垂直沟道有机薄膜晶体管及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
相比于LCD显示屏,OLED显示屏以其亮度更高,视角更宽,响应速度更快,对比度更大,更为轻薄等优势在目前的显示屏市场中受到了更为广泛的关注。OLED显示屏属于电流驱动器件,从而对含有主动阵列的背板技术提出了更高的要求。目前,小尺寸的OLED显示屏多用以低温多晶硅(LTPS)为主动层的薄膜晶体管阵列(TFT array)。然而LTPS背板技术增加了制程时间、能耗及成本,同时多晶硅存在着大量的晶界,其制备技术难以保证获得均一的大面积薄膜,这些都会影响TFT元件的电性参数如阈值电压和漏电流等,从而使其驱动的像素出现发光不稳定的问题。为了稳定LTPS-TFT的阈值电压,面板厂商通常会设计7T1C的像素补偿电路,然而这样降低了OLED器件的像素开口率,使得发光性能受到影响,同时其制程也比较复杂。此外,低温多晶硅属于无机半导体材料,杨氏模量较大,不利于柔性OLED显示屏中柔性TFT背板的制备。有机薄膜晶体管(OTFT)制备简单,且易于弯折,适合制备柔性OLED显示屏,但其载流子迁移率较低,为获得能够驱动OLED像素的电流,在传统平面结构的OTFT中需要尽量缩短沟道长度,这需要高分辨率的曝光技术,极大增加了曝光成本。美国nVerpix公司提出了基于垂直沟道结构的有机薄膜晶体管器件,获得了较高的开态电流和较低的驱动电压,但其使用的栅极材料和绝 缘层材料难以使器件真正意义上做到弯折,限制了垂直沟道结构的OTFT在柔性OLED显示屏中的应用。
发明内容
本发明的目的在于提供一种柔性垂直沟道有机薄膜晶体管的制作方法,制得的柔性垂直沟道有机薄膜晶体管具有较短的沟道长度,可以在较低的驱动电压下获得较大的源漏电流,有利于在低电压下驱动OLED像素发光,同时具有较好的弯折性能。
本发明的目的还在于提供一种柔性垂直沟道有机薄膜晶体管,具有较短的沟道长度,可以在较低的驱动电压下获得较大的源漏电流,有利于在低电压下驱动OLED像素发光,同时具有较好的弯折性能。
为实现上述目的,本发明首先提供一种柔性垂直沟道有机薄膜晶体管的制作方法,包括如下步骤:
步骤1、提供一刚性基板,在所述刚性基板上形成一柔性衬底,在所述柔性衬底上形成栅极;
步骤2、在所述栅极上形成栅极绝缘层,所述栅极绝缘层的尺寸小于所述栅极的尺寸;
在所述栅极绝缘层上形成源极,所述源极的尺寸小于或等于所述栅极绝缘层的尺寸;
步骤3、在所述源极上形成有机半导体层,所述有机半导体层的尺寸小于所述源极的尺寸;
在所述有机半导体层上形成漏极,所述漏极的尺寸小于或等于所述有机半导体层的尺寸;
在所述源极上形成与所述有机半导体层间隔设置的源极接触电极;
在所述栅极上形成与所述栅极绝缘层间隔设置的栅极接触电极;
步骤4、将所述柔性衬底从所述刚性基板上剥离,得到一柔性垂直沟道有机薄膜晶体管。
所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼。
所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
所述步骤3中,采用一道掩膜板通过蒸镀的方法同时形成所述漏极、源极接触电极、及栅极接触电极,从而所述漏极、源极接触电极、及栅极接触电极的材料相同;所述漏极、源极接触电极、及栅极接触电极的材料为金属。
所述步骤3还包括将OLED显示单元制作于所述有机半导体层与漏极上的步骤,所述OLED显示单元包括在所述有机半导体层与漏极上从下到上依次层叠设置的空穴注入层、有机发光层、电子注入层、及阴极,所述漏极充当OLED阳极。
本发明还提供一种柔性垂直沟道有机薄膜晶体管,包括:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上且间隔设置的栅极绝缘层与栅极接触电极、设于所述栅极绝缘层上的源极、设于所述源极上且间隔设置的有机半导体层与源极接触电极、以及设于所述有机半导体层上的漏极。
所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼。
所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
所述漏极、源极接触电极、及栅极接触电极在同一蒸镀制程中形成,从而材料相同;所述漏极、源极接触电极、及栅极接触电极的材料为金属。
所述柔性垂直沟道有机薄膜晶体管还包括设于所述有机半导体层与漏极上的OLED显示单元,所述OLED显示单元包括在所述有机半导体层与漏极上从下到上依次层叠设置的空穴注入层、有机发光层、电子注入层、及阴极,所述漏极充当OLED阳极。
本发明还提供一种柔性垂直沟道有机薄膜晶体管,包括:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上且间隔设置的栅极绝缘层与栅极接触电极、设于所述栅极绝缘层上的源极、设于所述源极上且间隔设置的有机半导体层与源极接触电极、以及设于所述有机半导体层上的漏极;
其中,所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼;
其中,所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
本发明的有益效果:本发明提供的一种柔性垂直沟道有机薄膜晶体管及其制作方法,改变了传统的平面沟道有机薄膜晶体管的构型,使用垂直沟道构型极大的缩短了沟道长度,使得薄膜晶体管可以在较低的驱动电压下获得较大的源漏电流,有利于在低电压下驱动OLED像素发光,且不需要采用高分辨率的曝光技术,节约生产成本;使用无缺陷、具有高导电性及高透明度的石墨烯材料制备栅极,使得薄膜晶体管的电学性能更好;使用六方氮化硼材料制备栅极绝缘层,与石墨烯材料制备的栅极共同作用,提高了薄膜晶体管的电学性能,并且由于石墨烯材料与六方氮化硼材料均为弯折性能较好的二维原子层结构材料,同时沟道层采用具有柔性的有机 半导体材料,使得整个有机薄膜晶体管的弯折性能得到大幅度提高,有利于有机薄膜晶体管在柔性OLED显示屏中的应用。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
附图中,
图1为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的流程图;
图2为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤1的示意图;
图3为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤2的示意图;
图4A为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤3的第一实施例的示意图;
图4B为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤3的第二实施例的示意图;
图5A为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤4的第一实施例的示意图;
图5B为本发明的柔性垂直沟道有机薄膜晶体管的制作方法的步骤4的第二实施例的示意图;
图6为本发明的柔性垂直沟道有机薄膜晶体管的第一实施例的侧视示意图;
图7为图6的柔性垂直沟道有机薄膜晶体管弯曲时的侧视示意图;
图8为图6的柔性垂直沟道有机薄膜晶体管的立体示意图;
图9为图6的柔性垂直沟道有机薄膜晶体管弯曲时的立体示意图;
图10为本发明的柔性垂直沟道有机薄膜晶体管的第二实施例的侧视示意图;
图11为本发明的柔性垂直沟道有机薄膜晶体管采用的石墨烯的原子结构示意图;
图12为本发明的柔性垂直沟道有机薄膜晶体管采用的六方氮化硼的原子结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例进行详细描述。
请参阅图1,本发明首先提供一种柔性垂直沟道有机薄膜晶体管的制作方法,包括如下步骤:
步骤1、如图2所示,提供一刚性基板10,在所述刚性基板10上形成一柔性衬底11,在所述柔性衬底11上形成栅极20。
具体的,所述刚性基板10为玻璃基板。
优选的,所述柔性衬底11为聚酰亚胺(PI)薄膜。
具体的,所述栅极20的材料为石墨烯,优选为无缺陷石墨烯。
具体的,所述步骤1中,所述栅极20的制备方法为:采用化学气相沉积(CVD)的方法在所述柔性衬底11上沉积石墨烯层,之后对所述石墨烯层进行图案化处理,得到栅极20。
步骤2、如图3所示,在所述栅极20上形成栅极绝缘层30,所述栅极绝缘层30的尺寸小于所述栅极20的尺寸;
在所述栅极绝缘层30上形成源极40,所述源极40的尺寸小于或等于所述栅极绝缘层30的尺寸。
具体的,所述栅极绝缘层30的材料为六方氮化硼(h-BN)。
优选的,所述栅极绝缘层30为两层单原子层的六方氮化硼薄膜。
具体的,所述步骤2中,所述栅极绝缘层30的制备方法为:采用化学气相沉积(CVD)的方法在铜箔上生长六方氮化硼薄膜,并将在铜箔上生长的六方氮化硼薄膜转移到所述步骤1制备的栅极20上,之后对所述六方氮化硼薄膜进行图案化处理,得到所述栅极绝缘层30。
具体的,所述源极40的材料为碳纳米管。
优选的,所述源极40包括稀疏排列的多个单壁碳纳米管,所述稀疏排列定义为多个单壁碳纳米管之间具有缝隙的排列方式。具体的,所述稀疏排列的单壁碳纳米管采用真空过滤的方法制备。
步骤3、如图4A所示,在所述源极40上形成有机半导体层50,所述有机半导体层50的尺寸小于所述源极40的尺寸;
在所述有机半导体层50上形成漏极60,所述漏极60的尺寸小于或等于所述有机半导体层50的尺寸;
在所述源极40上形成与所述有机半导体层50间隔设置的源极接触电极41;
在所述栅极20上形成与所述栅极绝缘层30间隔设置的栅极接触电极21。
具体的,所述步骤3中,采用蒸镀的方法形成所述有机半导体层50。优选的,所述有机半导体层50的材料为P型(空穴型)有机半导体材料。
具体的,所述P型有机半导体材料包括烷基取代的聚噻吩、噻吩及其衍生物、并五苯、酚箐类化合物、苝、及红荧烯中的一种或多种。
优选的,所述步骤3中,采用一道掩膜板通过蒸镀的方法同时形成所述漏极60、源极接触电极41、及栅极接触电极21,从而所述漏极60、源极接触电极41、及栅极接触电极21的材料相同。
具体的,所述漏极60、源极接触电极41、及栅极接触电极21的材料为金属。优选的,所述漏极60、源极接触电极41、及栅极接触电极21的材料为金(Au)。
具体的,所述栅极接触电极21用于实现栅极20与相关联信号线路(如扫描线)之间的连接。所述源极接触电极41用于接地,从而实现所述源极40接地。
具体的,所述有机半导体层50的厚度为80nm~120nm,优选的,所述有机半导体层50的厚度为100nm。
具体的,本发明制备的柔性垂直沟道有机薄膜晶体管中,由于源极40与漏极60分别设于有机半导体层50的上方与下方,即相当于沟道的方向(从源极40到漏极60的方向)垂直于有机半导体层50等水平结构层,因此所述沟道的长度等于所述有机半导体层50的厚度,与传统的平面沟道有机薄膜晶体管相比,本发明制备的柔性垂直沟道有机薄膜晶体管的沟道长度大大缩减,可以在较低的驱动电压下获得较大的源漏电流。
进一步的,如图4B所示,所述步骤3还可以包括将OLED显示单元90制作于所述有机半导体层50与漏极60上的步骤,所述OLED显示单元90包括在所述有机半导体层50与漏极60上从下到上依次层叠设置的空穴注入层91、有机发光层92、电子注入层93、及阴极94等结构层,所述漏极60直接充当OLED阳极,通过将OLED显示单元90原位集成在所述有机半导体层50与漏极60上制备一体化的垂直沟道型有机发光二极管,与传统的有机发光二极管相比,不需要在TFT上制备像素定义层与OLED阳极,大大降低了传统OLED有源矩阵的制备成本,提高OLED发光器件的像素开口率。
步骤4、如图5A与图5B所示,将所述柔性衬底11从所述刚性基板10上剥离,得到一柔性垂直沟道有机薄膜晶体管80。
具体的,所述步骤4中,采用激光剥离技术(LLO)将所述柔性衬底11从所述刚性基板10上剥离。
上述柔性垂直沟道有机薄膜晶体管的制作方法,改变了传统的平面沟道有机薄膜晶体管的构型,使用垂直沟道构型极大的缩短了沟道长度,使得薄膜晶体管可以在较低的驱动电压下获得较大的源漏电流,有利于在低电压下驱动OLED像素发光,且不需要采用高分辨率的曝光技术,节约生产成本;使用无缺陷、具有高导电性及高透明度的石墨烯材料制备栅极20,使得薄膜晶体管的电学性能更好;使用六方氮化硼材料制备栅极绝缘层30,与石墨烯材料制备的石墨烯栅极20共同作用,提高了薄膜晶体管的电学性能,并且由于石墨烯材料与六方氮化硼材料均为弯折性能较好的二维原子层结构材料,同时沟道层采用具有柔性的有机半导体材料,使得整个有机薄膜晶体管的弯折性能得到大幅度提高,有利于有机薄膜晶体管在柔性OLED显示屏中的应用。
请参阅图6至图9,基于上述柔性垂直沟道有机薄膜晶体管的制作方法,本发明还提供一种柔性垂直沟道有机薄膜晶体管80,包括:柔性衬底11、设于所述柔性衬底11上的栅极20、设于所述栅极20上且间隔设置的栅极绝缘层30与栅极接触电极21、设于所述栅极绝缘层30上的源极40、设于所述源极40上且间隔设置的有机半导体层50与源极接触电极41、以及设于所述有机半导体层50上的漏极60。
优选的,所述柔性衬底11为聚酰亚胺(PI)薄膜。
具体的,所述栅极20的材料为石墨烯,优选为无缺陷石墨烯。具体的,所述石墨烯的原子结构如图11所示,其具有很高的载流子迁移率、导电性和透明度,且弹性和可弯折性能非常好,有利于电子的传输与柔性底发光型OLED显示器件的制备。
具体的,所述栅极绝缘层30的材料为六方氮化硼(h-BN)。优选的,所述栅极绝缘层30为两层单原子层的六方氮化硼薄膜。
具体的,所述六方氮化硼的原子结构如图12所示,采用六方氮化硼制备的绝缘层具有非常平整和光滑的表面,表面缺陷态密度很少,介电击穿强度很高,已经被证实为是石墨烯基电子器件理想的绝缘层,将石墨烯材料制备的栅极20与六方氮化硼材料制备的栅极绝缘层30共同使用,可以获得较好的电学性能,并且由于石墨烯与六方氮化硼均为二维原子层结构材料,相比于基于金属电极和无机材料绝缘层的有机薄膜晶体管,本发明的有机薄膜晶体管可以获得更好的弯折性能,可用于制备基于有机薄膜晶体管的柔性OLED显示设备,增大有机薄膜晶体管在柔性OLED显示领域 应用的潜能。
具体的,所述源极40的材料为碳纳米管,优选的,所述源极40包括稀疏排列的多个单壁碳纳米管,所述稀疏排列定义为多个单壁碳纳米管之间具有缝隙的排列方式。具体的,所述稀疏排列的单壁碳纳米管结构一方面可以起到导电的作用,另一方面其稀疏的网状结构不会完全屏蔽栅极电场线。
优选的,所述有机半导体层50的材料为P型有机半导体材料,所述P型有机半导体材料具有较高的载流子迁移率,能够提升有机薄膜晶体管的开态电流。具体的,所述P型有机半导体材料包括烷基取代的聚噻吩、噻吩及其衍生物、并五苯、酚箐类化合物、苝、及红荧烯中的一种或多种。
具体的,所述漏极60、源极接触电极41、及栅极接触电极21在同一蒸镀制程中形成,从而材料相同。
具体的,所述漏极60、源极接触电极41、及栅极接触电极21的材料为金属。优选的,所述漏极60、源极接触电极41、及栅极接触电极21的材料为金(Au)。
具体的,所述栅极接触电极21用于实现栅极20与相关联信号线路(如扫描线)之间的连接。所述源极接触电极41用于接地,从而实现所述源极40接地。
具体的,本发明的柔性垂直沟道有机薄膜晶体管的工作原理是:利用碳纳米管材料制备的源极40与有机半导体层50之间形成肖特基接触的特性,在工作过程中,通过调控施加于栅极20上的电压来调节源极40与有机半导体层50之间的肖特基势垒的大小,进而达到控制薄膜晶体管开关性能的目的,以有机半导体层50采用P型有机半导体材料制作为例:
在栅极20上施加负电压(栅源电压Vgs<0)时,由于源极40包括稀疏排列的多个单壁碳纳米管,因此不会完全屏蔽栅极电场线,栅极电场线可以穿过源极40,降低源极40与有机半导体层50之间的肖特基势垒,使得源极40向有机半导体层50中注入的空穴数目增加,形成从源极40流向有机半导体层50的正向电流(开态电流/源漏电流),薄膜晶体管视为打开状态,并且,随着在栅极20上施加的负电压(栅源电压)的绝对值越大,肖特基势垒降低越多,正向电流(开态电流/源漏电流)越大;
在栅极20上施加正电压(栅源电压Vgs>0)时,栅极电场线同样可以穿过源极40,增加源极40与有机半导体层50之间的肖特基势垒,有机半导体层50中的空穴需要越过很高的势垒才能注入到源极40中,因此从有机半导体层50流向源极40的反向电流非常非常小,薄膜晶体管视为关闭 状态。
进一步的,如图10所示,所述柔性垂直沟道有机薄膜晶体管80还可以包括设于所述有机半导体层50与漏极60上的OLED显示单元90,所述OLED显示单元90包括在所述有机半导体层50与漏极60上从下到上依次层叠设置的空穴注入层91、有机发光层92、电子注入层93、及阴极94等结构层,所述漏极60直接充当OLED阳极,通过将OLED显示单元90原位集成在所述有机半导体层50与漏极60上制得一体化的垂直沟道型有机发光二极管,与传统的有机发光二极管相比,不需要在TFT上制备像素定义层与OLED阳极,大大降低了传统OLED有源矩阵的制备成本,提高OLED发光器件的像素开口率。
上述柔性垂直沟道有机薄膜晶体管,通过采用垂直沟道构型获得较高的开态电流,有利于在低电压下驱动OLED像素发光,且不需要采用高分辨率的曝光技术,节约生产成本;采用石墨烯材料制备的栅极20与采用六方氮化硼材料制备的栅极绝缘层30共同使用,保证了薄膜晶体管具有良好的电学性能与弯折性能,有利于原位制备柔性OLED发光器件。
综上所述,本发明提供一种柔性垂直沟道有机薄膜晶体管及其制作方法,改变了传统的平面沟道有机薄膜晶体管的构型,使用垂直沟道构型极大的缩短了沟道长度,使得薄膜晶体管可以在较低的驱动电压下获得较大的源漏电流,有利于在低电压下驱动OLED像素发光,且不需要采用高分辨率的曝光技术,节约生产成本;使用无缺陷、具有高导电性及高透明度的石墨烯材料制备栅极,使得薄膜晶体管的电学性能更好;使用六方氮化硼材料制备栅极绝缘层,与石墨烯材料制备的栅极共同作用,提高了薄膜晶体管的电学性能,并且由于石墨烯材料与六方氮化硼材料均为弯折性能较好的二维原子层结构材料,同时沟道层采用具有柔性的有机半导体材料,使得整个有机薄膜晶体管的弯折性能得到大幅度提高,有利于有机薄膜晶体管在柔性OLED显示屏中的应用。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种柔性垂直沟道有机薄膜晶体管的制作方法,包括如下步骤:
    步骤1、提供一刚性基板,在所述刚性基板上形成一柔性衬底,在所述柔性衬底上形成栅极;
    步骤2、在所述栅极上形成栅极绝缘层,所述栅极绝缘层的尺寸小于所述栅极的尺寸;
    在所述栅极绝缘层上形成源极,所述源极的尺寸小于或等于所述栅极绝缘层的尺寸;
    步骤3、在所述源极上形成有机半导体层,所述有机半导体层的尺寸小于所述源极的尺寸;
    在所述有机半导体层上形成漏极,所述漏极的尺寸小于或等于所述有机半导体层的尺寸;
    在所述源极上形成与所述有机半导体层间隔设置的源极接触电极;
    在所述栅极上形成与所述栅极绝缘层间隔设置的栅极接触电极;
    步骤4、将所述柔性衬底从所述刚性基板上剥离,得到一柔性垂直沟道有机薄膜晶体管。
  2. 如权利要求1所述的柔性垂直沟道有机薄膜晶体管的制作方法,其中,所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼。
  3. 如权利要求1所述的柔性垂直沟道有机薄膜晶体管的制作方法,其中,所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
  4. 如权利要求1所述的柔性垂直沟道有机薄膜晶体管的制作方法,其中,所述步骤3中,采用一道掩膜板通过蒸镀的方法同时形成所述漏极、源极接触电极、及栅极接触电极,从而所述漏极、源极接触电极、及栅极接触电极的材料相同;所述漏极、源极接触电极、及栅极接触电极的材料为金属。
  5. 如权利要求1所述的柔性垂直沟道有机薄膜晶体管的制作方法,其中,所述步骤3还包括将OLED显示单元制作于所述有机半导体层与漏极上的步骤,所述OLED显示单元包括在所述有机半导体层与漏极上从下到上依次层叠设置的空穴注入层、有机发光层、电子注入层、及阴极,所述漏极充当OLED阳极。
  6. 一种柔性垂直沟道有机薄膜晶体管,包括:柔性衬底、设于所述柔 性衬底上的栅极、设于所述栅极上且间隔设置的栅极绝缘层与栅极接触电极、设于所述栅极绝缘层上的源极、设于所述源极上且间隔设置的有机半导体层与源极接触电极、以及设于所述有机半导体层上的漏极。
  7. 如权利要求6所述的柔性垂直沟道有机薄膜晶体管,其中,所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼。
  8. 如权利要求6所述的柔性垂直沟道有机薄膜晶体管,其中,所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
  9. 如权利要求6所述的柔性垂直沟道有机薄膜晶体管,其中,所述漏极、源极接触电极、及栅极接触电极在同一蒸镀制程中形成,从而材料相同;所述漏极、源极接触电极、及栅极接触电极的材料为金属。
  10. 如权利要求6所述的柔性垂直沟道有机薄膜晶体管,还包括设于所述有机半导体层与漏极上的OLED显示单元,所述OLED显示单元包括在所述有机半导体层与漏极上从下到上依次层叠设置的空穴注入层、有机发光层、电子注入层、及阴极,所述漏极充当OLED阳极。
  11. 一种柔性垂直沟道有机薄膜晶体管,包括:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上且间隔设置的栅极绝缘层与栅极接触电极、设于所述栅极绝缘层上的源极、设于所述源极上且间隔设置的有机半导体层与源极接触电极、以及设于所述有机半导体层上的漏极;
    其中,所述栅极的材料为石墨烯;所述栅极绝缘层的材料为六方氮化硼;
    其中,所述源极的材料为碳纳米管;所述有机半导体层的材料为P型有机半导体材料;所述有机半导体层的厚度为80nm~120nm。
  12. 如权利要求11所述的柔性垂直沟道有机薄膜晶体管,其中,所述漏极、源极接触电极、及栅极接触电极在同一蒸镀制程中形成,从而材料相同;所述漏极、源极接触电极、及栅极接触电极的材料为金属。
  13. 如权利要求11所述的柔性垂直沟道有机薄膜晶体管,还包括设于所述有机半导体层与漏极上的OLED显示单元,所述OLED显示单元包括在所述有机半导体层与漏极上从下到上依次层叠设置的空穴注入层、有机发光层、电子注入层、及阴极,所述漏极充当OLED阳极。
PCT/CN2016/113013 2016-12-09 2016-12-29 柔性垂直沟道有机薄膜晶体管及其制作方法 WO2018103161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/506,239 US20180219055A1 (en) 2016-12-09 2016-12-29 Flexible vertical channel organic thin film transistor and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611129977.9 2016-12-09
CN201611129977.9A CN106684251B (zh) 2016-12-09 2016-12-09 柔性垂直沟道有机薄膜晶体管及其制作方法

Publications (1)

Publication Number Publication Date
WO2018103161A1 true WO2018103161A1 (zh) 2018-06-14

Family

ID=58868573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113013 WO2018103161A1 (zh) 2016-12-09 2016-12-29 柔性垂直沟道有机薄膜晶体管及其制作方法

Country Status (3)

Country Link
US (1) US20180219055A1 (zh)
CN (1) CN106684251B (zh)
WO (1) WO2018103161A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111863892A (zh) * 2020-07-13 2020-10-30 武汉华星光电半导体显示技术有限公司 显示装置及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
CN107331689A (zh) * 2017-07-21 2017-11-07 京东方科技集团股份有限公司 发光结构、显示装置及其制作方法
CN107482064B (zh) * 2017-08-28 2019-10-25 武汉华星光电半导体显示技术有限公司 薄膜晶体管及其制作方法以及阵列基板
CN108731855B (zh) 2018-05-18 2019-07-26 京东方科技集团股份有限公司 一种压力传感单元及压力传感器、压力传感装置
US10586864B2 (en) 2018-08-05 2020-03-10 International Business Machines Corporation Vertical transistor with one-dimensional edge contacts
US10593798B2 (en) * 2018-08-05 2020-03-17 International Business Machines Corporation Vertical transistor with one atomic layer gate length
CN109166933B (zh) * 2018-08-31 2020-11-27 同天(福建)石墨烯科技有限公司 一种基于石墨烯的等离子激元开关
CN109686744B (zh) * 2018-12-25 2020-06-26 武汉天马微电子有限公司 Tft基板、oled显示面板及制作方法
CN109800535B (zh) * 2019-02-14 2023-06-16 京东方科技集团股份有限公司 一种薄膜晶体管的设计方法及计算机可读介质
DE102019120692A1 (de) * 2019-07-31 2021-02-04 Infineon Technologies Ag Leistungshalbleitervorrichtung und Verfahren
CN110610946A (zh) * 2019-08-22 2019-12-24 武汉华星光电技术有限公司 薄膜晶体管及其制备方法、液晶显示面板
CN110676311B (zh) * 2019-09-06 2022-11-29 中国电子科技集团公司第十三研究所 柔性晶体管的制备方法
KR20210110086A (ko) * 2020-02-28 2021-09-07 에스케이하이닉스 주식회사 반도체 장치 및 그의 제조 방법
CN111430354A (zh) * 2020-03-12 2020-07-17 复旦大学 一种低功耗半浮栅存储器及其制备方法
CN113345967B (zh) * 2021-05-21 2022-09-09 Tcl华星光电技术有限公司 薄膜晶体管及led背板
CN115394186A (zh) * 2022-05-31 2022-11-25 四川京龙光电科技有限公司 一种高密度超薄柔性显示器件、显示装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875496A (zh) * 2003-08-29 2006-12-06 加利福尼亚大学董事会 垂直有机场效应晶体管
CN101546813A (zh) * 2009-04-03 2009-09-30 天津理工大学 一种底栅极垂直结构有机发光场效应晶体管及其制备方法
CN102709310A (zh) * 2012-06-11 2012-10-03 无锡格菲电子薄膜科技有限公司 一种柔性有机发光晶体管显示器件
CN104919596A (zh) * 2012-11-30 2015-09-16 佛罗里达大学研究基金会有限公司 双极型垂直场效应晶体管
CN105473990A (zh) * 2013-08-22 2016-04-06 株式会社电装 使用纵型晶体管的载荷传感器
CN105470389A (zh) * 2016-01-14 2016-04-06 中国计量学院 一种三维结构的柔性有机场效应晶体管

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI267119B (en) * 2005-04-29 2006-11-21 Ind Tech Res Inst Thin-film transistor
CN101075662A (zh) * 2007-06-05 2007-11-21 北京交通大学 底端为源极的垂直构型场效应发光管及其制备方法
TWI425693B (zh) * 2008-03-14 2014-02-01 Univ Nat Chiao Tung Vertical drive and parallel drive organic light emitting crystal structure
US10020374B2 (en) * 2009-12-25 2018-07-10 Ricoh Company, Ltd. Field-effect transistor, semiconductor memory display element, image display device, and system
CA2820256A1 (en) * 2010-12-07 2012-06-14 University Of Florida Research Foundation, Inc. Active matrix dilute source enabled vertical organic light emitting transistor
US9575029B2 (en) * 2011-10-31 2017-02-21 Universita Degli Studi Di Bari Method to realize electronic field-effect transistor sensors
US9455421B2 (en) * 2013-11-21 2016-09-27 Atom Nanoelectronics, Inc. Devices, structures, materials and methods for vertical light emitting transistors and light emitting displays
US9711637B2 (en) * 2014-01-31 2017-07-18 Renesas Electronics Corporation Semiconductor device
US20150257283A1 (en) * 2014-03-06 2015-09-10 Carolyn Rae Ellinger Forming vertically spaced electrodes
WO2015142358A1 (en) * 2014-03-21 2015-09-24 Intel Corporation Transition metal dichalcogenide semiconductor assemblies
US9548394B2 (en) * 2014-04-22 2017-01-17 Uchicago Argonne, Llc All 2D, high mobility, flexible, transparent thin film transistor
JP6179930B2 (ja) * 2014-08-29 2017-08-16 国立大学法人 東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875496A (zh) * 2003-08-29 2006-12-06 加利福尼亚大学董事会 垂直有机场效应晶体管
CN101546813A (zh) * 2009-04-03 2009-09-30 天津理工大学 一种底栅极垂直结构有机发光场效应晶体管及其制备方法
CN102709310A (zh) * 2012-06-11 2012-10-03 无锡格菲电子薄膜科技有限公司 一种柔性有机发光晶体管显示器件
CN104919596A (zh) * 2012-11-30 2015-09-16 佛罗里达大学研究基金会有限公司 双极型垂直场效应晶体管
CN105473990A (zh) * 2013-08-22 2016-04-06 株式会社电装 使用纵型晶体管的载荷传感器
CN105470389A (zh) * 2016-01-14 2016-04-06 中国计量学院 一种三维结构的柔性有机场效应晶体管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111863892A (zh) * 2020-07-13 2020-10-30 武汉华星光电半导体显示技术有限公司 显示装置及其制备方法
CN111863892B (zh) * 2020-07-13 2022-08-23 武汉华星光电半导体显示技术有限公司 显示装置及其制备方法

Also Published As

Publication number Publication date
CN106684251B (zh) 2018-06-01
CN106684251A (zh) 2017-05-17
US20180219055A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2018103161A1 (zh) 柔性垂直沟道有机薄膜晶体管及其制作方法
US10403757B2 (en) Top-gate self-aligned metal oxide semiconductor TFT and method of making the same
US10784327B2 (en) Display device
WO2018227750A1 (zh) 柔性tft基板的制作方法
US10658403B2 (en) TFT substrate and manufacturing method thereof
WO2018152907A1 (zh) 微发光二极管阵列基板及显示面板
US10504983B2 (en) Thin film transistor and manufacturing method thereof, array substrate and display device
WO2017206243A1 (zh) Amoled像素驱动电路的制作方法
US10331001B2 (en) TFT substrate and manufacturing method thereof
WO2016176881A1 (zh) 双栅极tft基板的制作方法及其结构
WO2019024760A1 (zh) 像素电路、其制造方法及显示装置
CN102244005A (zh) 氧化物薄膜晶体管及其制造方法
US10504731B2 (en) TFT substrate and manufacturing method thereof
WO2019080252A1 (zh) Oled背板的制作方法
US20180247584A1 (en) Micro light emitting diode array substrates and display panels
TW200533234A (en) Organic electro luminescence device and fabrication method thereof
Noda et al. 74.1 L: Late‐News Paper: Oxide TFTs and Color Filter Array Technology for Flexible Top‐emission White OLED Display
US10868266B2 (en) Semiconductor thin-film and manufacturing method thereof, thin-film transistor, and display apparatus
WO2018023955A1 (zh) Oled显示装置的阵列基板及其制造方法
US20180315860A1 (en) Vertical thin-film transistor with multiple-junction channel
CN107808885B (zh) 背沟道蚀刻型氧化物半导体tft基板及其制作方法
Park et al. Full-surface emission of graphene-based vertical-type organic light-emitting transistors with high on/off contrast ratios and enhanced efficiencies
WO2020118903A1 (zh) 柔性tft基板的制作方法及柔性oled面板的制作方法
JP2020077844A (ja) 低次元電子構造の物質から構成される電極を用いる有機トランジスタ素子と有機発光トランジスタ素子及びその製造方法
WO2023216124A1 (zh) 薄膜晶体管及其制备方法和电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15506239

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923512

Country of ref document: EP

Kind code of ref document: A1