WO2018101287A1 - 粉率測定装置および粉率測定システム - Google Patents

粉率測定装置および粉率測定システム Download PDF

Info

Publication number
WO2018101287A1
WO2018101287A1 PCT/JP2017/042709 JP2017042709W WO2018101287A1 WO 2018101287 A1 WO2018101287 A1 WO 2018101287A1 JP 2017042709 W JP2017042709 W JP 2017042709W WO 2018101287 A1 WO2018101287 A1 WO 2018101287A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
coke
image data
powder rate
luminance
Prior art date
Application number
PCT/JP2017/042709
Other languages
English (en)
French (fr)
Inventor
尚史 山平
嵩啓 西野
丈英 平田
津田 和呂
坪井 俊樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP17877269.5A priority Critical patent/EP3505910B1/en
Priority to US16/341,524 priority patent/US11403747B2/en
Priority to JP2018511178A priority patent/JP6519034B2/ja
Priority to CN201780063845.7A priority patent/CN109844498B/zh
Priority to KR1020217016984A priority patent/KR102332719B1/ko
Priority to KR1020197010857A priority patent/KR102415197B1/ko
Publication of WO2018101287A1 publication Critical patent/WO2018101287A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • F27D2021/026Observation or illuminating devices using a video installation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4764Special kinds of physical applications
    • G01N2021/4769Fluid samples, e.g. slurries, granulates; Compressible powdery of fibrous samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources

Definitions

  • the present invention relates to a powder rate measuring device and a powder rate measuring system for raw materials used in blast furnaces and the like.
  • a powder rate means the ratio of the mass of the powder to the charging amount total mass.
  • the air permeability of the blast furnace In order to maintain the air permeability of the blast furnace, it is important to secure a gap formed between the massive charges. If the charge contains a lot of small lumps or powder, the gaps between the charges will be filled with small lumps or powder, and the air permeability will deteriorate.
  • the operation of charging only the lump into the blast furnace is performed. Generally, the particle size of coke is often adjusted to 25 to 35 mm or more, and sintered ore ore is adjusted to 5 to 25 mm or more by sieving before charging the blast furnace. However, it is difficult to completely remove the fine raw material by a normal sieving operation. In particular, the powder adhering to the lump is charged into the blast furnace together with the lump, and the lump and the powder are separated in the blast furnace. It is required to manage the amount as small as possible.
  • Patent Document 1 discloses an apparatus for automatically measuring a particle size distribution by sampling raw materials on a conveyor that conveys raw materials, and sieving the samples using a robot or the like.
  • Patent Document 2 An apparatus capable of measuring the particle size of the raw material in real time using a camera or the like is also disclosed.
  • a raw material piece conveyed on a conveyor is imaged on the conveyor to create image data, a luminance distribution is obtained from the image data, and a raw material piece is separated using the maximum peak height of the luminance distribution.
  • a method for detecting the particle size of an object is disclosed.
  • Patent Document 3 discloses a paper dust adhesion amount inspection device that measures the adhesion amount of paper dust adhering in the form of particles on a flat paper cutting section using illumination light and an imaging device.
  • Patent Document 4 discloses a blast furnace charge detection device that detects the moisture content of a charge from spectral information obtained from reflected light in the near infrared region of reflected light from the charge charged in the blast furnace. It is disclosed. The said detection apparatus detects the powder rate of a charge in real time by grasping
  • Patent Document 1 has a problem that if the sampling frequency is increased too much, the operation process is delayed. In addition, since it is a sampling inspection, there is a problem of representativeness of sampling.
  • Patent Document 2 prepares a plurality of types of maximum peak height data of luminance distribution measured for raw material bulk materials of known particle size in advance for each particle size, and calculates the luminance distribution calculated from the measured image data. By comparing the maximum peak height with the prepared maximum peak height data, the particle size of the raw material bulk material is detected, and it is not a quantitative measure of the powder rate of the powder. It is not described that the powder rate of fine powder adhered to can be measured. For this reason, the method described in Patent Document 2 has a problem that the powder rate of the powder adhered to the surface of the massive substance cannot be measured quantitatively.
  • Patent Document 3 defines a low-luminance calculation area in the left-right direction with respect to a pixel to be inspected, and specifies the position of paper dust that adheres based on a difference in luminance values in the left and right low-luminance calculation areas.
  • the difference in luminance value cannot be determined because the surface of the lump substance is rough, and the illumination light is hindered by the lump substance.
  • the powder rate of the adhered powder could not be measured quantitatively.
  • the apparatus described in Patent Document 4 measures the powder rate by using near-infrared spectral information in the reflected light from the charge.
  • a powerful light source is required to obtain near-infrared spectral information.
  • the apparatus described in Patent Document 4 detects the moisture content of the charge from the near-infrared spectral information, and grasps the relationship between the moisture content of the charge and the powder rate of the charge. Detect the powder rate of the charge.
  • the accuracy of the powder rate measurement is poor.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and the purpose of the present invention is to increase the powder rate of powder adhering to the surface of a massive substance used as a raw material in an operation process such as a blast furnace. It is in providing the powder rate measuring apparatus and powder rate measuring system which can measure in real time.
  • a powder rate measuring device for measuring a powder rate of powder adhering to a surface of a massive substance, the illumination device for illuminating the massive substance, and imaging the massive substance to create image data
  • a powder rate measuring apparatus comprising: an imaging device; and a calculation device that calculates a feature amount of the image data created by the imaging device and converts the feature amount into a powder rate.
  • the said illuminating device is a powder rate measuring apparatus as described in any one of (1) to (3) provided with the some light source from which an illumination direction differs.
  • the imaging device captures the massive substance and creates a plurality of image data each time the plurality of light sources are used to illuminate from each direction, and the arithmetic device includes a plurality of image data in the plurality of image data.
  • the maximum luminance image data composed of pixels indicating the maximum luminance among the respective pixels generated by receiving light from the same position of the massive substance is created, and the feature amount is determined using the maximum luminance image data.
  • the powder rate measuring apparatus according to (4), which is calculated.
  • a conveyor for transporting a massive substance, and a powder rate measuring device according to any one of (1) to (5) provided above the conveyor, and the powder rate measuring device A powder rate measurement system that uses and measures the powder rate of powder adhered to the surface of the massive substance.
  • the powder rate of the powder adhered to the surface of the massive substance can be measured in real time with high accuracy without generating heat in the massive substance.
  • a manufacturing process such as a blast furnace, for example, by grasping the powder rate of coke powder adhering to the surface of coke as a raw material before charging the raw material into the blast furnace, it is possible to contribute to stable operation of the manufacturing process.
  • FIG. 1 is a graph showing the relationship between the average luminance and the powder rate of a massive substance to which powder has adhered.
  • FIG. 2 is a graph showing the relationship between the water content and the powder rate of the massive substance to which the powder is attached.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the powder rate measurement system 10 according to the present embodiment and its periphery.
  • FIG. 4 is an image showing an example of a whiteout image.
  • FIG. 5 shows a histogram of the brightness of the overexposed image shown in FIG.
  • FIG. 6 is a graph showing the relationship between the average luminance and the powder rate and the relationship between the most frequent luminance and the powder rate.
  • FIG. 7 is a diagram illustrating an example of the illumination device 18 according to the present embodiment.
  • FIG. 8 is a diagram illustrating an example of the illumination device 40 according to the present embodiment.
  • FIG. 9 shows an example of an image of the coke 22 illuminated by the lighting device.
  • the present inventors have found that the powder rate of a powder having a particle size of 1 mm or less attached to a massive substance has a correlation with the average luminance in image data obtained by imaging the massive substance, and completed the present invention. .
  • the correlation between the average luminance value in the image data obtained by imaging the massive substance and the powder rate of the adhered powder of 1 mm or less adhered to the massive substance is high.
  • FIG. 1 is a graph showing the relationship between the average luminance and the powder rate of a massive substance to which powder has adhered.
  • FIG. 1 shows the results obtained by using a coke having a particle size of 35 mm or more with a coke powder having a particle size of 1 mm or less attached to the surface as a massive substance.
  • the vertical axis represents the powder ratio (mass%) of 1 mm or less coke powder adhering to the lump coke, and the horizontal axis is the average luminance in image data obtained by imaging lump coke to which 1 mm or less coke powder adhered.
  • Bulk coke having a particle size of 35 mm or more was prepared by sieving the coke using a sieve having an opening of 35 mm.
  • the rate of coke powder of 1 mm or less adhered to the surface of the lump coke is determined by drying lump coke at 120 to 200 ° C. until a constant weight is obtained for 4 hours or more, and then sieving with a sieve having an opening of 1 mm. It calculated as a ratio with respect to the mass before sieving of the mass difference of lump coke. This method utilizes the fact that the adhered powder peels off in the dry state.
  • the average luminance in the image data of the lump coke to which the powder adhered was calculated by arithmetically averaging the luminance (0 to 255) of each pixel in the image data obtained by imaging with a digital camera under a predetermined illumination.
  • FIG. 2 is a graph showing the relationship between the water content and the powder rate of the massive substance to which the powder is attached.
  • the lump coke with 1 mm or less coke powder adhered to the surface as in FIG. 1 was used.
  • the vertical axis represents the powder rate (mass%) of 1 mm or less coke powder adhering to the lump coke, and the horizontal axis represents the water content (mass%) of lump coke to which 1 mm or less coke powder adhered.
  • the powder rate of 1 mm or less coke fine powder was calculated using the same method as in FIG.
  • the moisture content of the lump coke was measured using a neutron moisture meter. As shown in FIG. 2, although a correlation was observed between the powder rate of 1 mm or less coke powder adhering to the lump coke and the moisture content of the lump coke, the contribution ratio (R 2 ) indicating the strength of the correlation was 0. 40.
  • the contribution ratio of the correlation between the powder ratio of the coke powder of 1 mm or less adhering to the lump coke and the average luminance is the correlation between the powder ratio of the coke powder and the moisture content of the lump coke. Higher than the contribution rate. That is, it can be seen that the correlation between the powder rate of 1 mm or less coke powder adhering to the lump coke and the average luminance is stronger than the correlation with the moisture content of the lump coke.
  • the reason why the correlation between the coke powder ratio and the average brightness of the image data is stronger than the correlation between the coke powder ratio and the mass coke moisture content is that the mass coke moisture content exists on the coke surface. And the moisture present in the mass coke. That is, the moisture present on the lump coke surface is thought to have a strong correlation with the powder rate of the powder adhering to the lump coke surface, while the moisture present on the lump coke surface is determined by the powder powder adhering to the lump coke surface. The rate is not expected to be affected.
  • the present invention which was completed by finding the correlation between the powder rate of 1 mm or less coke powder adhering to the lump coke and the average luminance, is a powder with higher accuracy than the conventional powder rate measurement method focusing on the amount of water. Rate measurement can be realized.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of the powder rate measurement system 10 according to the present embodiment and the periphery thereof.
  • An example in which the powder rate measurement system 10 according to the present embodiment is used to measure the powder rate of powder adhering to coke, which is a raw material charged in a blast furnace, will be described with reference to FIG.
  • the powder rate measurement system 10 includes a powder rate measurement device 12 and a conveyor 14.
  • the powder rate measuring device 12 includes an imaging device 16, a lighting device 18, and a computing device 20.
  • the coke 22 charged into the blast furnace is stored in a hopper 24.
  • the coke 22 discharged from the hopper 24 is sieved with a sieve 26, and powder having a particle size smaller than the opening of the sieve 26 is dropped, and then conveyed to a blast furnace (not shown) by the conveyor 14.
  • the opening of the sieve 26 is 35 mm.
  • the coke 22 conveyed by the conveyor 14 includes lump coke having a particle size of 35 mm or more and powdered coke adhered to lump coke that does not fall even if it is sieved using the sieve 26.
  • the particle size of the coke powder adhered to the lump coke was measured, it was a coke powder having a particle size of 1 mm or less.
  • the coke powder having a particle size of 1 mm or less means coke powder that has passed through a sieve having an opening of 1 mm, and the lump coke having a particle size of 35 mm or more is sieved with a sieve having an opening of 35 mm, It means the coke left on the sieve.
  • the coke 22 is an example of a massive substance.
  • the imaging device 16 is provided above the conveyor 14 and images the coke 22 conveyed by the conveyor 14 to create image data.
  • the imaging device 16 is, for example, a digital camera having a CCD or CMOS type imaging sensor and a lens.
  • the height at which the imaging device 16 is provided is preferably 500 mm or more and 1000 mm or less on the conveyor 14. However, the height at which the imaging device 16 is provided depends on the number of pixels of the imaging sensor and the angle of view of the lens of the imaging device 16. You may adjust the thickness.
  • the imaging device 16 generates image data by receiving light including reflected light from the surface of the coke 22 with an imaging sensor.
  • the coke powder adhering to the surface of the coke 22 affects the reflected light reflected from the surface of the coke 22.
  • the image data created by receiving the light including the reflected light reflected from the surface of the coke 22 includes information on the coke powder adhering to the surface of the coke 22.
  • the image data created by the imaging device 16 is output to the arithmetic device 20 having a calculation unit and a conversion unit (not shown).
  • the arithmetic device 20 processes the image data output from the imaging device 16.
  • the calculation unit of the calculation device 20 calculates a feature amount including the information on the coke powder from the image data. For example, as the feature amount, the calculation unit calculates an average luminance by arithmetically averaging the luminances (0 to 255) of the respective pixels in the image data.
  • the average luminance calculated by the calculation unit is converted into the powder rate of the adhered powder by the conversion unit.
  • a regression equation indicating a correspondence relationship between the powder rate of the coke powder adhering to the coke surface and the average luminance is stored in advance, and the conversion unit is an average calculated by the calculation unit using the regression equation.
  • Luminance is converted into a powder rate of coke powder adhering to the surface of the coke 22.
  • the imaging device 16 captures the coke 22 again and creates image data after a predetermined time has elapsed.
  • the predetermined time may be determined by, for example, the imaging range of the coke 22 imaged by the imaging device 16 and the conveyance speed of the conveyor 14. That is, the predetermined time may be a time calculated by dividing the length of the imaging range in the conveyance direction of the conveyor 14 by the conveyance speed of the conveyor 14. Thereby, the imaging device 16 can image the coke 22 without a gap in the conveyance direction of the conveyor 14.
  • the imaging device 16 preferably images the coke 22 from a direction perpendicular to the conveying direction of the conveyor 14.
  • the image data created by the imaging device 16 is output again to the computing device 20, and the computing device 20 calculates the powder rate of the coke powder adhering to the coke 22.
  • the powder rate measuring apparatus 12 measures the powder rate of coke powder adhering to the surface of the coke 22 conveyed by the conveyor 14 in real time by repeatedly executing the above processing.
  • the powder rate measuring device 12 can measure the powder rate of the coke powder adhering to the surface of the coke 22 charged as the raw material of the blast furnace with high accuracy in real time. Thereby, for example, it becomes possible to manage the charging amount of fine coke powder adhering to the coke 22 that affects the air permeability of the blast furnace into the blast furnace, which can contribute to stable operation of the manufacturing process of the blast furnace.
  • the powder rate measuring device 12 can measure the powder rate without measuring the particle size of the coke powder adhering to the surface of the coke 22. For this reason, even if it is a case where the pixel number of the imaging sensor in the imaging device 16 is so small that the particle size of coke powder cannot be discriminated, the powder rate of the coke powder adhering to the coke 22 can be measured. Furthermore, the imaging device 16 according to the present embodiment receives light in the visible light region without performing spectroscopy and generates image data. For this reason, since sufficient reflected light is securable even from a low output illuminating device, it can suppress heating a charging material using a high output illuminating device.
  • the calculation unit may calculate the most frequent luminance as the feature amount, or may be a texture feature amount extracted from the luminance distribution of each pixel in the image data.
  • FIG. 4 is an image showing an example of a whiteout image. Depending on the positional relationship between the illuminating device and the raw material, an overexposed image as shown in FIG. 4 may be captured. In this case, information on the adhered powder cannot be obtained for the overexposed portion.
  • FIG. 5 shows a histogram of the brightness of the overexposed image shown in FIG.
  • the average luminance is affected by disturbances of both low luminance corresponding to shadows (low luminance side shaded portion) and high luminance equivalent to overexposure (high luminance side shaded portion), and the measurement accuracy is lowered.
  • the most frequently used luminance among the luminances of the image data may be used as the feature quantity that is not affected by both disturbances.
  • FIG. 6 is a graph showing the relationship between the average luminance and the powder rate and the relationship between the most frequent luminance and the powder rate.
  • Contribution rate calculated from the linear regression line showing a relationship between the average luminance and Konaritsu and (R 2) the contribution rate calculated from the linear regression line showing a relationship between a most frequent luminance and Konaritsu a (R 2)
  • the contribution ratio of the average brightness is 0.63
  • the contribution ratio of the most frequent brightness is 0.79
  • the correlation between the most frequent brightness and the powder ratio is more than the correlation between the average brightness and the powder ratio.
  • the conveyor 14 having a value comparable to the luminance of the coke 22 may be imaged.
  • the brightness of such a conveyor also becomes a disturbance in powder rate measurement.
  • the conveyor 14 is imaged, there is a possibility that a luminance histogram peak of the conveyor 14 is formed.
  • the most frequent luminance is used as the feature amount
  • the most frequent luminance of the peak of the histogram of the luminance of the conveyor 14 may be used as the feature amount, and the measurement accuracy may be reduced.
  • the average luminance can suppress the influence of the luminance of the conveyor 14. For this reason, when the amount of coke to be conveyed is small and the reflection of the conveyor 14 is large, the measurement accuracy of the powder rate is higher when the average luminance is used as the feature amount than when the most frequent luminance is used.
  • the powder rate of the coke powder adhering to the coke 22 conveyed by the conveyor 14 can be calculated using the brightness of the image data such as the average brightness and the most frequently used brightness. Furthermore, the powder rate of the coke powder adhering to the coke 22 conveyed by the conveyor 14 can be measured with high accuracy by properly using the average luminance and the most frequent luminance depending on the captured image.
  • FIG. 7 is a diagram illustrating an example of the illumination device 18 according to the present embodiment.
  • FIG. 7A shows a top view of the powder rate measurement system 10.
  • FIG. 7B shows a front view of the powder rate measurement system 10.
  • the illumination device 18 includes two light sources 30 and 32 that are arranged at symmetrical positions that are equal to the left and right about the imaging device 16.
  • the light sources 30 and 32 may be provided at symmetrical positions that are equal with respect to the imaging device 16, respectively. Thereby, the shadow produced when it illuminates from the light source of one direction can be made small, and the measurement precision of the powder rate of the coke powder adhering to the coke 22 can be improved.
  • FIG. 8 is a diagram illustrating an example of the illumination device 40 according to the present embodiment.
  • FIG. 8A shows a top view of the powder rate measurement system 10.
  • FIG. 8B shows a front view of the powder rate measurement system 10.
  • FIG. 8C shows a side view of the powder rate measurement system 10.
  • the illuminating device 40 includes four light sources 30, a light source 32, and four light sources 30 that are arranged at symmetrical positions that are equal in the front-rear and left-right directions around the imaging device 16.
  • a light source 34 and a light source 36 are provided.
  • the illumination device 40 in which the four light sources are evenly arranged around the imaging device 16 is used to illuminate the coke 22 with the light sources having different illumination directions.
  • shadows generated in the coke 22 can be reduced as compared with the case where two light sources are provided. Thereby, the measurement accuracy of the powder rate of the coke powder adhering to the coke 22 can be further improved.
  • the coke 22 may be illuminated using all four light sources, but the four light sources are individually switched, and four images are captured by the imaging device 16 each time the light sources are switched. Data may be created. In this case, the calculation unit creates the maximum luminance image data using the four image data.
  • the calculation unit identifies pixels created by receiving light from the same position of the coke 22 in the four image data.
  • the calculation unit multiplies the imaging interval by the imaging device 16 and the conveyance speed of the conveyor 14 to calculate a pixel position shift that occurs between the respective image data, whereby light from the same position of the coke 22 in the four image data. Pixels created by receiving light may be specified.
  • the calculation unit may identify pixels created by receiving light from the same position of the coke 22 in the four image data by pattern matching the four image data.
  • the calculation unit extracts a pixel indicating the maximum luminance value from the four specified pixels.
  • the calculation unit performs similar processing on the pixels constituting the imaging region of the coke 22 that is common in the four image data, and creates the maximum luminance image data including the pixels indicating the extracted maximum luminance value,
  • the average luminance may be calculated using the maximum luminance image data.
  • each of the four light sources 30, the light source 32, the light source 34, and the light source 36 is divided into a set of the light source 30 and the light source 32 and a set of the light source 34 and the light source 36, and each set of light sources is switched.
  • image data may be created by imaging with the imaging device 16. Then, the maximum luminance image data may be created using the two image data illuminated from the two sets of light sources, and the average luminance may be calculated using the maximum luminance image data.
  • FIG. 9 shows an example of an image of the coke 22 illuminated by the lighting device.
  • FIG. 9A shows an image of the coke 22 illuminated from the direction of the arrow 42.
  • FIG. 9B shows a maximum luminance image created using four image data created by imaging every time when four light sources arranged evenly in the front, rear, left and right are centered on the imaging device 16.
  • a shadow 44 is formed on the coke 22 in the block coke image illuminated from the direction of the arrow 42.
  • the shadow 44 generated on the coke 22 can be reduced.
  • the disturbance factor depending on the direction of illumination can be reduced, and the coke powder powder rate can be measured with high accuracy.
  • the example of the coke 22 is shown as the massive substance, but the present invention is not limited thereto.
  • the coke 22 may be a small coke obtained by removing powder with a sieve from the coke that has fallen by sifting the lump coke, or a lump ore, It may be a sintered ore or a pellet.
  • the number of light sources and image data to be created is not limited to four, and an arbitrary number of two or more light sources is provided, and an arbitrary number of image data that is two or more and equal to or less than the number of the light sources is created.
  • Maximum brightness image data may be created.
  • the light source 30, the light source 32, the light source 34, and the light source 36 may be light sources that can continuously illuminate the coke 22, or may be light sources that can illuminate the coke 22 instantaneously like a strobe. In the case of switching a plurality of light sources individually, a strobe capable of instantaneously outputting a high light amount is more preferable.
  • the arrangement of the light sources is shown as an example in which the image pickup devices 16 are arranged evenly. However, the arrangement of the light sources is only a preferable example, and the arrangement of the light sources may be arranged at an arbitrary position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Blast Furnaces (AREA)

Abstract

高炉などの操業プロセスで、原料として使用される塊状の物質の表面に付着した粉の粉率をリアルタイムに高い精度で測定できる粉率測定装置および粉率測定システムを提供する。 塊状の物質の表面に付着した粉の粉率を測定する粉率測定装置であって、塊状の物質を照明する照明装置と、塊状の物質を撮像して画像データを作成する撮像装置と、撮像装置で作成された画像データの特徴量を算出する算出部と、算出部で算出された特徴量を粉率に変換する変換部と、を有する演算装置と、を備える。

Description

粉率測定装置および粉率測定システム
 本発明は、高炉などに使用する原料の粉率測定装置および粉率測定システムに関する。
 鉱物など原料を用いた高炉などの製造設備においては、原料の粒度が製造プロセスの操業に影響する。このため、製造プロセスを安定させるには、事前に原料の粒度情報を把握する必要がある。特に、高炉においては鉱石、コークスといった原料の粒度の把握が重要であり、炉内の通気を確保するために高炉に装入する原料に付着した微細な粉の粉率にも注意して操業を行う必要がある。粉率とは、装入量全質量に占める粉の質量の割合を意味する。
 高炉の通気性を維持するためには、塊状の装入物間に形成される空隙を確保することが重要である。装入物に小塊や粉が多く含まれると、小塊や粉で装入物間の空隙が埋められてしまい通気性が悪化するので、装入原料を事前に篩い分けして篩い上の塊のみを高炉に装入する操作が行われる。一般に、高炉装入前の篩い分けにより、コークスは25~35mm以上に、焼結鉱や鉄鉱石は5~25mm以上に粒度調整することが多い。しかし、通常の篩い分け操作では、細粒原料を完全に除去することは困難である。特に、塊に付着した粉は塊とともに高炉に装入され、高炉内で塊と粉が分離してしまうので、塊に付着した粉の量を事前に把握し、高炉へ装入される粉の量をなるべく少なく管理することが求められる。
 従来、高炉の原料の粒度や粉率の分析は、定期的な原料のサンプリングと篩とによって行われてきたが、当該分析には時間がかかるので、搬送される原料をリアルタイムに分析することができなかった。原料の粒度をリアルタイムに分析するには、コンベアなど原料輸送中で原料の粒度をリアルタイムで測定できる装置が必要になる。このような装置として、特許文献1には、原料を搬送するコンベアの原料をサンプリングし、ロボットなどを用いてサンプルを篩って粒度分布の測定を自動で行う装置が開示されている。
 カメラ等を用いて、リアルタイムで原料の粒度を測定できる装置も開示されている。特許文献2には、コンベア上を搬送される原料ばら物をコンベア上で撮像して画像データを作成し、当該画像データから輝度分布を求め、当該輝度分布の最大ピーク高さを用いて原料ばら物の粒度を検知する方法が開示されている。
 特許文献3には、平判紙裁断面に粒となって付着する紙粉の付着量を、照明光と撮像装置を利用して測定する紙粉付着量検査装置が開示されている。
 特許文献4には、高炉に装入される装入物からの反射光のうち近赤外領域の反射光から得られる分光情報から装入物の水分量を検出する高炉装入物検出装置が開示されている。当該検出装置は、装入物の水分量と装入物の付着粉の粉率との関係を把握することで、装入物の粉率をリアルタイムで検出している。
特開2005-134301号公報 特開2000-329683号公報 特開2014-38014号公報 特開2015-124436号公報
 特許文献1に開示された装置では、サンプリングの頻度を上げすぎると操業プロセスの遅延につながるという課題があった。また、抜き取り検査であるので、サンプリングの代表性の課題もあった。
 特許文献2に開示された方法は、既知の粒度の原料ばら物において測定された輝度分布の最大ピーク高さデータを粒度別に予め複数種類準備し、測定された画像データから算出された輝度分布の最大ピーク高さと、準備された最大ピーク高さデータとを比較することで、原料ばら物の粒度を検出するものであって、粉の粉率を定量的に測定するものではなく、塊状の物質に付着した微細の粉の粉率が測定できることも記載されていない。このため、特許文献2に記載された方法では、塊状の物質の表面に付着した粉の粉率を定量的に測定できない、という課題があった。
 特許文献3に開示された装置は、検査対象画素に対し左右方向に低輝度算出エリアを定め、当該左右の低輝度算出エリアにおける輝度値の差に基づいて付着する紙粉の位置を特定する。しかしながら、塊状の物資に付着した粉においては、塊状の物質の表面が粗いことから輝度値の差が判定できず、さらに、照明光が塊状の物質に妨げられるので、当該装置では塊状の物質に付着した粉の粉率を定量的に測定できない、という課題があった。
 特許文献4に記載された装置は、装入物からの反射光のうち近赤外線の分光情報を利用して粉率を測定する。近赤外の分光情報を得るためには強力な光源が必要となる。強力な光源を用いて装入物を照明することで近赤外の反射光量を増やすことができるが、装入物に熱が発生し、それによって製造プロセスの操業に影響を与える、という課題があった。また、特許文献4に記載された装置は、近赤外線の分光情報から装入物の水分量を検出し、当該装入物の水分量と装入物の粉率との関係を把握することで装入物の粉率を検出する。後述するように、装入物の水分量と装入物の粉率との相関は高くないので、粉率測定の精度が悪い、という課題もあった。
 本発明は、従来技術が抱える上記課題を鑑みてなされたものであり、その目的は、高炉などの操業プロセスで、原料として使用される塊状の物質の表面に付着した粉の粉率を高い精度でリアルタイムに測定できる粉率測定装置および粉率測定システムを提供することにある。
 このような課題を解決する本発明の特徴は、以下の通りである。
(1)塊状の物質の表面に付着した粉の粉率を測定する粉率測定装置であって、前記塊状の物質を照明する照明装置と、前記塊状の物質を撮像して画像データを作成する撮像装置と、前記撮像装置で作成された前記画像データの特徴量を算出し、前記特徴量を粉率に変換する演算装置と、を備える、粉率測定装置。
(2)前記特徴量は、前記画像データにおける画素の輝度を平均した平均輝度である、(1)に記載の粉率測定装置。
(3)前記特徴量は、前記画像データにおける画素の輝度のうち最も頻度の高い最頻度輝度である、(1)に記載の粉率測定装置。
(4)前記照明装置は照明方向の異なる複数の光源を備える、(1)から(3)の何れか1つに記載の粉率測定装置。
(5)前記撮像装置は、前記複数の光源を用いてそれぞれの方向から照明するごとに前記塊状の物質を撮像して複数の画像データを作成し、前記演算装置は、前記複数の画像データにおける前記塊状の物質の同じ位置からの光を受光して作成されたそれぞれの画素のうち最大輝度を示す画素から構成される最大輝度画像データを作成し、当該最大輝度画像データを用いて特徴量を算出する、(4)に記載の粉率測定装置。
(6)塊状の物質を搬送するコンベアと、前記コンベアの上方に設けられた(1)から(5)の何れか1つに記載の粉率測定装置と、を備え、前記粉率測定装置を用いて、前記塊状の物質の表面に付着した粉の粉率を測定する、粉率測定システム。
 本発明の粉率測定装置および粉率測定システムを用いることで、塊状の物質に熱を発生させることなく、塊状の物質の表面に付着した粉の粉率を高い精度でリアルタイムに測定できる。高炉のような製造プロセスにおいて、例えば、原料であるコークスの表面に付着したコークス粉の粉率を、原料を高炉に装入する前に把握することで、製造プロセスの安定操業に寄与できる。
図1は、粉が付着した塊状の物質の平均輝度と粉率との関係を示すグラフである。 図2は、粉が付着した塊状の物質の水分量と粉率との関係を示すグラフである。 図3は、本実施形態に係る粉率測定システム10と、その周辺の構成の一例を示す模式図である。 図4は、白とび画像の一例を示す画像である。 図5は、図4に示した白とび画像の輝度のヒストグラムを示す。 図6は、平均輝度と粉率との関係と、最頻度輝度と粉率との関係を示すグラフである。 図7は、本実施形態に係る照明装置18の一例を示す図である。 図8は、本実施形態に係る照明装置40の一例を示す図である。 図9は、照明装置に照明されたコークス22の画像の一例を示す。
 本発明者らは、塊状の物質に付着した粒径が1mm以下の粉の粉率は、当該塊状の物質を撮像した画像データにおける平均輝度と相関があることを見出して本発明を完成させた。まず、塊状の物質を撮像することによって得られた画像データにおける輝度値の平均と、塊状の物質に付着した1mm以下の付着粉の粉率との相関が高いことを説明する。
 図1は、粉が付着した塊状の物質の平均輝度と粉率との関係を示すグラフである。図1は、塊状の物質として、粒径1mm以下のコークス粉が表面に付着した粒径35mm以上の塊コークスを用いて得られた結果を示す。縦軸は、塊コークスに付着した1mm以下のコークス粉の粉率(質量%)を示し、横軸は、1mm以下のコークス粉が付着した塊コークスを撮像して得られた画像データにおける平均輝度を示す。粒径35mm以上の塊コークスは、目開き35mmの篩を用いてコークスを篩って準備した。塊コークスの表面に付着した1mm以下のコークス粉の粉率は、塊コークスを120~200℃で4時間以上恒量になるまで乾燥させた後、目開き1mmの篩を用いて篩い、篩い前後の塊コークスの質量差の篩前の質量に対する割合として算出した。この方法は、乾燥状態では付着粉が剥離してくることを利用した方法である。粉が付着した塊コークスの画像データにおける平均輝度は、所定の照明の下、デジタルカメラで撮像して得られた画像データにおける各画素の輝度(0~255)を算術平均することによって算出した。
 図1に示すように、塊コークスに付着した1mm以下のコークス粉の粉率と塊コークスの画像データにおける平均輝度とは高い相関が見られ、相関の強弱を示す寄与率(R)は0.67であった。すなわち、塊コークスに付着した1mm以下のコークス粉の粉率と塊コークスの画像データにおける平均輝度との相関が強いことがわかる。
 図2は、粉が付着した塊状の物質の水分量と粉率との関係を示すグラフである。図2の測定においても、図1と同じ1mm以下のコークス粉が表面に付着した塊コークスを用いた。縦軸は、塊コークスに付着した1mm以下のコークス粉の粉率(質量%)を示し、横軸は、1mm以下のコークス粉が付着した塊コークスの水分量(質量%)を示す。1mm以下のコークス微粉の粉率は、図1と同じ方法を用いて算出した。塊コークスの水分量は、中性子水分計を用いて測定した。図2に示すように、塊コークスに付着した1mm以下のコークス粉の粉率と塊コークスの水分量とは相関が見られたものの、その相関の強弱を示す寄与率(R)は0.40であった。
 図1および図2に示したように、塊コークスに付着した1mm以下のコークス粉の粉率と平均輝度との相関の寄与率は、コークス粉の粉率と塊コークスの水分量との相関の寄与率よりも高い。すなわち、塊コークスに付着した1mm以下のコークス粉の粉率と平均輝度との相関は、塊コークスの水分量との相関よりも強いことがわかる。
 コークス粉の粉率と塊コークスの水分量との相関よりも、コークス粉の粉率と画像データの平均輝度との相関の方が強い理由は、塊コークスの水分量が、塊コークス表面に存在する水分と塊コークス内部に存在する水分とを含むことによる。すなわち、塊コークス表面に存在する水分は、塊コークス表面に付着する粉の粉率との相関は強いと考えられる一方で、塊コークス内部に存在する水分は、塊コークス表面に付着する粉の粉率に影響を及ぼさないと考えられる。このため、塊コークス内部に存在する水分量の影響で、塊コークスの水分量と塊コークス表面に付着する粉の粉率との相関は弱められ、平均輝度との相関よりも弱くなったと考えられる。このように、塊コークスに付着した1mm以下のコークス粉の粉率と平均輝度との相関を見出して完成させた本発明は、水分量に着目した従来の粉率測定方法よりも高精度な粉率の測定が実現できる。以下に、図面を用いて本発明の実施形態を説明する。
 図3は、本実施形態に係る粉率測定システム10と、その周辺の構成の一例を示す模式図である。図3を用いて、高炉に装入される原料であるコークスに付着する粉の粉率測定に、本実施形態に係る粉率測定システム10を用いた例を説明する。
 粉率測定システム10は、粉率測定装置12と、コンベア14とを備える。粉率測定装置12は、撮像装置16と、照明装置18と、演算装置20とを有する。高炉に装入されるコークス22は、ホッパ24に貯留される。ホッパ24から排出されたコークス22は、篩26で篩われて、篩26の目開きより小さい粒径の粉が落とされた後、コンベア14によって高炉(図示せず)へ搬送される。本実施形態において、篩26の目開きは35mmである。このため、コンベア14によって搬送されるコークス22は、粒径35mm以上の塊コークスと、篩26を用いて篩っても落下しない塊コークスに付着した粉コークスとを含む。塊コークスに付着したコークス粉の粒径を測定したところ、粒径1mm以下のコークス粉であった。本実施形態において、粒径1mm以下のコークス粉とは、目開き1mmの篩いを通過したコークス粉を意味し、粒径35mm以上の塊コークスとは、目開き35mmの篩で篩った後、篩上に残ったコークスを意味する。図3に示した例において、コークス22は、塊状の物質の一例である。
 撮像装置16は、コンベア14の上方に設けられ、コンベア14によって搬送されるコークス22を撮像して、画像データを作成する。撮像装置16は、例えば、CCDまたはCMOS型の撮像センサおよびレンズを有するデジタルカメラである。撮像装置16が設けられる高さは、コンベア14上であって500mm以上1000mm以下とすることが好ましいが、撮像装置16が有する撮像センサの画素数およびレンズの画角によって撮像装置16が設けられる高さを調整してよい。
 撮像装置16は、コークス22の表面からの反射光を含む光を撮像センサにて受光して画像データを作成する。コークス22の表面に付着したコークス粉は、コークス22の表面から反射される反射光に影響を及ぼす。このため、コークス22の表面から反射された反射光を含む光を受光して作成された画像データは、コークス22の表面に付着したコークス粉の情報を含む。
 撮像装置16で作成された画像データは、算出部と変換部(図示せず)とを有する演算装置20へ出力される。演算装置20は、撮像装置16から出力された画像データを処理する。上述したように画像データは、コークス22の表面に付着したコークス粉の情報を含むので、演算装置20の算出部は、画像データからコークス粉の情報を含む特徴量を算出する。算出部は、特徴量として、例えば、画像データにおける各画素の輝度(0~255)を算術平均して平均輝度を算出する。
 算出部によって算出された平均輝度は、変換部によって付着粉の粉率に変換される。変換部には、コークス表面に付着したコークス粉の粉率と平均輝度との対応関係を示す回帰式が予め記憶されており、変換部は、当該回帰式を用いて算出部によって算出された平均輝度をコークス22の表面に付着したコークス粉の粉率に変換する。
 撮像装置16は、予め定められた時間が経過した後、再び、コークス22を撮像して画像データを作成する。予め定められた時間は、例えば、撮像装置16が撮像するコークス22の撮像範囲とコンベア14の搬送速度によって定めてよい。すなわち、予め定められた時間を、コンベア14の搬送方向における撮像範囲の長さを、コンベア14の搬送速度で除して算出される時間としてよい。これにより、撮像装置16は、コンベア14の搬送方向に対して隙間無くコークス22を撮像できる。撮像装置16は、コンベア14の搬送方向に対して垂直となる方向からコークス22を撮像することが好ましい。
 撮像装置16で作成された画像データは再び演算装置20に出力され、当該演算装置20において、コークス22に付着したコークス粉の粉率が算出される。本実施形態に係る粉率測定装置12は、上記処理を繰り返し実行することで、コンベア14で搬送されるコークス22の表面に付着したコークス粉の粉率をリアルタイムに測定する。
 このように、本実施形態に係る粉率測定装置12は、高炉の原料として装入されるコークス22の表面に付着したコークス粉の粉率を高い精度でリアルタイムに測定できる。これにより、例えば、高炉の通気性に影響を及ぼすコークス22に付着した微細なコークス粉の高炉への装入量を管理できるようになり、高炉の製造プロセスの安定操業に寄与できる。
 本実施形態に係る粉率測定装置12は、コークス22の表面に付着したコークス粉の粒径を測定することなく粉率を測定できる。このため、撮像装置16における撮像センサの画素数がコークス粉の粒径を判別できないくらい少ない場合であっても、コークス22に付着したコークス粉の粉率を測定できる。さらに、本実施形態における撮像装置16は、分光せずに可視光領域の光を受光して画像データを生成する。このため、低出力な照明装置からでも十分な反射光を確保できるので、高出力な照明装置を用いて装入物を加熱することを抑制できる。
 本実施形態の粉率測定装置12では、特徴量として平均輝度を算出する例を示したがこれに限られない。例えば、算出部は、特徴量として最頻度輝度を算出してもよく、画像データにおける各画素の輝度の分布から抽出されるテクスチャ特徴量であってもよい。
 図4は、白とび画像の一例を示す画像である。照明装置と原料との位置関係によっては、図4に示すような白とびした画像が撮像されることがあり、この場合に、白とびした部分については付着粉の情報が得られない。
 図5は、図4に示した白とび画像の輝度のヒストグラムを示す。平均輝度は影に相当する低輝度(低輝度側網掛け部)と白とびに相当する高輝度(高輝度側網掛け部)の両方の外乱を受け測定精度が低下する。このため、両方の外乱を受けない特徴量として画像データの輝度のうち最も頻度の高い輝度(最頻度輝度)を用いてもよい。
 図6は、平均輝度と粉率との関係と、最頻度輝度と粉率との関係を示すグラフである。
平均輝度と粉率との関係を示す線形回帰直線から算出される寄与率(R)と、最頻度輝度と粉率との関係を示す線形回帰直線から算出される寄与率(R)を比較すると、平均輝度の寄与率が0.63であるのに対し最頻度輝度の寄与率は0.79となり、最頻度輝度と粉率との相関は、平均輝度と粉率との相関よりも強いことがわかる。この結果から、白とび画像が撮像される場合には、特徴量として平均輝度を用いるより最頻度輝度を用いる方が粉率の測定精度が高くなる。
 運搬されるコークス22の量によっては、コークス22の輝度と同程度の値を持つコンベア14が撮像される場合がある。このようなコンベアの輝度も粉率測定の外乱になる。コンベア14が撮像されることによって、コンベア14の輝度のヒストグラムの山ができる可能性がある。特徴量として最頻度輝度を用いた場合には、コンベア14の輝度のヒストグラムの山の最頻度輝度を特徴量とする可能性があり、測定精度が低下する可能性がある。これに対し、平均輝度はコンベア14の輝度の影響を抑えることができる。このため、搬送されるコークス量が少なく、コンベア14の映り込みが多い場合には、特徴量として最頻度輝度を用いるより平均輝度を用いる方が粉率の測定精度が高くなる。
 このように、平均輝度や最頻度輝度といった画像データの輝度を用いてコンベア14によって搬送されるコークス22に付着したコークス粉の粉率が算出できる。さらに、撮像される画像によって平均輝度と最頻度輝度を使い分けることで、コンベア14によって搬送されるコークス22に付着したコークス粉の粉率を高精度に測定できる。
 次に、照明装置18について説明する。図7は、本実施形態に係る照明装置18の一例を示す図である。図7(a)は、粉率測定システム10の上面図を示す。図7(b)は、粉率測定システム10の正面図を示す。図7(a)、(b)に示した例において、照明装置18は、撮像装置16を中心として左右に均等となる対称位置に配置された2つの光源30および光源32を有する。
 1つの光源を用いて1方向からコークス22を照明すると、当該光源の反対側には影ができる。コークス22に生じた影の部分からの反射光量は、コークス22に付着したコークス粉の粉率に関係なく少なくなる。このため、コークス22に発生した影は、コークス粉の粉率の測定に対して外乱因子になる。
 図7(a)、(b)に示すように、撮像装置16を中心として均等となる対称位置にそれぞれ光源30および32を設けてよい。これにより、一方向の光源から照明した場合に生じる影を小さくすることができ、コークス22に付着するコークス粉の粉率の測定精度を向上できる。
 照明装置18の光源の数は2個に限られない。図8は、本実施形態に係る照明装置40の一例を示す図である。図8(a)は、粉率測定システム10の上面図を示す。図8(b)は、粉率測定システム10の正面図を示す。図8(c)は、粉率測定システム10の側面図を示す。
 図8(a)、(b)、(c)に示した例において、照明装置40は、撮像装置16を中心として前後左右に均等となる対称位置に配置された4つの光源30、光源32、光源34および光源36を有する。このように、撮像装置16を中心として4つの光源を均等に配置した照明装置40を用いて、照明方向の異なる光源でコークス22を照明することで、撮像装置16を中心として均等となる対称位置に2つの光源を設けた場合よりもコークス22に生じる影を少なくできる。これにより、コークス22に付着するコークス粉の粉率の測定精度をさらに向上できる。
 図8に示した例において、4つの光源の全てを用いてコークス22を照明してもよいが、4つの光源を個別に切り替えて、光源が切り替える毎に撮像装置16で撮像して4つの画像データを作成してもよい。この場合において、算出部は、4つの画像データを用いて、最大輝度画像データを作成する。
 算出部は、4つの画像データにおけるコークス22の同じ位置からの光を受光して作成された画素を特定する。算出部は、撮像装置16による撮像間隔とコンベア14の搬送速度とを乗じて、各画像データ間に生じる画素位置のずれを算出することで、4つの画像データにおけるコークス22の同じ位置からの光を受光して作成された画素を特定してもよい。算出部は、4つの画像データをパターンマッチングすることによって、4つの画像データにおけるコークス22の同じ位置からの光を受光して作成された画素を特定してもよい。算出部は、特定された4つの画素のうち最大輝度値を示す画素を抽出する。算出部は、4つの画像データにおいて共通するコークス22の撮像領域を構成する画素について同様の処理を実行して、抽出された最大輝度値を示す画素から構成される最大輝度画像データを作成し、当該最大輝度画像データを用いて平均輝度を算出してもよい。
 同様に、4つの光源30、光源32、光源34および光源36を、例えば、光源30と光源32の組と、光源34と光源36の組とに組分けし、それぞれの組の光源を切り替える毎に撮像装置16で撮像して画像データを作成してもよい。そして、2つの組の光源から照明された2つの画像データを用いて、最大輝度画像データを作成し、当該最大輝度画像データを用いて平均輝度を算出してもよい。
 図9は、照明装置に照明されたコークス22の画像の一例を示す。図9(a)は、矢印42の方向から照明したコークス22の画像を示す。図9(b)は、撮像装置16を中心として前後左右に均等に配置した4つの光源を切り替える毎に撮像して作成された4つの画像データを用いて作成された最大輝度画像を示す。
 図9(a)に示すように、矢印42の方向から照明した塊コークスの画像においては、コークス22に影44ができる。一方、図9(b)に示すように、最大輝度画像データにおいては、コークス22に生じた影44を小さくすることができる。このように、最大輝度画像データを用いることで、照明の方向による外乱因子を小さくすることができ、コークス粉の粉率の高精度な測定が実現できる。
 本実施形態において、塊状の物質としてコークス22の例を示したがこれに限られない。例えば、高炉に装入される原料の例であれば、コークス22に代えて、塊コークスを篩って落ちたコークスから篩で粉を除いた小塊コークスや、塊鉱石であってもよく、焼結鉱、ペレットであってもよい。
 図8に示した例において、4つの光源を有する照明装置40を用いて4つの画像データを作成し、当該画像データを用いて最大輝度画像データを作成する例を示した。しかしながら、光源および作成する画像データの数は、4つに限られず、2以上の任意の数の光源を設け、2以上であって当該光源の数以下の任意の数の画像データを作成して、最大輝度画像データを作成してよい。
 さらに、光源30、光源32、光源34および光源36は、連続的にコークス22を照明できる光源であってもよく、ストロボのように瞬間的にコークス22を照明できる光源であってもよい。複数の光源を個別に切り替える場合においては、瞬間的に高い光量を出力できるストロボがより好ましい。光源の配置は、撮像装置16を中心として均等に配置した例を示したが、あくまで好ましい例を示したのであって、光源の配置は、任意の位置に配置してよい。
 10  粉率測定システム
 12  粉率測定装置
 14  コンベア
 16  撮像装置
 18  照明装置
 20  演算装置
 22  コークス
 24  ホッパ
 26  篩
 30  光源
 32  光源
 34  光源
 36  光源
 40  照明装置
 42  矢印
 44  影

Claims (6)

  1.  塊状の物質の表面に付着した粉の粉率を測定する粉率測定装置であって、
     前記塊状の物質を照明する照明装置と、
     前記塊状の物質を撮像して画像データを作成する撮像装置と、
     前記撮像装置で作成された前記画像データの特徴量を算出し、前記特徴量を粉率に変換する演算装置と、
    を備える、粉率測定装置。
  2.  前記特徴量は、前記画像データにおける画素の輝度を平均した平均輝度である、請求項1に記載の粉率測定装置。
  3.  前記特徴量は、前記画像データにおける画素の輝度のうち最も頻度の高い最頻度輝度である、請求項1に記載の粉率測定装置。
  4.  前記照明装置は照明方向の異なる複数の光源を備える、請求項1から請求項3の何れか一項に記載の粉率測定装置。
  5.  前記撮像装置は、前記複数の光源を用いてそれぞれの方向から照明するごとに前記塊状の物質を撮像して複数の画像データを作成し、
     前記演算装置は、前記複数の画像データにおける前記塊状の物質の同じ位置からの光を受光して作成されたそれぞれの画素のうち最大輝度を示す画素から構成される最大輝度画像データを作成し、当該最大輝度画像データを用いて特徴量を算出する、請求項4に記載の粉率測定装置。
  6.  塊状の物質を搬送するコンベアと、
     前記コンベアの上方に設けられた請求項1から請求項5の何れか一項に記載の粉率測定装置と、
    を備え、
     前記粉率測定装置を用いて、前記塊状の物質の表面に付着した粉の粉率を測定する、粉率測定システム。
PCT/JP2017/042709 2016-11-30 2017-11-29 粉率測定装置および粉率測定システム WO2018101287A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17877269.5A EP3505910B1 (en) 2016-11-30 2017-11-29 Powder ratio measuring device and powder ratio measuring system
US16/341,524 US11403747B2 (en) 2016-11-30 2017-11-29 Fine ratio measuring device and fine ratio measuring system
JP2018511178A JP6519034B2 (ja) 2016-11-30 2017-11-29 粉率測定装置および粉率測定システム
CN201780063845.7A CN109844498B (zh) 2016-11-30 2017-11-29 粉末比率测定装置以及粉末比率测定系统
KR1020217016984A KR102332719B1 (ko) 2016-11-30 2017-11-29 분율 측정 장치 및 분율 측정 시스템
KR1020197010857A KR102415197B1 (ko) 2016-11-30 2017-11-29 분율 측정 장치 및 분율 측정 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231969 2016-11-30
JP2016-231969 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101287A1 true WO2018101287A1 (ja) 2018-06-07

Family

ID=62242399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042709 WO2018101287A1 (ja) 2016-11-30 2017-11-29 粉率測定装置および粉率測定システム

Country Status (6)

Country Link
US (1) US11403747B2 (ja)
EP (1) EP3505910B1 (ja)
JP (1) JP6519034B2 (ja)
KR (2) KR102332719B1 (ja)
CN (1) CN109844498B (ja)
WO (1) WO2018101287A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193971A1 (ja) * 2018-04-03 2019-10-10 Jfeスチール株式会社 粒度分布測定装置及び粒度分布測定方法
JP2020030072A (ja) * 2018-08-21 2020-02-27 Jfeスチール株式会社 気中分散微粒子の発生判定方法及び装置並びに塊状物質の性状測定方法及び装置
WO2020204165A1 (ja) 2019-04-05 2020-10-08 Jfeスチール株式会社 粉率測定方法及び装置
JPWO2020203255A1 (ja) * 2019-04-02 2021-04-30 Jfeスチール株式会社 粒度分布監視装置、粒度分布監視方法、コンピュータプログラム、炉、高炉、炉の制御方法、及び高炉操業方法
WO2021085221A1 (ja) 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
CN113614254A (zh) * 2019-03-28 2021-11-05 杰富意钢铁株式会社 粉末比率测定装置、粉末比率测定系统、粉末比率测定方法、计算机程序、高炉以及高炉操作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020102477A1 (de) 2020-01-31 2021-08-05 Aktien-Gesellschaft der Dillinger Hüttenwerke (Société Anonyme des Forges et Aciéries de Dilling) Verfahren und Vorrichtung zur Bestimmung des Magnetitgehalts eines Sinterprodukts für den Hochofenprozess
DE102020112182A1 (de) 2020-05-06 2021-11-11 Aktien-Gesellschaft der Dillinger Hüttenwerke (Société Anonyme des Forges et Aciéries de Dilling) Verfahren und Vorrichtung zur Bestimmung des Magnetitgehalts eines Sinterprodukts für den Hochofenprozess
CN112094974A (zh) * 2020-08-21 2020-12-18 广东韶钢松山股份有限公司 高炉铁口喷雾控制方法、系统及其计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172614A (ja) * 2003-12-11 2005-06-30 Satake Corp 穀類の品質評価装置
JP2005227107A (ja) * 2004-02-12 2005-08-25 Ricoh Co Ltd 汚染物質量の検査方法およびその検査装置
JP2006201130A (ja) * 2005-01-24 2006-08-03 Niigata Univ 生籾被害粒の非破壊判定方法及びその装置
JP2006292500A (ja) * 2005-04-08 2006-10-26 Seiko Epson Corp 表面検査方法及び表面検査装置
JP2010097379A (ja) * 2008-10-16 2010-04-30 Denso Corp ドライバモニタリング装置およびドライバモニタリング装置用のプログラム
US20130016356A1 (en) * 2011-07-14 2013-01-17 Kendall Technology Inc. Method and apparatus for gold detection
JP2014038014A (ja) * 2012-08-14 2014-02-27 Jfe Electrical & Control Systems Inc 紙粉の付着量検査方法および紙粉付着量検査装置
JP2014215217A (ja) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 物体検査装置及び物体検査方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288162A (en) * 1979-02-27 1981-09-08 Sumitomo Kinzoku Kogyo Kabushiki Kaisha Measuring particle size distribution
US4976540A (en) * 1988-05-27 1990-12-11 Shin-Etsu Chemical Co., Ltd. Method for detecting colored foreign particles in light-colored powder and system therefor
JPH0675030B2 (ja) 1989-04-05 1994-09-21 日本鋼管株式会社 粒状体の平均粒度測定方法及び粒度自動制御方法
KR970005501B1 (ko) 1993-06-16 1997-04-16 박득표 화상처리를 이용한 무접촉식 입도측정장치
JPH07128214A (ja) 1993-11-04 1995-05-19 Nippon Steel Corp コークス粒度測定方法
JPH08184569A (ja) * 1995-01-05 1996-07-16 Mitsubishi Electric Corp 表面付着微粒子の検出装置
KR0134468B1 (ko) * 1995-07-31 1998-04-23 배순훈 베어링 압입장치
AUPN599495A0 (en) 1995-10-16 1995-11-09 Scientific Industrial Automation Pty Limited Method and apparatus for sizing particulate material
JP2000329683A (ja) 1999-05-20 2000-11-30 Ube Ind Ltd ベルトコンベアで搬送されるばら物の粒度検知方法
JP2001337028A (ja) * 2000-05-30 2001-12-07 Nikkiso Co Ltd 粒度分布測定方法および装置
JP2003344300A (ja) * 2002-05-21 2003-12-03 Jfe Steel Kk 表面欠陥判別方法
JP2005003385A (ja) * 2003-06-09 2005-01-06 Mitsutoyo Corp 画像測定方法、および画像測定装置
JP2005134301A (ja) 2003-10-31 2005-05-26 Jfe Steel Kk 粒度分布測定の校正方法
US7924414B2 (en) * 2006-05-10 2011-04-12 Abb Schweiz Ag Non-hazardous bulk material analyzer system
JP2008261642A (ja) * 2007-04-10 2008-10-30 Shin Nippon Air Technol Co Ltd シート付着微粒子の検出装置
KR101340765B1 (ko) * 2010-04-01 2013-12-11 신닛테츠스미킨 카부시키카이샤 입자 측정 장치 및 입자 측정 방법
JP5170154B2 (ja) * 2010-04-26 2013-03-27 オムロン株式会社 形状計測装置およびキャリブレーション方法
KR20120068189A (ko) 2010-12-17 2012-06-27 주식회사 수텍 소결광 자동검사장치
KR101344997B1 (ko) 2012-03-29 2013-12-24 현대제철 주식회사 고로 하부 코크스 입경 예측방법
JP5896465B2 (ja) * 2012-06-12 2016-03-30 鹿島建設株式会社 粒状材料の粒度分布計測方法及びシステム
JP2014025720A (ja) * 2012-07-24 2014-02-06 Nippon Steel & Sumikin Engineering Co Ltd 含水率粒径測定装置
JP6036516B2 (ja) * 2013-04-22 2016-11-30 新日鐵住金株式会社 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
CN103278505B (zh) * 2013-05-08 2015-03-11 北京科技大学 一种基于多特征分析的高炉除尘灰成分分析方法
EP3012331B1 (en) 2013-06-19 2019-02-13 JFE Steel Corporation Method for detecting abnormality in blast furnace, and method for operating blast furnace
JP5923463B2 (ja) 2013-06-26 2016-05-24 信越化学工業株式会社 多結晶シリコンの結晶粒径分布の評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP6044536B2 (ja) 2013-12-27 2016-12-14 Jfeスチール株式会社 高炉装入物検出装置
WO2015133287A1 (ja) * 2014-03-07 2015-09-11 新日鐵住金株式会社 表面性状指標化装置、表面性状指標化方法及びプログラム
JP6252504B2 (ja) 2015-01-30 2017-12-27 Jfeスチール株式会社 高炉装入物検出方法
JP5982532B1 (ja) * 2015-05-18 2016-08-31 シャープ株式会社 微小粒子検出装置および微小粒子検出方法
JP6156852B2 (ja) * 2015-11-01 2017-07-05 鹿島建設株式会社 粒状材料の粒度分布計測方法及びシステム
US11391662B2 (en) * 2017-03-30 2022-07-19 Jfe Steel Corporation Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172614A (ja) * 2003-12-11 2005-06-30 Satake Corp 穀類の品質評価装置
JP2005227107A (ja) * 2004-02-12 2005-08-25 Ricoh Co Ltd 汚染物質量の検査方法およびその検査装置
JP2006201130A (ja) * 2005-01-24 2006-08-03 Niigata Univ 生籾被害粒の非破壊判定方法及びその装置
JP2006292500A (ja) * 2005-04-08 2006-10-26 Seiko Epson Corp 表面検査方法及び表面検査装置
JP2010097379A (ja) * 2008-10-16 2010-04-30 Denso Corp ドライバモニタリング装置およびドライバモニタリング装置用のプログラム
US20130016356A1 (en) * 2011-07-14 2013-01-17 Kendall Technology Inc. Method and apparatus for gold detection
JP2014038014A (ja) * 2012-08-14 2014-02-27 Jfe Electrical & Control Systems Inc 紙粉の付着量検査方法および紙粉付着量検査装置
JP2014215217A (ja) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 物体検査装置及び物体検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505910A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193971A1 (ja) * 2018-04-03 2019-10-10 Jfeスチール株式会社 粒度分布測定装置及び粒度分布測定方法
US11187637B2 (en) 2018-04-03 2021-11-30 Jfe Steel Corporation Particle size distribution measurement apparatus and particle size distribution measurement method
JP2020030072A (ja) * 2018-08-21 2020-02-27 Jfeスチール株式会社 気中分散微粒子の発生判定方法及び装置並びに塊状物質の性状測定方法及び装置
CN113614254A (zh) * 2019-03-28 2021-11-05 杰富意钢铁株式会社 粉末比率测定装置、粉末比率测定系统、粉末比率测定方法、计算机程序、高炉以及高炉操作方法
EP3950968A4 (en) * 2019-03-28 2022-05-04 JFE Steel Corporation POWDER RATIO MEASUREMENT DEVICE, POWDER RATIO MEASUREMENT SYSTEM, POWDER RATIO MEASUREMENT METHOD, COMPUTER PROGRAM, BLAST FURNACE AND BLAST FURNACE OPERATING METHOD
CN113614254B (zh) * 2019-03-28 2022-11-18 杰富意钢铁株式会社 粉末比率测定装置、粉末比率测定系统、粉末比率测定方法、高炉以及高炉操作方法
JPWO2020203255A1 (ja) * 2019-04-02 2021-04-30 Jfeスチール株式会社 粒度分布監視装置、粒度分布監視方法、コンピュータプログラム、炉、高炉、炉の制御方法、及び高炉操業方法
JP7020561B2 (ja) 2019-04-02 2022-02-16 Jfeスチール株式会社 粒度分布監視装置、粒度分布監視方法、コンピュータプログラム、炉、高炉、炉の制御方法、及び高炉操業方法
WO2020204165A1 (ja) 2019-04-05 2020-10-08 Jfeスチール株式会社 粉率測定方法及び装置
KR20210134016A (ko) 2019-04-05 2021-11-08 제이에프이 스틸 가부시키가이샤 분율 측정 방법 및 장치
WO2021085221A1 (ja) 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
KR20220066146A (ko) 2019-10-31 2022-05-23 제이에프이 스틸 가부시키가이샤 고로 조업 방법

Also Published As

Publication number Publication date
KR102332719B1 (ko) 2021-12-01
KR102415197B1 (ko) 2022-06-29
EP3505910A4 (en) 2019-07-03
JP6519034B2 (ja) 2019-05-29
EP3505910B1 (en) 2022-01-12
US11403747B2 (en) 2022-08-02
CN109844498B (zh) 2022-10-18
KR20190054123A (ko) 2019-05-21
US20190370953A1 (en) 2019-12-05
KR20210068628A (ko) 2021-06-09
CN109844498A (zh) 2019-06-04
EP3505910A1 (en) 2019-07-03
JPWO2018101287A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018101287A1 (ja) 粉率測定装置および粉率測定システム
CN110476053B (zh) 原料的粒度分布测定装置、粒度分布测定方法以及空隙率测定装置
JP5886266B2 (ja) 粉粒体質量検査装置
CN111954800B (zh) 粒度分布测定装置和粒度分布测定方法
JP2000329683A (ja) ベルトコンベアで搬送されるばら物の粒度検知方法
EP3561478A2 (en) Apparatus for measuring particle size and dryness/wetness of raw material being transferred, and apparatus for measuring particle size of mixed raw material
JPS61107139A (ja) 米粒品位測定装置
CN113646446B (zh) 粉率测定方法及装置
JP6806176B2 (ja) コンベア上の塊状物質周囲のミスト判定方法及びコンベア上の塊状物質の性状測定方法
JPH06194307A (ja) 原料鉱石の品質監視方法
JP2004191074A (ja) タブレットの密度推定方法及び検査装置
JP2006126061A (ja) 粉粒体の粒度分布計測方法および装置
KR960001823B1 (ko) 분코크스 입도분포의 연속측정방법 및 그 장치
JP6566180B1 (ja) 粒度分布測定装置及び粒度分布測定方法
JP7171578B2 (ja) 粉率測定装置、粉率測定システム、高炉操業方法および粉率測定方法
WO2020196487A1 (ja) 粉率測定装置、粉率測定システム、粉率測定方法、コンピュータプログラム、高炉及び高炉操業方法
JP2005181169A (ja) 粒度分布計測装置および方法
JPH03257347A (ja) 粒度分布測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511178

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017877269

Country of ref document: EP

Effective date: 20190326

ENP Entry into the national phase

Ref document number: 20197010857

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE