WO2018101076A1 - 半導体装置、および電位測定装置 - Google Patents

半導体装置、および電位測定装置 Download PDF

Info

Publication number
WO2018101076A1
WO2018101076A1 PCT/JP2017/041417 JP2017041417W WO2018101076A1 WO 2018101076 A1 WO2018101076 A1 WO 2018101076A1 JP 2017041417 W JP2017041417 W JP 2017041417W WO 2018101076 A1 WO2018101076 A1 WO 2018101076A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
supply unit
amplifier
electrode
predetermined
Prior art date
Application number
PCT/JP2017/041417
Other languages
English (en)
French (fr)
Inventor
佐藤 正啓
真知子 亀谷
純 小木
祐理 加藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2018553776A priority Critical patent/JP6987781B2/ja
Priority to US16/343,611 priority patent/US11492722B2/en
Priority to CN201780068778.8A priority patent/CN109952505B/zh
Priority to EP17875259.8A priority patent/EP3550296A4/en
Publication of WO2018101076A1 publication Critical patent/WO2018101076A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/523Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48735Investigating suspensions of cells, e.g. measuring microbe concentration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/444Diode used as protection means in an amplifier, e.g. as a limiter or as a switch

Definitions

  • the present disclosure relates to a semiconductor device and a potential measuring device, and more particularly, to a semiconductor device and a potential measuring device that can suppress electrostatic breakdown during manufacturing.
  • Patent Literature 1 and 2
  • a potential measuring apparatus is provided with a configuration for realizing a plating process and suppresses a decrease in signal characteristics in potential measurement.
  • a semiconductor device includes a reference potential generation unit and a reference potential electrode that supply a reference potential to a liquid filled in a container, a read electrode and an amplifier that read a signal from the liquid, and a liquid in the container
  • a potential supply unit for supplying a predetermined potential to the reference potential electrode and the readout electrode, and the container in the container
  • a potential that fills the liquid supplies a reference potential to the liquid by the reference potential generation unit, reads a signal from the liquid by the readout electrode, and amplifies and outputs the signal read by the amplifier
  • the supply of the predetermined potential from the potential supply unit is shut off at a position close to the amplifier, the container is filled with the plating solution, and the plating process is performed.
  • the reference potential generation unit and the reference potential electrode, the read electrode and the amplifier, the potential supply unit, and the cutoff unit include: a cutoff unit that supplies the predetermined potential from the
  • the blocking unit is a FET (Field Effect Transistor) switch, and is controlled to be turned off during the potential measurement to block the supply of the potential from the potential supply unit at a position close to the amplifier.
  • FET Field Effect Transistor
  • the blocking unit may be a diode having a cathode connected to the potential supply unit and an anode connected to the amplifier.
  • the potential supply unit applies a first predetermined potential. And supplying the potential from the potential supply unit at a position close to the amplifier, and when performing the plating process, the potential supply unit supplies a second predetermined potential. Can do.
  • the potential supply unit is supplied with a potential higher than the reference potential as the first predetermined potential, and the supply of the potential from the potential supply unit is cut off at a position close to the amplifier.
  • the potential supply unit can be supplied with a potential lower than the potential of the plating solution as the second predetermined potential.
  • the potential supply unit can be supplied with the predetermined potential from a power source of the amplifier.
  • An additional diode having the same characteristics as the diode and formed by the same process as the diode, in which the anode and the cathode of the diode are connected, and the ground potential and the anode are connected may be further included.
  • the other blocking unit may be a FET (Field-Effect-Transistor) switch, and is controlled to be off during the potential measurement, so that the potential supply from the potential supply unit is close to the reference potential generation unit.
  • FET Field-Effect-Transistor
  • the other cutoff unit may be another diode having a cathode connected to the potential supply unit and an anode connected to the amplifier.
  • the potential supply unit includes a first diode.
  • the potential supply unit is supplied with a potential higher than the reference potential as the first predetermined potential, and the supply of the potential from the potential supply unit is cut off at a position close to the amplifier.
  • the potential supply unit can be supplied with a potential lower than the potential of the plating solution as the second predetermined potential.
  • the potential supply unit can be supplied with the predetermined potential from a power source of the amplifier.
  • a potential measurement device includes a reference potential generation unit and a reference potential electrode that supply a reference potential to a liquid filled in a container, a read electrode and an amplifier that read a signal from the liquid, Filling the plating solution in place of the liquid and applying a plating process to the reference potential electrode and the readout electrode, a potential supply unit for supplying a predetermined potential to the reference potential electrode and the readout electrode, and the container
  • the liquid is filled, a reference potential is supplied to the liquid by the reference potential generator, a signal is read from the liquid by the readout electrode, and the signal read by the amplifier is amplified and output.
  • the reference potential is supplied to the liquid filled in the container by the reference potential generation unit and the reference potential electrode, and the signal is read from the liquid by the readout electrode and the amplifier, and the potential supply unit
  • a predetermined potential is supplied to the reference potential electrode and the readout electrode, and the container
  • the liquid is filled therein, a reference potential is supplied to the liquid by the reference potential generation unit, a signal is read from the liquid by the readout electrode by the blocking unit, and a signal read by the amplifier is
  • the supply of the predetermined potential from the potential supply section is shut off at a position close to the amplifier, and the message is placed in the container.
  • the predetermined potential is supplied from the potential supply unit, the reference potential generation unit and the reference potential electrode, the readout electrode and the amplifier, the potential supply unit, and The blocking part is built
  • the potential measuring device 1 includes a petri dish 11, an electrode substrate 12, and an ADC (Analog Digital Converter) 13.
  • the petri dish 11 is made of a mold resin, filled with a liquid 51 such as physiological saline, and charged with cells to be a specimen.
  • electrodes 31-1 to 31-4 are provided on the bottom of the petri dish 11, and the measured potential is supplied to the amplifier 41- via terminals 32-1 to 32-4, respectively. 1 to 41-4.
  • the amplifiers 42-1 to 42-4 amplify the measurement potential supplied from the electrodes 31-1 to 31-4 and output the amplified potential to the ADC 13.
  • the ADC 13 converts the measured potential of the amplified analog signal supplied from the amplifiers 42-1 to 42-4 into a digital signal and outputs the digital signal to a subsequent apparatus.
  • the electrodes 31-1 to 31-4, the terminals 32-1 to 32-4, and the amplifiers 41-1 to 41-4 are simply the electrodes 31, the terminals 32, and the amplifier 41 unless it is necessary to distinguish them.
  • the other configurations are also called similarly.
  • the electrodes 31-1, 31-2 are each composed of, for example, plating parts 61-1, 61-2 and terminals 62-1 and 62-2, respectively.
  • the terminals 62-1 and 62-2 are plated and plated portions 61-1 and 61-2 are added, and the plating portion 61-1 and 61-2 are in contact with the liquid 51. It has become.
  • the measurement potential of the electrode 31-2 is read from the terminal 32-2, and the average potential is set as a reference potential (reference potential) Vref.
  • the local potential change in the vicinity of the electrode 31-1 is measured by comparing with the measured potential supplied from the electrode 32-1 via 32-1.
  • the wiring capacity may increase due to the configuration for enabling the plating process, and the signal characteristics may be deteriorated.
  • the potential measuring device of the present disclosure suppresses a decrease in signal characteristics in the potential measurement while providing a configuration for realizing the plating process.
  • FIG. 2 shows the configuration of the substrate 110 of the potential measuring apparatus 101, and shows the configuration corresponding to the top view of the electrode substrate 12 in the middle portion of FIG.
  • the electrodes 111-1 to 111-4 and 111-11 are provided in a petri dish 11 made of mold resin, and among these, the electrodes 111-1 to 111-4 correspond to the electrodes 31-1 to 31-4. To do.
  • the electrodes 111-1 to 111-4 are in contact with the liquid 131 (FIG. 3) in the petri dish 11 made of mold resin, and measure the action potential of the specimen in the liquid 131 and transmit it to the amplifiers 112-1 to 112-4. To do.
  • the electrode 111-11 supplies the reference potential generated by the reference potential generation unit 119 to the liquid 131.
  • the amplifiers 112-1 to 112-4 are provided directly below the same substrate as the electrodes 111-1 to 111-4, amplifying the voltages detected by the electrodes 111-1 to 111-4, respectively, Output to 113-1 to 113-4.
  • the switches 113-1 and 113-2 are controlled to be turned on or off by the transfer control unit 115. When turned on, the outputs from the amplifiers 112-1 and 112-2 are sent via the vertical transfer line 114-1. Output to the output unit 116.
  • the switches 113-3 and 113-4 are controlled to be turned on or off by the transfer control unit 115. When turned on, the outputs from the amplifiers 112-3 and 112-4 are sent via the vertical transfer line 114-2. Output to the output unit 116.
  • the output unit 116 converts the amplified signals supplied from the amplifiers 112-1 to 112-4 via the vertical transfer lines 114-1 and 114-2 into digital signals, and converts the terminals 117-1 to 117-4. Output more.
  • Terminals 118-1 and 118-2 receive electric power supplied from the outside.
  • the reference potential generator 119 generates a reference potential and supplies it to the liquid 131 from the electrode 111-11.
  • the electrodes 111-11 are in contact with the liquid 131 (FIG. 3) in the petri dish 11 made of mold resin, and supply a reference potential to the liquid 131, respectively.
  • the electrodes 111-1 and 111-11 are composed of plating portions 151-1 and 151-11 made of platinum or the like, and metal portions 152-1 and 152-11, respectively.
  • the electrode 111 is generally composed only of the metal part 152, but since it is a part that contacts the liquid 131, a plating part 151 is provided to prevent corrosion and the like.
  • the electrode 111-1 is an electrode for reading a signal, and is connected to the gate of the amplifier 112 including an amplification transistor, and transmits the potential of the liquid 131.
  • the amplifier 112 is composed of an amplifying transistor.
  • a power source VDD is connected to the source and drain of the amplifying transistor, and a voltage corresponding to the potential V supplied from the electrode 111-1 to the gate is supplied to the output unit 116. Output.
  • the output unit 116 performs analog-to-digital conversion on the output voltage made up of the analog signal from the amplifier 112 and outputs it from the terminal 117 as a digital signal.
  • the electrode 111-11 is an electrode that applies the reference potential output from the reference potential generating unit 119 to the liquid 131.
  • the blocking portions 191-1 and 191-2 are provided between the electrodes 111-1 and 111-11 and the power supply VDD, respectively, and when the electrodes 111-1 and 111-11 are subjected to a plating process during manufacturing. Are connected to the power supply VDD, and the voltage of the power supply VDD is applied to the electrodes 111-1, 111-11 to form the plated portions 151-1, 151-2.
  • the blocking units 191-1 and 191-2 are in a high impedance state when the potential is measured at the electrode 111-1 and the reference potential is output from the electrode 111-11.
  • the connection with 111-1, 111-11 is cut off.
  • the power supply VDD existing after the blocking portions 191-1 and 191-2 is a necessary structure in the electrode plating process for forming the plating portions 151-1 and 151-2 at the time of manufacture.
  • the signal transmission characteristics deteriorate due to the capacitance generated parasitically in the circuit that applies a voltage to the electrodes 111-1 and 111-11. Therefore, the blocking units 191-1 and 191-2 suppress deterioration of the signal transmission characteristics by blocking conduction between the power supply VDD and the electrodes 111-1 and 111-11 after manufacturing.
  • the blocking units 191-1 and 191-2 are connected to the power supply VDD.
  • the electrodes 111-1 and 111-11 are set to the ground potential. It may be. Therefore, in this case, the blocking units 191-1 and 191-2 may be controlled to be on or off with respect to the ground.
  • the blocking units 191-1 and 191-2 are configured as FET (Field Effect Transistor) switches 2111-1 and 211-2, as shown in FIG. 4, for example.
  • the petri dish 11 is filled with the plating solution 221, and further, the FET switches 211-1, 211- 2 is controlled on.
  • the voltage of the power supply VDD is applied to the electrodes 111-1 and 111-11 as indicated by the alternate long and short dash line.
  • the plating solution 221 is plated on the metal portions 152-1 and 152-11 of the electrodes 111-1 and 111-11 to form the plating portions 151-1 and 151-11.
  • the petri dish 11 is filled with the liquid 131 into which the specimen is charged, and the FET switches 211-1, 211. -2 is turned off.
  • the potential of the power supply VDD is cut off from the electrodes 111-1 and 111-11 as shown by the dotted line, and the potential V is transmitted to the electrode 111-1 as shown by the thick line.
  • the reference potential is output from the electrodes 111-11.
  • the signal from the electrode 111-1 is appropriately transmitted to the gate of the amplifier 112 without applying a voltage from the power supply VDD, so that it is possible to suppress deterioration of the signal transmission characteristics. it can.
  • the FET switches 211-1 and 211-2 are provided as specific configurations of the blocking units 191-1 and 191-2.
  • the electrodes 111-1 and 111-11 are provided. Any other configuration may be used as long as the potential necessary for the plating process is applied to the substrate and the action potential can be cut off. Therefore, as shown in FIG. 7, the specific configuration of the blocking units 191-1 and 191-2 may be diodes 231-1 and 231-2.
  • the electrodes 111-1 and 111-11 are connected to the anode, and the terminal 118 is connected to the cathode.
  • the terminal 118 has a potential lower than the potential of the plating solution 221 while the petri dish 11 is filled with the plating solution 221. Apply voltage.
  • a current flows through the diodes 231-1 and 231-2 in the forward direction as indicated by arrows in the figure, and the electrodes 111-1 and 111-11 have a lower potential than the plating solution 221.
  • the plating parts 152-1 and 152-2 are formed.
  • the potential from the terminal 118 is cut off from the electrodes 111-1 and 111-11 as indicated by the solid arrow, and the potential V at the electrode 111-1 is indicated as indicated by the thick line. Is transmitted, and a reference potential is output from the electrode 111-11. As a result, since the signal from the electrode 111-1 is properly transmitted to the gate of the amplifier 112, it is possible to suppress deterioration of the signal transmission characteristics.
  • the impedance of the reference potential generating unit 119 is small, so that the leakage current indicated by the alternate long and short dash line is shown in FIG.
  • Ia a current to the reference potential generating unit 119 is generated, a potential difference from the reference voltage is generated by the external resistance r to the bias supply unit 171 by the liquid 131, and the input potential to the gate of the amplification transistor constituting the amplifier 112 May deviate from the reference potential.
  • the leakage current Ia and the external resistance r vary, the input potential to the gate of the amplifier 112 also varies.
  • the diodes 231-1 and 251-1 having the same characteristics are connected in series, and the diodes 231-2 and 251-2 having the same characteristics are connected in series.
  • the electrodes 111-1 and 111-11 are substantially equipotential, and the leakage current indicated by the dotted line is caused by the internal resistance r. Since it does not flow, it becomes possible to stabilize the input voltage to the gate of the amplification transistor constituting the amplifier 112.
  • the diodes 231-1 and 251-1 and the diodes 231-2 and 251-2 are configured to be generated in the same semiconductor process, so that the amplifier 112 is not increased without increasing the number of manufacturing steps. It is possible to stabilize the input voltage to the gate of the amplifying transistor that constitutes.
  • the cathodes of the diodes 231-1 and 231-2 are connected to the power supply VDD of the amplifier 112.
  • the operation of the potential measuring device in FIG. 14 is the same as that of the potential measuring device in FIG. Further, the diodes 251-1 and 251-2 in FIG. 12 may be added to the configuration in FIG.
  • the electrodes 111-1 to 111-4, 111-11, the amplifiers 112-1 to 112-4, and the reference potential generator 119 are formed on the same substrate.
  • the configuration other than the configuration of the electrodes 111-1 to 111-4 having two rows and two columns shown in FIG. For example, an electrode configuration of n rows ⁇ m columns may be used. Further, the number of the electrodes 111-11 for supplying the reference potential may be one or more.
  • an electrode group 111-31 composed of black electrodes of 3 rows ⁇ 3 columns arranged in an array and an amplifier group 112-31 connected to each of them are configured. These may be connected to the multiplexer (Mux) 271 and the multiplexer 271 may output the output signal in a time-sharing manner.
  • an electrode group 111-41 composed of 3 rows ⁇ 3 rows of electrodes arranged in an array is controlled by the transfer control unit 115 in units of 3 rows, and 3 columns.
  • the transfer control unit 115 In units of 3 rows, and 3 columns.
  • each of the three gray electrodes in the upper stage and the lower stage in the figure is controlled to be turned on or off by a switch, but for the three black electrodes in the middle stage, There is no switch and it is in a state of always outputting.
  • the black lower left electrode, upper left electrode, and upper right electrode A total of three electrodes may be connected to each of the amplifier groups 112-51 including three amplifiers.
  • the electrodes constituting the electrode group 111-51 are each provided with a local memory indicated as “m” in the figure.
  • this indication can also take the following structures.
  • a reference potential generator and a reference potential electrode for supplying a reference potential to the liquid filled in the container;
  • a readout electrode and an amplifier for reading a signal from the liquid;
  • a potential supply unit that fills a plating solution instead of the liquid in the container and supplies a predetermined potential to the reference potential electrode and the readout electrode when plating the reference potential electrode and the readout electrode;
  • the container is filled with the liquid, a reference potential is supplied to the liquid by the reference potential generator, a signal is read from the liquid by the readout electrode, and the signal read by the amplifier is amplified.
  • the supply of the predetermined potential from the potential supply unit is shut off at a position close to the amplifier, the container is filled with the plating solution, and the plating process is performed.
  • a blocking unit for supplying the predetermined potential from the potential supply unit, The reference potential generation unit, the reference potential electrode, the readout electrode and the amplifier, the potential supply unit, and the cutoff unit are built in the same substrate.
  • the blocking unit is a FET (Field Effect Transistor) switch, and is controlled to be off at the time of the potential measurement to block the potential supply from the potential supply unit at a position close to the amplifier,
  • the semiconductor device according to ⁇ 1> wherein when the plating process is performed, the predetermined potential from the potential supply unit is supplied by being turned on.
  • the blocking unit is a diode in which a cathode is connected to the potential supply unit and an anode is connected to the amplifier.
  • the potential supply unit has a first predetermined potential. And supplying the potential from the potential supply unit at a position close to the amplifier, and when performing the plating process, the potential supply unit supplies a second predetermined potential ⁇ 1> or The semiconductor device according to ⁇ 2>.
  • the potential supply unit supplies a potential higher than the reference potential as a first predetermined potential, and supplies the potential from the potential supply unit to a position close to the amplifier.
  • the semiconductor device according to ⁇ 3>, wherein the potential supply unit supplies a potential lower than the potential of the plating solution as a second predetermined potential when the plating process is performed.
  • the potential supply unit supplies the predetermined potential from a power source of the amplifier.
  • the semiconductor device further includes an additional diode having the same characteristics as the diode and formed by the same process as the diode, wherein the anode and the cathode of the diode are connected, and the ground potential and the anode are connected.
  • ⁇ 7> When the potential is measured, the supply of the predetermined potential from the potential supply unit is shut off at a position close to the reference potential generation unit, and when the plating process is performed, the predetermined supply from the potential supply unit is performed.
  • the other blocking unit is a FET (Field Effect Transistor) switch, and is controlled to be off when the potential is measured, so that the potential supply from the potential supply unit is close to the reference potential generation unit.
  • the semiconductor device according to ⁇ 7> wherein the semiconductor device is controlled to be on and supplied with the predetermined potential from the potential supply unit when the plating process is performed at a position.
  • the other blocking unit is another diode having a cathode connected to the potential supply unit and an anode connected to the amplifier.
  • the potential supply unit includes a first When a predetermined potential is supplied, the potential supply from the potential supply unit is shut off at a position close to the amplifier, and the plating process is performed, the potential supply unit supplies a second predetermined potential.
  • the potential supply unit supplies a potential higher than the reference potential as a first predetermined potential, and supplies the potential from the potential supply unit to a position close to the amplifier.
  • the semiconductor device according to ⁇ 9>, wherein the potential supply unit supplies a potential lower than the potential of the plating solution as the second predetermined potential when the plating process is performed.
  • the potential supply unit supplies the predetermined potential from a power source of the amplifier.
  • ⁇ 12> Other additional diodes having the same characteristics as the other diodes, formed by the same process as the other diodes, and connected to the anode and cathode of the other diodes and to the ground potential and the anode
  • the semiconductor device according to ⁇ 9> further including: ⁇ 13> a reference potential generator and a reference potential electrode for supplying a reference potential to the liquid filled in the container; A readout electrode and an amplifier for reading a signal from the liquid; A potential supply unit that fills a plating solution instead of the liquid in the container and supplies a predetermined potential to the reference potential electrode and the readout electrode when plating the reference potential electrode and the readout electrode;
  • the container is filled with the liquid, a reference potential is supplied to the liquid by the reference potential generator, a signal is read from the liquid by the readout electrode, and the signal read by the amplifier is amplified.
  • the supply of the predetermined potential from the potential supply unit is shut off at a position close to the amplifier, the container is filled with the plating solution, and the plating process is performed.
  • a blocking unit for supplying the predetermined potential from the potential supply unit, The reference potential generation unit, the reference potential electrode, the readout electrode and the amplifier, the potential supply unit, and the blocking unit are built in the same substrate.
  • 101 potential measuring device 111, 111-1 to 111-5, 111-11 electrode, 112, 112-1 to 112-4 amplifier, 113-1 to 113-4 switch, 114, 114-1 to 114-3 vertical Transfer line, 115 transfer control unit, 116 output unit, 117, 117-1 to 117-4 terminals, 118 terminal, 119 reference potential generation unit, 131 liquid, 151, 151-1, 151-11 plating unit, 152, 152 -1,152-11 metal part, 191, 191-1, 191-2 blocking part, 211, 211-1, 211-2 FET switch, 231, 231-1, 231-2 diode, 251, 251-1, 251-2 diode

Abstract

本開示は、電極と増幅器とを同一基板に設けるとき、電極メッキプロセスを実現できる構成を設けることで生じる寄生容量による信号特性の劣化を抑制することができるようにする半導体装置、および電位測定装置に関する。 電源が、メッキ処理を施すときに必要とされる電位を供給し、遮断部が、液体から信号を読み出して、増幅器で増幅して信号を出力するとき、メッキ処理に必要とされる電源を電極に対して遮断する。電位測定装置に適用することができる。

Description

半導体装置、および電位測定装置
 本開示は、半導体装置、および電位測定装置に関し、特に、製造中の静電破壊を抑制できるようにした半導体装置、および電位測定装置に関する。
 近年、神経細胞の活動電位を測定し、神経活動の医学的研究に寄与する技術が求められており、例えば、神経細胞の活動電位を測定して記録する電極装置が提案されている(特許文献1,2参照)。
特開平06-078889号公報 特開2002-031617号公報
 上述した特許文献1,2に記載の技術においては、製造時に電極にメッキ処理ができる構成を設けるようにした場合、装置の完成後、電位を測定する際に、メッキ処理をできるようにするための構成により配線容量が増大し、信号特性を低下させてしまう恐れがある。
 本開示は、このような状況に鑑みてなされたものであり、特に、電位測定装置において、メッキ処理を実現するための構成を設けつつ、電位測定における信号特性の低下を抑制するものである。
 本開示の一側面の半導体装置は、容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、前記液体から信号を読み出す読出電極および増幅器と、前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される半導体装置である。
 前記遮断部には、FET(Field Effect Transistor)スイッチであり、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断させ、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させるようにすることができる。
 前記遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したダイオードとすることができ、前記電位測定のとき、前記電位供給部は、第1の所定の電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断させ、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位を供給させるようにすることができる。
 前記電位測定のとき、前記電位供給部には、第1の所定の電位として前記基準電位よりも高い電位を供給させて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断させ、前記メッキ処理を施すとき、前記電位供給部には、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給させるようにすることができる。
 前記電位供給部には、前記増幅器の電源より、前記所定の電位を供給させるようにすることができる。
 前記ダイオードと同一特性であって、前記ダイオードと同一プロセスで形成され、前記ダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続された追加ダイオードをさらに含ませるようにすることができる。
 前記電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記基準電位発生部に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させるその他の遮断部を含ませるようにすることができる。
 前記その他の遮断部は、FET(Field Effect Transistor)スイッチとすることができ、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記基準電位発生部に近い位置で遮断させ、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させるようにすることができる。
 前記その他の遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したその他のダイオードとすることができ、前記電位測定のとき、前記電位供給部には、第1の所定の電位を供給させて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断させ、前記メッキ処理を施すとき、前記電位供給部には、第2の所定の電位を供給させるようにすることができる。
 前記電位測定のとき、前記電位供給部には、第1の所定の電位として前記基準電位よりも高い電位を供給させて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断させ、前記メッキ処理を施すとき、前記電位供給部には、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給させるようにすることができる。
 前記電位供給部には、前記増幅器の電源より、前記所定の電位を供給させるようにすることができる。
 前記その他のダイオードと同一特性であって、前記その他のダイオードと同一プロセスで形成され、前記その他のダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続されたその他の追加ダイオードをさらに含ませるようにすることができる。
 本開示の一側面の電位測定装置は、容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、前記液体から信号を読み出す読出電極および増幅器と、前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される電位測定装置である。
 本開示の一側面においては、基準電位発生部および基準電位電極により、容器内に満たされた液体に基準電位が供給され、読出電極および増幅器により、前記液体から信号が読み出され、電位供給部により、前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位が供給され、前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、遮断部により、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給が、前記増幅器に近い位置で遮断され、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位が供給され、前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部が、同一基板に内蔵される。
 本開示の一側面によれば、電位測定装置において、メッキ処理を実現するための構成を設けつつ、電位測定における信号特性の劣化を抑制することが可能となる。
一般的な電位測定装置の構成例を説明する図である。 本開示の電位測定装置の構成例を説明する図である。 図2の電位測定装置の構成例を説明する図である。 図2の電位測定装置の第1の具体的な構成例を説明する図である。 図4の電位測定装置の動作を説明する図である。 図4の電位測定装置の動作を説明する図である。 図2の電位測定装置の第2の具体的な構成例を説明する図である。 図7の電位測定装置の動作を説明する図である。 図7の電位測定装置の動作を説明する図である。 図4の電位測定装置におけるリーク電流を説明する図である。 図7の電位測定装置におけるリーク電流を説明する図である。 図2の電位測定装置の第3の具体的な構成例を説明する図である。 図12の電位測定装置の動作を説明する図である。 図2の電位測定装置の第4の具体的な構成例を説明する図である。 本開示の電位測定装置の変形例を説明する図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <一般的な電位測定装置の構成例>
 本開示の電位測定装置を説明するにあたって、まず、図1を参照して、一般的な電位測定装置の構成例について説明する。図1の上段部は、電位測定装置1の概観斜視図であり、図1の中段部は、シャーレ11および電極基板12の上面図と対応する配線図であり、図1の下段部は、電位測定部1の側面断面の配線図である。
 図1の上段部で示されるように、電位測定装置1は、シャーレ11、電極基板12、およびADC(Analog Digital Converter)13から構成される。シャーレ11は、モールド樹脂からなり、生理食塩水などの液体51に満たされ、検体となる細胞が投入される。図1の中段部で示されるように、シャーレ11の底面部に電極31-1乃至31-4が設けられており、測定電位を、それぞれ端子32-1乃至32-4を介して増幅器41-1乃至41-4に出力する。増幅器42-1乃至42-4は、電極31-1乃至31-4より供給される測定電位を増幅してADC13に出力する。ADC13は、増幅器42-1乃至42-4より供給されてくる増幅されたアナログ信号の測定電位をデジタル信号に変換し、後段の装置に出力する。
 すなわち、液体51内の検体としての細胞の活動電位の変化が電極31-1乃至31-4により検出されて、端子32-1乃至32-4、および増幅器41-1乃至41-4を介して、ADC13に出力されて、デジタル信号として出力される。
 尚、電極31-1乃至31-4、端子32-1乃至32-4、および増幅器41-1乃至41-4は、それぞれ特に区別する必要がない場合、単に、電極31、端子32および増幅器41と称するものとし、その他の構成についても同様に称するものとする。
 また、図1の下段部で示されるように、電極31-1,31-2は、それぞれ、例えば、メッキ部61-1,61-2、および端子62-1,62-2から構成され、端子62-1,62-2に対して、メッキ処理されて、メッキ部61-1,61-2が付加されており、液体51には、メッキ部61-1,61-2が接触した状態となっている。尚、図示しないが電極31-3,31-4も同様である。
 すなわち、電極31-1が設けられた周囲の局所的な電位変化を測定する場合、電極31-2の測定電位を端子32-2より読み出し、平均電位を参照電位(基準電位)Vrefとして、端子32-1を介して電極32-1より供給される測定電位と比較することで電極31-1近傍の局所的な電位変化を測定する。
 しかしながら、製造時に電極メッキ処理ができる構成を設けるようにした場合、メッキ処理をできるようにするための構成により配線容量が増大し、信号特性を低下させてしまう恐れがある。
 そこで、本開示の電位測定装置は、メッキ処理を実現するための構成を設けつつ、電位測定における信号特性の低下を抑制するものである。
 <本開示の電位測定装置の上面の構成例>
 図2を参照して、本開示の半導体装置である電位測定装置の構成例について説明する。尚、図2は、電位測定装置101の基板110の構成を示したものであり、図1の中段部における電極基板12の上面図に対応する構成を示している。
 図2の電位測定装置101は、電極111-1乃至111-4,111-11、増幅器112-1乃至112-4、スイッチ113-1乃至113-4、垂直転送線114-1,114-2、転送制御部115、出力部116、端子117-1乃至117-4、端子118-1,118-2、および基準電位発生部119を備えている。
 電極111-1乃至111-4,111-11は、モールド樹脂からなるシャーレ11内に設けられており、このうち、電極111-1乃至111-4は、電極31-1乃至31-4に対応するものである。電極111-1乃至111-4は、モールド樹脂からなるシャーレ11内の液体131(図3)に接触し、それぞれ液体131における検体の活動電位を測定して増幅器112-1乃至112-4に伝達する。また、電極111-11は、基準電位発生部119により発生される基準電位を液体131に供給する。
 増幅器112-1乃至112-4は、電極111-1乃至111-4と同一基板内の直下に設けられており、それぞれ電極111-1乃至111-4により検出される電圧を増幅して、スイッチ113-1乃至113-4に出力する。
 スイッチ113-1,113-2は、転送制御部115によりオンまたはオフに制御され、オンにされたとき、増幅器112-1,112-2からの出力を、垂直転送線114-1を介して出力部116に出力する。スイッチ113-3,113-4は、転送制御部115によりオンまたはオフに制御され、オンにされたとき、増幅器112-3,112-4からの出力を、垂直転送線114-2を介して出力部116に出力する。
 出力部116は、垂直転送線114-1,114-2を介して増幅器112-1乃至112-4より供給されてくる増幅された信号をデジタル信号に変換して端子117-1乃至117-4より出力する。
 端子118-1,118-2は、外部より供給されてくる電力等を受け付ける。
 基準電位発生部119は、基準電位を発生し、電極111-11より液体131に供給する。電極111-11は、モールド樹脂からなるシャーレ11内の液体131(図3)に接触し、それぞれ液体131に基準電位を供給する。
 <メッキ処理を施す構成の配線容量による信号劣化を抑制する構成例>
 次に、図3を参照して、メッキ処理を施す構成の配線容量による信号劣化を抑制する構成例について説明する。
 電極111-1,111-11は、それぞれ白金等によるメッキ部151-1,151-11、および金属部152-1,152-11より構成されている。電極111は、金属部152のみで構成されることが一般的であるが、液体131に接触する部位であるため、腐食等の対策のためメッキ部151が設けられている。
 電極111-1は、信号を読み出す電極であり、増幅トランジスタからなる増幅器112のゲートに接続されており、液体131の電位を伝達する。増幅器112は、増幅トランジスタより構成されており、増幅トランジスタのソース-ドレインには、電源VDDが接続されており、電極111-1からゲートに供給される電位Vに応じた電圧を出力部116に出力する。
 出力部116は、増幅器112からのアナログ信号からなる出力電圧をアナログデジタル変換してデジタル信号として端子117より出力する。
 また、電極111-11は、基準電位発生部119より出力される基準電位を液体131に印加する電極である。
 遮断部191-1,191-2は、それぞれ電極111-1,111-11と電源VDDとの間に設けられており、製造中において、電極111-1,111-11にメッキ処理を施す際に電源VDDと接続し、電極111-1,111-11に電源VDDの電圧を印加することでメッキ部151-1,151-2を形成させる。
 また、遮断部191-1,191-2は、製造後において、電極111-1において電位を測定させ、電極111-11より基準電位を出力させる際には、ハイインピーダンス状態となり、電源VDDと電極111-1,111-11との導通を遮断するものである。
 すなわち、遮断部191-1,191-2の後段に存在する電源VDDは、製造時においてメッキ部151-1,151-2を形成させる電極メッキプロセス上では必要な構成であるが、製造後においては、電極111-1,111-11に電圧を印可する回路に寄生して生じる容量によって、信号伝達特性が劣化する。そこで、遮断部191-1,191-2は、製造後においては、電源VDDと電極111-1,111-11との導通を遮断することで、信号伝達特性の劣化を抑制する。
 尚、以上においては、遮断部191-1,191-2は、それぞれ電源VDDに接続される例について説明してきたが、電極メッキプロセスにおいて、電極111-1,111-11を接地電位とするようにしてもよい。したがって、この場合、遮断部191-1,191-2は、グランドに対してオンまたはオフに制御されるようにしてもよい。
 <メッキ処理を施す構成の配線容量による信号伝達特性の劣化を抑制する具体的な第1の構成例>
 遮断部191-1,191-2は、具体的には、例えば、図4で示されるように、FET(Field Effect Transistor)スイッチ2111-1,211-2として構成される。
 すなわち、製造時の電極メッキプロセスにより、メッキ部151-1,151-11が形成させる場合、シャーレ11には、メッキ液221が満たされた状態とされ、さらに、FETスイッチ211-1,211-2が、オンに制御される。これにより、一点鎖線で示されるように、電源VDDの電圧が電極111-1,111-11に印加される。この結果、メッキ液221が電極111-1,111-11の金属部152-1,152-11上でメッキ処理されて、メッキ部151-1,151-11が形成される。
 また、製造後、検体の活動電位を測定する場合には、図6で示されるように、シャーレ11には、検体が投入された液体131が満たされた状態となり、FETスイッチ211-1,211-2がオフにされる。これにより、点線で示されるように、電源VDDの電位が電極111-1,111-11に対して遮断された状態となり、太線で示されるように、電極111-1においては電位Vが伝達され,電極111-11からは基準電位が出力される。結果として、増幅器112のゲートには、電源VDDからの電圧が印加されることなく、電極111-1からの信号が適切に伝達されることになるので、信号伝達特性の劣化を抑制することができる。
 <メッキ処理を施す構成の配線容量による信号伝達特性の劣化を抑制する具体的な第2の構成例>
 以上においては、遮断部191-1,191-2の具体的な構成としてFETスイッチ211-1,211-2を設けた例について説明してきたが、電極メッキプロセスにおいて電極111-1,111-11に対してメッキ処理に必要な電位を印加し、活動電位の測定に際して遮断できれば、他の構成であってもよい。そこで、図7で示されるように、遮断部191-1,191-2の具体的な構成は、ダイオード231-1,231-2とするようにしてもよい。ここで、ダイオード231-1,231-2は、それぞれアノードに電極111-1,111-11を接続し、カソードに端子118を接続する。
 このような構成により、例えば、電極メッキプロセスにおいては、図8で示されるように、シャーレ11にメッキ液221が満たされた状態で、端子118には、メッキ液221の電位よりも低電位の電圧を印加する。このような処理により、ダイオード231-1,231-2には、図中の矢印で示されるように、順方向に電流が流れて、電極111-1,111-11がメッキ液221より低電位となることで、メッキ部152-1,152-2が形成される。
 一方、活動電位を測定する際には、図9で示されるように、端子118に基準電位よりも高い電位の電圧を印加する。これにより、ダイオード231-1,231-2には、実線の矢印で示されるように、負バイアスがかかることにより、端子118への流入が遮断される。
 これにより、実線の矢印で示されるように、端子118からの電位が電極111-1,111-11に対して遮断された状態となり、太線で示されるように、電極111-1においては電位Vが伝達され,電極111-11からは基準電位が出力される。結果として、増幅器112のゲートには、電極111-1からの信号が適切に伝達されることになるので、信号伝達特性の劣化を抑制することができる。
 <増幅器への入力電位のばらつきについて>
 上述した図4の電位測定装置により活動電位が測定される際には、基準電位発生部119のインピーダンスが小さいので、図10で示されるように、一点鎖線でしめされるように、リーク電流Iaが発生すると、基準電位発生部119への電流が生じ、液体131によるバイアス供給部171までの外部抵抗rによって基準電圧からの電位差が生じ、増幅器112を構成する増幅トランジスタのゲートへの入力電位が基準電位に対してずれてしまう恐れがある。これにより、リーク電流Iaや外部抵抗rがばらつくと、増幅器112のゲートへの入力電位もばらつくことになる。
 また、図8の電位測定装置においても、同様に、活動電位が測定される際には、基準電位発生部119のインピーダンスが小さいので、図11で示されるように、一点鎖線で示されるリーク電流Iaが発生すると、基準電位発生部119への電流が生じ、液体131によるバイアス供給部171までの外部抵抗rによって基準電圧からの電位差が生じ、増幅器112を構成する増幅トランジスタのゲートへの入力電位が基準電位に対してずれてしまう恐れがある。これにより、リーク電流Iaや外部抵抗rがばらつくと、増幅器112のゲートへの入力電位もばらつくことになる。
 <メッキ処理を施す構成の配線容量による信号伝達特性の劣化を抑制する具体的な第3の構成例>
 そこで、図12で示されるように、図8の構成に対して、増幅器112を構成する増幅トランジスタのゲートの前段に、ダイオード231-1とIV変換特性(電流電圧変換特性)が同一のダイオード251-1のカソードを接続し、アノードを接地するように設ける。また、基準電位発生部119の前段に、ダイオード231-2と特性が同一のダイオード251-2のカソードを接続し、アノードを接地するように設ける。
 このような構成により、特性が等しいダイオード231-1,251-1が直列に接続されると共に、特性が等しいダイオード231-2,251-2が直列に接続されることになる。結果として、図13で示されるように、実線で示されるリーク電流Ia,Ibが等しいと、電極111-1,111-11がそれぞれ略等電位となり、内部抵抗rにより点線で示されるリーク電流が流れない状態となるので、増幅器112を構成する増幅トランジスタのゲートへの入力電圧を安定させることが可能となる。
 尚、ダイオード231-1,251-1と、ダイオード231-2,251-2とは、同一の半導体プロセスにおいて生成される構成とすることで、製造に係る工程数を増大させることなく、増幅器112を構成する増幅トランジスタのゲートへの入力電圧を安定させることが可能となる。
 <メッキ処理を施す構成の配線容量による信号伝達特性の劣化を抑制する具体的な第4の構成例>
 以上においては、遮断部191-1,191-2に供給される電源が、端子118より供給されてくる外部電源である、または、個別に設けられた電源VDDである例について説明してきたが、増幅器112の電源VDDより供給するようにしてもよい。
 すなわち、図14で示されるように、ダイオード231-1,231-2のカソードが、増幅器112の電源VDDに接続されている。このような構成とすることで、外部電源を接続する手間も、配線を増やす必要もないので、装置構成をより小型化することが可能となる。
 尚、図14の電位測定装置の動作については、図4における電位測定装置と同様であるので、その説明は省略するものとする。また、図14の構成に対して、図12におけるダイオード251-1,251-2を付加するようにしてもよい。
 <変形例>
 以上においては、図2で示されるように、同一基板に電極111-1乃至111-4,111-11、および増幅器112-1乃至112-4、並びに、基準電位発生部119が形成される例について説明してきたが、電極111、増幅器112、および基準電位119が同一基板内に構成されれば、図2で示された2行×2列からなる電極111-1乃至111-4の構成以外の構成でもよく、例えば、n行×m列の電極構成とするようにしてもよい。また、基準電位を供給するための電極111-11についても、1個以上であってもよい。
 また、図15の上部で示されるように、アレイ状に構成された3行×3列の黒色の電極からなる電極群111-31と、それぞれに接続された増幅器群112-31とが構成され、これらがマルチプレクサ(Mux)271に接続されるようにし、マルチプレクサ271により出力信号を時分割出力する構成としてもよい。
 さらに、図9の中央部で示されるように、アレイ状に構成された3行×3行の電極からなる電極群111-41が転送制御部115により3行の行単位で制御され、3列の垂直転送線114-11乃至114-13に転送されて、垂直転送線114-11乃至114-13のそれぞれに設けられた増幅器からなる増幅器群112-41において増幅されて、出力部116に出力されるような構成としてもよい。ただし、図9の中央部においては、図中の上段および下段のそれぞれの灰色の3個の電極については、スイッチによりオンまたはオフに制御されるが、中段の黒色の3個の電極については、スイッチがなく常時出力する状態とされている。
 また、図9の下部で示されるように、アレイ状に構成された3行×2列の電極からなる電極群111-51のうち黒色の左下の電極、左上の電極、および、右上の電極の合計3個の電極がそれぞれ3個の増幅器からなる増幅器群112-51のそれぞれに接続される構成としてもよい。尚、図9の下部においては、電極群111-51を構成する電極には、図中において「m」と表記されていたローカルメモリをそれぞれ備えた構成とされている。
 尚、本開示は、以下のような構成も取ることができる。
<1> 容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、
 前記液体から信号を読み出す読出電極および増幅器と、
 前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、
 前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、
 前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される
 半導体装置。
<2> 前記遮断部は、FET(Field Effect Transistor)スイッチであり、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させる
 <1>に記載の半導体装置。
<3> 前記遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したダイオードであり、前記電位測定のとき、前記電位供給部は、第1の所定の電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位を供給する
 <1>または<2>に記載の半導体装置。
<4> 前記電位測定のとき、前記電位供給部は、第1の所定の電位として前記基準電位よりも高い電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給する
 <3>に記載の半導体装置。
<5> 前記電位供給部は、前記増幅器の電源より、前記所定の電位を供給する
 <3>に記載の半導体装置。
<6> 前記ダイオードと同一特性であって、前記ダイオードと同一プロセスで形成され、前記ダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続された追加ダイオードをさらに含む
 <3>に記載の半導体装置。
<7> 前記電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記基準電位発生部に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させるその他の遮断部を含む
 <1>乃至<6>のいずれかに記載の半導体装置。
<8> 前記その他の遮断部は、FET(Field Effect Transistor)スイッチであり、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記基準電位発生部に近い位置で遮断し、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させる
 <7>に記載の半導体装置。
<9> 前記その他の遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したその他のダイオードであり、前記電位測定のとき、前記電位供給部は、第1の所定の電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位を供給する
 <7>に記載の半導体装置。
<10> 前記電位測定のとき、前記電位供給部は、第1の所定の電位として前記基準電位よりも高い電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給する
 <9>に記載の半導体装置。
<11> 前記電位供給部は、前記増幅器の電源より、前記所定の電位を供給する
 <9>に記載の半導体装置。
<12> 前記その他のダイオードと同一特性であって、前記その他のダイオードと同一プロセスで形成され、前記その他のダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続されたその他の追加ダイオードをさらに含む
 <9>に記載の半導体装置。
<13> 容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、
 前記液体から信号を読み出す読出電極および増幅器と、
 前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、
 前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、
 前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される
 電位測定装置。
 101 電位測定装置, 111,111-1乃至111-5,111-11 電極, 112,112-1乃至112-4 増幅器, 113-1乃至113-4 スイッチ, 114,114-1乃至114-3 垂直転送線, 115 転送制御部, 116 出力部, 117,117-1乃至117-4 端子, 118 端子, 119 基準電位発生部, 131 液体, 151,151-1,151-11 メッキ部, 152,152-1,152-11 金属部, 191,191-1,191-2 遮断部, 211,211-1,211-2 FETスイッチ, 231,231-1,231-2 ダイオード, 251,251-1,251-2 ダイオード

Claims (13)

  1.  容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、
     前記液体から信号を読み出す読出電極および増幅器と、
     前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、
     前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、
     前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される
     半導体装置。
  2.  前記遮断部は、FET(Field Effect Transistor)スイッチであり、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させる
     請求項1に記載の半導体装置。
  3.  前記遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したダイオードであり、前記電位測定のとき、前記電位供給部は、第1の所定の電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位を供給する
     請求項1に記載の半導体装置。
  4.  前記電位測定のとき、前記電位供給部は、第1の所定の電位として前記基準電位よりも高い電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給する
     請求項3に記載の半導体装置。
  5.  前記電位供給部は、前記増幅器の電源より、前記所定の電位を供給する
     請求項3に記載の半導体装置。
  6.  前記ダイオードと同一特性であって、前記ダイオードと同一プロセスで形成され、前記ダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続された追加ダイオードをさらに含む
     請求項3に記載の半導体装置。
  7.  前記電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記基準電位発生部に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させるその他の遮断部を含む
     請求項1に記載の半導体装置。
  8.  前記その他の遮断部は、FET(Field Effect Transistor)スイッチであり、前記電位測定のとき、オフに制御されて、前記電位供給部からの電位の供給を、前記基準電位発生部に近い位置で遮断し、前記メッキ処理を施すとき、オンに制御されて、前記電位供給部からの前記所定の電位を供給させる
     請求項7に記載の半導体装置。
  9.  前記その他の遮断部は、前記電位供給部にカソードを接続し、前記増幅器に対してアノードを接続したその他のダイオードであり、前記電位測定のとき、前記電位供給部は、第1の所定の電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位を供給する
     請求項7に記載の半導体装置。
  10.  前記電位測定のとき、前記電位供給部は、第1の所定の電位として前記基準電位よりも高い電位を供給して、前記電位供給部からの電位の供給を、前記増幅器に近い位置で遮断し、前記メッキ処理を施すとき、前記電位供給部は、第2の所定の電位として、前記メッキ液の電位よりも低い電位を供給する
     請求項9に記載の半導体装置。
  11.  前記電位供給部は、前記増幅器の電源より、前記所定の電位を供給する
     請求項9に記載の半導体装置。
  12.  前記その他のダイオードと同一特性であって、前記その他のダイオードと同一プロセスで形成され、前記その他のダイオードのアノードと、カソードが接続され、グランド電位とアノードが接続されたその他の追加ダイオードをさらに含む
     請求項9に記載の半導体装置。
  13.  容器内に満たされた液体に基準電位を供給する基準電位発生部および基準電位電極と、
     前記液体から信号を読み出す読出電極および増幅器と、
     前記容器内の液体に代えてメッキ液を満たし、前記基準電位電極、および前記読出電極にメッキ処理を施すとき、前記基準電位電極、および前記読出電極に所定の電位を供給する電位供給部と、
     前記容器内に前記液体を満たし、前記基準電位発生部により、前記液体に基準電位が供給され、前記読出電極により前記液体から信号が読み出されて、前記増幅器により読み出された信号が増幅されて出力される電位測定のとき、前記電位供給部からの前記所定の電位の供給を、前記増幅器に近い位置で遮断し、前記容器内に前記メッキ液を満たし、前記メッキ処理を施すとき、前記電位供給部からの前記所定の電位を供給させる遮断部とを含み、
     前記基準電位発生部および前記基準電位電極、前記読出電極および前記増幅器、前記電位供給部、並びに、前記遮断部は、同一基板に内蔵される
     電位測定装置。
PCT/JP2017/041417 2016-12-02 2017-11-17 半導体装置、および電位測定装置 WO2018101076A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553776A JP6987781B2 (ja) 2016-12-02 2017-11-17 半導体装置、および電位測定装置
US16/343,611 US11492722B2 (en) 2016-12-02 2017-11-17 Semiconductor apparatus and potential measuring apparatus
CN201780068778.8A CN109952505B (zh) 2016-12-02 2017-11-17 半导体装置和电位测量装置
EP17875259.8A EP3550296A4 (en) 2016-12-02 2017-11-17 SEMICONDUCTOR DEVICE AND POTENTIAL MEASURING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235131 2016-12-02
JP2016235131 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101076A1 true WO2018101076A1 (ja) 2018-06-07

Family

ID=62241568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041417 WO2018101076A1 (ja) 2016-12-02 2017-11-17 半導体装置、および電位測定装置

Country Status (5)

Country Link
US (1) US11492722B2 (ja)
EP (1) EP3550296A4 (ja)
JP (1) JP6987781B2 (ja)
CN (1) CN109952505B (ja)
WO (1) WO2018101076A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124765A1 (ja) * 2019-12-20 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 電位測定装置
WO2021124764A1 (ja) * 2019-12-19 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 電位測定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678889A (ja) 1992-09-04 1994-03-22 Matsushita Electric Ind Co Ltd 一体化複合電極
JP2002031617A (ja) 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd 細胞外記録用一体化複合電極
JP2004004064A (ja) * 1992-04-23 2004-01-08 Massachusetts Inst Of Technol <Mit> 分子検出の為の光学的方法および装置
JP2012508051A (ja) * 2008-11-11 2012-04-05 ユニバーシティ オブ バス 生体適合電極
JP2013108831A (ja) * 2011-11-21 2013-06-06 Seiko Epson Corp センサー装置およびセンサー装置の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476751B1 (en) * 2000-03-29 2002-11-05 Photobit Corporation Low voltage analog-to-digital converters with internal reference voltage and offset
JP2004064650A (ja) 2002-07-31 2004-02-26 Toppan Printing Co Ltd 携帯端末装置
CN100420139C (zh) * 2003-09-19 2008-09-17 株式会社三社电机制作所 电镀电源装置
CN1671054B (zh) * 2004-03-15 2010-04-07 中芯国际集成电路制造(上海)有限公司 用于低非线性度模-数转换器的器件与方法
JP4921255B2 (ja) * 2007-06-22 2012-04-25 ルネサスエレクトロニクス株式会社 逐次型ad変換器
KR101861980B1 (ko) * 2009-11-06 2018-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9360501B2 (en) * 2010-06-01 2016-06-07 The Regents Of The University Of California Integrated electric field sensor
US20140142458A1 (en) 2011-04-08 2014-05-22 Cyberonics, Inc. Implantable monitoring device with selectable reference channel and optimized electrode placement
JP5796373B2 (ja) * 2011-06-28 2015-10-21 大日本印刷株式会社 検査用器具および検査用デバイス
JP5769020B2 (ja) * 2011-10-25 2015-08-26 国立大学法人東北大学 複数の電極を備えたicチップ
WO2018101075A1 (ja) * 2016-12-02 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 半導体装置、および電位測定装置
EP3638173A1 (en) 2017-06-14 2020-04-22 Smith & Nephew, Inc Control of wound closure and fluid removal management in wound therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004064A (ja) * 1992-04-23 2004-01-08 Massachusetts Inst Of Technol <Mit> 分子検出の為の光学的方法および装置
JPH0678889A (ja) 1992-09-04 1994-03-22 Matsushita Electric Ind Co Ltd 一体化複合電極
JP2002031617A (ja) 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd 細胞外記録用一体化複合電極
JP2012508051A (ja) * 2008-11-11 2012-04-05 ユニバーシティ オブ バス 生体適合電極
JP2013108831A (ja) * 2011-11-21 2013-06-06 Seiko Epson Corp センサー装置およびセンサー装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550296A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124764A1 (ja) * 2019-12-19 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 電位測定装置
WO2021124765A1 (ja) * 2019-12-20 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 電位測定装置

Also Published As

Publication number Publication date
CN109952505A (zh) 2019-06-28
CN109952505B (zh) 2022-10-18
EP3550296A1 (en) 2019-10-09
US11492722B2 (en) 2022-11-08
JPWO2018101076A1 (ja) 2019-10-24
EP3550296A4 (en) 2019-12-18
US20200048787A1 (en) 2020-02-13
JP6987781B2 (ja) 2022-01-05

Similar Documents

Publication Publication Date Title
JP3701241B2 (ja) センサ配列のトランジスタの状態を検出するセンサ配列および方法
WO2018101076A1 (ja) 半導体装置、および電位測定装置
CN108291887B (zh) 电位测量装置
KR102342627B1 (ko) 매트릭스 장치와 그 특성의 측정 방법, 구동 방법
CN112017713B (zh) 计算器件以及方法
TWI740517B (zh) 記憶體內計算裝置以及記憶體內計算方法
WO2018101075A1 (ja) 半導体装置、および電位測定装置
JP6919651B2 (ja) 半導体装置および細胞電位測定装置
US10413247B2 (en) Signal detection device, signal detection method, and method of manufacturing signal detection device
JP2021099229A (ja) 電位測定装置
US20200348199A1 (en) Electronic device for pressure sensors
US8805637B2 (en) Test element group and semiconductor device
WO2023014437A1 (en) Electrochemical measurement apparatuses and methods for monitoring and controlling ph
US20230003678A1 (en) Potential measurement device
JP2010056297A (ja) 固体撮像素子
WO2024091986A1 (en) Electrochemical systems with massively parallel array of controllable electrochemical cells and sensor system for sparse sensing
CN116018674A (zh) 电位测量装置
KR101273119B1 (ko) 증폭기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875259

Country of ref document: EP

Effective date: 20190702