WO2018100880A1 - ドームスクリーン - Google Patents

ドームスクリーン Download PDF

Info

Publication number
WO2018100880A1
WO2018100880A1 PCT/JP2017/036377 JP2017036377W WO2018100880A1 WO 2018100880 A1 WO2018100880 A1 WO 2018100880A1 JP 2017036377 W JP2017036377 W JP 2017036377W WO 2018100880 A1 WO2018100880 A1 WO 2018100880A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome
screen
holes
hole
dome screen
Prior art date
Application number
PCT/JP2017/036377
Other languages
English (en)
French (fr)
Inventor
上田 裕昭
Original Assignee
コニカミノルタプラネタリウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタプラネタリウム株式会社 filed Critical コニカミノルタプラネタリウム株式会社
Priority to JP2018553691A priority Critical patent/JP6990662B2/ja
Priority to US16/464,308 priority patent/US10719004B2/en
Publication of WO2018100880A1 publication Critical patent/WO2018100880A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/565Screens allowing free passage of sound
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/021Transducers or their casings adapted for mounting in or to a wall or ceiling

Definitions

  • the present invention relates to a dome screen.
  • Patent Document 1 discloses an aluminum perforated screen having a plurality of through holes.
  • the perforated dome screen described in Patent Document 1 enables output of sound and the like through the hole from the back of the screen, while causing the hole to lack an image overlapping the position of the hole. .
  • a perforated screen is used for a planetarium that projects a small star, the effect of missing images is increased.
  • a screen having a hole diameter of about 1.5 to 2.0 mm is used, but the minimum star diameter projected may be less than 1 mm. Therefore, there is a case where a small star completely overlaps the range of the hole, and in this case, a problem that the star is not visually recognized occurs. Further, when a part of the star overlaps the hole, the star is not completely lost, but the amount of light of the entire star is reduced, so that the brightness of the star appears to be lowered.
  • the present invention has been made in view of the above circumstances, and provides a dome screen that prevents missing stars projected on the dome screen.
  • a dome screen capable of projecting an image, which has a plurality of holes and is formed in a hemispherical shape, and is disposed outside the dome portion so as to overlap the dome portion.
  • a dome screen having a sheet portion having a property.
  • the aperture ratio due to the plurality of holes and the material constituting the sheet portion are selected so that the sound transmission loss indicating the loss of sound energy transmitted from the outside to the inside is not more than a predetermined threshold value.
  • the ratio between the hole diameter of the plurality of holes and the thickness of the dome portion is such that the image projected on the sheet portion located on the bottom surface of the hole can be seen at a predetermined ratio or more.
  • the dome screen according to any one of (1) to (3), which is selected.
  • the plurality of holes Based on the aperture ratio selected so that the acoustic transmission loss indicating the loss of acoustic energy transmitted from the outside to the inside is equal to or less than a predetermined threshold, and the selected hole diameter, the plurality of holes The dome screen according to the above (5), in which the interval is determined.
  • the dome portion has a plurality of holes and is formed in a hemispherical shape, and a sheet portion that is disposed on the outer side of the dome portion so as to overlap the dome portion. Therefore, the dome screen can reflect the light of the image incident on the hole position by the sheet portion, and thus can display a uniform image without losing the image.
  • FIG. 6 is a photograph showing a star projected on the screen of Comparative Example 1; 10 is a photograph showing a star projected on the screen of Comparative Example 2. 2 is a photograph showing a star projected on the screen of Example 1.
  • FIG. 7 is a photograph showing a light transmission state of a screen of Comparative Example 2. 2 is a photograph showing a light transmission state of a screen of Example 1.
  • FIG. It is the schematic which shows the measurement system of a transmission loss. It is the figure which made the measurement result of the sound transmission loss shown in Table 3 into a graph.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a dome screen according to an embodiment of the present invention.
  • the dome screen projection facility 1 includes a dome screen 10, a support frame portion 20, a projection device 30, and a speaker 40.
  • the dome screen 10 is a screen that can project an image.
  • the dome screen 10 of the present embodiment includes a dome part 11 and a sheet part 12.
  • the dome portion 11 is a member having a plurality of holes and formed in a hemispherical shape.
  • the plurality of holes in the dome portion 11 are equally arranged, for example, in a triangular lattice shape or a square lattice shape. Alternatively, the plurality of holes may be arranged randomly.
  • the dome portion 11 may be formed in a hemispherical shape, for example, by attaching a plurality of trapezoidal plate materials to the support frame portion 20 described later.
  • the dome portion 11 may be made of a metal such as aluminum painted in white or gray, but the material of the dome portion 11 is not limited to this.
  • the specifications of the plurality of holes that the dome portion 11 has, the material of the dome portion 11, and the like may be arbitrarily changed based on design conditions.
  • the dome portion 11 may have a light reflectance of, for example, about 30% or more, more specifically, for example, about 40-60%.
  • the sheet portion 12 is a light-reflective sheet-like member disposed on the outer side of the dome portion 11 so as to overlap the dome portion 11.
  • the sheet portion 12 is affixed to the outside of the dome portion 11 with an adhesive or a double-sided tape.
  • seat part 12 may be comprised from polyester woven fabrics, such as white and gray, a nonwoven fabric, a resin sheet, or paper, it is not limited to these. It is desirable that the sheet portion 12 has a light reflectivity comparable to that of the dome portion 11. Accordingly, the sheet portion 12 may have a light reflectance of, for example, about 30% or more, more specifically, for example, about 40-60%.
  • the sheet part 12 may be affixed for each of a plurality of plate members constituting the dome part 11.
  • the outside of the dome portion 11 means the outside of the hemisphere formed by the dome portion 11, that is, the side where the support frame portion 20 and the speaker 40 are installed in FIG.
  • inside the dome portion 11 means the inside of the hemisphere formed by the dome portion 11, that is, the side on which the projection device 30 is installed in FIG.
  • the outside of the dome screen 10 means the outside of the hemisphere formed by the dome screen 10 composed of the dome portion 11 and the sheet portion 12, and “the inside of the dome screen 10” means that the dome screen 10 is It means the inside of the hemisphere that forms.
  • the support frame portion 20 is a support member that supports the structure of the dome screen 10.
  • the support frame 20 includes a plurality of support members that extend radially from the top of the hemisphere toward the lower end.
  • the plurality of plate members constituting the dome portion 11 may be attached to the support frame portion 20 by rivets, bolts, or the like after the sheet portion 12 is attached. That is, the support frame portion 20 is disposed outside the dome screen 10 including the dome portion 11 and the seat portion 12, and the sheet portion 12 is disposed between the dome portion 11 and the support frame portion 20. Become.
  • the projection device 30 is a device that projects an image including video. As shown in FIG. 1, the projection device 30 is installed inside the dome screen 10 and projects an image on the dome screen 10. The installation location and the number of the projection devices 30 are not limited to the example illustrated in FIG. 1, and may be arbitrarily changed based on the design conditions of the dome screen projection facility 1.
  • the speaker 40 is a device that outputs sound. As shown in FIG. 1, a plurality of speakers 40 are installed outside the dome screen 10. Voice, music, and the like output from the speaker 40 can be heard inside the dome screen 10 through the plurality of holes of the dome portion 11 and the sheet portion 12.
  • the installation location and the number of speakers 40 are not limited to the example shown in FIG. 1, and may be arbitrarily changed based on the design conditions of the dome screen projection facility 1. For example, a speaker (woofer) that outputs a low frequency band sound (low sound) with low directivity may be installed inside the dome screen 10. Also, a plurality of speakers that output high frequency band sounds (high sounds) with high directivity may be installed outside the dome screen 10 as the speaker 40 shown in FIG.
  • the dome screen 10 is characterized by combining the dome portion 11 and the seat portion 12.
  • the dome screen 10 projects light from the projection device 30 and is incident on a position other than the hole of the dome portion 11 to be reflected on the dome portion 11, and the light incident on the position of the hole is on the sheet portion 12. Reflect on.
  • the dome portion 11 and the sheet portion 12 have the same light reflectivity.
  • the dome part 11 having a plurality of holes and formed in a hemispherical shape, and the sheet part 12 disposed on the outer side of the dome part 11 so as to overlap the dome part 11.
  • the dome screen 10 can reflect the light of the image incident on the hole position by the sheet portion 12, and thus can display a uniform image without losing the image.
  • the dome screen 10 since the dome screen 10 has the sheet portion 12, the image is not lost regardless of the specification of the hole, and therefore, the dome screen 10 can have a larger aperture ratio than the conventional perforated screen. Therefore, the dome screen 10 can reduce the weight of the members constituting the dome portion 11 and can reduce the support frame portion 20 that supports the dome screen 10, and thus can reduce material costs and construction labor.
  • the dome screen 10 can have a larger aperture ratio than before, when the plate material constituting the dome portion 11 is attached to the support frame portion 20, the plate material can be bent more easily. Further, even when the plate material is bent in advance, the bending can be performed more easily, and the processing accuracy can be improved.
  • the dome screen 10 can have a larger aperture ratio than before, the sound output from the speaker 40 installed outside the dome screen 10 is not inferior to the conventional one even if there is the seat portion 12. Can be transmitted through.
  • the dome screen 10 is configured by combining the dome portion 11 and the seat portion 12. Therefore, the dome screen 10 can avoid not only the problem of missing stars that occurs when only the dome part 11 is used as a screen, but also the problem that occurs when only the sheet part 12 is used as a screen. That is, the dome screen 10 can avoid the problems that it is difficult to maintain a hemispherical shape by itself because the sheet portion 12 has a flexible structure, and that dirt is more conspicuous than a metal screen. .
  • the sheet unit 12 can display an image.
  • the material of the sheet portion 12 may be selected so as to reflect light and also transmit light to some extent.
  • indirect illumination (not shown) that is usually installed inside the dome screen 10 can be moved outside the dome screen 10 to illuminate the inside of the dome screen 10. .
  • the dome screen projection facility 1 does not need to secure a space for installing the indirect illumination inside the dome screen 10 and can use the space outside the dome screen 10 more efficiently.
  • illumination outside the dome screen 10 may be realized by arranging LEDs in accordance with positions of at least some holes of the dome screen 10.
  • the LED may be disposed on the back surface of the sheet portion 12 or may be disposed in place of the sheet portion 12 in accordance with the position of the hole of the dome portion 11.
  • the LED is disposed in place of the sheet portion 12, it is desirable that the LED is covered with a milky white cap or the like so that the light of the image projected at the position of the hole can be reflected.
  • the configuration including the perforated screen having a plurality of holes and the sheet portion may be used for a normal screen that is not hemispherical.
  • a configuration including a perforated screen and a sheet portion may be used for a normal screen installed in a movie theater or the like.
  • the hole diameter (hole diameter) of a plurality of holes of the dome screen 10 according to the present embodiment will be examined.
  • the dome screen 10 has a plurality of holes, but if the hole diameter is too large, the cloth may hang down the hole and the hemispherical shape may not be maintained. Further, if the hole diameter is too large, there is a possibility that the outside of the dome screen 10 including the support frame part 20 and the joints between the dome parts 11 is easily visible from the hole. Therefore, in order to avoid these problems, the hole diameter of the dome portion 11 may be selected to be 10 mm or less, for example. The maximum value of the hole diameter of the dome portion 11 is not limited to this, and may be 15 mm or 20 mm, for example.
  • FIG. 2 is a diagram for explaining a prospective angle with respect to the dome screen.
  • FIG. 3 is an enlarged view of the position A in FIG.
  • the bottom surface of the hole at the position A (that is, the sheet at the position A). Part 12) may not be visible at all.
  • the example shown in FIG. 3 shows that the bottom surface of the hole can be seen by the width of two arrows when the bottom surface of the hole is viewed from the starting point of the arrow.
  • T / D increases
  • the percentage of the bottom area of the hole that can be seen decreases. If the bottom surface of the hole becomes invisible, even if a star is projected on the sheet portion 12 on the bottom surface of the hole using the sheet portion 12, the effect on the missing star cannot be realized. Therefore, it is important to select T / D appropriately in consideration of ⁇ .
  • Table 1 shows an example of calculating the ratio of the bottom area of the holes that can be seen based on the relationship between ⁇ and T / D.
  • T / D may be selected so that an image projected on the sheet portion 12 located on the bottom surface of the hole can be seen in a predetermined ratio or more.
  • At least one of the hole diameter D and the thickness T may be adjusted so that a desired T / D can be achieved. If the thickness T cannot be easily changed, only the hole diameter D needs to be changed. For example, if the thickness T of the dome portion 11 is 1 mm so that at least 50% of stars projected on the bottom surface of the hole can be seen, the hole diameter D is selected to be 2.5 mm or more. That's fine.
  • the prospective angle ⁇ may be determined by determining an appropriate range based on the seat arrangement inside the dome screen 10, the size of the dome screen 10 itself, and the like.
  • the effect of the dome screen 10 according to the present embodiment will be confirmed by comparing the example having the sheet part 12 and the comparative example not having the sheet part 12.
  • a 0.6 mm thick perforated aluminum plate (aluminum punching panel) painted in white was prepared.
  • the screen of Comparative Example 1 has a plurality of holes arranged in a triangular lattice shape, the hole diameter is 1.5 mm, the distance (pitch) between the holes is 4 mm, and the hole opening ratio (opening ratio) is 13%. there were.
  • the specifications of the screen of Comparative Example 1 correspond to the specifications of a standard perforated dome screen that has been conventionally used for planetariums.
  • a 1 mm thick aluminum punching panel painted in white was prepared as a screen of Comparative Example 2.
  • the screen of Comparative Example 2 had a plurality of holes arranged in a triangular lattice pattern, the hole diameter was 5 mm, the distance (pitch) between the holes was 8 mm, and the opening ratio of the holes was 35%.
  • a screen having a larger hole diameter and aperture ratio than the screen of Comparative Example 1 was prepared as the screen of Comparative Example 2.
  • Example 1 a screen in which a polyester cloth was pasted on the back side of the screen of Comparative Example 2 (the side opposite to the side on which the image was projected) was prepared.
  • the three stars of Orion were projected on the screens of Comparative Example 1, Comparative Example 2 and Example 1 from a position approximately 4 m away by an optical projection device using the original Orion plate.
  • FIG. 4 is a photograph showing the stars projected on the screen of Comparative Example 1.
  • FIG. 5 is a photograph showing stars projected on the screen of Comparative Example 2.
  • FIG. 6 is a photograph showing stars projected on the screen of Example 1.
  • the screen of Comparative Example 2 was largely missing the central part of the lower left star and the peripheral part of the central star and the upper right star.
  • the screen of Comparative Example 2 in which the hole diameter was larger than that of the screen of Comparative Example 1 could confirm that the stars were more noticeably lost.
  • the screen of Example 1 in which the cloth was pasted on the screen of Comparative Example 2 did not lose any stars. This indicates that the screen of Example 1 was able to project the portion of the star incident on the hole position by the surface of the cloth. Therefore, it was confirmed that the effect of missing stars was obtained by pasting the cloth onto the aluminum punching panel.
  • the screen of Comparative Example 2 is 34% lower left star and 15% central star than the screen of Example 1. , 12% of the upper left star was missing.
  • the lower left star has a rating of 2.3
  • the central star has a rating of 1.9
  • the upper right star has a rating of 2.5.
  • the lower left star has a rating of 1.9
  • the central star has a rating of 1.7
  • the upper right star has a rating of 2.3. Therefore, it was confirmed that the brightness of stars was improved by sticking a cloth to the aluminum punching panel to prevent the missing stars.
  • FIG. 7 is a photograph showing the light transmission state of the screen of Comparative Example 2.
  • FIG. 8 is a photograph showing the light transmission state of the screen of Example 1.
  • 7 and 8 show light transmission states when light is applied from the left side to each screen.
  • the screen of Comparative Example 2 allowed light to pass through from the left side to the right side at the hole position.
  • stars projected at the hole positions were also transmitted to the right. Therefore, it was confirmed that the lack of stars as shown in FIG. 5 was caused by the transmission of light to the back side of the screen.
  • the screen of Example 1 reflects light incident on positions other than the holes of the perforated screen on the perforated screen, and reflects light incident on the positions of the perforated holes on the cloth. It was reflected by. Therefore, it was confirmed that the screen of Example 1 can reflect the light of the image on the entire screen.
  • each aluminum punching panel (a) to (d) was prepared.
  • the specifications of each aluminum punching panel were as shown in Table 2 below.
  • Each panel (a) to (d) was cut out to an appropriate size and prepared as Comparative Examples 3 to 6 for installation in a transmission loss measurement acoustic tube to be described later. Further, a panel in which a polyester cloth was attached to each of the cut out panels (a) to (d) was prepared as Examples 2 to 5.
  • Comparative Example 3 has the same specifications as the screen of Comparative Example 1 described above
  • Comparative Example 5 has the same specifications as the screen of Comparative Example 2
  • Example 4 has the same specifications as the screen of Example 1. there were.
  • FIG. 9 is a schematic diagram showing a transmission loss measurement system.
  • each sample 50 prepared as each example and each comparative example was installed in an acoustic tube 60 for measuring transmission loss (Type 4206T manufactured by Brüel & Kj ⁇ r). And it is connected to the sound tube 60 by using an audio analyzer 70 (Bruel Care Type 3560B), dedicated software installed on the PC 80 (Bruel Care PULSE Labshop Type 7758, etc.) and a power amplifier 90. Sound was output from the speaker 61. The sound pressure level in the acoustic tube 60 was measured with the four microphones 62. Based on the measurement results of the four microphones 62, the transmission loss of Examples 2 to 5 and Comparative Examples 3 to 6 was calculated.
  • FIG. 10 is a graph of the sound transmission loss measurement results shown in Table 3.
  • the aperture ratio of the hole may be selected based on a desired sound transmission loss in the dome screen 10. For example, by setting a threshold value for sound transmission loss at at least one frequency (for example, 1 kHz, 5 kHz, etc.), the aperture ratio of the holes that can achieve the sound transmission loss below a predetermined threshold is the aperture ratio of the holes of the dome screen 10. May be selected.
  • the threshold value for sound transmission loss may be set to an arbitrary value such as 1 dB, 2 dB, 3 dB, 4.5 dB, 6 dB, or the like.
  • 51% may be selected as the aperture ratio of the hole of the dome screen 10.
  • the aperture ratio of the holes may be selected based on a continuous value as shown by the approximate curve in FIG. 10 instead of a discrete value as shown in Table 3.
  • the aperture ratio of the holes may be selected based on a desired rate of change of sound transmission loss in the dome screen 10. For example, in the case with cloth, as shown in FIG. 10, the change in transmission loss is very large between an aperture ratio of 13% and 23%, and the change in transmission loss is between an aperture ratio of 35% and 51%. small. Therefore, it can be confirmed that it is difficult to greatly change the transmission loss even when the aperture ratio is 35% or more. Therefore, by setting the change rate of transmission loss as a threshold value, the aperture ratio can be changed within a range where a change rate equal to or higher than the threshold value can be realized, and acoustic characteristics can be improved more effectively.
  • the aperture ratio of the holes may be selected based on the sound transmittance, not the sound transmission loss.
  • the acoustic transmission loss TL and the acoustic transmittance ⁇ which is the transmittance of acoustic energy, have the following relationship.
  • the threshold value of the sound transmittance may be set to any value such as 80%, 70%, 60%, 50%, and the aperture ratio of the hole that can achieve the sound transmittance equal to or higher than the threshold value is It may be selected as the aperture ratio of the holes of the screen 10.
  • the hole diameter and the hole pitch can be determined based on the determined aperture ratio.
  • the aperture ratio R, the hole diameter D, and the hole pitch P have the following relationship.
  • the range of D can be determined based on the expected angle ⁇ or the like as described above. Therefore, by substituting the value of the aperture ratio determined from the desired acoustic characteristics into R, the range of P can also be determined. As described above, by performing the examination of the hole diameter as described above and the examination of the aperture ratio of the hole, the parameter range for realizing the effect of the dome screen 10 can be sequentially determined.
  • the material of the sheet portion 12 may be considered together with the aperture ratio of the holes.
  • the acoustic transmission loss can be further reduced and the acoustic characteristics can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

【課題】ドームスクリーン上に投映される星の欠落を防止するドームスクリーンを提供する。 【解決手段】画像を投映可能なドームスクリーン10は、ドーム部11と、シート部12とを有する。ドーム部11は、複数の孔を有し、半球状に形成される。シート部12は、ドーム部11の外側に、ドーム部11と重ねて配置され、光反射性を有する。

Description

ドームスクリーン
 本発明は、ドームスクリーンに関する。
 従来より、プラネタリウム等に用いられるドーム型のスクリーン(ドームスクリーン)として、様々な材料や仕様のスクリーンが提案されている。たとえば、特許文献1には、複数の貫通孔を有する、アルミニウム製の孔開きスクリーンが開示されている。
特許第2566062号公報
 しかし、上記特許文献1に記載するような孔開きドームスクリーンは、スクリーン裏から、孔を介した音声などの出力を可能にする一方で、孔の位置に重なった画像を孔に欠落させてしまう。特に、孔開きスクリーンが、小さな星を投映するプラネタリウムに用いられる場合には、画像の欠落の影響が大きくなる。標準的な孔開きドームスクリーンとして、孔径約1.5~2.0mmのスクリーンが用いられる一方で、投映される最小の星の直径が、1mmにも満たない場合があるためである。したがって、小さな星が孔の範囲内に完全に重なる場合があり、この場合には、星が視認されなくなるという問題が発生する。また、星の一部が孔に重なる場合には、星は完全には欠落しないが、星全体の光量は減少するため、星の明るさが低下して見えるという問題が発生する。
 本発明は、上記事情に鑑みてなされたものであり、ドームスクリーン上に投映される星の欠落を防止するドームスクリーンを提供する。
 本発明の上記の目的は、下記の手段によって達成される。
 (1)画像を投映可能なドームスクリーンであって、複数の孔を有し、半球状に形成されたドーム部と、前記ドーム部の外側に、前記ドーム部と重ねて配置される、光反射性を有するシート部と、を有するドームスクリーン。
 (2)外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように、前記複数の孔による開口率が選択される上記(1)に記載のドームスクリーン。
 (3)外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように、前記複数の孔による開口率と、前記シート部を構成する材料とが選択される上記(1)に記載のドームスクリーン。
 (4)前記孔の底面に位置する前記シート部上に投映された前記画像を、所定の割合以上見ることができるように、前記複数の孔の孔径と、前記ドーム部の厚さとの比率が選択される上記(1)~(3)のいずれか一つに記載のドームスクリーン。
 (5)前記孔の底面に位置する前記シート部上に投映された前記画像を、所定の割合以上見ることができるように、前記複数の孔の孔径が選択される上記(1)~(4)のいずれか一つに記載のドームスクリーン。
 (6)外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように選択された開口率と、選択された前記孔径とに基づいて、前記複数の孔同士の間隔が決定される上記(5)に記載のドームスクリーン。
 ドームスクリーンによれば、複数の孔を有し、半球状に形成されたドーム部と、ドーム部の外側に、ドーム部と重ねて配置されるシート部とを有する。したがって、ドームスクリーンは、孔の位置に入射する画像の光については、シート部により反射できるため、画像を欠落させることなく、均一な画像を映し出せる。
本発明の実施形態に係るドームスクリーンの概略構成を示す断面図である。 ドームスクリーンに対する見込み角度を説明するための図である。 図2のAの位置を拡大した図である。 比較例1のスクリーンに投映された星を示す写真である。 比較例2のスクリーンに投映された星を示す写真である。 実施例1のスクリーンに投映された星を示す写真である。 比較例2のスクリーンの光の透過状態を示す写真である。 実施例1のスクリーンの光の透過状態を示す写真である。 透過損失の測定システムを示す概略図である。 表3に示す音響透過損失の測定結果をグラフ化した図である。
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において、同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張され、実際の比率とは異なる場合がある。
 図1は、本発明の実施形態に係るドームスクリーンの概略構成を示す断面図である。
 図1に示すように、ドームスクリーン投映施設1は、ドームスクリーン10、支持枠部20、投映装置30およびスピーカー40を有する。
 ドームスクリーン10は、画像を投映可能なスクリーンである。本実施形態のドームスクリーン10は、ドーム部11およびシート部12から構成される。
 ドーム部11は、複数の孔を有し、半球状に形成される部材である。ドーム部11における複数の孔は、たとえば三角格子状や正方格子状に、均等に配置される。あるいは、複数の孔は、ランダムに配置されてもよい。ドーム部11は、たとえば複数枚の台形状の板材を、後述する支持枠部20に取り付けることにより、半球状に形成されてもよい。ドーム部11は、白色や灰色等に塗装されたアルミニウム等の金属から構成されてもよいが、ドーム部11の材料は、これに限定されない。ドーム部11が有する複数の孔の仕様や、ドーム部11の材料等は、設計条件に基づいて任意に変更されてもよい。ドーム部11は、たとえば約30%以上、より具体的には、たとえば約40~60%の光反射率を有してもよい。
 シート部12は、ドーム部11の外側に、ドーム部11に重ねて配置される、光反射性を有するシート状の部材である。シート部12は、接着剤または両面テープ等によって、ドーム部11の外側に貼り付けられる。シート部12は、白色や灰色等のポリエステル製の織布、不織布、樹脂シートまたは紙等から構成されてもよいが、これらに限定されない。シート部12は、ドーム部11と同程度の光反射率を有することが望ましい。したがって、シート部12は、たとえば約30%以上、より具体的には、たとえば約40~60%の光反射率を有してもよい。シート部12は、ドーム部11を構成する複数枚の板材ごとに、貼り付けられてもよい。
 なお、本明細書では、「ドーム部11の外側」とは、ドーム部11が形成する半球の外側、すなわち、図1において支持枠部20およびスピーカー40が設置された側を意味する。また、「ドーム部11の内側」とは、ドーム部11が形成する半球の内側、すなわち、図1において投映装置30が設置された側を意味する。さらに、「ドームスクリーン10の外側」とは、ドーム部11およびシート部12から構成されるドームスクリーン10が形成する半球の外側を意味し、「ドームスクリーン10の内側」とは、ドームスクリーン10が形成する半球の内側を意味する。
 支持枠部20は、ドームスクリーン10の構造を支持する支持部材である。支持枠部20は、半球の頂点から下端に向かって放射状に伸びる、複数本の支持部材を含む。ドーム部11を構成する複数枚の板材は、シート部12を貼り付けられた後、リベットやボルト等によって、支持枠部20に取り付けられてもよい。すなわち、支持枠部20は、ドーム部11およびシート部12から構成されるドームスクリーン10の外側に配置され、シート部12は、ドーム部11と支持枠部20との間に配置されることになる。
 投映装置30は、映像を含む画像を投映する装置である。投映装置30は、図1に示すように、ドームスクリーン10の内側に設置され、ドームスクリーン10上に画像を投映する。投映装置30の設置場所や個数は、図1に示す例に限定されず、ドームスクリーン投映施設1の設計条件に基づいて、任意に変更されてもよい。
 スピーカー40は、音を出力する装置である。スピーカー40は、図1に示すように、ドームスクリーン10の外側に複数個設置される。スピーカー40が出力する音声や音楽等は、ドーム部11が有する複数の孔とシート部12とを透過して、ドームスクリーン10の内側で聴取され得る。スピーカー40の設置場所や個数は、図1に示す例に限定されず、ドームスクリーン投映施設1の設計条件に基づいて、任意に変更されてもよい。たとえば、指向性の低い、低周波数帯域の音(低音)を出力するスピーカー(ウーハー)は、ドームスクリーン10の内側に設置されてもよい。また、指向性の高い、高周波数帯域の音(高音)を出力するスピーカーは、図1に示すスピーカー40のように、ドームスクリーン10の外側に複数個設置されてもよい。
 このように、本実施形態に係るドームスクリーン10は、ドーム部11とシート部12とを組み合わせることを特徴とする。ドームスクリーン10は、投映装置30から投映される、ドーム部11の孔以外の位置に入射する光については、ドーム部11上で反射し、孔の位置に入射する光については、シート部12上で反射する。ドームスクリーン10全体の光反射率を均一にするために、ドーム部11およびシート部12は、同程度の光反射率を有することが望ましい。
 以上のように、ドームスクリーン10によれば、複数の孔を有し、半球状に形成されたドーム部11と、ドーム部11の外側に、ドーム部11と重ねて配置されるシート部12とを有する。したがって、ドームスクリーン10は、孔の位置に入射する画像の光については、シート部12により反射できるため、画像を欠落させることなく、均一な画像を映し出せる。
 また、ドームスクリーン10は、シート部12を有することにより、孔の仕様によらず画像を欠落させないため、従来の孔開きスクリーンよりも大きい開口率を有することができる。したがって、ドームスクリーン10は、ドーム部11を構成する部材を軽量にしたり、ドームスクリーン10を支持する支持枠部20を細くしたりでき、ひいては、材料費や建設の労力も削減できる。
 また、ドームスクリーン10は、従来よりも大きい開口率を有することができるため、ドーム部11を構成する板材を支持枠部20に取り付ける際に、当該板材をより容易に湾曲させられる。また、当該板材を事前に湾曲させておく場合でも、より容易に湾曲させる加工が行われ、加工の精度も向上され得る。
 また、ドームスクリーン10は、従来よりも大きい開口率を有することができるため、ドームスクリーン10の外側に設置されるスピーカー40が出力する音を、シート部12があっても従来と遜色なく、内側に透過させることができる。
 また、ドームスクリーン10は、ドーム部11とシート部12とを組み合わせて構成される。したがって、ドームスクリーン10は、ドーム部11のみをスクリーンとして用いた場合に発生する、星の欠落の問題だけでなく、シート部12のみをスクリーンとして用いた場合に発生する問題も回避できる。すなわち、ドームスクリーン10は、シート部12が柔構造であることにより、単体では半球形状を維持することが困難であったり、金属製のスクリーンと比較して汚れが目立ちやすかったりという問題も回避できる。
 なお、上記実施形態では、ドームスクリーン10の構成の一例を説明した。しかし、本実施形態はこれに限定されない。以下のような変更や改良等が可能である。
 上記実施形態では、シート部12が、画像を映し出せることについて説明した。一方で、シート部12は、光を反射させるとともに、ある程度透過もさせるように、材料を選択されてもよい。シート部12が光を透過させる場合、通常、ドームスクリーン10の内側に設置される間接照明(図示なし)を、ドームスクリーン10の外側に移動させ、ドームスクリーン10の内側を照らすことが可能になる。これにより、ドームスクリーン投映施設1は、間接照明を設置するスペースをドームスクリーン10の内側に確保しないで済み、ドームスクリーン10の外側のスペースをより効率的に活用できる。また、ドームスクリーン10の外側における照明は、ドームスクリーン10の少なくともいくつかの孔の位置に合わせてLEDを配置することによって、実現されてもよい。LEDは、ドーム部11の孔の位置に合わせて、シート部12の背面に配置されても、シート部12に置き換えて配置されてもよい。LEDが、シート部12に置き換えて配置される場合には、孔の位置に投映された画像の光を反射できるように、乳白色のキャップ等で覆われることが望ましい。
 また、複数の孔を有する孔開きスクリーンと、シート部とからなる構成は、半球状でない通常のスクリーンに対して用いられてもよい。たとえば、映画館等に設置される通常のスクリーンに対して、孔開きスクリーンとシート部とからなる構成が用いられてもよい。
 続いて、以下では、本実施形態に係るドームスクリーン10が有する複数の孔の、孔径(孔の直径)について検討する。
 (孔径の検討)
 ドームスクリーン10は、複数の孔を有するが、孔径が大きすぎると、孔に布が垂れて半球形状を維持できない可能性がある。また、孔径が大きすぎると、孔から、支持枠部20や、ドーム部11同士の継ぎ目等を含む、ドームスクリーン10の外側が見えやすくなるという問題が発生する可能性がある。そこで、これらの問題を回避するために、ドーム部11の孔径は、たとえば10mm以下になるように選択されてもよい。ドーム部11の孔径の最大値は、これに限定されず、たとえば15mmまたは20mmであってもよい。
 一方で、孔径が小さすぎると、シート部12上に投映される星が見えなくなるという問題が発生する。この問題について、以下で詳細に説明する。
 図2は、ドームスクリーンに対する見込み角度を説明するための図である。図3は、図2のAの位置を拡大した図である。
 図2に示すように、Aの位置に孔があり、当該孔の位置に投映装置30により星が投映されており、Bの位置から当該星を見る場合を想定する。この場合、Bの位置からは、ドーム面の垂線Cに対して一定の角度(以下「見込み角度」と呼ぶ)αを有して星を見ることになる。このように、任意の座席位置から任意のスクリーン位置の星を見る場合には、見込み角度αを有することになる。
 しかし、図3に示すように、見込み角度αと、ドーム部11の厚さTに対する孔径Dの比率T/Dとによっては、Aの位置にある孔の底面(すなわち、Aの位置にあるシート部12)が全く見えない場合がある。図3に示す例は、矢印の始点から孔の底面を見た場合、2つの矢印の幅分だけ、孔の底面が見える様子を示している。しかし、たとえば、αが増加したり、Tが増加(すなわち、T/Dが増加)したりすると、見ることができる孔の底面積の割合が減少することがわかる。孔の底面が見えなくなると、せっかくシート部12を用いて、孔の底面にあるシート部12に星が投映されたとしても、星の欠落に対する効果が実現され得ない。したがって、αを考慮して、T/Dを適切に選択することが重要になる。
 αとT/Dとの関係に基づいて、見ることができる孔の底面積の割合を算出した例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照すると、上述したように、αが小さいほど、および/または、T/Dが小さいほど、見ることができる孔の底面積の割合が大きいということが確認できる。また、少なくともT/D=0.4以下であれば、α=45度という厳しい条件でも、見ることができる孔の底面積の割合を50%確保できる。
 表1に例示する関係に基づいて、孔の底面に位置するシート部12上に投映された画像を、所定の割合以上見ることができるように、T/Dが選択されてもよい。たとえば、孔の底面に投映された星を、少なくとも50%以上見ることができるように、孔径Dおよびドーム部11の厚さTは、T/D=0.4以下となるように選択されてもよい。
 また、所望のT/Dを達成できるように、孔径Dおよび厚さTの少なくとも一方が調整されてもよい。厚さTを容易に変更できない場合には、孔径Dのみが変更されればよい。たとえば、孔の底面に投映された星を、少なくとも50%以上見ることができるように、ドーム部11の厚さTが1mmであれば、孔径Dは2.5mm以上になるように選択されればよい。見込み角度αは、ドームスクリーン10の内側の座席配置や、ドームスクリーン10自体の大きさ等に基づいて、適切な範囲を定めて検討されてもよい。
 したがって、これらの孔径の検討により、本実施形態のドームスクリーン10の孔径について、適切な範囲を定めることができる。
 以下ではさらに、シート部12を有する実施例と、シート部12を有しない比較例とを比較することによって、本実施形態に係るドームスクリーン10の効果を確認する。
 (星の欠落に対する効果の確認)
 本実施形態に係るドームスクリーン10の、星の欠落に対する効果を確認した。
 まず、比較例1のスクリーンとして、白色に塗装された0.6mm厚の孔開きのアルミ板(アルミパンチングパネル)を準備した。比較例1のスクリーンは、三角格子状に配置される複数の孔を有し、孔径は1.5mm、孔同士の間隔(ピッチ)は4mm、孔の開口率(開孔率)は13%であった。比較例1のスクリーンの仕様は、従来からプラネタリウムに等用いられてきた、標準的な孔開きドームスクリーンの仕様に相当する。
 また、比較例2のスクリーンとして、白色に塗装された1mm厚のアルミパンチングパネルを準備した。比較例2のスクリーンは、三角格子状に配置される複数の孔を有し、孔径は5mm、孔同士の間隔(ピッチ)は8mm、孔の開口率は35%であった。星の欠落状態をより確認しやすくするために、比較例1のスクリーンよりも孔径や開口率が大きいスクリーンを、比較例2のスクリーンとして準備した。
 また、実施例1のスクリーンとして、比較例2のスクリーンの背面側(画像を投映される側とは反対側)に、ポリエステル製の布を貼り付けたスクリーンを準備した。
 比較例1、比較例2および実施例1のスクリーンに対して、オリオン座の原版を用いた光学式の投映装置により、約4m離れた位置から、オリオン座の三つ星を投映した。
 図4は、比較例1のスクリーンに投映された星を示す写真である。図5は、比較例2のスクリーンに投映された星を示す写真である。図6は、実施例1のスクリーンに投映された星を示す写真である。
 図4~図6は、投映されたオリオン座に含まれる三つ星(アルニタク、アルニラム、ミンタカ)を拡大して示している。
 図4に示すように、比較例1のスクリーンは、左下の星の周辺部と、中央の星および右上の星の中央部とを点状に欠落させた。したがって、従来から用いられてきた標準的な孔開きドームスクリーンは、孔の位置に投映された星を欠落させることを確認できた。
 また、図5に示すように、比較例2のスクリーンは、左下の星の中央部と、中央の星および右上の星の周辺部とを大きく欠落させた。星の欠落状態をより確認しやすくするために、比較例1のスクリーンよりも孔径を大きくした比較例2のスクリーンは、より顕著に星を欠落させることを確認できた。
 一方で、図6に示すように、比較例2のスクリーンに布を貼り付けた実施例1のスクリーンは、星を全く欠落させなかった。このことは、実施例1のスクリーンが、孔の位置に入射した星の部分を、布の表面により映し出せていたことを示す。したがって、アルミパンチングパネルに布を貼り付けることにより、星の欠落に対する効果が得られることを確認できた。
 同じアルミパンチングパネルを用いた比較例2と実施例1とのスクリーンを比較すると、比較例2のスクリーンは、実施例1のスクリーンに対して、左下の星を34%、中央の星を15%、左上の星を12%欠落させていた。また、比較例2のスクリーンでは、左下の星の等級は2.3、中央の星の等級は1.9、右上の星の等級は2.5となっていたが、実施例1のスクリーンでは、左下の星の等級は1.9、中央の星の等級は1.7、右上の星の等級は2.3となっていた。したがって、アルミパンチングパネルに布を貼り付けて星の欠落を防ぐことにより、星の明るさが改善されることも確認できた。
 以下では、比較例2および実施例1のスクリーンの光の透過状態の違いをさらに確認する。
 図7は、比較例2のスクリーンの光の透過状態を示す写真である。図8は、実施例1のスクリーンの光の透過状態を示す写真である。
 図7および図8は、各々のスクリーンに対して左側から光を当てた際の、光の透過状態を示している。
 図7に示すように、比較例2のスクリーンは、孔の位置において、左側から右側に光をそのまま透過させた。比較例2のスクリーンに対して、オリオン座を同時に投映したところ、孔の位置に投映された星についても、右側に透過させた。したがって、図5に示すような星の欠落は、スクリーンの背面側に光が透過することによって生じていたことを確認できた。
 一方で、図8に示すように、実施例1のスクリーンは、孔開きスクリーンの孔以外の位置に入射する光を、孔開きスクリーン上で反射し、孔の位置に入射する光を、布上で反射させていた。したがって、実施例1のスクリーンは、スクリーン全体で画像の光を反射できることを確認できた。
 (孔の開口率の検討)
 上記実施例では、布を貼り付けることにより、ドームスクリーン10が星の欠落を防止できることを確認した。一方で、布を貼り付けることにより、ドームスクリーン10の外側から内側に透過する音響エネルギーの損失(音響透過損失)は、増加してしまう。そこで、音響透過損失を低減させて、ドームスクリーン10の外側に設置されたスピーカー40が出力する音を、ドームスクリーン10の内側に効率よく透過させるため、ドームスクリーン10の孔の開口率について検討した。特に、音の指向性の問題により、高周波数帯域の音を出力するスピーカーが、ドームスクリーン10の外側に設置される場合が多いため、高周波数帯域における音響透過損失を、特に重要なものとして検討した。
 孔の開口率について検討するために、まず、開口率が異なる4つの種類のアルミパンチングパネル(a)~(d)を準備した。各アルミパンチングパネルの仕様は、以下の表2に示す通りであった。そして、各パネル(a)~(d)を、後述する透過損失測定用の音響管に設置するために、適切な大きさに切り抜いて、比較例3~6として準備した。さらに、切り抜いた各パネル(a)~(d)に対してポリエステル製の布を貼り付けたパネルを、実施例2~5として準備した。なお、比較例3は、上述した比較例1のスクリーンと同じ仕様であり、比較例5は、比較例2のスクリーンと同じ仕様であり、実施例4は、実施例1のスクリーンと同じ仕様であった。
Figure JPOXMLDOC01-appb-T000002
 続いて、ASTM E2611に準拠した方法を用いて、各実施例および各比較例の垂直入射音響透過損失を測定した。
 図9は、透過損失の測定システムを示す概略図である。
 図9に示すように、各実施例および各比較例として準備した各サンプル50を、透過損失測定用の音響管60(ブリュエル・ケアー製 Type 4206T)内に設置した。そして、オーディオアナライザ70(ブリュエル・ケアー製 Type 3560B)と、PC80にインストールされた専用のソフトウェア(ブリュエル・ケアー製 PULSE Labshop Type 7758等)と、パワーアンプ90とを用いて、音響管60に接続されたスピーカー61から音を出力した。そして、4つのマイクロホン62により、音響管60内の音圧レベルを測定した。4つのマイクロホン62の測定結果に基づいて、実施例2~5および比較例3~6の透過損失を算出した。
 実施例2~5および比較例3~6について、音響透過損失を測定した結果を表3に示す。表3には、測定周波数f=1kHzおよび5kHzにおける結果を示した。
Figure JPOXMLDOC01-appb-T000003
 図10は、表3に示す音響透過損失の測定結果をグラフ化した図である。
 図10では、開口率の変化に基づく透過損失の変化の様子を観察しやすいように、布の有無の条件および測定周波数fの条件(すなわち、「布なし、f=1kHz」や「布あり、f=5kHz」等の条件)が同じものをまとめて、累乗近似曲線も示した。
 表3および図10における比較例3~6の測定結果が示すように、布なしの場合、f=1kHzおよび5kHzともに、開口率の増加に伴い透過損失は減少した。
 また、実施例2~5の測定結果が示すように、布ありの場合でも、f=1kHzおよび5kHzともに、開口率の増加に伴い透過損失は減少した。したがって、開口率を増加させることにより、音響特性が改善されることを確認できた。
 また、布なしの場合には、比較例3の測定結果が示すように、13%という小さい開口率でも、f=1kHzでの透過損失は0.41dB、f=5kHzでの透過損失は2.33dBであり、ある程度良好な音響特性が得られている。
 しかし、星の欠落を防止するために布を貼り付けると、実施例2の測定結果が示すように、13%という小さい開口率では、f=1kHzでの透過損失が7.33dBまで増加し、f=5kHzでの透過損失が11.92dBまで増加してしまう。したがって、布を貼り付けることを前提としている本実施形態では、孔の開口率を増加させる必要がある。
 星の欠落を防止しつつ、音響特性も確保するためには、たとえば、孔の開口率を13%から35%に増加させる必要がある。これにより、f=1kHzでの透過損失を、7.33dBから1.96dBに大きく減少させ、f=5kHzでの透過損失を、11.92dBから3.14dBに大きく減少させることができる。
 孔の開口率は、ドームスクリーン10における所望の音響透過損失に基づいて、選択されてもよい。たとえば、少なくとも一つの周波数(たとえば1kHzや5kHz等)における音響透過損失の閾値を設定することにより、所定の閾値以下の音響透過損失を達成できる孔の開口率が、ドームスクリーン10の孔の開口率として選択されてもよい。
 音響透過損失の閾値は、たとえば、1dB、2dB、3dB、4.5dB、6dB等の任意の値に設定されてもよい。f=1kHzでの音響透過損失の閾値が2dBに設定された場合、表3を参照すると、布を貼りつけつつ閾値以下の音響透過損失を達成できるのは、35%以上の開口率となる。この場合、ドームスクリーン10の孔の開口率として、35%が選択されてもよい。また、f=1kHzおよび5kHzでの音響透過損失の閾値がともに3dBに設定された場合、表3を参照すると、閾値以下の音響透過損失を達成できるのは、51%以上の開口率である。この場合、ドームスクリーン10の孔の開口率として、51%が選択されてもよい。また、f=1kHzおよび5kHzでの音響透過損失の閾値がともに4.5dBに設定された場合、表3を参照すると、閾値以下の音響透過損失を達成できるのは、23%以上の開口率である。この場合、ドームスクリーン10の孔の開口率として、23%が選択されてもよい。
 また、孔の開口率は、表3に示すような離散的な値ではなく、図10の近似曲線が示すような連続的な値に基づいて選択されてもよい。たとえば、f=1kHzおよび5kHzでの音響透過損失の閾値がともに3dBに設定された場合、図10に示す近似曲線を参照すると、閾値以下の音響透過損失を達成できるのは、約40%以上の孔の開口率であると言える。したがって、近似曲線における連続的な値に基づいて選択された開口率は、表3に示すような離散的な値に基づいて選択された51%という開口率よりも小さい値となっており、必要以上に大きな開口率を選択しないで済むことが確認できる。
 また、孔の開口率は、ドームスクリーン10における、所望の音響透過損失の変化率に基づいて選択されてもよい。たとえば、布ありの場合、図10に示すように、開口率13%から23%の間では、透過損失の変化が非常に大きく、開口率35%から51%の間では、透過損失の変化が小さい。したがって、開口率を35%以上にしても、透過損失を大きく変化させることが難しいことが確認できる。そこで、透過損失の変化率を閾値として設定することにより、閾値以上となる変化率を実現できる範囲で、開口率を変化させることができ、より効果的に音響特性を改善できる。
 また、孔の開口率は、音響透過損失ではなく、音響透過率に基づいて選択されてもよい。音響透過損失TLと、音響エネルギーの透過率である音響透過率τとは、以下の関係を有する。
Figure JPOXMLDOC01-appb-M000004
 したがって、たとえば、音響透過率の閾値が、80%、70%、60%、50%等の任意の値に設定されてもよく、閾値以上の音響透過率を達成できる孔の開口率が、ドームスクリーン10の孔の開口率として選択されてもよい。
 なお、開口率が決定された後、決定された開口率に基づいて、孔径および孔ピッチが決定され得る。たとえば、孔の配置が三角格子の場合、開口率Rと、孔径Dと、孔ピッチPとは、以下の関係を有する。
Figure JPOXMLDOC01-appb-M000005
 Dの範囲は、上述したように、見込み角度α等に基づいて決定され得る。したがって、所望の音響特性から決定した開口率の値をRに代入することにより、Pの範囲も決定され得る。このように、上述したような孔径の検討と、孔の開口率の検討とをともに行うことにより、ドームスクリーン10の効果を実現するためのパラメータの範囲が、順次決定され得る。
 また、ドームスクリーン10における所望の音響透過損失に基づいて、孔の開口率とともに、シート部12の材料が検討されてもよい。所望の光反射率を確保しつつ高い音響透過率を有する材料をシート部12として選択することにより、音響透過損失をさらに減少させ、音響特性をより改善できる。
 本出願は、2016年11月29日に出願された日本特許出願番号2016-231782号に基づいており、その開示内容は、参照により全体として組み入れられている。
1   ドームスクリーン投映施設、
10  ドームスクリーン、
11  ドーム部、
12  シート部、
20  支持枠部、
30  投映装置、
40  スピーカー。

Claims (6)

  1.  画像を投映可能なドームスクリーンであって、
     複数の孔を有し、半球状に形成されたドーム部と、
     前記ドーム部の外側に、前記ドーム部と重ねて配置される、光反射性を有するシート部と、
     を有するドームスクリーン。
  2.  外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように、前記複数の孔による開口率が選択される請求項1に記載のドームスクリーン。
  3.  外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように、前記複数の孔による開口率と、前記シート部を構成する材料とが選択される請求項1に記載のドームスクリーン。
  4.  前記孔の底面に位置する前記シート部上に投映された前記画像を、所定の割合以上見ることができるように、前記複数の孔の孔径と、前記ドーム部の厚さとの比率が選択される請求項1~3のいずれか一項に記載のドームスクリーン。
  5.  前記孔の底面に位置する前記シート部上に投映された前記画像を、所定の割合以上見ることができるように、前記複数の孔の孔径が選択される請求項1~4のいずれか一項に記載のドームスクリーン。
  6.  外側から内側に透過する音響エネルギーの損失を示す音響透過損失が、所定の閾値以下となるように選択された開口率と、選択された前記孔径とに基づいて、前記複数の孔同士の間隔が決定される請求項5に記載のドームスクリーン。
PCT/JP2017/036377 2016-11-26 2017-10-05 ドームスクリーン WO2018100880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018553691A JP6990662B2 (ja) 2016-11-29 2017-10-05 ドームスクリーンおよび投映施設
US16/464,308 US10719004B2 (en) 2016-11-26 2017-10-05 Dome screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231782 2016-11-29
JP2016-231782 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018100880A1 true WO2018100880A1 (ja) 2018-06-07

Family

ID=62242655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036377 WO2018100880A1 (ja) 2016-11-26 2017-10-05 ドームスクリーン

Country Status (3)

Country Link
US (1) US10719004B2 (ja)
JP (1) JP6990662B2 (ja)
WO (1) WO2018100880A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023536004A (ja) * 2020-08-12 2023-08-22 ドルビー ラボラトリーズ ライセンシング コーポレイション 制御された穿孔位置によるモアレの低減

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736418A (zh) * 2020-06-19 2020-10-02 南京科朗电子科技有限公司 一种实现不同分屏幕合成连接的球幕结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332073A (ja) * 1993-05-18 1994-12-02 Nippon Hoso Kyokai <Nhk> 音響透過性有孔スクリーン
JP2002148719A (ja) * 2000-11-08 2002-05-22 Akimichi Miyake 音響透過型投影スクリーン
JP2005017399A (ja) * 2003-06-23 2005-01-20 Sony Corp ドーム形スクリーン装置
JP2008107536A (ja) * 2006-10-25 2008-05-08 Victor Co Of Japan Ltd スクリーン
JP2010262210A (ja) * 2009-05-11 2010-11-18 Astro Kogaku Kogyo Kk プラネタリウムのスクリーンの構造及びその施工方法
JP2011175022A (ja) * 2010-02-23 2011-09-08 Nippon Hoso Kyokai <Nhk> ドーム型スクリーン
JP2015084043A (ja) * 2013-10-25 2015-04-30 一般財団法人Nhkエンジニアリングシステム ドーム型スクリーン

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US469472A (en) * 1892-02-23 hammerstein
US1959434A (en) * 1930-07-02 1934-05-22 C O Jelliff Mfg Corp Motion picture screen and method of making the same
US2273074A (en) * 1938-06-14 1942-02-17 Vitarama Corp Screen for picture projection
US2690185A (en) * 1949-09-27 1954-09-28 Pomykala Edmund Stanley All weather hut
US2900870A (en) * 1954-04-09 1959-08-25 Thomas J Jackson Projection screen
US3139957A (en) * 1961-01-24 1964-07-07 Fuller Richard Buckminster Suspension building
US3325958A (en) * 1964-09-01 1967-06-20 Albert B Moore Preassembled structural framework
US3768218A (en) * 1971-05-20 1973-10-30 J Blaski Building construction
US3776621A (en) * 1972-05-24 1973-12-04 Walter Landor Ass Optical display system and method for creating a theatrical illusion
US3925940A (en) * 1972-07-24 1975-12-16 Donn H Gross Building
US3992841A (en) * 1974-08-30 1976-11-23 Ward Jr Robertson Panel construction and projection screen constructed from such panels
US3999336A (en) * 1975-04-07 1976-12-28 Roper Corporation Building dome structure
FR2404243A1 (fr) * 1977-09-21 1979-04-20 Jaulmes Philippe Procede de projection et de prise de vue pour simulateur de vol, et salle de projection permettant sa mise en oeuvre
US4301627A (en) * 1979-08-17 1981-11-24 Sico Incorporated Guard rails for portable stages
US4491437A (en) * 1982-03-01 1985-01-01 Schwartz Victor M Connector for geodesic dome
US4514347A (en) * 1982-12-21 1985-04-30 The Singer Company Spherical projection-type screen for use in a vehicle simulator
US4473355A (en) * 1983-06-30 1984-09-25 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Visual simulator and display screen for said simulator
US4736553A (en) * 1984-05-04 1988-04-12 Geiger David H Roof structure
CA1244621A (en) * 1984-07-03 1988-11-15 Michael R. Browning Entertainment structure
US4885878A (en) * 1987-09-08 1989-12-12 George Wuu Advanced state of the art movie theater
US5097640A (en) * 1989-05-01 1992-03-24 3-D Structures, Inc. Frame support for paneled screens and like structures
JP2597910B2 (ja) * 1989-05-16 1997-04-09 清水建設株式会社 ドーム架構の頂部構造
JPH03274035A (ja) * 1990-03-23 1991-12-05 Takenaka Komuten Co Ltd スクリーンの反射率調整方法
US5011263A (en) 1990-05-11 1991-04-30 Astro-Tec Manufacturing, Inc. Perforate projection screen
US5170599A (en) * 1991-03-26 1992-12-15 Dome Corporation Of America Dome building structure
US5179440A (en) * 1991-05-13 1993-01-12 Hughes Aircraft Company Rear projection facetted dome
JP3231071B2 (ja) * 1992-04-08 2001-11-19 川口 衛 ドーム式屋根構造
JP2729021B2 (ja) * 1993-10-13 1998-03-18 株式会社日立製作所 レーザで星空に重畳して画像を描く方法及び装置
JPH0868220A (ja) * 1994-06-24 1996-03-12 Masahiko Hayashi ドームシアター
US5857294A (en) * 1994-08-05 1999-01-12 Castro; Gerardo Dome roof structure and method of designing and constructing same
US5541769A (en) * 1994-11-18 1996-07-30 Hughes Training, Inc. Uniform-brightness, high-gain display structures and methods
US6282842B1 (en) * 1995-02-06 2001-09-04 Robert R. Simens Inflatable roof support systems
US5724775A (en) * 1996-01-29 1998-03-10 Alternate Realities Corporation Multi-pieced, portable projection dome and method of assembling the same
US5715854A (en) * 1996-04-09 1998-02-10 Jean-Claude Andrieux Dome-like structure and kit of parts therefor
US6253494B1 (en) * 1998-10-19 2001-07-03 Darlene D. Shaffron Screen-to-stage and stage-to-screen seamless transition theater
DE19851000C2 (de) * 1998-11-05 2001-07-26 Dornier Gmbh Projektionsanordnung
US6665985B1 (en) * 1999-09-09 2003-12-23 Thinc Virtual reality theater
US6176584B1 (en) * 2000-01-28 2001-01-23 Raytheon Company Curved surface, real image dome display system, using laser-based rear projection
US6727971B2 (en) * 2001-01-05 2004-04-27 Disney Enterprises, Inc. Apparatus and method for curved screen projection
AU2003253980A1 (en) * 2002-07-22 2004-02-09 Spitz, Inc. Foveated display system
JP2006003409A (ja) * 2004-06-15 2006-01-05 Olympus Corp 画像投影システム
JP2006189509A (ja) * 2004-12-28 2006-07-20 Goto Optical Mfg Co ドームスクリーン用ビデオ投映機
US9188850B2 (en) * 2007-09-10 2015-11-17 L-3 Communications Corporation Display system for high-definition projectors
US8210686B2 (en) * 2009-01-30 2012-07-03 Old Dominion University Research Foundation Projection system
US8646918B2 (en) * 2009-01-30 2014-02-11 Old Dominion University Research Foundation Projection system
US20100300006A1 (en) * 2009-05-29 2010-12-02 Cecil Magpuri Virtual reality dome theater
US9465283B2 (en) * 2009-11-06 2016-10-11 Applied Minds, Llc System for providing an enhanced immersive display environment
US8054547B2 (en) * 2010-04-09 2011-11-08 Acaji, Inc. Rear projection dome
NO20130568A1 (no) 2013-04-24 2014-10-27 Momentor Ans Lerret
JP6784264B2 (ja) * 2015-12-16 2020-11-11 ソニー株式会社 画像表示装置
JP6681279B2 (ja) * 2016-06-03 2020-04-15 コニカミノルタプラネタリウム株式会社 宇宙飛行シミュレーター,それを有するプラネタリウム,および宇宙飛行シミュレーティングプログラム
US10288995B2 (en) * 2017-06-15 2019-05-14 Esterline Belgium Bvba Aspherical dome display and method of rear projection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332073A (ja) * 1993-05-18 1994-12-02 Nippon Hoso Kyokai <Nhk> 音響透過性有孔スクリーン
JP2002148719A (ja) * 2000-11-08 2002-05-22 Akimichi Miyake 音響透過型投影スクリーン
JP2005017399A (ja) * 2003-06-23 2005-01-20 Sony Corp ドーム形スクリーン装置
JP2008107536A (ja) * 2006-10-25 2008-05-08 Victor Co Of Japan Ltd スクリーン
JP2010262210A (ja) * 2009-05-11 2010-11-18 Astro Kogaku Kogyo Kk プラネタリウムのスクリーンの構造及びその施工方法
JP2011175022A (ja) * 2010-02-23 2011-09-08 Nippon Hoso Kyokai <Nhk> ドーム型スクリーン
JP2015084043A (ja) * 2013-10-25 2015-04-30 一般財団法人Nhkエンジニアリングシステム ドーム型スクリーン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023536004A (ja) * 2020-08-12 2023-08-22 ドルビー ラボラトリーズ ライセンシング コーポレイション 制御された穿孔位置によるモアレの低減
JP7447353B2 (ja) 2020-08-12 2024-03-11 ドルビー ラボラトリーズ ライセンシング コーポレイション 制御された穿孔位置によるモアレの低減

Also Published As

Publication number Publication date
JP6990662B2 (ja) 2022-01-12
JPWO2018100880A1 (ja) 2019-10-17
US10719004B2 (en) 2020-07-21
US20190384154A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR102458129B1 (ko) 어레이 마이크로폰 시스템 및 이를 조립하는 방법
US8149508B2 (en) System for providing an enhanced immersive display environment
US7583437B2 (en) Projection screen with virtual compound curvature
WO2018100880A1 (ja) ドームスクリーン
US20030188920A1 (en) Internal lens system for loudspeaker waveguides
EP2506251A1 (en) Apparatus for absorbing acoustical energy and use thereof
KR20190058622A (ko) 시네마 발광 스크린 및 사운드 시스템
EP2823352B1 (en) Light efficient acoustically transmissive front projection screens
CN106601140B (zh) 一种穹幕显示屏
US7826134B2 (en) High-definition sound-absorbing screen
JP4708960B2 (ja) 情報伝達システム及び音声可視化装置
JP2008107536A (ja) スクリーン
WO2019188121A1 (ja) 画像表示装置
CN107664910A (zh) 无缝多屏投影显示系统
JP5953609B2 (ja) 警報音の発信方法
CN202394033U (zh) 一种金属打孔的透声幕装置
KR101255376B1 (ko) 고선명 흡음스크린
US20060256985A1 (en) System for the projection of cinematographic works and digital works with sound
JP2009282133A (ja) 光学シート及び表示装置
JP2013179508A (ja) オーディオシステムおよびその設置方法
JP2015084043A (ja) ドーム型スクリーン
US9583093B2 (en) Sound deflecting apparatus
WO2021111735A1 (ja) スピーカーシステム及び音響の出力方法
JP2007274132A (ja) 拡声システム及び音響反射板
Grimani In all the wrong places

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875797

Country of ref document: EP

Kind code of ref document: A1