WO2018100822A1 - 光源駆動装置 - Google Patents

光源駆動装置 Download PDF

Info

Publication number
WO2018100822A1
WO2018100822A1 PCT/JP2017/031843 JP2017031843W WO2018100822A1 WO 2018100822 A1 WO2018100822 A1 WO 2018100822A1 JP 2017031843 W JP2017031843 W JP 2017031843W WO 2018100822 A1 WO2018100822 A1 WO 2018100822A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
control
dimming
light
duty
Prior art date
Application number
PCT/JP2017/031843
Other languages
English (en)
French (fr)
Inventor
賀宏 佐川
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to EP17875958.5A priority Critical patent/EP3550938B1/en
Priority to CN201780072897.0A priority patent/CN109997414B/zh
Publication of WO2018100822A1 publication Critical patent/WO2018100822A1/ja
Priority to US16/419,335 priority patent/US11116061B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a light source driving device.
  • Lighting device that uses a calibrated relationship between power consumption and control voltage to automatically determine the required control voltage instead of using a linear approximation to obtain a control voltage that represents the desired light level
  • a method of controlling see, for example, Patent Document 1.
  • the difference between the control value of the current dimming step and the control value of the target dimming step is calculated in the fade period.
  • a value prorated by the number of steps can be considered as the amount of change in the control value between each dimming step. That is, it is conceivable to use a control value obtained by adding (or subtracting) the change amount prorated in each dimming step from the current dimming step to the target dimming step.
  • the dimming curve required for the lighting device is not a linear curve but a non-linear curve (log curve or the like). For this reason, it is difficult to approximate the control value to a non-linear curve by the above-described method using the control value obtained by adding (or subtracting) the proportionally changed amount in each dimming step.
  • a control value corresponding to the nonlinear curve is stored in advance in a storage unit such as a memory, and fade control is performed using the control value stored in the storage unit.
  • a storage unit such as a memory
  • fade control is performed using the control value stored in the storage unit.
  • the present invention has been made in view of the above, and performs control to gradually change the brightness of light emitted from a light source so that a control value follows a nonlinear curve while suppressing an increase in cost.
  • An object of the present invention is to provide a light source driving device capable of
  • a light source driving device provides a level indicating the brightness of light emitted from a light source and light having a brightness corresponding to the level.
  • FIG. 1 is a figure showing an example of the composition of the lighting system concerning an embodiment.
  • FIG. 2 is a diagram for explaining an example of a light control curve according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a data structure of a fade control table according to the embodiment.
  • FIG. 4 is a flowchart illustrating a flow of fade control processing executed by the control unit according to the embodiment.
  • FIG. 5 is a diagram for explaining an example of initialization of the fade control process.
  • FIG. 6 is a diagram for explaining processing executed by the control unit according to the embodiment.
  • FIG. 7 is a diagram illustrating the calculated duty and the dimming step corresponding to the duty according to the embodiment.
  • FIG. 8 is a diagram illustrating the calculated duty and the dimming step corresponding to the duty in the comparative example.
  • Drawing 1 is a figure showing an example of the composition of lighting system 1 concerning an embodiment.
  • the illumination system 1 includes a remote controller (remote controller) 10, a light source driving device 20, and an illumination device 30.
  • the remote controller 10 is, for example, a terminal such as a smartphone or a tablet terminal.
  • the remote controller 10 transmits a signal for controlling the lighting device 30.
  • the remote controller 10 uses a dimming curve (log) used when performing fade control, which is a control for gradually (stepwise) changing the brightness of light emitted from the lighting device 30 from the user of the lighting system 1.
  • the target dimming step in the curve etc. is received.
  • the remote controller 10 transmits a dimming instruction signal indicating the received target dimming step to the light source driving device 20.
  • the dimming curve will be described later.
  • the light source driving device 20 controls a light source 301 described later of the lighting device 30.
  • the light source driving device 20 includes an AC (Alternate Current) / DC (Direct Current) conversion unit 201, a storage unit 202, a control unit 203, and a driver circuit 204.
  • the AC / DC conversion unit 201 converts an AC voltage (AC voltage) applied from a commercial power source (not shown) into a DC voltage (DC voltage), and applies the DC voltage to the driver circuit 204.
  • AC voltage AC voltage
  • DC voltage DC voltage
  • the storage unit 202 is realized by a storage device such as a ROM (Read Only Memory) or a HDD (Hard Disk Drive), for example.
  • the storage unit 202 according to the embodiment stores a fade control table 202a.
  • the fade control table 202a will be described later.
  • the cocoon control unit 203 is realized by, for example, a microcomputer having a CPU (Central Processing Unit).
  • the control unit 203 transmits to the driver circuit 204 a duty that indicates the brightness of light emitted from a light source 301 (described later) of the lighting device 30. For example, as the duty increases, the brightness of light emitted from the light source 301 becomes brighter.
  • the control unit 203 reads a fade control processing program for performing fade control (fade control processing) stored in the storage unit 202, and executes the read fade control processing program to perform fade control (fade control). Control process).
  • the driver circuit 204 When the driver circuit 204 receives the duty from the control unit 203, it uses the DC voltage applied by the AC / DC conversion unit 201 to generate a direct current corresponding to the received duty. For example, the driver circuit 204 generates a direct current having a larger current value as the received duty increases. Then, the driver circuit 204 outputs the generated direct current to the light source 301.
  • the eaves lighting device 30 includes a light source 301.
  • the light source 301 is realized by, for example, an LED (Light Emitting Diode).
  • the light source 301 is driven by the light source driving device 20 to emit light. More specifically, the light source 301 emits light with higher brightness as the current value of the direct current from the driver circuit 204 increases.
  • FIG. 2 is a diagram for explaining an example of the light control curve 40 according to the embodiment.
  • the dimming curve 40 is a non-linear curve indicating the correspondence between the dimming step and the duty.
  • humans are more likely to recognize changes in the brightness of dark light than changes in the brightness of bright light. Therefore, as shown in FIG. 2, in the range 401 in which the duty of the dimming curve 40 is small, that is, in the range 401 in which the brightness of relatively dark light is changed, the amount of change in the duty with respect to the amount of change in the dimming step. Is relatively small.
  • the amount of change in the duty is relatively large with respect to the amount of change in the light control step.
  • the dimming step is, for example, a level indicating the brightness of light emitted from the light source 301.
  • the dimming step increases, the level indicating the brightness of the light also increases, so the duty increases.
  • the duty is a control value used when light having a brightness corresponding to a level indicating light brightness is emitted from the light source 301, for example.
  • FIG. 3 is a diagram illustrating an example of a data structure of the fade control table 202a according to the embodiment.
  • the storage unit 202 is a combination of a level indicating the brightness of light emitted from the light source 301 and a control value used when light having a brightness corresponding to the level is emitted from the light source 301.
  • the control values have a non-linear relationship.
  • the storage unit 202 is a combination of a level indicating the brightness of light emitted from the light source 301 and a control value used when light having a brightness corresponding to the level is emitted from the light source 301. For example, three or more combinations having a non-linear relationship between the control values may be stored.
  • the record of the fade control table 202 a has items of “light control step” and “duty”.
  • the dimming step in the dimming curve 40 is registered.
  • the dimming step registered in the item “dimming step” is represented by an integer of 0 or more.
  • the remote controller 10 described above accepts any one of the plurality of dimming steps registered in the item “dimming step” from the user as a target dimming step.
  • the remote controller 10 accepts any one of the dimming steps “1”, “2”, and “3” as a target dimming step.
  • the duty corresponding to the dimming step registered in the “dimming step” item in the dimming curve 40 is registered.
  • the dimming step “1” and the duty “16 (%)” are registered in association with each other.
  • the light control step “2” and the duty “32 (%)” are associated and registered.
  • the dimming step “3” and the duty “64 (%)” are associated and registered.
  • FIG. 4 is a flowchart illustrating a flow of fade control processing executed by the control unit 203 according to the embodiment.
  • the fade control process according to the embodiment is executed when the control unit 203 receives a dimming instruction signal from the remote controller 10.
  • FIG. 5 is a diagram for explaining an example of initialization of the fade control process.
  • the horizontal axis indicates time
  • the vertical axis indicates the dimming step.
  • step S ⁇ b> 101 the control unit 203 sets 0 as time (start time of fade control processing) t 0 when receiving the dimming instruction signal.
  • a fading duration t d is a period (time) to perform a fade control to set the fade period is predetermined in the illumination system 1 (e.g., 2 seconds). Note that the fade duration t d is an example of a first time.
  • step S101 the control unit 203 sets 0 as the time (start time of the fade control process) Px when the dimming instruction signal is received.
  • step S101 the control unit 203 sets a dimming step corresponding to the time Px (time “0”) as the dimming step Py.
  • the dimming step corresponding to the time Px is the dimming step when the dimming instruction signal is received, and the control unit 203 grasps the dimming step when the dimming instruction signal is received. . For this reason, the control part 203 can set the light control step in time Px as the light control step Py.
  • step S101 the control unit 203, as the time Qx to terminate execution of the fade control to set the fade period t d.
  • the control unit 203 sets a target dimming step indicated by the input dimming instruction signal as the dimming step Qy. For example, the control unit 203 sets the target dimming step “3” indicated by the dimming instruction signal as the dimming step Qy.
  • a straight line (line segment) 41 connecting the point P (Px, Py) and the point Q (Qx, Qy) has linearity in the relationship between time and the light control step.
  • the fixed time ⁇ is a time that is an integral multiple of the reciprocal of the drive frequency of the driver circuit 204 (1 / drive frequency).
  • a certain period of time ⁇ shorter than the fade period t d.
  • the fixed time ⁇ is an example of the second time.
  • control unit 203 the following equation (1), and updates the time t n (step S103).
  • the time t n indicates an elapsed time from the time t 0 (time “0”).
  • “N” represents an integer of 1 or more.
  • Expression (2) calculates the dimming step Ry at the point R when the time Rx at the point R is given on the straight line 41 passing through the two points P (Px, Py) and Q (Qx, Qy). Is an expression for
  • control unit 203 identifies two combinations including the dimming step adjacent to the dimming step calculated in step S104 among the plurality of combinations of the dimming step and the duty registered in the fade control table 202a. (Step S105).
  • step S105 the control unit 203 calculates an integer dimming step (referred to as a rounded up dimming step) Px ′ by rounding up the decimal point of the dimming step calculated in step S104. Then, the control unit 203 specifies a record in which the rounding dimming step Px ′ is registered in the item “dimming step” from all the records in the fade control table 202a. Then, the control unit 203 specifies the duty Py ′ registered in the “duty” item of the specified record. In this way, the control unit 203 identifies the combination of the rounding dimming step Px ′ and the duty Py ′.
  • an integer dimming step referred to as a rounded up dimming step
  • step S105 the control unit 203 rounds off the decimal point of the dimming step calculated in step S104 to calculate an integer dimming step (referred to as a truncated dimming step) Qx ′. Then, the control unit 203 identifies a record in which the cut-off light control step Qx ′ is registered in the item “light control step” from all the records in the fade control table 202a. Then, the control unit 203 specifies the duty Qy ′ registered in the “duty” item of the specified record. In this way, the control unit 203 specifies a combination of the cut-off dimming step Qx ′ and the duty Qy ′.
  • an integer dimming step referred to as a truncated dimming step
  • step S ⁇ b> 105 the control unit 203 calculates an integer rounded up dimming step “2.0” by rounding up the decimal point of the dimming step “1.2”.
  • step S105 the control unit 203 identifies a record in which the rounding dimming step “2.0” is registered in the item “dimming step” from all the records in the fade control table 202a.
  • step S105 the control unit 203 specifies the duty “32” registered in the “duty” item of the specified record. In this way, in step S105, the control unit 203 specifies a combination of the rounding dimming step “2.0” and the duty “32”.
  • step S105 the control unit 203 rounds off the decimal part of the dimming step “1.2” to calculate an integer rounded down dimming step “1.0”.
  • step S ⁇ b> 105 the control unit 203 specifies a record in which the cut-off dimming step “1.0” is registered in the “dimming step” item from all the records in the fade control table 202 a.
  • step S105 the control unit 203 specifies the duty “16” registered in the “duty” item of the specified record. In this way, in step S105, the control unit 203 specifies a combination of the cut-off dimming step “1.0” and the duty “16”.
  • FIG. 6 is a diagram for explaining processing executed by the control unit 203 according to the embodiment.
  • a point P ′ (Px ′, Py ′) determined from the combination of the rounded-up dimming step Px ′ and the duty Py ′ and a point Q determined from the combination of the rounded-down dimming step Qx ′ and the duty Qy ′.
  • '(Qx', Qy ') is located on the dimming curve 40.
  • a straight line (line segment) 42 connecting the point P ′ (Px ′, Py ′) and the point Q ′ (Qx ′, Qy ′) has linearity in the relationship between the dimming step and the duty.
  • control unit 203 calculates a duty Ry ′ corresponding to the dimming step Rx ′ by linear interpolation according to the following equation (3) (step S106).
  • Rx ′ Ry.
  • the formula (3) is a dimming step Rx ′ at a point R ′ on a straight line 42 passing through two points P ′ (Px ′, Py ′) and Q ′ (Qx ′, Qy ′). Is a formula for calculating the duty Ry ′ at the point R ′.
  • control unit 203 transmits the duty Ry ′ calculated in step S106 to the driver circuit 204 (step S107). Accordingly, a direct current corresponding to the duty Ry ′ is output to the light source 301 in the dimming step Rx ′.
  • the control unit 203 determines whether or not the time t n elapsed from the time “0” is equal to or longer than the fade period t d (step S108). When it is determined that the time t n is less than the fade period t d (step S108: No), the control unit 203 returns to step S102 and executes the processes of steps S102 to S108 again. That is, the control unit 203 to the time t n is the fade duration t d or more, many times repeatedly executes the processing of steps S102 ⁇ S108. In step S103 after the second time, the control unit 203 updates the time t n according to the above-described equation (1) after setting the time t n to the time t n ⁇ 1 .
  • the control unit 203 performs each dimming from the dimming step Py when the dimming instruction signal is input to the target dimming step Qy indicated by the dimming instruction signal.
  • step Rx ′ dimming step Rx ′ using two combinations including the dimming step adjacent to dimming step Rx ′ among the plurality of combinations of the dimming step and duty stored in storage unit 202. Duty Ry ′ at is calculated.
  • the control unit 203 calculates the dimming step Ry (Rx ′) for each fixed time ⁇ during the fade period t d , and sets the duty Ry ′ corresponding to the calculated dimming step Ry. calculate.
  • FIG. 7 illustrates the dimming step “1.0” when the control unit 203 according to the embodiment uses the fade control table 202a illustrated in FIG. 3 and ⁇ described above is “0.2 seconds”.
  • FIG. 10 is a diagram showing the calculated duty Ry ′ and the light control step Rx ′ corresponding to the duty Ry ′ as a result of performing the fade control process up to the target light control step “3.0”.
  • “stage” indicates, for example, the order in which the duty Ry ′ is calculated.
  • the control unit 203 performs the dimming registered in the fade control table 202a every certain time ⁇ from the dimming step “1.0” to the dimming step “2.0”.
  • the duty Ry ′ is calculated by linear interpolation using the duty “16” corresponding to the step “1.0” and the duty “32” corresponding to the dimming step “2.0”. Therefore, the duty change amount is “3.2” ((32-16) / 5).
  • the control unit 203 is registered in the fade control table 202a at a constant time ⁇ from the dimming step “2.0” to the dimming step “3.0”.
  • the duty Ry ′ is calculated by linear interpolation using the duty “32” corresponding to the light control step “2.0” and the duty “64” corresponding to the light control step “3.0”. For this reason, the change amount of the duty is “6.4” ((64 ⁇ 32) / 5).
  • the control unit 203 uses the three combinations stored in the storage unit 202 to gradually adjust the light emitted from the light source 301 to the brightness corresponding to the level indicated by the input dimming instruction signal.
  • the light source 301 is controlled so that the brightness changes.
  • the three combinations referred to here are a combination of the light control step “1.0” and the duty “16”, a combination of the light control step “2.0” and the duty “32”, and the light control step “3”. .0 ”and duty“ 64 ”.
  • control unit 203 uses the combination of two or more stored in the storage unit 202 to gradually increase the brightness of light emitted from the light source 301 to the brightness corresponding to the level indicated by the input dimming instruction signal.
  • the light source 301 may be controlled so as to change.
  • the control unit 203 uses the two stored combinations to gradually adjust the light source from the dimming step “1.0” to the dimming step “2.0” indicated by the input dimming instruction signal.
  • the light source 301 may be controlled such that the brightness of the light emitted from the 301 changes.
  • the two combinations are a combination of the light control step “1.0” and the duty “16” and a combination of the light control step “2.0” and the duty “32”.
  • a value obtained by dividing the difference between the duty of the dimming step at the start of the fade control and the duty of the target dimming step by the number of steps of the fade period is set between each dimming step.
  • a case where the amount of change in the duty is set will be described. That is, a description will be given of a case where a duty obtained by adding (or subtracting) a proportional change amount in stages is used in each dimming step from the dimming step at the start of fade control to the target dimming step.
  • FIG. 8 corresponds to the calculated duty and the calculated duty when the fade control process is performed from the light control step “1.0” to the target light control step “3.0” in the comparative example. It is a figure which shows an example of the light control step to perform.
  • the duty Ry ′ calculated by the light source driving device 20 according to the embodiment shown in FIG. 7 is compared with the duty calculated in the comparative example shown in FIG. 8, in the comparative example, the fade control on the dimming curve is started.
  • the duty on the line segment connecting the point corresponding to the current dimming step and the point corresponding to the target dimming step is calculated as the duty used in the fade control. For this reason, the difference between the calculated duty and the duty on the dimming curve is relatively large. Therefore, in the comparative example, it is difficult to calculate the duty along the dimming curve.
  • the control unit 203 of the light source driving device 20 includes two continuous light control steps Px ′ and Qx ′ (for example, two light control steps “1” and “2”, and two light control steps.
  • the duty Ry ′ corresponding to the light control step Rx ′ for example, light control level “1.2”, light control level “2.4”, etc.
  • control unit 203 emits light having a brightness corresponding to the dimming step Rx ′ between the two dimming steps Px ′ and Qx ′ using the calculated duty Ry ′ at every predetermined time ⁇ . Then, the light source 301 is controlled.
  • the control unit 203 calculates the duty on the line segment connecting two adjacent points out of the three points on the dimming curve 40 as the duty used in the fade control at every fixed time ⁇ . To do. For this reason, the difference between the calculated duty and the duty on the dimming curve 40 is relatively small. Therefore, the light source driving device 20 according to the embodiment can calculate the duty along the dimming curve 40.
  • the storage unit 202 stores combinations of dimming steps and duties at three points instead of many points on the dimming curve 40. Therefore, the storage unit 202 can be realized by a ROM or HDD having a small storage capacity and a low cost, instead of a ROM or HDD having a large storage capacity and a high cost. Therefore, according to the light source drive device 20 according to the embodiment, an increase in cost can be suppressed.
  • the control unit 203 can calculate the duty 1000 times in the fade control.
  • the same processing is performed using the duty stored in the storage unit 202 in advance, it is necessary to use a storage unit having a storage capacity for storing 1000 control values.
  • the brightness of the light emitted from the light source 301 is gradually changed so that the duty follows the nonlinear curve while suppressing an increase in cost. Control can be performed.
  • the fade period may be variably set by the user.
  • the remote controller 10 receives a fade period from the user together with a target dimming step. Then, the remote controller 10 transmits a fade period together with a dimming instruction signal indicating the received target dimming step to the light source driving device 20, and the control unit 203 of the light source driving device 20 uses the fade period from the remote control, A fade control process may be executed. That is, the fade period may be an input time.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

実施形態に係る光源駆動装置(20)は、光源(301)から出射される光の明るさを示すレベルと、レベルに対応する明るさの光を光源(301)から出射させる際に用いる制御値との組み合わせであって、レベルに対して制御値が非線形の関係を有する3つ以上の組み合わせを記憶する記憶部(202)と、記憶部(202)に記憶されている組み合わせのうち、2つ以上の組み合わせを用いて、入力される調光指示信号が示すレベルに対応する明るさまで徐々に光源(301)から出射される光の明るさが変化するように光源(301)を制御する制御部(203)と、を備える。

Description

光源駆動装置
 本発明は、光源駆動装置に関する。
 所望の光レベルを表す制御電圧を得るために線形近似を用いる代わりに、要求される制御電圧を自動的に決定するために電力消費と制御電圧との間の校正された関係を用いる、照明装置を制御する方法がある(例えば、特許文献1参照)。
特表2015-525955号公報
 ところで、照明装置の光源から出射される光の明るさを徐々に変化させる制御(フェード制御)において、現在の調光ステップの制御値と目標の調光ステップの制御値との差分をフェード期間のステップ数で按分した値を、各調光ステップ間の制御値の変化量とすることが考えられる。すなわち、現在の調光ステップから目標の調光ステップまで、各調光ステップで、按分された変化量が段階的に加算(又は減算)された制御値を用いることが考えられる。
 しかしながら、照明装置に要望される調光カーブは線形ではなく非線形曲線(logカーブ等)であることが望まれる。このため、上述した、各調光ステップにおいて、按分された変化量を段階的に加算(又は減算)された制御値を用いる方法では、制御値を非線形曲線に近似させることが困難である。
 また、非線形曲線に応じた制御値を予めメモリ等の記憶部に記憶させておき、記憶部に記憶された制御値を用いてフェード制御を行うことも考えられる。しかしながら、十分に制御値を非線形曲線に近似させるためには、記憶部に多数の制御値を記憶させる必要がある。この場合には、記憶容量が大きい、コストが高い記憶部を用いる必要がある。このため、コストアップに繋がる。
 本発明は、上記に鑑みてなされたものであって、コストアップを抑制しつつ、制御値が非線形曲線に沿うように、光源から出射される光の明るさを徐々に変化させる制御を行うことができる光源駆動装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光源駆動装置は、光源から出射される光の明るさを示すレベルと、前記レベルに対応する明るさの光を前記光源から出射させる際に用いる制御値との組み合わせであって、前記レベルに対して前記制御値が非線形の関係を有する3つ以上の組み合わせを記憶する記憶部と、前記記憶部に記憶されている組み合わせのうち、2つ以上の組み合わせを用いて、入力される調光指示信号が示すレベルに対応する明るさまで徐々に前記光源から出射される光の明るさが変化するように前記光源を制御する制御部と、を備える。
 本発明の一態様によれば、コストアップを抑制しつつ、制御値が非線形曲線に沿うように、光源から出射される光の明るさを徐々に変化させる制御を行うことができる。
図1は、実施形態に係る照明システムの構成の一例を示す図である。 図2は、実施形態に係る調光カーブの一例について説明するための図である。 図3は、実施形態に係るフェード制御用テーブルのデータ構造の一例を示す図である。 図4は、実施形態に係る制御部により実行されるフェード制御処理の流れを示すフローチャートである。 図5は、フェード制御処理の初期化の一例を説明するための図である。 図6は、実施形態に係る制御部が実行する処理を説明するための図である。 図7は、実施形態に係る算出したデューティ、及び、デューティに対応する調光ステップを示す図である。 図8は、比較例において、算出したデューティ、及び、デューティに対応する調光ステップを示す図である。
 以下、実施形態に係る光源駆動装置について図面を参照して説明する。図1は、実施形態に係る照明システム1の構成の一例を示す図である。
 図1に示すように、実施形態に係る照明システム1は、リモコン(リモートコントローラ)10と、光源駆動装置20と、照明装置30とを備える。
 リモコン10は、例えば、スマートフォンやタブレット端末等の端末である。リモコン10は、照明装置30を制御する信号を送信する。例えば、リモコン10は、照明システム1のユーザから、照明装置30から出射される光の明るさを徐々に(段階的に)変化させる制御であるフェード制御を行う際に用いられる調光カーブ(logカーブ等)における目標の調光ステップを受け付ける。そして、リモコン10は、受け付けた目標の調光ステップを示す調光指示信号を光源駆動装置20に送信する。なお、調光カーブについては後述する。
 光源駆動装置20は、照明装置30の後述する光源301を制御する。光源駆動装置20は、AC(Alternate Current)/DC(Direct Current)変換部201と、記憶部202と、制御部203と、ドライバ回路204とを有する。
 AC/DC変換部201は、図示しない商用電源から印加された交流電圧(AC電圧)を直流電圧(DC電圧)に変換し、直流電圧をドライバ回路204に印加する。
 記憶部202は、例えば、ROM(Read Only Memory)やHDD(Hard Disk Drive)等の記憶装置により実現される。実施形態に係る記憶部202は、フェード制御用テーブル202aを記憶する。フェード制御用テーブル202aについては後述する。
 制御部203は、例えば、CPU(Central Processing Unit)を有するマイクロコンピュータ等により実現される。制御部203は、ドライバ回路204に、照明装置30の後述する光源301から出射される光の明るさを示すデューティを送信する。例えば、デューティが大きくなるほど、光源301から照射される光の明るさが明るくなる。
 実施形態に係る制御部203は、記憶部202に記憶されたフェード制御(フェード制御処理)を行うためのフェード制御処理プログラムを読み取り、読み取ったフェード制御処理プログラムを実行することで、フェード制御(フェード制御処理)を実行する。
 ドライバ回路204は、制御部203からのデューティを受信すると、AC/DC変換部201により印加されたDC電圧を用いて、受信したデューティに応じた直流電流を生成する。例えば、ドライバ回路204は、受信したデューティが大きくなるほど、大きい電流値の直流電流を生成する。そして、ドライバ回路204は、生成した直流電流を光源301に出力する。
 照明装置30は、光源301を備える。光源301は、例えば、LED(Light Emitting Diode)により実現される。光源301は、光源駆動装置20により駆動されて、光を出射する。より具体的には、光源301は、ドライバ回路204からの直流電流の電流値が大きくなるほど、大きい明るさの光を出射する。
 図2は、実施形態に係る調光カーブ40の一例について説明するための図である。図2の例に示すように、調光カーブ40は、調光ステップとデューティとの対応関係を示す非線形曲線である。一般的に、人間は、明るい光の明るさの変化よりも、暗い光の明るさの変化の方を認識しやすい。そこで、図2に示すように、調光カーブ40のデューティが小さい範囲401、すなわち、比較的暗い光の明るさを変化させる範囲401では、調光ステップの変化量に対して、デューティの変化量が比較的小さい。一方、デューティが大きい範囲402、すなわち、比較的明るい光の明るさを変化させる範囲402では、調光ステップの変化量に対して、デューティの変化量が比較的大きい。このような調光カーブを用いてフェード制御を行うことにより、人間にとって、明るさの変化量が略一定で、明るさが変化しているように認識される。すなわち、人間にとって、自然に明るさが変化しているように認識される。
 ここで、調光ステップ及びデューティについて説明する。調光ステップは、例えば、光源301から出射される光の明るさを示すレベルである。例えば、調光ステップが大きくなるほど、光の明るさを示すレベルも大きくなるため、デューティも大きくなる。
 また、デューティは、例えば、光の明るさを示すレベルに対応する明るさの光を光源301から出射させる際に用いられる制御値である。
 図3は、実施形態に係るフェード制御用テーブル202aのデータ構造の一例を示す図である。実施形態に係るフェード制御用テーブル202aには、調光カーブ40上の3点の離散的な点における調光ステップ及びデューティの3つの組み合わせが登録されている。すなわち、記憶部202には、光源301から出射される光の明るさを示すレベルと、レベルに対応する明るさの光を光源301から出射させる際に用いる制御値との組み合わせであって、レベルに対して制御値が非線形の関係を有する3つの組み合わせが記憶されている。
 なお、フェード制御用テーブル202aには、調光カーブ40上の3点以上の点における調光ステップ及びデューティの組み合わせが登録されてもよい。すなわち、記憶部202には、光源301から出射される光の明るさを示すレベルと、レベルに対応する明るさの光を光源301から出射させる際に用いる制御値との組み合わせであって、レベルに対して制御値が非線形の関係を有する3つ以上の組み合わせが記憶されてもよい。
 図3に示すように、フェード制御用テーブル202aのレコードは、「調光ステップ」及び「デューティ」の各項目を有する。「調光ステップ」の項目には、調光カーブ40における調光ステップが登録される。なお、「調光ステップ」の項目に登録される調光ステップは、0以上の整数で示される。
 また、「調光ステップ」の項目には、フェード制御において使用可能な範囲内の調光ステップが登録される。このため、上述したリモコン10は、「調光ステップ」の項目に登録される複数の調光ステップのうち何れかの調光ステップを、目標の調光ステップとしてユーザから受け付ける。例えば、リモコン10は、調光ステップ「1」,「2」,「3」のうち、いずれかの調光ステップを目標の調光ステップとして受け付ける。
 また、「デューティ」の項目には、調光カーブ40における、「調光ステップ」の項目に登録された調光ステップに対応するデューティが登録される。
 例えば、図3に示すフェード制御用テーブル202aの一番左端のレコードには、調光ステップ「1」とデューティ「16(%)」とが対応付けられて登録されている。また、左から2番目のレコードには、調光ステップ「2」とデューティ「32(%)」とが対応付けられて登録されている。また、一番右端のレコードには、調光ステップ「3」とデューティ「64(%)」とが対応付けられて登録されている。
 次に、図4を参照して、実施形態に係るフェード制御処理について説明する。図4は、実施形態に係る制御部203により実行されるフェード制御処理の流れを示すフローチャートである。実施形態に係るフェード制御処理は、制御部203がリモコン10からの調光指示信号を受信した場合に実行される。
 図4に示すように、制御部203は、フェード制御処理の初期化を行う(ステップS101)。図5は、フェード制御処理の初期化の一例を説明するための図である。図5の例では、横軸は、時間を示し、縦軸は、調光ステップを示す。
 図5の例に示すように、例えば、ステップS101では、制御部203は、調光指示信号を受信した際の時間(フェード制御処理の開始時間)tとして0を設定する。
 また、ステップS101では、制御部203は、フェード制御を実行する期間(時間)であるフェード期間tとして、照明システム1において予め定められているフェード期間(例えば2秒)を設定する。なお、フェード期間tは、第1の時間の一例である。
 また、ステップS101では、制御部203は、調光指示信号を受信した際の時間(フェード制御処理の開始時間)Pxとして0を設定する。また、ステップS101では、制御部203は、調光ステップPyとして、時間Px(時間「0」)に対応する調光ステップを設定する。ここで、時間Pxに対応する調光ステップは、調光指示信号を受信した際の調光ステップであり、制御部203は、調光指示信号を受信した際の調光ステップを把握している。このため、制御部203は、調光ステップPyとして、時間Pxにおける調光ステップを設定することができる。
 また、ステップS101では、制御部203は、フェード制御の実行を終了する時間Qxとして、フェード期間tを設定する。また、ステップS101では、制御部203は、調光ステップQyとして、入力された調光指示信号が示す目標の調光ステップを設定する。例えば、制御部203は、調光ステップQyとして、調光指示信号が示す目標の調光ステップ「3」を設定する。
 図5の例において、点P(Px,Py)と点Q(Qx,Qy)とを結ぶ直線(線分)41は、時間と調光ステップとの関係において線形性を有する。
 そして、制御部203は、一定時間α(例えば、α=0.2秒)待機する(ステップS102)。なお、一定時間αは、ドライバ回路204の駆動周波数の逆数(1/駆動周波数)の整数倍の時間である。また、一定時間αは、フェード期間tよりも短い。また、一定時間αは、第2の時間の一例である。
 そして、制御部203は、以下の式(1)により、時間tを更新する(ステップS103)。
  t=tn-1+α  (1)
 なお、時間tは、時間t(時間「0」)からの経過時間を示す。また、「n」は、1以上の整数を示す。
 そして、制御部203は、以下の式(2)にしたがって、線形補間により、時間tにおける調光ステップRyを算出する(ステップS104)。
 Ry=(Py×(Qx-Rx)+Qy×(Rx-Px))/(Qx-Px) (2)
 なお、式(2)において、図5に示すように、Rx=tである。式(2)は、2点P(Px,Py),Q(Qx,Qy)を通る直線41上において、点Rにおける時間Rxが与えられたときに、点Rにおける調光ステップRyを算出するための式である。
 そして、制御部203は、フェード制御用テーブル202aに登録された調光ステップ及びデューティの複数の組み合わせのうち、ステップS104で算出した調光ステップに隣接する調光ステップを含む2つの組み合わせを特定する(ステップS105)。
 ステップS105の具体的な処理について説明する。例えば、ステップS105において、制御部203は、ステップS104で算出した調光ステップの小数点以下を切り上げて、整数の調光ステップ(切り上げ調光ステップと称する)Px´を算出する。そして、制御部203は、フェード制御用テーブル202aの全レコードの中から、切り上げ調光ステップPx´が「調光ステップ」の項目に登録されたレコードを特定する。そして、制御部203は、特定したレコードの「デューティ」の項目に登録されたデューティPy´を特定する。このようにして、制御部203は、切り上げ調光ステップPx´及びデューティPy´の組み合わせを特定する。
 また、ステップS105において、制御部203は、ステップS104で算出した調光ステップの小数点以下を切り捨てて、整数の調光ステップ(切り捨て調光ステップと称する)Qx´を算出する。そして、制御部203は、フェード制御用テーブル202aの全レコードの中から、切り捨て調光ステップQx´が「調光ステップ」の項目に登録されたレコードを特定する。そして、制御部203は、特定したレコードの「デューティ」の項目に登録されたデューティQy´を特定する。このようにして、制御部203は、切り捨て調光ステップQx´及びデューティQy´の組み合わせを特定する。
 ここで、ステップS104で算出された調光ステップが、「1.2」である場合について説明する。この場合には、ステップS105において、制御部203は、調光ステップ「1.2」の小数点以下を切り上げて、整数の切り上げ調光ステップ「2.0」を算出する。そして、ステップS105において、制御部203は、フェード制御用テーブル202aの全レコードの中から、切り上げ調光ステップ「2.0」が「調光ステップ」の項目に登録されたレコードを特定する。そして、ステップS105において、制御部203は、特定したレコードの「デューティ」の項目に登録されたデューティ「32」を特定する。このようにして、ステップS105において、制御部203は、切り上げ調光ステップ「2.0」及びデューティ「32」の組み合わせを特定する。
 また、ステップS105において、制御部203は、調光ステップ「1.2」の小数点以下を切り捨てて、整数の切り捨て調光ステップ「1.0」を算出する。そして、ステップS105において、制御部203は、フェード制御用テーブル202aの全レコードの中から、切り捨て調光ステップ「1.0」が「調光ステップ」の項目に登録されたレコードを特定する。そして、ステップS105において、制御部203は、特定したレコードの「デューティ」の項目に登録されたデューティ「16」を特定する。このようにして、ステップS105において、制御部203は、切り捨て調光ステップ「1.0」及びデューティ「16」の組み合わせを特定する。
 図6は、実施形態に係る制御部203が実行する処理を説明するための図である。図6に示すように、切り上げ調光ステップPx´及びデューティPy´の組み合わせから定まる点P´(Px´,Py´)、及び、切り捨て調光ステップQx´及びデューティQy´の組み合わせから定まる点Q´(Qx´,Qy´)は、調光カーブ40上に位置する。そして、点P´(Px´,Py´)と点Q´(Qx´,Qy´)とを結ぶ直線(線分)42は、調光ステップとデューティとの関係において線形性を有する。
 そして、制御部203は、以下の式(3)にしたがって、線形補間により、図6に示すように、調光ステップRx´に対応するデューティRy´を算出する(ステップS106)。
 Ry´=(Py´×(Qx´-Rx´)+Qy´×(Rx´-Px´))/
    (Qx´-Px´) (3)
 なお、式(3)において、Rx´=Ryである。図6に示すように、式(3)は、2点P´(Px´,Py´),Q´(Qx´,Qy´)を通る直線42上において、点R´における調光ステップRx´が与えられたときに、点R´におけるデューティRy´を算出するための式である。
 そして、制御部203は、ステップS106で算出したデューティRy´をドライバ回路204に送信する(ステップS107)。これにより、調光ステップRx´において、デューティRy´に応じた直流電流が光源301に出力される。
 そして、制御部203は、時間「0」から経過した時間tが、フェード期間t以上となったか否かを判定する(ステップS108)。時間tがフェード期間t未満であると判定した場合(ステップS108:No)には、制御部203は、ステップS102に戻り、ステップS102~S108の処理を再び実行する。すなわち、制御部203は、時間tがフェード期間t以上となるまで、繰り返し何回も、ステップS102~S108の処理を実行する。なお、2回目以降のステップS103では、制御部203は、時間tを時間tn-1とした上で、上述した式(1)により、時間tを更新する。
 以上説明したフェード制御処理では、制御部203は、フェード制御において、調光指示信号が入力された際の調光ステップPyから、調光指示信号が示す目標の調光ステップQyまでの各調光ステップRx´において、記憶部202に記憶された調光ステップとデューティとの複数の組み合わせのうち、調光ステップRx´に隣接する調光ステップを含む2つの組み合わせを用いて、調光ステップRx´におけるデューティRy´を算出する。
 また、フェード制御処理では、制御部203は、フェード期間tの間、一定時間α毎に、調光ステップRy(Rx´)を算出し、算出した調光ステップRyに対応するデューティRy´を算出する。
 図7は、実施形態に係る制御部203が、図3に示すフェード制御用テーブル202aを用いて、上述したαが「0.2秒」である場合に、調光ステップ「1.0」から、目標の調光ステップ「3.0」まで、フェード制御処理を行った結果、算出したデューティRy´、及び、デューティRy´に対応する調光ステップRx´を示す図である。なお、図7において、「段階」は、例えば、デューティRy´を算出した順番を示す。
 図7に示すように、制御部203は、調光ステップ「1.0」から調光ステップ「2.0」までは、一定時間α毎に、フェード制御用テーブル202aに登録された、調光ステップ「1.0」に対応するデューティ「16」と、調光ステップ「2.0」に対応するデューティ「32」とを用いて、線形補間により、デューティRy´を算出する。このため、デューティの変化量が「3.2」((32-16)/5)となる。
 また、図7に示すように、制御部203は、調光ステップ「2.0」から調光ステップ「3.0」までは、一定時間α毎に、フェード制御用テーブル202aに登録された、調光ステップ「2.0」に対応するデューティ「32」と、調光ステップ「3.0」に対応するデューティ「64」とを用いて、線形補間により、デューティRy´を算出する。このため、デューティの変化量が「6.4」((64-32)/5)となる。
 制御部203が、調光ステップ「1.0」から、目標の調光ステップ「3.0」まで、フェード制御処理を行う場合について説明する。この場合には、制御部203は、記憶部202に記憶されている3つの組み合わせを用いて、入力される調光指示信号が示すレベルに対応する明るさまで徐々に光源301から出射される光の明るさが変化するように光源301を制御する。なお、ここでいう3つの組み合わせとは、調光ステップ「1.0」及びデューティ「16」の組み合わせ、調光ステップ「2.0」及びデューティ「32」の組み合わせ、並びに、調光ステップ「3.0」及びデューティ「64」の組み合わせである。
 なお、制御部203は、記憶部202に記憶されている2つ以上の組み合わせを用いて、入力される調光指示信号が示すレベルに対応する明るさまで徐々に光源301から出射される光の明るさが変化するように光源301を制御してもよい。例えば、制御部203は、記憶されている2つの組み合わせを用いて、調光ステップ「1.0」から、入力される調光指示信号が示す調光ステップ「2.0」まで、徐々に光源301から出射される光の明るさが変化するように光源301を制御してもよい。なお、ここでいう2つの組み合わせとは、調光ステップ「1.0」及びデューティ「16」の組み合わせ、並びに、調光ステップ「2.0」及びデューティ「32」の組み合わせである。
 ここで、比較例として、フェード制御において、フェード制御の開始時の調光ステップのデューティと目標の調光ステップのデューティとの差分をフェード期間のステップ数で按分した値を、各調光ステップ間のデューティの変化量とする場合について説明する。すなわち、フェード制御の開始時の調光ステップから目標の調光ステップまで、各調光ステップで、按分された変化量が段階的に加算(又は減算)されたデューティを用いる場合について説明する。
 このような比較例において、調光ステップ「1.0」から、目標の調光ステップ「3.0」まで、フェード制御処理を行った場合について説明する。図8は、比較例において、調光ステップ「1.0」から、目標の調光ステップ「3.0」まで、フェード制御処理を行った際に、算出したデューティ、及び、算出したデューティに対応する調光ステップの一例を示す図である。
 比較例では、調光ステップ「1.0」から、目標の調光ステップ「3.0」まで、0.2秒ごとに10段階で光源から出射される光の明るさを変化させると、図8に示すように、調光ステップ「1.0」から目標の調光ステップ「3.0」まで、デューティの変化量が、「4.8」((64-16)/10)で一定となる。
 図7に示す実施形態に係る光源駆動装置20により算出されたデューティRy´と、図8に示す比較例において算出されたデューティとを比較すると、比較例では、調光カーブ上のフェード制御の開始時の調光ステップに対応する点と、目標の調光ステップに対応する点とを結ぶ線分上のデューティを、フェード制御において用いるデューティとして算出する。このため、算出されるデューティと、調光カーブ上のデューティとの差が比較的大きい。したがって、比較例では、調光カーブに沿ったデューティを算出することが困難である。
 一方、実施形態では、光源駆動装置20の制御部203が、連続する2つの調光ステップPx´,Qx´(例えば、2つの調光ステップ「1」,「2」や、2つの調光ステップ「2」,「3」)に対応する2つのデューティPy´,Qy´(例えば、「16%」,「32%」や、「32%」と「64%」)を用いて、一定時間α毎に、2つの調光ステップPx´,Qx´の間の調光ステップRx´(例えば、調光レベル「1.2」や、調光レベル「2.4」等)に対応するデューティRy´を算出する。そして、制御部203が、一定時間α毎に、算出したデューティRy´を用いて、2つの調光ステップPx´,Qx´の間の調光ステップRx´に対応する明るさの光が出射されるように光源301を制御する。
 このように、実施形態では、制御部203が、一定時間α毎に、調光カーブ40上の3つの点のうち隣接する2点を結ぶ線分上のデューティを、フェード制御において用いるデューティとして算出する。このため、算出されるデューティと、調光カーブ40上のデューティとの差が比較的小さい。したがって、実施形態に係る光源駆動装置20では、調光カーブ40に沿ったデューティを算出することができる。
 また、実施形態では、調光カーブ40上の多数の点ではなく、3点における調光ステップ及びデューティの組み合わせを記憶部202が記憶している。このため、記憶部202は、記憶容量が大きくてコストが高いROMやHDDではなく、記憶容量が小さくてコストが低いROMやHDDにより実現できる。したがって、実施形態に係る光源駆動装置20によれば、コストアップを抑制することができる。
 例えば、実施形態では、制御部203は、一定時間αが1/1000秒であり、かつ、フェード期間が1秒である場合、フェード制御において、1000回デューティを算出することができる。予め記憶部202に記憶させたデューティを用いて同様の処理を行う場合には、1000個の制御値を記憶する記憶容量を有する記憶部を用いる必要がある。
 以上、説明したように、実施形態に係る光源駆動装置20によれば、コストアップを抑制しつつ、デューティが非線形曲線に沿うように、光源301から出射される光の明るさを徐々に変化させる制御を行うことができる。
 また、上述した実施形態において、フェード期間が、照明システム1において予め定められている場合について例示した。しかしながら、ユーザによりフェード期間が可変に設定されてもよい。例えば、リモコン10が、ユーザから目標の調光ステップとともにフェード期間を受け付ける。そして、リモコン10が、受け付けた目標の調光ステップを示す調光指示信号とともにフェード期間を光源駆動装置20に送信し、光源駆動装置20の制御部203が、リモコンからのフェード期間を用いて、フェード制御処理を実行してもよい。すなわち、フェード期間が、入力される時間であってもよい。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 1 照明システム
 10 リモコン
 20 光源駆動装置
 30 照明装置
 201 AC/DC変換部
 202 記憶部
 202a フェード制御用テーブル
 203 制御部
 204 ドライバ回路
 301 光源

Claims (5)

  1.  光源から出射される光の明るさを示すレベルと、前記レベルに対応する明るさの光を前記光源から出射させる際に用いる制御値との組み合わせであって、前記レベルに対して前記制御値が非線形の関係を有する3つ以上の組み合わせを記憶する記憶部と、
     前記記憶部に記憶されている組み合わせのうち、2つ以上の組み合わせを用いて、入力される調光指示信号が示すレベルに対応する明るさまで徐々に前記光源から出射される光の明るさが変化するように前記光源を制御する制御部と、
     を備える光源駆動装置。
  2.  前記制御部は、連続する2つの前記レベルに対応する2つの制御値を用いて、当該2つのレベルの間のレベルに対応する制御値を算出し、算出した制御値を用いて、当該2つのレベルの間のレベルに対応する明るさの光が出射されるように前記光源を制御する、
     請求項1に記載の光源駆動装置。
  3.  前記制御部は、前記2つの制御値を用いて線形補間により当該2つのレベルの間のレベルに対応する制御値を算出する、
     請求項2に記載の光源駆動装置。
  4.  前記制御部は、第1の時間の間、前記第1の時間よりも短い第2の時間毎に、前記光源から出射される光の明るさを示すレベルを算出し、算出したレベルに対応する前記制御値を算出する、
     請求項2又は3に記載の光源駆動装置。
  5.  前記第1の時間は、入力される時間である、
     請求項4に記載の光源駆動装置。
PCT/JP2017/031843 2016-11-30 2017-09-04 光源駆動装置 WO2018100822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17875958.5A EP3550938B1 (en) 2016-11-30 2017-09-04 Light source actuating apparatus
CN201780072897.0A CN109997414B (zh) 2016-11-30 2017-09-04 光源驱动装置
US16/419,335 US11116061B2 (en) 2016-11-30 2019-05-22 Light source driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233148 2016-11-30
JP2016233148A JP6581069B2 (ja) 2016-11-30 2016-11-30 光源駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/419,335 Continuation US11116061B2 (en) 2016-11-30 2019-05-22 Light source driving device

Publications (1)

Publication Number Publication Date
WO2018100822A1 true WO2018100822A1 (ja) 2018-06-07

Family

ID=62241408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031843 WO2018100822A1 (ja) 2016-11-30 2017-09-04 光源駆動装置

Country Status (5)

Country Link
US (1) US11116061B2 (ja)
EP (1) EP3550938B1 (ja)
JP (1) JP6581069B2 (ja)
CN (1) CN109997414B (ja)
WO (1) WO2018100822A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708794A (zh) * 2019-09-29 2020-01-17 天一照明(深圳)有限公司 一种led调光方法、装置及led照明灯具
CN113301682B (zh) * 2021-04-28 2023-02-14 惠州华阳通用电子有限公司 一种led亮度渐变控制方法及系统
CN114245545A (zh) * 2021-11-15 2022-03-25 杭州博联智能科技股份有限公司 智能灯泡的渐变效果控制方法和装置
WO2024059111A1 (en) * 2022-09-13 2024-03-21 Rensselaer Polytechnic Institute Temporal light artifact-free dimming control for lighting sources

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250697A (ja) * 2000-03-03 2001-09-14 Matsushita Electric Works Ltd 照明装置
JP2012256533A (ja) * 2011-06-09 2012-12-27 Sharp Corp 照明システム
JP2014527268A (ja) * 2011-08-08 2014-10-09 クォークスター・エルエルシー 調光可能な照明デバイスおよび同デバイスを調光する方法
JP2015088412A (ja) * 2013-11-01 2015-05-07 有限会社大平技研 Led駆動回路
JP2015525955A (ja) 2012-07-09 2015-09-07 コーニンクレッカ フィリップス エヌ ヴェ 照明装置を制御する方法
JP2016126868A (ja) * 2014-12-26 2016-07-11 矢崎総業株式会社 輝度制御装置及び輝度制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011306A1 (de) * 2000-03-10 2001-09-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorrichtung zur Steuerung von Lichtquellen mit Vorschaltgerät
DE102006028670B4 (de) * 2006-06-22 2018-10-25 Tridonic Gmbh & Co Kg Dimmbares Betriebsgerät mit interner Dimmkennlinie, Verfahren zur Kompensation von Toleranzen von durch ein Betriebsgerät angesteuerten Leuchtdioden und Verfahren zur Konfiguration eines Betriebsgeräts für Leuchtmittel
US8378956B2 (en) * 2007-11-30 2013-02-19 Sharp Laboratories Of America, Inc. Methods and systems for weighted-error-vector-based source light selection
DE102012007017A1 (de) * 2012-04-05 2013-10-10 Tridonic Gmbh & Co. Kg Verfahren zur relativen Ansteuerung einer Leuchte, Steuerung und Beleuchtungssystem
JP6136317B2 (ja) * 2013-02-05 2017-05-31 セイコーエプソン株式会社 光源駆動装置、表示装置および光源駆動方法
US9480115B2 (en) * 2013-02-26 2016-10-25 Cree, Inc. Dynamic light emitting device (LED) lighting control systems and related methods
JP6605792B2 (ja) 2013-08-07 2019-11-13 古河電気工業株式会社 複合標識粒子、これを用いた標的物質の検出方法、コロイド液および標識試薬、ならびに複合標識粒子の製造方法
CN106664758B (zh) * 2014-07-01 2020-05-29 飞利浦照明控股有限公司 Led驱动器、使用驱动器的照明系统和驱动方法
JP6478152B2 (ja) * 2015-02-17 2019-03-06 パナソニックIpマネジメント株式会社 照明システム、コントローラ、変換器および照明方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250697A (ja) * 2000-03-03 2001-09-14 Matsushita Electric Works Ltd 照明装置
JP2012256533A (ja) * 2011-06-09 2012-12-27 Sharp Corp 照明システム
JP2014527268A (ja) * 2011-08-08 2014-10-09 クォークスター・エルエルシー 調光可能な照明デバイスおよび同デバイスを調光する方法
JP2015525955A (ja) 2012-07-09 2015-09-07 コーニンクレッカ フィリップス エヌ ヴェ 照明装置を制御する方法
JP2015088412A (ja) * 2013-11-01 2015-05-07 有限会社大平技研 Led駆動回路
JP2016126868A (ja) * 2014-12-26 2016-07-11 矢崎総業株式会社 輝度制御装置及び輝度制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550938A4

Also Published As

Publication number Publication date
JP6581069B2 (ja) 2019-09-25
JP2018092731A (ja) 2018-06-14
EP3550938A4 (en) 2020-06-24
US11116061B2 (en) 2021-09-07
CN109997414B (zh) 2021-06-11
US20190274200A1 (en) 2019-09-05
EP3550938A1 (en) 2019-10-09
EP3550938B1 (en) 2023-08-09
CN109997414A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018100822A1 (ja) 光源駆動装置
US9480115B2 (en) Dynamic light emitting device (LED) lighting control systems and related methods
TWI469685B (zh) 色溫調節系統及方法
US9041308B2 (en) Systems and methods of controlling the output of a light fixture
KR20100098350A (ko) 광원들을 디밍하기 위한 방법, 관련 장치 및 컴퓨터 프로그램 물건
JP6119080B2 (ja) 点灯装置及びそれを用いた照明システム
US8074085B2 (en) Method for controlling the power supply from a power source to a power consumer
JP2017527954A (ja) Ledドライバ、ドライバを使用する照明システム及び駆動方法
JP6478152B2 (ja) 照明システム、コントローラ、変換器および照明方法
US20170041992A1 (en) Light source driving device and dimming/toning control method
JP2011040227A (ja) 照明装置、照明システム及び照明装置の制御方法
JP6837231B2 (ja) 調光制御装置、照明器具及び照明システム
JP2018206701A (ja) 点灯装置
JP2013073827A (ja) 照明機器の制御装置
EP4059318A1 (en) A light emitting diode, led, based lighting device arranged for emitting a particular color of light, as well as a corresponding method
US9161410B1 (en) Light emitting diode driving apparatus with variable output current and method for the same
JP7021489B2 (ja) 照明装置および照明システム
JP5312266B2 (ja) 照明装置、照明システム及び照明装置の制御方法
JP2020095978A (ja) 照明装置
JP2006278051A (ja) 照明制御装置および照明システム
NL2008086C2 (en) Wireless illumination controller with the function to set the lowest driving power.
JP5713084B2 (ja) 発光ダイオード駆動装置
JP5650014B2 (ja) 調光制御装置および調光制御方法
JP6981324B2 (ja) 照明装置
JP2023049429A (ja) 発光制御装置、発光装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875958

Country of ref document: EP

Effective date: 20190701