WO2018096939A1 - 電動アクチュエータ - Google Patents

電動アクチュエータ Download PDF

Info

Publication number
WO2018096939A1
WO2018096939A1 PCT/JP2017/040474 JP2017040474W WO2018096939A1 WO 2018096939 A1 WO2018096939 A1 WO 2018096939A1 JP 2017040474 W JP2017040474 W JP 2017040474W WO 2018096939 A1 WO2018096939 A1 WO 2018096939A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed reducer
output shaft
electric actuator
drive source
rotor
Prior art date
Application number
PCT/JP2017/040474
Other languages
English (en)
French (fr)
Inventor
卓志 松任
公人 牛田
川合 正浩
加藤 晃央
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/461,046 priority Critical patent/US20210277983A1/en
Priority to CN201780068828.2A priority patent/CN109923331A/zh
Priority to EP17873035.4A priority patent/EP3546794A4/en
Publication of WO2018096939A1 publication Critical patent/WO2018096939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2863Arrangements for adjusting or for taking-up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2214Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with elements for guiding the circulating balls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • F16D7/024Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces
    • F16D7/025Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces with flat clutching surfaces, e.g. discs
    • F16D7/027Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces with flat clutching surfaces, e.g. discs with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2081Parallel arrangement of drive motor to screw axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls

Definitions

  • the present invention relates to an electric actuator.
  • Patent Document 1 JP 2013-169125 A
  • Patent Document 1 JP 2013-169125 A
  • a planetary gear mechanism is used as a speed reducer.
  • an object of the present invention is to provide an electric actuator having high responsiveness and quietness.
  • the present invention includes a motor unit having a stator and a rotor, a drive source output shaft arranged on the inner diameter side of the rotor and outputting rotation of the rotor, and a drive source output
  • An electric actuator having a speed reducer connected to a shaft, wherein the drive source output shaft is hollow, and the speed reducer is a planetary traction drive speed reducer.
  • the drive source output shaft is hollow and its inner diameter side is a space
  • a member that linearly moves the motion conversion mechanism such as a ball screw shaft
  • the member can be prevented from interfering with the motor unit and the speed reducer during the linear motion of the member, and the ball screw shaft of the motion conversion mechanism is overlapped with both the motor unit and the speed reducer in the radial direction to It is possible to arrange the reduction gear and the ball screw shaft coaxially. Therefore, the linear motion type electric actuator can be reduced in size.
  • the rotational drive source can be shared by the rotary motion type electric actuator and the linear motion type electric actuator, both costs can be reduced.
  • the planetary roller of the planetary traction drive reducer can be composed of a rolling bearing.
  • a constant load for generating traction acts on the rolling contact part inside the speed reducer and fluctuates in the torque transmission part between the gears like a gear mechanism such as a planetary gear speed reducer. No load is generated. Therefore, even if a ball is used as the rolling element of the rolling bearing instead of the needle roller, a sufficient load carrying capacity can be ensured. Therefore, it is possible to use a deep groove ball bearing with a low torque instead of a needle roller bearing with a large torque as the rolling bearing constituting the planetary roller, thereby achieving a reduction in torque of the electric actuator.
  • the edge load at the rolling contact portion in the speed reducer can be suppressed. Thereby, the durability of the planetary traction drive speed reducer can be improved.
  • the rotary motion type electric actuator can be configured by connecting the final output shaft to the output side of the reduction gear of the rotational drive source described above.
  • the linear motion type electric actuator can be configured by connecting a motion conversion mechanism to the output side of the reduction gear of the rotational drive source described above.
  • an electric actuator excellent in responsiveness and quietness can be provided.
  • FIG. 2 is a cross-sectional view of the electric actuator taken along the line BB in FIG. 1.
  • FIG. 2 is a cross-sectional view of the electric actuator taken along the line CC in FIG. 1.
  • It is an expanded sectional view of the area
  • It is an expanded sectional view of the area
  • It is a longitudinal cross-sectional view of the electric actuator concerning 2nd embodiment. It is a longitudinal cross-sectional view which expands and shows the deep groove ball bearing which comprises a planetary roller.
  • FIG. 1 is a longitudinal sectional view showing a rotary motion type electric actuator as a first embodiment of the electric actuator.
  • 2 is a cross-sectional view taken along line BB in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line CC in FIG.
  • This rotary motion type electric actuator can be used, for example, for driving a robot arm, automating or assisting operations such as mission, steering, and brake in a vehicle such as an automobile.
  • an electric actuator includes a rotary drive source 1, a speed reducer 2 disposed on one axial side of the rotary drive source 1, and connected to the output side of the rotary drive source 1.
  • the final output shaft 3 connected to the output side of the speed reducer 2 is a main component.
  • Rotational drive source 1 includes a motor unit 5, a drive source output shaft 6, and a torque limiter 7. 1 and 2, the motor unit 5 includes an electric motor including a stator 51 fixed to the casing 8 and a rotor 52 disposed so as to face the inner side in the radial direction of the stator 51 with a gap. Consists of a motor. In this embodiment, a radial gap type is illustrated as an example of the electric motor.
  • the stator 51 includes a stator core 51a formed of a plurality of electromagnetic steel plates laminated in the axial direction, a bobbin 51b made of an insulating material attached to the stator core 51a, and a stator coil 51c wound around the bobbin 51b.
  • the rotor 52 includes an annular rotor core 52a, a plurality of magnets 52b attached to the outer periphery of the rotor core 52a, and an annular rotor inner 52c fixed to the inner periphery of the rotor core 52a.
  • the rotor core 52a is formed of, for example, a plurality of electromagnetic steel plates stacked in the axial direction.
  • the axial length of the rotor inner 52c is longer than the axial length of the rotor core 52a, and the rotor inner 52c protrudes on both axial sides of the rotor core 52a.
  • the rotor inner 52c is rotatably supported with respect to the casing 8 by bearings 53 and 54 disposed on both sides in the axial direction and at portions protruding from the rotor core 52a.
  • bearings 53 and 54 a rolling bearing capable of supporting both a radial load and a thrust load, for example, a deep groove ball bearing can be used.
  • annular recess 521 having an inner diameter larger than that of the other part is formed on the inner peripheral surface of the rotor inner 52c. As shown in FIG. 1, the annular recess 521 is formed, for example, at an end portion on the other axial side of the rotor inner 52 c (opposite side from the reduction gear 2 side). A female serration 522 extending in the axial direction is formed on the inner peripheral surface of the annular recess 521.
  • the drive source output shaft 6 is formed in a hollow cylindrical shape having both ends opened, and a space is formed on the inner diameter side thereof.
  • the rotary drive source 1 has a structure as a hollow motor.
  • the outer peripheral surface of the drive source output shaft 6 is fitted to the inner peripheral surface (excluding the annular recess 521) of the rotor inner 52c with a clearance fit. Therefore, the drive source output shaft 6 can rotate independently of the rotor inner 52c.
  • a male serration 6 a extending in the axial direction is formed on the outer peripheral surface of the end portion on the other axial side of the drive source output shaft 6.
  • An annular gap is formed between the inner peripheral surface of the annular recess 521 of the rotor inner 52c and the outer peripheral surface of the drive source output shaft 6 facing this.
  • the torque limiter 7 is disposed in the annular gap.
  • the torque limiter 7 is disposed in a torque transmission path between the motor unit 5 and the drive source output shaft 6, and transmits the rotational power output from the motor unit 5 to the drive source output shaft 6. Torque transmission is interrupted when a load is applied, and the motor unit 5 and the drive source output shaft 6 are allowed to rotate relative to each other.
  • the torque limiter 7 having an arbitrary configuration can be used as long as it has this function, but in this embodiment, as an example of the torque limiter 7, a case where a multi-plate clutch which is a kind of a friction clutch is used is illustrated. Yes.
  • FIG. 4 is an enlarged cross-sectional view of the region X in FIG.
  • the multi-plate clutch as the torque limiter 7 is disposed between the pair of first friction plates 71 and 71 and the pair of first friction plates 71 and 71 that are spaced apart in the axial direction.
  • the second friction plate 72, an elastic member 73 such as a wave spring that presses the first friction plate 71 and the second friction plate 72, and a pressing plate 74 are provided.
  • the pressing plate 74 is positioned in the axial direction by a retaining ring 75 fitted in an annular groove on the inner peripheral surface of the rotor inner 52 c, and applies a predetermined pressing force (axial load) to the elastic member 73.
  • the first friction plate 71 and the pressing plate 74 are fitted to a female serration 522 provided on the inner peripheral surface of the annular recess 521 of the rotor inner 52c.
  • a second friction plate 72 is fitted to a male serration 6 a provided on the outer peripheral surface of the drive source output shaft 6. A frictional force is generated between the first friction plate 71 and the second friction plate 72 by the biasing force of the elastic member 73.
  • the motor unit Compared with the case where the torque limiter 7 is arranged at the position adjacent to the axial direction 5, the axial dimension of the rotary drive source 1 and further the electric actuator can be reduced.
  • the casing 8 is divided at one place or a plurality of places in the axial direction for the convenience of assembly.
  • the casing 8 is divided into a bottomed cylindrical bottom portion 81, a cylindrical portion 82 that is open at both ends, and a lid portion 83.
  • a lid portion 83 is disposed on one axial side of the cylindrical portion 82, and a bottom portion 81 is disposed on the other axial side of the cylindrical portion 82.
  • the bottom part 81, the cylinder part 82, and the cover part 83 are integrated using fastening means, such as a volt
  • the bearing 53 on one axial side is fixed to the inner peripheral surface of the cylindrical portion 82, and the bearing 54 on the other axial side is fixed to the inner peripheral surface of the bottom 81.
  • a planetary traction drive speed reducer having a sun roller 21, an outer ring 22, a plurality of planetary rollers 23, and a carrier 24 is used as the speed reducer 2.
  • the traction drive means a power transmission mechanism that transmits torque via an oil film under elastic fluid lubrication.
  • the end of the motor output shaft 6 formed in the hollow on the one side in the axial direction is in a position protruding to the one side in the axial direction from the motor unit 5.
  • One end of the prime mover output shaft 6 in the axial direction functions as a hollow sun roller 21 constituting the speed reducer 2.
  • the inner diameter side is a space where no other member exists.
  • the electric actuator according to the present embodiment has a configuration in which the prime mover output shaft 6 and the sun roller 21 are integrated, but both are formed as separate members.
  • the ring-shaped solar roller 21 is press-fitted into the outer periphery of the prime mover output 6. It may be fixed by such means.
  • Each planetary roller 23 of the speed reducer 2 is composed of a rolling bearing 25.
  • the rolling bearing 25 is disposed between an outer ring 25a having an outer raceway surface, an inner ring 25b having an inner raceway surface, and an outer raceway surface of the outer ring 25a and an inner raceway surface of the inner ring 25b.
  • a plurality of rolling elements 25c Each rolling element is held at equal intervals in the circumferential direction by a cage (not shown).
  • An inner ring 25 b of each rolling bearing 25 is press-fitted and fixed to a hollow shaft 26.
  • Each shaft 26 is supported by a carrier 24 so as to be able to rotate.
  • a deep groove ball bearing is used as the rolling bearing 25.
  • the outer ring 25 a of the rolling bearing 25 functions as a planetary roller 23 that is rotatably supported by the shaft 26.
  • a gap between the inner peripheral surface of the outer ring 25a and the outer peripheral surface of the inner ring 25b is sealed with a sealing member.
  • the rolling bearing 25 constituting the planetary roller 23 includes such a sealing member. do not do. Accordingly, the lubrication inside each rolling bearing 25 is performed by a lubricant (for example, grease) enclosed in the reduction gear 2 for forming an oil film at each rolling contact portion.
  • a lubricant for example, grease
  • FIG. 5 is an enlarged cross-sectional view of the region Y in FIG.
  • the outer ring 22 integrally includes a main body portion 22a having a U-shaped cross section and flange portions 22b protruding on both sides in the axial direction of the main body portion 22a.
  • the flange portion on one axial side of the outer ring 22 accommodated on the inner periphery of the cylindrical portion 82. 22b protrudes from the end face of the cylindrical portion 82.
  • the lid 83 is pushed in until it comes into contact with the end surface of the cylindrical portion 82, and when both are coupled using a bolt or the like, the outer ring 22 pressed against the lid 83 is elastically deformed as indicated by a two-dot chain line, The portion 22a swells toward the inner diameter side (FIG. 4 shows the degree of elastic deformation exaggerated).
  • the rolling contact portion between the outer ring 22 and the planetary roller 23 and the rolling contact portion between the planetary roller 23 and the sun roller 21 are brought into a pressure contact state, and traction (preloading) is applied to each rolling contact portion. ) Is given.
  • the planetary traction drive speed reducer 2 including the sun roller 21, the outer ring 22, the planetary roller 23, and the carrier 24 is configured.
  • a ring-shaped adjusting member 28 is disposed between the flange portion 22 b on the other axial side and the cylindrical portion 82.
  • the final output shaft 3 is fixed to the inner peripheral surface of the hollow shaft portion of the carrier 24 on the output side of the speed reducer 2 by means such as press fitting.
  • the end portion on the other axial side of the final output shaft 3 is rotatably supported with respect to the drive source output shaft 6 by a rolling bearing 31 (for example, a deep groove ball bearing) fixed to the inner periphery thereof.
  • a rolling bearing 31 for example, a deep groove ball bearing
  • a linear motion type electric actuator will be described as a second embodiment of the present invention.
  • This linear motion type electric actuator is used, for example, in an electric brake installed in a vehicle such as an automobile, and has the configuration shown in FIG.
  • the configuration from the motor unit 5 to the speed reducer 2 is common to the first embodiment.
  • the speed reducer 2 is constituted by a planetary traction drive speed reducer
  • the planetary roller 23 is constituted by a rolling bearing 25 (deep groove ball bearing).
  • the second embodiment is different from the first embodiment in that a motion conversion mechanism 9 is used in place of the final output shaft 3.
  • the motion conversion mechanism 9 is composed of, for example, a ball screw or a sliding screw having a nut and a screw shaft.
  • the ball screw 91 includes a ball screw nut 92, a ball screw shaft 93, a large number of balls 94, and a top (not shown) as a circulation member as main components.
  • a spiral groove is formed on the inner peripheral surface of the ball screw nut 92, and a spiral groove is formed on the outer peripheral surface of the ball screw shaft 93.
  • a ball 94 is loaded between the spiral grooves.
  • a hollow shaft portion of the carrier 24 on the output side of the speed reducer 2 is fixed to the outer peripheral surface of the ball screw nut 92 by means such as press fitting.
  • a hollow cylindrical guide member 95 fixed to the bottom 81 of the casing 8 is disposed on the inner diameter side of the hollow drive source output shaft 6.
  • a guide groove (not shown) extending in the axial direction is formed on the inner periphery of the guide member 95.
  • a protrusion protruding in the radial direction is provided on the ball screw shaft 93 by, for example, pressing a pin into a hole 93a provided at the other axial end of the ball screw shaft 93, and this protrusion is used as a guide member.
  • the ball screw shaft 93 can be prevented from rotating.
  • the casing 8 in the second embodiment includes a bottom part 81, a cylinder part 82, a lid part 83, and a pressure part 84.
  • the configurations and functions of the bottom 81 and the cylinder 82 are the same as those of the bottom 81 and the cylinder 82 described in the first embodiment.
  • the pressurizing part 84 is sandwiched between the cylinder part 82 and the lid part 83.
  • the bottom 81, the cylinder 82, the lid 83, and the pressurizing part 84 are joined together by the bolt member 86 so that the end surface of the pressurizing part 84 is in pressure contact with the end surface of the cylindrical part 82.
  • the outer ring 22 pressed by the pressing portion 84 is elastically deformed toward the inner diameter side. Therefore, traction (preload) is applied to each rolling contact portion of the planetary traction drive speed reducer 2 as the speed reducer 2.
  • the ball screw nut 92 is rotatably supported with respect to the lid portion 83 of the casing 8 by a double row rolling bearing 96 (for example, a double row deep groove ball bearing) fixed to the outer peripheral surface thereof.
  • This rolling bearing 96 can support an axial load acting on the ball screw shaft 93. Further, the ball screw nut 92 can be supported at both ends to prevent the ball screw nut 92 from being inclined.
  • the torque of the motor unit 5 is transmitted to the ball screw nut 92 via the torque limiter 7, the drive source output shaft 6, and the speed reducer 2. Therefore, by driving the motor unit 4 in the forward / reverse direction, the ball screw nut 92 can be rotated in the forward / reverse direction, and the ball screw shaft 93 can be moved back and forth (linear motion) in the axial direction.
  • the electric actuator according to the present invention uses the planetary traction drive speed reducer as the speed reducer 2. Therefore, the backlash is reduced as compared with the case where a planetary gear speed reducer is used as the speed reducer 2. Therefore, it is possible to improve the responsiveness of the electric actuator and improve the quietness regardless of the rotational motion type (first embodiment) or the linear motion type (second embodiment).
  • the outer ring 25a of the rolling bearing 25 that is in rolling contact with the outer peripheral surface of the drive source output shaft 6 is in pressure contact with each other in a high surface pressure state. Therefore, an edge load occurs at the end of the rolling contact portion, which may reduce the fatigue life of the outer ring 25a and the drive source output shaft 6.
  • the crowning may be provided on the outer peripheral surface of the drive source output shaft 6, or may be provided on both the outer peripheral surface of the outer ring 25 a and the outer peripheral surface of the drive source output shaft 6. By forming the crowning on one or both of the rolling contact surfaces in this way, the edge load can be reduced and the fatigue life of the outer ring 25a and the drive source output shaft 6 can be increased.
  • full crowning may be employed in addition to the partial crowning shown in FIG.
  • arc crowning in which the bus bar shape is formed by one or a plurality of arcs, or logarithmic crowning in which the bus bar shape is approximated to a logarithmic curve can be used.
  • crowning may be provided on the inner peripheral surface of the outer ring 22 from the viewpoint of preventing edge load.
  • the main body portion 22a of the outer ring 22 is deformed, the vicinity of the axial center portion of the rolling contact portion has a high surface pressure. Therefore, edge loading is performed at the end of the rolling contact portion. It is unlikely to occur. Accordingly, there is little need to form a crowning on the inner peripheral surface of the outer ring 22.
  • the rotary drive source 1 has a hollow structure using the hollow drive source output shaft 6, and a space for accommodating the ball screw shaft 93 is secured on the inner diameter side of the drive source output shaft 6. Yes. Further, the sun roller 21 constituting the speed reducer 2 is also hollow. Therefore, the ball screw shaft 93 can be arranged coaxially with the motor portion 5 and further on the inner diameter side of the speed reducer portion 2, so that the linear motion type electric actuator can be miniaturized.
  • the rotational drive source 1 and the speed reducer 2 are substantially the same. It has a common configuration. Therefore, the rotary drive source 1 and the speed reducer 2 can be shared by both types of electric actuators. That is, in the electric actuator of the first embodiment, the ball screw shaft 93 is used on the inner periphery of the drive source output shaft 6 without using the final output shaft 3, and the second output shaft 3 is used. The basic configuration of the electric actuator of the embodiment can be obtained. Thus, by sharing the rotary drive source 1 and the speed reducer 2, the cost of the electric actuator can be reduced. In addition, it becomes easy to increase the variations of the rotary motion type and linear motion type electric actuators, and the product development force can be enhanced.
  • the case where the structure for deforming the outer ring 22 to the inner diameter side when the lid portion 83 is attached is described as the mechanism for giving traction to the planetary traction drive speed reducer 2.
  • Any configuration can be adopted.
  • traction can be imparted to the rolling contact portion in the speed reducer 2 by press-fitting the outer ring 22 into the inner peripheral surface of the casing 82 with a predetermined tightening margin and reducing the outer ring 22 to the inner diameter side.
  • a radial gap type electric motor is exemplified as the motor unit 5, but a motor having an arbitrary configuration can be adopted.
  • an axial gap type electric motor including a stator fixed to a casing and a rotor arranged so as to face the inner side in the axial direction of the stator with a gap may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Friction Gearing (AREA)
  • Retarders (AREA)
  • Braking Arrangements (AREA)

Abstract

電動アクチュエータは、ステータ51およびロータ52を有するモータ部5と、ロータの内径側に配置され、ロータの回転を出力する駆動源出力軸6と、駆動源出力軸に接続された減速機2とを有する。駆動源出力軸6を中空状に形成すると共に、減速機2を遊星トラクションドライブ減速機で構成する。

Description

電動アクチュエータ
 本発明は、電動アクチュエータに関する。
 モータの出力を減速機で減速して駆動対象に伝達する回転式の電動アクチュエータとして、特開2013-169125号公報(特許文献1)に記載のものが知られている。この回転式アクチュエータでは、減速機として遊星歯車機構が用いられている。
特開2013-169125号公報
 特許文献1に記載のアクチュエータのように、減速機として歯車機構を採用すると、バックラッシが不可避となるため、応答性の向上に限界を生じる。また、歯車同士の噛み合いによって騒音が発生するため、静粛性が求められる用途には不向きとなる。
 電動アクチュエータとしては、特許文献1に記載のように、回転運動を出力する回転運動タイプの他に、モータで出力された回転運動を、減速機を介してボールねじに伝達することにより直線運動に変換する直線運動型も存在する。特許文献1のアクチュエータをベースとして直線運動型の電動アクチュエータを製作しようとすると、軸方向長さが長大なものとなる。
 本発明は、以上の問題点に鑑み、高い応答性および静粛性を備えた電動アクチュエータを提供することを目的とする。
 前述の目的を達成するための技術的手段として、本発明は、ステータおよびロータを有するモータ部と、前記ロータの内径側に配置され、ロータの回転を出力する駆動源出力軸と、駆動源出力軸に接続された減速機とを有する電動アクチュエータにおいて、前記駆動源出力軸が中空であり、前記減速機が遊星トラクションドライブ減速機であることを特徴とするものである。
 このように減速機として遊星トラクションドライブ減速機を使用することにより、バックラッシが少なくなる。そのため、電動アクチュエータの応答性を向上させ、さらに静粛性を高めることが可能となる。
 また、駆動源出力軸が中空であり、その内径側が空間となっているので、駆動源出力軸の内径側に、運動変換機構の直線運動する部材、例えばボールねじ軸を配置することができる。これにより、当該部材の直線運動に際して当該部材がモータ部や減速機と干渉することを防止でき、運動変換機構のボールねじ軸をモータ部および減速機の双方と半径方向で重畳させて、モータ部、減速機、およびボールねじ軸を同軸に配置することが可能となる。従って、直線運動型電動アクチュエータを小型化することができる。また、回転運動型の電動アクチュエータと直線運動型の電動アクチュエータで回転駆動源を共用化できるため、双方の低コスト化を図ることができる。
 遊星トラクションドライブ減速機の遊星ローラは転がり軸受で構成することができる。トラクションドライブ減速機を採用した場合、減速機内部の転がり接触部には、トラクションを発生させるための一定荷重が作用し、遊星歯車減速機等の歯車機構のように歯車間のトルク伝達部で変動荷重が発生することはない。従って、転がり軸受の転動体として、針状ころではなく、玉を使用しても十分な荷重負荷能力を確保することができる。そのため、遊星ローラを構成する転がり軸受として、トルクが大きい針状ころ軸受ではなく、トルクが低い深溝玉軸受を使用することが可能となり、これによって電動アクチュエータの低トルク化が達成される。
 遊星ローラおよび太陽ローラの何れか一方または双方にクラウニングを設けることで、減速機内の転がり接触部でのエッジロードを抑制することができる。これにより、遊星トラクションドライブ減速機の耐久性を向上させることができる。
 回転運動型電動アクチュエータは、以上に述べた回転駆動源の減速機の出力側に最終出力軸を接続することで構成することができる。
 また、直線運動型電動アクチュエータは、以上に述べた回転駆動源の減速機の出力側に運動変換機構を接続することで構成することができる。
 本発明によれば、応答性および静粛性に優れた電動アクチュエータを提供することができる。
第一実施形態にかかる電動アクチュエータの縦断面図である。 図1中のB-B線で矢視した電動アクチュエータの横断面図である。 図1中のC-C線で矢視した電動アクチュエータの横断面図である。 図1中の領域Xの拡大断面図である。 図1中の領域Yの拡大断面図である。 第二実施形態にかかる電動アクチュエータの縦断面図である。 遊星ローラを構成する深溝玉軸受を拡大して示す縦断面図である。
 本発明にかかる、電動アクチュエータの実施形態を図面に基づいて詳述する。
 図1は、電動アクチュエータの第一実施形態として、回転運動型の電動アクチュエータを示す縦断面図である。図2は、図1中のB-B線断面図であり、図3は図1中のC-C線断面図である。この回転運動型の電動アクチュエータは、例えばロボットアームの駆動や、自動車等の車両におけるミッション、ステアリング、ブレーキ等の操作自動化あるいは補助等に使用することができる。
 図1に示すように、本発明にかかる電動アクチュエータは、回転駆動源1と、回転駆動源1の軸方向一方側に配置され、かつ回転駆動源1の出力側に接続された減速機2と、減速機2の出力側に接続された最終出力軸3とを主要な構成要素とする。以上の各構成要素のうち、先ず回転駆動源1の構造を説明する。
 回転駆動源1は、モータ部5と、駆動源出力軸6と、トルクリミッタ7とを具備する。このうち、モータ部5は、図1および図2に示すように、ケーシング8に固定されたステータ51と、ステータ51の半径方向内側に隙間をもって対向するように配置されたロータ52とを備える電動モータで構成される。本実施形態では、電動モータの一例として、ラジアルギャップ型を例示している。
 ステータ51は、軸方向に積層した複数の電磁鋼板で形成されたステータコア51aと、ステータコア51aに装着された絶縁材料からなるボビン51bと、ボビン51bに巻回されたステータコイル51cとを有する。
 ロータ52は、環状のロータコア52aと、ロータコア52aの外周に取り付けられた複数のマグネット52bと、ロータコア52aの内周に固定された環状のロータインナ52cとで構成される。ロータコア52aは、例えば軸方向に積層した複数の電磁鋼板で形成される。ロータインナ52cの軸方向長さはロータコア52aの軸方向長さよりも長く、ロータコア52aの軸方向両側にロータインナ52cが突出している。ロータインナ52cは、その軸方向両側で、かつロータコア52aから突出した部分に配置された軸受53,54によってケーシング8に対して回転自在に支持されている。軸受53,54としては、ラジアル荷重とスラスト荷重の双方を支持できる転がり軸受、例えば深溝玉軸受を使用することができる。
 ロータインナ52cの内周面には、内径寸法を他所よりも大きくした環状凹部521が形成される。この環状凹部521は、図1に示すように、例えばロータインナ52cの軸方向他方側(減速機2側とは反対側)の端部に形成される。環状凹部521の内周面には、軸方向に延びる雌セレーション522が形成されている。
 図1に示すように、駆動源出力軸6は、両端を開口した中空の円筒状に形成され、その内径側には空間が形成されている。このように駆動源出力軸6を中空にすることで、回転駆動源1は中空モータとしての構造を有することになる。駆動源出力軸6の外周面は、ロータインナ52cの内周面(環状凹部521を除く)に対して隙間嵌めで嵌合されている。そのため、駆動源出力軸6は、ロータインナ52cから独立して回転することができる。駆動源出力軸6の軸方向他方側の端部の外周面には、軸方向に延びる雄セレーション6aが形成されている。
 ロータインナ52cの環状凹部521の内周面と、これに対向する駆動源出力軸6の外周面との間に、環状隙間が形成される。本実施形態では、この環状隙間にトルクリミッタ7が配置されている。
 トルクリミッタ7は、モータ部5と駆動源出力軸6との間のトルク伝達経路中に配置されており、モータ部5から出力された回転動力を駆動源出力軸6に伝達する一方で、過負荷が作用した時にトルク伝達を遮断し、モータ部5と駆動源出力軸6との相対回転を許容する機能を有する。この機能を有する限り任意の構成のトルクリミッタ7を使用することができるが、本実施形態では、トルクリミッタ7の一例として、摩擦式クラッチの一種である多板クラッチを使用した場合を例示している。
 図4は、図1中の領域Xを拡大して示す断面図である。図4に示すように、トルクリミッタ7としての多板クラッチは、軸方向に離間して配置された一対の第1摩擦板71,71と、一対の第1摩擦板71,71の間に配置された第2摩擦板72と、第1摩擦板71と第2摩擦板72を圧接させる波形ばね等の弾性部材73と、押圧板74とを備える。押圧板74は、ロータインナ52cの内周面の環状溝に嵌合された止め輪75により軸方向で位置決めされ、所定の押圧力(軸方向荷重)を弾性部材73に付与する。
 ロータインナ52cの環状凹部521の内周面に設けられた雌セレーション522に第1摩擦板71および押圧板74が嵌合されている。また、駆動源出力軸6の外周面に設けられた雄セレーション6aに第2摩擦板72が嵌合されている。そして、弾性部材73の付勢力により、第1摩擦板71と第2摩擦板72間に摩擦力が発生する。
 モータ部5と駆動源出力軸6の間に作用するトルクが両摩擦板71,72間に作用する摩擦力以下であるときは、両摩擦板71,72が一体回転するため、モータ部5の回転動力が両摩擦板71,72を介して駆動源出力軸6に伝達される。従って、モータ部5で生じたトルクがトルクリミッタ7、駆動源出力軸6、減速機2を介して最終出力軸3に伝達され、最終出力軸3に接続された駆動対象が回転駆動される。
 モータ部5と駆動源出力軸6との間に作用するトルクが両摩擦板71,72間に作用する摩擦力を上回ると、一方の摩擦板が他方の摩擦板に対して滑るため、モータ部5から駆動源出力軸6へのトルク伝達が遮断される。これにより、駆動源出力軸6とロータインナ52cの相対回転を許容する事が可能となる。従って、例えば駆動対象が障害物と衝突等して、最終出力軸3の回転がロックされた場合でも、ロータインナ52cと駆動源出力軸6との間に滑りが生じてトルク伝達経路が遮断されるため、モータ部5が慣性によりそのまま回り続けようとしている状況下でも減速機2に過大な負荷が作用することを防止することができ、減速機2の破損を防止することができる。これとは逆に、何らかの理由でモータ側の回転トルクが極端に大きくなった場合にも、減速機2等への過大負荷の作用を防止することができる。
 また、上記のように、ロータ52の内周面(ロータインナ52cの内周面)と、これに対向する駆動源出力軸6の外周面との間にトルクリミッタ7を配置することにより、モータ部5の軸方向隣接位置にトルクリミッタ7を配置する場合に比べ、回転駆動源1、さらには電動アクチュエータの軸方向寸法を小さくすることができる。
 ケーシング8は、組み立ての都合上、軸方向の一箇所もしくは複数箇所で分割される。本実施形態では、ケーシング8を、有底円筒状の底部81と、両端を開口した筒部82と、蓋部83とに分割している。筒部82の軸方向一方側に蓋部83が配置され、筒部82の軸方向他方側に底部81が配置される。底部81、筒部82、および蓋部83は、ボルト等の締結手段を用いて一体化される。ロータインナ52cを支持する二つの軸受53,54のうち、軸方向一方側の軸受53は筒部82の内周面に固定され、軸方向他方側の軸受54は底部81の内周面に固定される。
 次に、電動アクチュエータの主要構成要素である減速機2の構成を説明する。本実施形態では、減速機2として、太陽ローラ21と、外側リング22と、複数の遊星ローラ23と、キャリア24とを有する遊星トラクションドライブ減速機を使用している。なお、トラクションドライブとは、弾性流体潤滑下で油膜を介してトルクを伝達する動力伝達機構を意味する。
 中空に形成された原動機出力軸6の軸方向一方側の端部は、モータ部5よりも軸方向一方側に突出した位置にある。この原動機出力軸6の軸方向一方側の端部が、減速機2を構成する中空の太陽ローラ21として機能する。原動機出力軸6のうち、太陽ローラ21を除く部分では、その内径側が他部材の存在しない空間となっている。本実施形態にかかる電動アクチュエータは、原動機出力軸6と太陽ローラ21を一体化させた構成を有するが、両者を別部材で形成し、例えば原動機出力6の外周にリング状の太陽ローラ21を圧入等の手段で固定してもよい。
 減速機2の各遊星ローラ23は、転がり軸受25で構成されている。転がり軸受25は、図3に示すように、外側軌道面を有する外輪25aと、内側軌道面を有する内輪25bと、外輪25aの外側軌道面と内輪25bの内側軌道面との間に配置された複数の転動体25cとを具備する。各転動体は、図示しない保持器によって円周方向で等間隔に保持されている。各転がり軸受25の内輪25bは中空の軸26に圧入固定されている。各軸26はキャリア24によって自転可能に支持されている。転がり軸受25としては、例えば深溝玉軸受が使用される。転がり軸受25の外輪25aが、軸26に対して回転自在に支持された遊星ローラ23として機能する。
 一般的な転がり軸受では、外輪25aの内周面と内輪25bの外周面との間の隙間がシール部材で密封されるが、遊星ローラ23を構成する転がり軸受25はこの種のシール部材を具備しない。従って、各転がり軸受25の内部の潤滑は、各転がり接触部での油膜形成のために減速機2内部に封入された潤滑剤(例えばグリース)によって行われる。
 図5は、図1中の領域Yを拡大して示す断面図である。図5に示すように、外側リング22は、断面U字状の本体部22aと、本体部22aの軸方向両側に突出するフランジ部22bとを一体に有する。ケーシング8の筒部82と蓋部83を結合する前の状態では、図中に実線で示すように、筒部82の内周に収容された外側リング22のうち、軸方向一方側のフランジ部22bが筒部82の端面よりも突出している。その後、蓋部83を筒部82の端面に当接するまで押し込み、ボルト等を用いて両者を結合すると、蓋部83に押圧された外側リング22が二点鎖線で示すように弾性変形し、本体部22aが内径側に膨らむ(図4は、弾性変形の程度を誇張して描いている)。
 外側リング22の弾性変形により、外側リング22と遊星ローラ23の間の転がり接触部、さらには遊星ローラ23と太陽ローラ21の間の転がり接触部が圧接状態となり、各転がり接触部にトラクション(予圧)が付与される。かかる構成から、太陽ローラ21、外側リング22、遊星ローラ23、およびキャリア24からなる遊星トラクションドライブ減速機2が構成される。
 外側リング22のうち、軸方向他方側のフランジ部22bと筒部82の間には、リング状の調整部材28が配置される。蓋部83の組み付け前の状態で、筒部82の端面からの外側リング22のフランジ部22bの突出量tが規定範囲内となる適正厚さの調整部材28を選択して使用することで(マッチング)、外側リング22の変形程度を均一化して、減速機2の内部に付与するトラクションを均一化することができる。
 減速機2の出力側となるキャリア24の中空軸部の内周面には、最終出力軸3が圧入等の手段で固定される。最終出力軸3の軸方向他方側の端部は、その内周に固定された転がり軸受31(例えば深溝玉軸受)により駆動源出力軸6に対して回転自在に支持されている。かかる構成から、モータ部5を正逆方向に駆動することで、最終出力軸3が正逆方向に回転し、駆動対象が正逆方向に回転駆動される。
 次に、本発明の第二実施形態として、直線運動型の電動アクチュエータを説明する。この直線運動型の電動アクチュエータは、例えば自動車等の車両に装備される電動ブレーキ等に使用されるもので、図6に示す構成を有する。この第二実施形態の電動アクチュエータでは、モータ部5から減速機2に至るまでの構成は、第一実施形態と共通する。従って、減速機2は遊星トラクションドライブ減速機で構成され、その遊星ローラ23は転がり軸受25(深溝玉軸受)で構成されている。第二実施形態は、最終出力軸3に代えて運動変換機構9を使用した点が第一実施形態に対する主要な相違点となる。
 運動変換機構9は、例えばナットとねじ軸とを有する、ボールねじ、あるいは滑りねじで構成される。本実施形態では、運動変換機構9としてボールねじ91を使用した場合を例示している。ボールねじ91は、ボールねじナット92、ボールねじ軸93、多数のボール94、および循環部材としてのこま(図示省略)を主な構成要素とする。ボールねじナット92の内周面に螺旋状溝が形成され、ボールねじ軸93の外周面に螺旋状溝が形成されている。両螺旋状溝の間にボール94が装填される。ボールねじナット92の外周面には、減速機2の出力側となるキャリア24の中空軸部が圧入等の手段で固定されている。
 中空をなす駆動源出力軸6の内径側には、ケーシング8の底部81に固定された中空筒状のガイド部材95が配置される。ガイド部材95の内周には、軸方向に延びる図示しないガイド溝が形成されている。詳細な図示は省略するが、ボールねじ軸93の軸方向他端部に設けた孔93aにピンを圧入する等してボールねじ軸93に半径方向に突出する突起を設け、この突起をガイド部材95のガイド溝に嵌合させることにより、ボールねじ軸93の回り止めを行うことができる。
 第二実施形態におけるケーシング8は、底部81,筒部82,蓋部83,および加圧部84で構成される。底部81および筒部82の構成や機能は、第一実施形態で説明した底部81および筒部82と共通している。加圧部84は、筒部82と蓋部83の間に挟まれている。第一実施形態と同様に、底部81、筒部82,蓋部83,および加圧部84をボルト部材86で一体に結合することで、加圧部84の端面が筒部82の端面に圧接し、加圧部84に押圧された外側リング22が内径側に弾性変形する。そのため、減速機2としての遊星トラクションドライブ減速機2の各転がり接触部にトラクション(予圧)が付与される。
 ボールねじナット92は、その外周面に固定した複列の転がり軸受96(例えば複列深溝玉軸受)により、ケーシング8の蓋部83に対して回転自在に支持される。この転がり軸受96により、ボールねじ軸93に作用するアキシャル荷重を支持することが可能となる。また、ボールねじナット92を両持ち構造にして、ボールねじナット92の傾きを防止することができる。
 この第二実施形態では、モータ部5のトルクが、トルクリミッタ7、駆動源出力軸6、減速機2を介してボールねじナット92に伝達される。従って、モータ部4を正逆方向に駆動することで、ボールねじナット92を正逆方向に回転させて、ボールねじ軸93を軸方向に進退移動(直線運動)させることができる。
 以上に述べたように、本発明にかかる電動アクチュエータでは、減速機2として遊星トラクションドライブ減速機を使用している。そのため、減速機2として、遊星歯車減速機を使用する場合に比べ、バックラッシが少なくなる。従って、回転運動型(第1実施形態)および直線運動型(第2実施形態)を問わず、電動アクチュエータの応答性を向上させると共に、静粛性を高めることが可能となる。
 遊星歯車減速機等の歯車の噛み合いを利用した動力伝達では、トルク伝達部で変動荷重が発生する。従って、高トルクを伝達する場合、歯車を支持する軸受としては、ラジアル方向に高い負荷容量を有する針状ころ軸受を使用する場合が多い。これに対し、トラクションドライブ減速機2を採用した場合、減速機2の転がり接触部には、トラクションを発生させるための定荷重(予圧)のみが作用し、変動荷重は殆ど作用しない。従って、遊星ローラ23を構成する転がり軸受25の転動体25cとして、針状ころではなく、玉を使用することができ、そのために転がり軸受25として、トルクが大きい針状ころ軸受ではなく、トルクが小さい深溝玉軸受を使用することが可能となる。従って、電動アクチュエータの低トルク化を達成することができる。深溝玉軸受は、電動アクチュエータの組立中に分解することがないので、組み立て作業性が良好になる、という利点も得られる。
 遊星トラクションドライブ減速機2では、転がり接触する転がり軸受25の外輪25aと駆動源出力軸6の外周面が高面圧状態で圧接している。そのため、転がり接触部の端部でエッジロードが生じ、これが外輪25aや駆動源出力軸6の疲労寿命を低下させるおそれがある。このエッジロードを抑制するため、図7に示すように、外輪25aの外周面にクラウニングを形成するのが好ましい(なお、図7ではクラウニングのドロップ量δを誇張して描いているが、実際のドロップ量δは数十μm程度である)。クラウニングは、駆動源出力軸6の外周面に設けてもよく、外輪25aの外周面と駆動源出力軸6の外周面の双方に設けることもできる。このように転がり接触面のどちらか一方または双方にクラウニングを形成することで、エッジロードを小さくして外輪25aや駆動源出力軸6の疲労寿命を高めることができる。クラウニングとしては、図7に示すパーシャルクラウニングの他、フルクラウニングを採用してもよい。また、クラウニングとしては、母線形状を一又は複数の円弧で形成した円弧クラウニングや、母線形状を対数曲線に近似させた対数クラウニングを使用することもできる。
 なお、外側リング22の内周面と転がり軸受25の外輪25aの外周面も高面圧で圧接するため、エッジロード防止の観点から、外側リング22の内周面にクラウニングを設けてもよい。しかしながら、本実施形態は、外側リング22の本体部22aが変形した際に、転がり接触部の軸方向中央部付近が高面圧となる構造であるため、転がり接触部の端部でエッジロードを生じる可能性は低い。従って、外側リング22の内周面にクラウニングを形成する必要性は乏しい。
 第二実施形態として説明した直線運動型の電動アクチュエータでは、ボールねじ軸93が進退移動するスペースが必要となるため、モータ部5と減速機2とを軸方向隣接位置に配置した場合には、進退移動するボールねじ軸93とモータ部5もしくは減速機2とが干渉するおそれがある。これを回避するには、ボールねじ軸93をモータ部5および減速機2の軸心に対して偏芯させて配置せざるを得ず、電動アクチュエータが大型化する。
 これに対し、第二実施形態では、中空の駆動源出力軸6を用いて回転駆動源1を中空構造とし、駆動源出力軸6の内径側にボールねじ軸93を収容するスペースを確保している。さらに減速機2を構成する太陽ローラ21も中空にしている。従って、ボールねじ軸93をモータ部5、さらには減速機部2の内径側に、これらと同軸に配置することができ、そのために直線運動型の電動アクチュエータを小型化することができる。
 図1に示す第一実施形態(回転運動型)の電動アクチュエータと、図6に示す第二実施形態(直線運動型)の電動アクチュエータを対比すると、回転駆動源1および減速機2は実質的に共通した構成を有する。そのため、回転駆動源1および減速機2を、両タイプの電動アクチュエータで共用化することができる。すなわち、第一実施形態の電動アクチュエータにおいて、最終出力軸3を使用せずに、ボールねじ91を使用して、ボールねじ軸93を駆動源出力軸6の内周に配置することにより、第二実施形態の電動アクチュエータの基本構成を得ることができる。このように回転駆動源1および減速機2を共用化することで、電動アクチュエータの低コスト化を図ることができる。また、回転運動型と直線運動型の電動アクチュエータのバリエーションを多くすることが容易となり、商品展開力を強化することができる。
 以上の実施形態の説明では、遊星トラクションドライブ減速機2にトラクションを与える機構として、蓋部83の取り付け時に外側リング22を内径側に変形させる構成を採用した場合を説明したが、トラクションの付与機構としては任意の構成のものが採用できる。例えば外側リング22をケーシング82の内周面に所定の締め代で圧入して外側リング22を内径側に縮径させることにより、減速機2内の転がり接触部にトラクションを付与することもできる。この場合、エッジロード防止のため、外側リング22の内周面にクラウニングを設けるのが好ましい。
 また、以上の説明では、モータ部5としてラジアルギャップ型の電動モータを例示したが、任意の構成のモータを採用することができる。例えば、ケーシングに固定されたステータと、ステータの軸方向内側に隙間をもって対向するように配置されたロータとを備えるアキシャルギャップ型の電動モータであってもよい。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
 1   回転駆動源
 2   減速機
 3   最終出力軸
 5   モータ部
 6   駆動源出力軸
 6a  雄セレーション
 7   トルクリミッタ
 8   ケーシング
 21  太陽ローラ
 22  外側リング
 23  遊星ローラ
 24  キャリア
 25  転がり軸受(深溝玉軸受)
 25a 外輪
 25b 内輪
 25c 転動体
 51  ステータ
 52  ロータ

Claims (6)

  1.  ステータおよびロータを有するモータ部と、前記ロータの内径側に配置され、ロータの回転を出力する駆動源出力軸と、駆動源出力軸に接続された減速機とを有する電動アクチュエータにおいて、
     前記駆動源出力軸が中空であり、前記減速機が遊星トラクションドライブ減速機であることを特徴とする電動アクチュエータ。
  2.  遊星トラクションドライブ減速機の遊星ローラを転がり軸受で構成した請求項1に記載の電動アクチュエータ。
  3.  前記転がり軸受が深溝玉軸受である請求項2に記載の電動アクチュエータ。
  4.  遊星ローラおよび太陽ローラの何れか一方または双方にクラウニングを設けた請求項1~3何れか1項に記載の電動アクチュエータ。
  5.  請求項1~4何れか1項に記載した減速機の出力側に最終出力軸を接続した電動アクチュエータ。
  6.  請求項1~4何れか1項に記載した減速機の出力側に運動変換機構を接続した電動アクチュエータ。
PCT/JP2017/040474 2016-11-22 2017-11-09 電動アクチュエータ WO2018096939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,046 US20210277983A1 (en) 2016-11-22 2017-11-09 Electric actuator
CN201780068828.2A CN109923331A (zh) 2016-11-22 2017-11-09 电动致动器
EP17873035.4A EP3546794A4 (en) 2016-11-22 2017-11-09 ELECTRIC ACTUATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016226875A JP2018084268A (ja) 2016-11-22 2016-11-22 電動アクチュエータ
JP2016-226875 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018096939A1 true WO2018096939A1 (ja) 2018-05-31

Family

ID=62194977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040474 WO2018096939A1 (ja) 2016-11-22 2017-11-09 電動アクチュエータ

Country Status (5)

Country Link
US (1) US20210277983A1 (ja)
EP (1) EP3546794A4 (ja)
JP (1) JP2018084268A (ja)
CN (1) CN109923331A (ja)
WO (1) WO2018096939A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109591045A (zh) * 2018-12-20 2019-04-09 杭州宇树科技有限公司 一种高集成度高性能机器人关节单元
CN118117820A (zh) * 2024-04-29 2024-05-31 比亚迪股份有限公司 作动器、悬架总成及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211860A (ja) * 2006-02-08 2007-08-23 Ntn Corp 摩擦伝動装置
JP2008106923A (ja) * 2006-10-27 2008-05-08 Ntn Corp 遊星ローラ式変速機
JP2013169125A (ja) 2012-02-17 2013-08-29 Denso Corp 回転式アクチュエータ
JP2015061334A (ja) * 2013-09-17 2015-03-30 オリエンタルモーター株式会社 リニアアクチュエータ
JP2016031120A (ja) * 2014-07-29 2016-03-07 株式会社ジェイテクト 遊星ローラ式トラクションドライブ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336202Y2 (ja) * 1979-03-16 1988-09-26
JP2001112215A (ja) * 1999-10-05 2001-04-20 Yaskawa Electric Corp 減速機一体型アクチュエータ
JP2008312436A (ja) * 2007-05-15 2008-12-25 Ntn Corp 電動式直動アクチュエータおよび電動ブレーキ装置
JP2015080996A (ja) * 2013-10-22 2015-04-27 Ntn株式会社 インホイールモータ駆動装置
DE102014212417A1 (de) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Druckerzeuger für eine hydraulische Fahrzeugbremsanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211860A (ja) * 2006-02-08 2007-08-23 Ntn Corp 摩擦伝動装置
JP2008106923A (ja) * 2006-10-27 2008-05-08 Ntn Corp 遊星ローラ式変速機
JP2013169125A (ja) 2012-02-17 2013-08-29 Denso Corp 回転式アクチュエータ
JP2015061334A (ja) * 2013-09-17 2015-03-30 オリエンタルモーター株式会社 リニアアクチュエータ
JP2016031120A (ja) * 2014-07-29 2016-03-07 株式会社ジェイテクト 遊星ローラ式トラクションドライブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546794A4

Also Published As

Publication number Publication date
JP2018084268A (ja) 2018-05-31
CN109923331A (zh) 2019-06-21
EP3546794A1 (en) 2019-10-02
US20210277983A1 (en) 2021-09-09
EP3546794A4 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
JP7452097B2 (ja) クラッチ装置
WO2021020315A1 (ja) クラッチ装置
US11428278B2 (en) Reverse input blocking clutch and actuator
WO2021020320A1 (ja) クラッチ装置
WO2018100953A1 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
US20020006237A1 (en) Bearing structure
WO2018096939A1 (ja) 電動アクチュエータ
US20240102516A1 (en) Geared motor and clutch actuator using same
WO2018116739A1 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
WO2017010553A1 (ja) ボールねじおよびこれを備えた電動アクチュエータ
WO2014115384A1 (ja) ベルト式無段変速機
WO2023276727A1 (ja) クラッチアクチュエータ
JP2023020471A (ja) クラッチアクチュエータ
US9169912B2 (en) Drive device for the road wheels of a vehicle
WO2014148514A1 (ja) 電動リニアアクチュエータ
WO2022118846A1 (ja) クラッチ装置
JP7559711B2 (ja) ギヤードモータ、および、それを用いたクラッチアクチュエータ
JP2018074833A (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
JP2018080776A (ja) 電動アクチュエータ
WO2018088244A1 (ja) 直動式電動アクチュエータ
WO2023276719A1 (ja) クラッチアクチュエータ
WO2012139009A1 (en) Clutch
WO2022118829A1 (ja) クラッチ装置
WO2018088143A1 (ja) 電動アクチュエータ
JP2023079582A (ja) クラッチアクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873035

Country of ref document: EP

Effective date: 20190624