WO2018088244A1 - 直動式電動アクチュエータ - Google Patents

直動式電動アクチュエータ Download PDF

Info

Publication number
WO2018088244A1
WO2018088244A1 PCT/JP2017/038863 JP2017038863W WO2018088244A1 WO 2018088244 A1 WO2018088244 A1 WO 2018088244A1 JP 2017038863 W JP2017038863 W JP 2017038863W WO 2018088244 A1 WO2018088244 A1 WO 2018088244A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric actuator
screw
rotor inner
electric motor
direct acting
Prior art date
Application number
PCT/JP2017/038863
Other languages
English (en)
French (fr)
Other versions
WO2018088244A8 (ja
Inventor
卓志 松任
公人 牛田
川合 正浩
加藤 晃央
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/344,392 priority Critical patent/US20190277373A1/en
Priority to CN201780066309.2A priority patent/CN109923766A/zh
Priority to EP17870606.5A priority patent/EP3540920A4/en
Publication of WO2018088244A1 publication Critical patent/WO2018088244A1/ja
Publication of WO2018088244A8 publication Critical patent/WO2018088244A8/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/10Arrangements or devices for absorbing overload or preventing damage by overload
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to a direct acting electric actuator.
  • Patent Document 1 a ball screw mechanism in order to convert the rotational motion of an electric motor into linear motion
  • Patent Document 1 proposes a direct acting electric actuator in which a ball screw nut and an electric motor rotor are integrated, the electric motor rotor has the function of a ball screw nut, and the rotor is supported by a rolling bearing. .
  • the electric motor and the ball screw are arranged coaxially, and the rotor of the electric motor and the nut of the ball screw are overlapped in the radial direction.
  • the screw shaft and the pulling rod are integrally connected, and a detent mechanism is configured between the pulling rod and the end of the motor case.
  • the direct acting electric actuator of Patent Document 1 has a configuration in which the rotor of the motor and the nut of the ball screw are overlapped in the radial direction. As a result of investigating the actual application, it is possible to deal with applications where the radial installation space is small. Knew that there was a limit.
  • the anti-rotation mechanism is configured between the pulling rod that extends outside the motor case and the motor case, the axial dimension of the direct-acting electric actuator becomes longer, and depending on the application, there may be a problem in installation space. I found out that
  • an object of the present invention is to reduce the size and improve the mountability of a direct-acting electric actuator in which an electric motor portion and a screw mechanism portion are coaxially arranged.
  • the present inventors have arranged the rotor inner of the electric motor portion of the direct acting electric actuator and the nut of the screw mechanism portion at positions that do not overlap with each other in the axial direction and are small in the radial direction As a result, a new idea has been reached, in which the internal space of the rotor inner is effectively utilized to provide a screw shaft detent mechanism.
  • the present invention includes an electric motor portion, a screw mechanism portion, and an operation portion, and the electric motor portion and the screw mechanism portion are arranged coaxially, and the electric motor
  • the rotary motion of the hollow rotor inner portion is transmitted to the nut of the screw mechanism portion, and in the direct acting electric actuator in which the operation portion is provided on the screw shaft of the screw mechanism portion, the hollow rotor inner and the nut are axially
  • the screw shaft is arranged at a position where it does not overlap, and the screw shaft detent mechanism is provided radially inward of the hollow rotor inner.
  • the direct-acting electric actuator in which the electric motor portion and the screw mechanism portion are coaxially arranged can be reduced in size, particularly in the radial direction, and the mountability can be improved.
  • the structure of the anti-rotation mechanism can be simplified by providing the above-described anti-rotation mechanism for the screw shaft with a guide member having a pin fitted in the screw shaft and a guide groove.
  • the speed reducer is a traction drive type planetary speed reducer. Thereby, there is no backlash and low noise can be realized.
  • a hollow output shaft is provided inside the hollow rotor inner in the radial direction, and a torque limiter is provided between the hollow rotor inner and the hollow output shaft.
  • the direct-acting electric actuator in which the electric motor portion and the screw mechanism portion are coaxially arranged can be reduced in size, particularly in the radial direction, and the mountability can be improved.
  • FIG. 7 is a longitudinal sectional view showing a direct acting electric actuator according to an embodiment of the present invention, taken along the line HH in FIGS. 3 and 6.
  • FIG. 7 is a longitudinal sectional view showing a direct acting electric actuator according to an embodiment of the present invention, taken along the line II in FIG. 6.
  • FIG. 2 is a cross-sectional view taken along the line EE in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the line FF in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line GG in FIG. 2. It is the perspective view seen from the left side of FIG. It is the perspective view seen from the right side of FIG.
  • FIG. 1 shows a direct acting electric actuator according to the present embodiment, which is a longitudinal sectional view taken along the line HH in FIGS. 3 and 6, and FIG. 2 is a view taken along the line II in FIG. FIG.
  • the direct acting electric actuator 1 includes an electric motor unit A that generates a driving force, a screw mechanism unit B that converts the rotational motion of the electric motor unit A into a linear motion, and outputs the screw.
  • the operation unit C that outputs the motion of the mechanism unit B is mainly configured.
  • the electric motor portion A is configured by a radial gap type electric motor 29 including a stator 51 fixed to the casing 8 and a rotor 52 disposed so as to face the inner side in the radial direction of the stator 51 with a gap.
  • the stator 51 includes a stator core 51a formed of a plurality of electromagnetic steel plates laminated in the axial direction, a bobbin 51b made of an insulating material attached to the stator core 51a, and a coil 51c wound around the bobbin 51b.
  • the rotor 52 includes an annular rotor core 52a, a plurality of magnets 52b attached to the outer periphery of the rotor core 52a, and an annular rotor inner 52c fixed to the inner periphery of the rotor core 52a.
  • the rotor core 52a is formed of a plurality of electromagnetic steel plates laminated in the axial direction.
  • the axial length of the rotor inner 52c is longer than the axial length of the rotor core 52a, and the rotor inner 52c protrudes on both axial sides of the rotor core 52a.
  • the casing 8 is divided at one place or a plurality of places in the axial direction for the convenience of assembly.
  • the casing 8 is divided into a bottomed cylindrical bottom portion 81, a cylindrical portion 82 that is open at both ends, a pressurizing portion 84, and a lid portion 85.
  • a pressure portion 84 and a lid 85 are disposed on one axial side of the cylindrical portion 82 (right side in FIGS. 1 and 2), and a bottom portion 81 is disposed on the other axial side of the cylindrical portion 82 (left side in FIGS. 1 and 2). Is placed.
  • the bottom part 81, the cylinder part 82, the pressure part 84 and the lid part 85 are fastened and integrated using bolts 86.
  • the lid portion 85 is formed with a flange portion 85a to be attached to a used device (not shown) on one side in the axial direction, and the flange portion 85a is provided with a bolt insertion hole 85b.
  • FIG. 3 which is a left side view of FIG. 1, a terminal portion D is provided in the bottom portion 81 of the casing 8, and the connector 101 of the terminal portion D projects outward from the bottom portion 81. Terminals for power supply and signal lines in the connector 101 are connected to a coil 51c of the stator 51, a sensor, and the like.
  • Roller bearings 53 and 54 are mounted on the outer peripheral surfaces of both axial end portions of the rotor inner 52c, and the rotor inner 52c is rotatably supported by the cylindrical portion 82 and the bottom portion 81 of the casing 8 by the rolling bearings 53 and 54.
  • the rolling bearings 53 and 54 use deep groove ball bearings, and support both radial loads and thrust loads.
  • the rotor inner 52c is formed in a hollow shape, and a hollow-shaped output shaft 6 is provided on the inner peripheral surface thereof.
  • the outer peripheral surface of the hollow output shaft 6 is fitted to the inner peripheral surface of a hollow rotor inner (hereinafter, also simply referred to as “rotor inner”) 52c with a clearance fit, and the hollow output shaft 6 can rotate relative to the rotor inner 52c. it can.
  • An annular recess 521 having an inner diameter larger than that of the other part is formed on the other axial side of the inner peripheral surface of the rotor inner 52c (left side in FIGS. 1 and 2).
  • a female extending in the axial direction is formed on the inner peripheral surface of the annular recess 521.
  • Splines (including serrations) 522 are formed.
  • a male spline (including serrations) 6 a extending in the axial direction is formed on the other axial side of the outer peripheral surface of the hollow output shaft 6 (left side in FIGS. 1 and 2).
  • An annular space is formed between the inner peripheral surface of the annular recess 521 of the rotor inner 52c and the outer peripheral surface of the hollow output shaft 6 facing this, and in this embodiment, the torque limiter 7 is disposed in this annular space. .
  • the torque limiter 7 prevents overload on the components of the direct acting electric actuator 1 and prevents damage to the components, and will be described in detail later.
  • the direct acting electric actuator 1 of the present embodiment includes a hollow rotor inner 52c of the electric motor 29, specifically, a hollow output shaft 6 fitted to the hollow rotor inner 52c and a screw described later.
  • the reduction gear 2 is provided between the nut of the mechanism portion B, and the high torque rotational force reduced from the reduction gear 2 to the screw mechanism portion B is transmitted.
  • the electric motor 29 can be reduced in size, and the direct-acting electric actuator 1 is reduced in size and weight.
  • a traction drive type planetary reduction gear is used as the reduction gear 2, there is no backlash and low noise can be realized. The details of the traction drive type planetary speed reducer 2 will be described later.
  • the screw mechanism B is composed of a ball screw 91.
  • the ball screw 91 includes a nut 92, a screw shaft 93, a large number of balls 94, and a top (not shown) as a circulation member as main components.
  • a spiral groove is formed on the inner peripheral surface of the nut 92, and a spiral groove is formed on the outer peripheral surface of the screw shaft 93.
  • a ball 94 is loaded between the spiral grooves.
  • the nut 92 is rotatably supported on the lid portion 85 of the casing 8 by a double row rolling bearing 96 mounted on the outer peripheral surface thereof.
  • a carrier 24 on the output side of the speed reducer 2 is connected to the outer peripheral surface of the nut 92 so that torque can be transmitted by press-fitting or the like.
  • a rotation stop mechanism M for the screw shaft 93 is provided on the other axial side of the screw shaft 93 (left side in FIGS. 1 and 2).
  • An actuator head 100 as an operation unit C is integrally provided on one axial side of the screw shaft 93 (right side in FIGS. 1 and 2).
  • the actuator head 100 of the operation unit C has various forms such as one configured separately from the screw shaft 93 and one having a connection structure with a corresponding part of the device used. Details of the detent mechanism M will be described later.
  • the overall configuration of the direct acting electric actuator 1 of the present embodiment is as described above.
  • the characteristic and advantageous configurations will now be described in detail.
  • the characteristic configuration of the present embodiment is that in the direct acting electric actuator 1 in which the electric motor part A and the screw mechanism part B are arranged coaxially, the hollow rotor inner 52c and the nut 92 are arranged at positions that do not overlap in the axial direction.
  • the rotation stop mechanism M for the screw shaft 93 is provided inside the hollow rotor inner 52c in the radial direction.
  • the output shaft 6 and the nut 92 of the ball screw 91 are disposed at a position that does not overlap in the axial direction.
  • the electric motor part A and the screw mechanism part B are coaxially arranged, but the nut 92 of the ball screw 91 has a radius relative to the hollow rotor inner 52c and the hollow output shaft 6. Since the structure does not overlap in the direction, the inner diameter D1 of the hollow rotor inner 52c and further the inner diameter D2 of the hollow output shaft 6 can be made smaller than the outer diameter D3 of the nut 92 of the ball screw 91. Thereby, a small electric motor 29 can be used, and the direct-acting electric actuator 1 can be reduced in size, particularly in the radial direction.
  • the internal space formed on the inner peripheral surface of the hollow output shaft 6 is effectively used to accommodate the screw shaft 93 of the ball screw 91, and the overall axial dimension is also reduced. Further, a rotation prevention mechanism M is provided on the other axial side of the screw shaft 93 (left side in FIGS. 1 and 2) by effectively using the internal space.
  • FIG. 4 which is a cross-sectional view taken along line EE in FIGS. 1 and 1, the rotation prevention mechanism M of the screw shaft 93 penetrates the guide member 95 and the screw shaft 93 in the radial direction.
  • the pin 96 is fitted into the hole, and the guide collar 97 is rotatably fitted around the pin 96.
  • the guide member 95 is fixed to the bottom 81 of the casing 8, and the cylindrical portion 95 a of the guide member 95 is disposed between the inner peripheral surface of the hollow output shaft 6 and the outer peripheral surface of the screw shaft 93.
  • a guide groove 95b is provided inside the cylindrical portion 95a, and a guide collar 97 is fitted therein.
  • the guide collar 97 is made of a resin material such as PPS and enables smooth rotation. As a result, when the nut 92 rotates, the screw shaft 93 smoothly advances and retracts in the left-right direction in FIGS.
  • the outer peripheral surface of the guide collar 97 is cylindrical, and the guide surface of the guide groove 95b in which the guide collar 97 is guided is exemplified by two parallel surfaces.
  • the present invention is not limited to this.
  • a guide surface composed of two V-shaped surfaces and a cylindrical guide surface may be used, and the outer peripheral surface of the guide collar 97 may have a shape corresponding to each guide surface.
  • the guide collar 97 is made of a resin material, it is not limited to this and may be made of metal. Further, the guide collar 97 may be omitted, and the pin 96 may be directly engaged with the guide groove 95b.
  • the direct acting electric actuator 1 in which the electric motor portion A and the screw mechanism portion B are coaxially arranged, the hollow rotor inner 52c and the nut 92 are arranged at positions that do not overlap in the axial direction, and the screw shaft
  • the non-rotating mechanism 93 of 93 is provided on the radially inner side of the hollow rotor inner 52c, the direct-acting electric actuator 1 can be reduced in size, particularly in the radial direction, and the mountability can be improved.
  • the configuration in which the rotation prevention mechanism for the screw shaft in the claims is provided on the radially inner side of the hollow rotor inner is the case where the hollow output shaft is connected to the hollow rotor inner via the torque limiter.
  • the screw shaft anti-rotation mechanism is provided on the inner side in the radial direction of the hollow output shaft fitted inside the hollow rotor inner.
  • FIG. 1, FIG. 2, and FIG. 5, which is a cross-sectional view taken along line FF in FIG.
  • the torque limiter 7 transmits the rotational power output from the electric motor 29 to the hollow output shaft 6, while interrupting torque transmission when an overload is applied, and the relative rotation between the electric motor unit 29 and the hollow output shaft 6. Is allowed.
  • the torque limiter 7 having an arbitrary configuration can be used. In this embodiment, the case where the friction clutch 7 is used is illustrated as an example of the torque limiter 7.
  • the friction clutch 7 is interposed between the pair of first friction plates 71, the second friction plate 73 incorporated between them, the pressing plate 75, the pressing plate 75 and the first friction plate 71, It comprises an elastic member 74 such as a wave spring that presses the first friction plate 71 and the second friction plate 73, and the pressing plate 71 is positioned in the axial direction by a retaining ring 76 that is locked in an annular groove on the inner peripheral surface of the rotor inner 52c. Is done.
  • the first friction plate 71 is spline-fitted to the female spline 522 of the rotor inner 52c and is connected so as to transmit torque.
  • the pressing plate 75 is also spline-fitted with the female spline 522 of the rotor inner 52c.
  • the second friction plate 73 is spline-fitted to the male spline 6a of the hollow output shaft 6 and connected to transmit torque.
  • the first friction plate 71 and the second friction plate 73 can be moved relative to each other in the axial direction with respect to the female spline 522 and the male spline 6a, and the first friction plate 71 and the second friction plate 73 are urged by the urging force of the elastic member 74.
  • a frictional force is generated between the friction plates 73.
  • a large number of friction materials 73 a are attached to the second friction plate 73 in the circumferential direction, and a stable friction force with the first friction plate 71 is obtained.
  • the traction drive type planetary speed reducer 2 mainly includes a sun roller 21, an outer ring 22, a plurality of planetary rollers 23, and a carrier 24 (see FIG. 2).
  • the end of the hollow output shaft 6 is used as the sun roller 21, and a rolling bearing 25 (for example, a deep groove ball bearing) is used as the planetary roller 23.
  • the inner ring of each rolling bearing 25 as the planetary roller 23 is press-fitted and fixed to the shaft 26 of the carrier 24.
  • the outer ring 22 integrally includes a main body portion 22a having a U-shaped cross section and flange portions 22b protruding on both sides in the axial direction of the main body portion 22a.
  • the outer ring 22 accommodated in the inner periphery of the cylindrical portion 82 is in the axial direction on one side (FIGS. 1 and 2) before the cylindrical portion 82 and the pressurizing portion 84 of the casing 8 are joined.
  • the right side of the flange portion 22b protrudes beyond the end face of the cylindrical portion 82.
  • a ring-shaped adjusting member (shim) 28 is disposed between the flange part 22b of the outer ring 22 and the end face of the cylindrical part 82.
  • the adjusting member 28 By selecting and using the adjusting member 28 having an appropriate thickness, the preload can be set within a predetermined range.
  • the outer peripheral surface of the nut 92 of the ball screw 91 is connected to the inner peripheral surface of the carrier 24 on the output side of the speed reducer 2 so that torque can be transmitted.
  • FIGS. 7 is a perspective view seen from the left side of FIG. 2
  • FIG. 8 is a perspective view seen from the right side of FIG. It is understood that the direct acting electric actuator 1 of the present embodiment is efficiently downsized particularly in the radial direction and has good mountability.
  • the screw mechanism portion is configured by a ball screw, but the present invention is not limited thereto, and the screw mechanism portion may be configured by a slide screw.
  • the radial gap type electric motor was illustrated as the electric motor 29 of the electric motor part A, it is not restricted to this, You may use an axial gap type motor.
  • the traction drive type planetary speed reducer is exemplified as the speed reducer.
  • the present invention is not limited to this, and a speed reducer having another mechanism may be used. Moreover, it is good also as a direct acting type electric actuator which does not provide a reduction gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Friction Gearing (AREA)

Abstract

電動モータ部Aとねじ機構部Bと操作部Cを備え、電動モータ部Aとねじ機構部Bが同軸上に配置されており、電動モータ部Aの中空ロータインナ52cの回転運動がねじ機構部Bのナット92に伝達され、ねじ機構部Bのねじ軸93に操作部Cが設けられた直動式電動アクチュエータ1において、中空ロータインナ52cとナット92が軸方向に重ならない位置に配置されると共に、ねじ軸93の回り止め機構Mが中空ロータインナ52cの半径方向内側に設けられていることを特徴とする。

Description

直動式電動アクチュエータ
 本発明は、直動式電動アクチュエータに関する。
 近年、車両等の省力化、低燃費化のために電動化が進み、例えば、自動車の自動変速機やブレーキ、ステアリング等の操作を電動機の力で行うシステムが開発され、市場に投入されている。このような用途に使用されるアクチュエータとして、電動機の回転運動を直線方向の運動に変換するために、ボールねじ機構を用いたものがある(特許文献1)。
特開2014-18007号公報
 特許文献1には、ボールねじのナットと電動機のロータとを一体として、電動機のロータにボールねじのナットの機能を持たせ、ロータを転がり軸受で支持した直動式電動アクチュエータが提案されている。この直動式電動アクチュエータでは、電動機とボールねじが同軸上に配置され、電動機のロータとボールねじのナットが半径方向に重畳して構成されている。また、ねじ軸と引き棒を一体に連結し、この引き棒とモータケース端部との間で回り止め機構を構成している。
 特許文献1の直動式電動アクチュエータでは、電動機のロータとボールねじのナットが半径方向に重畳した構成としているので、実際の用途を調査した結果、半径方向の取付スペースが小さい用途への対応には限度があることが分かった。
 また、回り止め機構が、モータケースの外部に延びる引き棒とモータケースとの間で構成されているので、直動式電動アクチュエータの軸方向寸法が長くなり、用途によっては、取付スペース上の問題があることが分かった。
 以上の問題に鑑み、本発明は、電動モータ部とねじ機構部が同軸上に配置された直動式電動アクチュエータの小型化および搭載性の向上を図ることを目的とする。
 本発明者らは、上記の目的を達成するため種々検討した結果、直動式電動アクチュエータの電動モータ部のロータインナとねじ機構部のナットを軸方向に重ならない位置に配置して半径方向に小型化すると共に、ロータインナの内部スペースを有効利用してねじ機構部のねじ軸の回り止め機構を設けるという新たな着想に至った。
 前述の目的を達成するための技術的手段として、本発明は、電動モータ部とねじ機構部と操作部を備え、前記電動モータ部とねじ機構部が同軸上に配置されており、前記電動モータ部の中空ロータインナの回転運動が前記ねじ機構部のナットに伝達され、前記ねじ機構部のねじ軸に前記操作部が設けられた直動式電動アクチュエータにおいて、前記中空ロータインナと前記ナットが軸方向に重ならない位置に配置されると共に、前記ねじ軸の回り止め機構が前記中空ロータインナの半径方向内側に設けられていることを特徴とする。
 上記の構成により、電動モータ部とねじ機構部が同軸上に配置された直動式電動アクチュエータの小型化、特に半径方向の小型化を図り、搭載性を向上させることができる。
 上記のねじ軸の回り止め機構を、ねじ軸に嵌め込まれたピンと、ガイド溝を有するガイド部材を備えたものにすることにより、回り止め機構の構造を簡素化できる。
 上記のねじ機構部をボールねじで構成したことにより、高精度で滑らかな直線方向の運動を実現できる。
 上記の中空ロータインナとナットとの間に減速機を有することが好ましい。これにより、電動モータを小型化でき、直動式電動アクチュエータを小型、軽量化することができる。
 上記の減速機がトラクションドライブ式遊星減速機であることが好ましい。これにより、バックラッシュがなく低騒音を実現できる。
 上記の中空ロータインナの半径方向内側に中空出力軸が設けられ、中空ロータインナと中空出力軸との間にトルクリミッタを有することが好ましい。これにより、直動式電動アクチュエータの構成部品への過負荷を防止し、構成部品の損傷等を防止することができる。
 本発明によれば、電動モータ部とねじ機構部が同軸上に配置された直動式電動アクチュエータの小型化、特に半径方向の小型化を図り、搭載性を向上させることができる。
本発明の一実施形態に係る直動式電動アクチュエータを示し、図3および図6のH-H線で矢視した縦断面図である。 本発明の一実施形態に係る直動式電動アクチュエータを示し、図6のI-I線で矢視した縦断面図である。 図1の左側面図である。 図1のE-E線で矢視した横断面図である。 図1のF-F線で矢視した横断面図である。 図2のG-G線で矢視した横断面図である。 図2の左側から見た斜視図である。 図2の右側から見た斜視図である。
 本発明の一実施形態に係る直動式電動アクチュエータを図1~図8に基づいて説明する。図1は、本実施形態に係る直動式電動アクチュエータを示し、図3および図6のH-H線で矢視した縦断面図で、図2は、図6のI-I線で矢視した縦断面図である。
 図1および図2に示すように、直動式電動アクチュエータ1は、駆動力を発生させる電動モータ部A、電動モータ部Aの回転運動を直線運動に変換して出力するねじ機構部B、ねじ機構部Bの運動を出力する操作部Cを主な構成とする。
 電動モータ部Aは、ケーシング8に固定されたステータ51と、ステータ51の半径方向内側に隙間をもって対向するように配置されたロータ52とを備えるラジアルギャップ型の電動モータ29で構成されている。
 ステータ51は、軸方向に積層した複数の電磁鋼板で形成されたステータコア51aと、ステータコア51aに装着された絶縁材料からなるボビン51bと、ボビン51bに巻回されたコイル51cとを有する。
 ロータ52は、環状のロータコア52aと、ロータコア52aの外周に取り付けられた複数のマグネット52bと、ロータコア52aの内周に固定された環状のロータインナ52cとで構成される。ロータコア52aは、軸方向に積層した複数の電磁鋼板で形成される。ロータインナ52cの軸方向長さはロータコア52aの軸方向長さよりも長く、ロータコア52aの軸方向両側にロータインナ52cが突出している。
 ケーシング8は、組み立ての都合上、軸方向の一箇所もしくは複数箇所で分割される。本実施形態では、ケーシング8を、有底円筒状の底部81と、両端を開口した筒部82と、加圧部84、蓋部85とに分割している。筒部82の軸方向一方側(図1、図2の右側)に加圧部84、蓋部85が配置され、筒部82の軸方向他方側(図1、図2の左側)に底部81が配置される。底部81、筒部82、加圧部84および蓋部85は、ボルト86を用いて締結、一体化されている。蓋部85は、軸方向一方側に使用機器(図示省略)に取付けるためのフランジ部85aが形成され、このフランジ部85aにボルト挿通孔85bが設けられている。
 図1および図1の左側面図である図3に示すように、ケーシング8の底部81内にターミナル部Dが設けられ、ターミナル部Dのコネクタ101が底部81から外側へ突出している。コネクタ101内の動力電源用や信号線用の端子が、ステータ51のコイル51cやセンサ等と接続されている。
 ロータインナ52cの軸方向両端部の外周面には転がり軸受53、54が装着され、転がり軸受53、54によって、ロータインナ52cがケーシング8の筒部82と底部81に回転自在に支持されている。転がり軸受53、54は、深溝玉軸受を使用し、ラジアル荷重とスラスト荷重の双方を支持する。
 ロータインナ52cは中空形状に形成され、その内周面に中空形状の出力軸6が設けられている。中空出力軸6の外周面は、中空ロータインナ(以下、単にロータインナともいう)52cの内周面に対してすきま嵌めで嵌合し、中空出力軸6は、ロータインナ52cに対して相対回転することができる。
 ロータインナ52cの内周面の軸方向他方側(図1、図2の左側)に内径寸法が他所よりも大きい環状凹部521が形成され、環状凹部521の内周面には、軸方向に延びる雌スプライン(セレーションを含む)522が形成されている。また、中空出力軸6の外周面の軸方向他方側(図1、図2の左側)に軸方向に延びる雄スプライン(セレーションを含む)6aが形成されている。ロータインナ52cの環状凹部521の内周面と、これに対向する中空出力軸6の外周面との間に環状空間が形成され、本実施形態では、この環状空間にトルクリミッタ7が配置されている。トルクリミッタ7は、直動式電動アクチュエータ1の構成部品への過負荷を防止し、構成部品の損傷等を防止するもので、詳細は後述する。
 図1、図2に示すように、本実施形態の直動式電動アクチュエータ1は、電動モータ29の中空ロータインナ52c、具体的には中空ロータインナ52cに嵌合された中空出力軸6と後述するねじ機構部Bのナットとの間に減速機2を有し、減速機2からねじ機構部Bに減速された高トルクの回転力が伝達される。これにより、電動モータ29を小型化でき、直動式電動アクチュエータ1の小型、軽量化を図っている。また、本実施形態では、減速機2として、トラクションドライブ式の遊星減速機を使用したので、バックラッシュがなく低騒音を実現できる。トラクションドライブ式の遊星減速機2の詳細は後述する。
 ねじ機構部Bはボールねじ91で構成されている。ボールねじ91は、ナット92、ねじ軸93、多数のボール94、および循環部材としてのこま(図示省略)を主な構成要素とする。ナット92の内周面に螺旋状溝が形成され、ねじ軸93の外周面に螺旋状溝が形成されている。両螺旋状溝の間にボール94が装填されている。
 ナット92は、その外周面に装着した複列の転がり軸受96により、ケーシング8の蓋部85に回転自在に支持されている。ナット92の外周面には、減速機2の出力側となるキャリア24が圧入等によりトルク伝達可能に連結されている。
 ねじ軸93の軸方向他方側(図1、図2の左側)にねじ軸93の回り止め機構Mが設けられている。これにより、ナット92が回転すると、ねじ軸93が図1、図2の左右方向に進退する。ねじ軸93の軸方向一方側(図1、図2の右側)には操作部Cとしてのアクチュエータヘッド100が一体に設けられている。操作部Cのアクチュエータヘッド100は、ねじ軸93とは別体で構成されたものや、使用機器の対応部位との連結構造を有するもの等、種々の形態がある。回り止め機構Mの詳細は後述する。
 本実施形態の直動式電動アクチュエータ1の全体構成は以上のとおりである。次に、特徴的な構成および有利な構成を詳細に説明する。本実施形態の特徴的な構成は、電動モータ部Aとねじ機構部Bが同軸上に配置された直動式電動アクチュエータ1において、中空ロータインナ52cとナット92を軸方向に重ならない位置に配置すると共に、ねじ軸93の回り止め機構Mを中空ロータインナ52cの半径方向内側に設けたことである。これにより、直動式電動アクチュエータ1の小型化、特に半径方向寸法の小型化を図り、搭載性を向上させることができる。
 具体的には、図1、図2に示すように、本実施形態の直動式電動アクチュエータ1では、電動モータ29の中空ロータインナ52cおよびこの中空ロータインナ52cにトルクリミッタ7を介して連結された中空出力軸6と、ボールねじ91のナット92とが、軸方向に重ならない位置に配置されている。
 本実施形態の直動式電動アクチュエータ1は、電動モータ部Aとねじ機構部Bが同軸上に配置されているが、中空ロータインナ52cと中空出力軸6に対してボールねじ91のナット92が半径方向に重畳する構造ではないので、中空ロータインナ52cの内径D1、さらには中空出力軸6の内径D2をボールねじ91のナット92の外径D3より小さくすることができる。これにより、小型の電動モータ29を使用することができ、直動式電動アクチュエータ1の小型化、特に半径方向寸法を小型化することができる。
 上記の特徴に加えて、中空出力軸6の内周面に形成される内部スペースを有効利用して、ボールねじ91のねじ軸93が収容され、全体の軸方向寸法も小型化されている。さらに、上記内部スペースを有効利用して、ねじ軸93の軸方向他方側(図1、図2の左側)に回り止め機構Mが設けられている。
 図1および図1のE-E線で矢視した横断面図である図4に示すように、ねじ軸93の回り止め機構Mは、ガイド部材95と、ねじ軸93の半径方向に貫通する孔に嵌め込まれたピン96とこのピン96に回転自在に外嵌されたガイドカラー97とからなる。ガイド部材95はケーシング8の底部81に固定され、ガイド部材95の円筒部95aは、中空出力軸6の内周面とねじ軸93の外周面との間に配置されている。円筒部95aの内側にガイド溝95bが設けられ、ガイドカラー97が嵌め込まれている。ガイドカラー97は、PPS等の樹脂材料からなり、滑らかな回転を可能にする。これにより、ナット92が回転すると、ねじ軸93が図1、図2の左右方向にスムーズに進退する。
 本実施形態では、ガイドカラー97の外周面を円筒状とし、ガイドカラー97が案内されるガイド溝95bの案内面を、平行な2つ面から構成したものを例示したが、これに限られず、V字状に角度を付けた2つの面からなる案内面や、円筒状の案内面とし、ガイドカラー97の外周面をそれぞれの案内面に対応する形状にしてもよい。
 また、ガイドカラー97が樹脂材料からなるものを例示したが、これに限られず、金属製としてもよい。さらに、ガイドカラー97を省略し、ピン96が直接ガイド溝95bに係合する構造にしてもよい。
 以上説明したように、電動モータ部Aとねじ機構部Bが同軸上に配置された直動式電動アクチュエータ1において、中空ロータインナ52cとナット92を軸方向に重ならない位置に配置すると共に、ねじ軸93の回り止め機構Mを中空ロータインナ52cの半径方向内側に設けた構成により、直動式電動アクチュエータ1の小型化、特に半径方向寸法の小型化を図り、搭載性を向上させることができる。
 ここで、請求の範囲における、ねじ軸の回り止め機構を中空ロータインナの半径方向内側に設けたという構成は、中空出力軸がトルクリミッタを介して中空ロータインナに連結された本実施形態の場合には、ねじ軸の回り止め機構が中空ロータインナの内側に嵌合する中空出力軸の半径方向内側に設けた構造になるが、この場合も含む概念のものである。
 次に、有利な構成としてのトルクリミッタの詳細を図1、図2および図1のF-F線で矢視した横断面図である図5に基づいて説明する。トルクリミッタ7は、電動モータ29から出力された回転動力を中空出力軸6に伝達する一方で、過負荷が作用した時にトルク伝達を遮断し、電動モータ部29と中空出力軸6との相対回転を許容するものである。この機能を有する限り任意の構成のトルクリミッタ7を使用することができる。本実施形態では、トルクリミッタ7の一例として、摩擦クラッチ7を使用した場合を例示している。
 摩擦クラッチ7は、一対の第1摩擦板71と、これらの間に組込まれた第2摩擦板73と、押圧板75と、押圧板75と第1摩擦板71との間に介在し、第一摩擦板71と第二摩擦板73を圧接させる波形ばね等の弾性部材74とからなり、押圧板71は、ロータインナ52cの内周面の環状溝に係止した止め輪76により軸方向で位置決めされる。
 図5に示すように、第1摩擦板71は、ロータインナ52cの雌スプライン522とスプライン嵌合しトルク伝達可能に連結されている。図5には図示されていないが、押圧板75もロータインナ52cの雌スプライン522とスプライン嵌合している。第2摩擦板73は、中空出力軸6の雄スプライン6aにスプライン嵌合しトルク伝達可能に連結されている。第1摩擦板71と第2摩擦板73は、雌スプライン522、雄スプライン6aに対して、それぞれ軸方向に相対移動で可能で、弾性部材74の付勢力により、第1摩擦板71と第2摩擦板73間に摩擦力が発生する。そして、第2摩擦板73には、円周方向に多数の摩擦材73aが取り付けられ、第1摩擦板71との安定した摩擦力が得られる。
 電動モータ29の中空ロータインナ52cと中空出力軸6の間のトルクが、摩擦板71、73間の摩擦力以下である時は、両摩擦板71、73が一体に回転しトルクが中空出力軸6に伝達される。中空ロータインナ52cと中空出力軸6の間のトルクが、摩擦板71、73間の摩擦力を上回ると、一方の摩擦板が他方の摩擦板に対して滑るため、中空出力軸6へのトルク伝達が遮断される。これにより、直動式電動アクチュエータ1の構成部品への過負荷を防止し、構成部品の損傷等を防止することができる。
 さらに、有利な構成としてのトラクションドライブ式遊星減速機の詳細を図2および図2のG-G線で矢視した横断面図である図6に基づいて説明する。トラクションドライブ式遊星減速機2は、太陽ローラ21と、外側リング22と、複数の遊星ローラ23と、キャリア24(図2参照)を主な構成とする。太陽ローラ21として中空出力軸6の端部を使用し、遊星ローラ23として転がり軸受25(例えば深溝玉軸受)を使用している。遊星ローラ23としての各転がり軸受25の内輪は、キャリア24の軸26に圧入固定されている。
 図1、図2に示すように、外側リング22は、断面U字状の本体部22aと、本体部22aの軸方向両側に突出するフランジ部22bとを一体に有する。図示は省略するが、ケーシング8の筒部82と加圧部84を結合する前の状態では、筒部82の内周に収容された外側リング22は、軸方向一方側(図1、図2の右側)のフランジ部22bを筒部82の端面よりも突出させている。その後、蓋部85と一緒に加圧部84を筒部82の端面に当接するまで押し込んでボルト86を用いて両者を結合すると、加圧部84に押圧された外側リング22が弾性変形し、本体部22aが内径側に膨らむ。この外側リング22の内径側への弾性変形により、外側リング22と遊星ローラ23の接触部、さらには遊星ローラ23と太陽ローラ21の接触部に予圧が付与される。
 外側リング22のフランジ部22bと筒部82の端面間には、リング状の調整部材(シム)28が配置される。適正厚さの調整部材28を選択して使用することにより、上記の予圧を所定範囲に設定することができる。
 減速機2の出力側となるキャリア24の内周面に、ボールねじ91のナット92の外周面を圧入等により、トルク伝達可能に連結されている。
 最後に、本実施形態の直動式電動アクチュエータ1の外観を図7および図8に示す。図7は図2の左側から見た斜視図で、図8は図2の右側から見た斜視図である。本実施形態の直動式電動アクチュエータ1は、特に半径方向寸法が効率よく小型化され、搭載性が良好であることが理解される。
 以上説明した実施形態の直動式電動アクチュエータでは、ねじ機構部をボールねじで構成したものを例示したが、これに限られず、ねじ機構部を滑りねじで構成してもよい。また、電動モータ部Aの電動モータ29としてラジアルギャップ型の電動モータを例示したが、これに限られず、アキシャルギャップ型モータを使用してもよい。
 以上説明した実施形態の直動式電動アクチュエータでは減速機としてトラクションドライブ式遊星減速機を使用したものを例示したが、これに限られず、他の機構を有する減速機を使用してもよい。また、減速機を設けない直動式電動アクチュエータとしてもよい。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
 1    直動式電動アクチュエータ
 2    トラクションドライブ式遊星減速機
 6    中空出力軸
 7    トルクリミッタ
 8    ケーシング
 23   遊星ローラ
 29   電動モータ
 52c  中空ロータインナ
 91   ボールねじ
 92   ナット
 93   ねじ軸
 95   ガイド部材
 96   ピン
 97   ガイドカラー
 A    電動モータ部
 B    ねじ機構部
 C    操作部
 D    ターミナル部
 M    回り止め機構

Claims (6)

  1.  電動モータ部とねじ機構部と操作部を備え、前記電動モータ部とねじ機構部が同軸上に配置されており、前記電動モータ部の中空ロータインナの回転運動が前記ねじ機構部のナットに伝達され、前記ねじ機構部のねじ軸に前記操作部が設けられた直動式電動アクチュエータにおいて、
     前記中空ロータインナと前記ナットが軸方向に重ならない位置に配置されると共に、
     前記ねじ軸の回り止め機構が前記中空ロータインナの半径方向内側に設けられていることを特徴とする直動式電動アクチュエータ。
  2.  前記ねじ軸の回り止め機構が、前記ねじ軸に嵌め込まれたピンと、ガイド溝を有するガイド部材を備えたものであることを特徴とする請求項1に記載の直動式電動アクチュエータ。
  3.  前記ねじ機構部がボールねじで構成されていることを特徴とする請求項1に記載の直動式電動アクチュエータ。
  4.  前記中空ロータインナと前記ナットとの間に減速機を有することを特徴とする請求項1~3のいずれか一項に記載の直動式電動アクチュエータ。
  5.  前記減速機がトラクションドライブ式遊星減速機であることを特徴とする請求項4に記載の直動式電動アクチュエータ。
  6.  前記中空ロータインナの半径方向内側に中空出力軸が設けられ、中空ロータインナと前記中空出力軸との間にトルクリミッタを有することを特徴とする請求項1~5のいずれか一項に記載の直動式電動アクチュエータ。
PCT/JP2017/038863 2016-11-08 2017-10-27 直動式電動アクチュエータ WO2018088244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/344,392 US20190277373A1 (en) 2016-11-08 2017-10-27 Linear electric actuator
CN201780066309.2A CN109923766A (zh) 2016-11-08 2017-10-27 线性电动致动器
EP17870606.5A EP3540920A4 (en) 2016-11-08 2017-10-27 ELECTROMAGNETIC ACTUATOR WITH DIRECT DRIVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218183 2016-11-08
JP2016218183A JP2018078698A (ja) 2016-11-08 2016-11-08 直動式電動アクチュエータ

Publications (2)

Publication Number Publication Date
WO2018088244A1 true WO2018088244A1 (ja) 2018-05-17
WO2018088244A8 WO2018088244A8 (ja) 2019-05-31

Family

ID=62110413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038863 WO2018088244A1 (ja) 2016-11-08 2017-10-27 直動式電動アクチュエータ

Country Status (5)

Country Link
US (1) US20190277373A1 (ja)
EP (1) EP3540920A4 (ja)
JP (1) JP2018078698A (ja)
CN (1) CN109923766A (ja)
WO (1) WO2018088244A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362388A (ja) * 2001-06-01 2002-12-18 Mando Corp 自動車用電動式パワーステアリング装置
JP2009095174A (ja) * 2007-10-11 2009-04-30 Nidec Sankyo Corp 直動アクチュエータ
JP2014018007A (ja) 2012-07-10 2014-01-30 Nsk Ltd 電動アクチュエータ
JP2014059031A (ja) * 2012-09-19 2014-04-03 Ntn Corp 減速機
JP2014109294A (ja) * 2012-11-30 2014-06-12 Minebea Co Ltd リニアアクチュエータ
WO2014103556A1 (ja) * 2012-12-28 2014-07-03 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置
JP2015061334A (ja) * 2013-09-17 2015-03-30 オリエンタルモーター株式会社 リニアアクチュエータ
JP2016031120A (ja) * 2014-07-29 2016-03-07 株式会社ジェイテクト 遊星ローラ式トラクションドライブ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9522631D0 (en) * 1995-11-04 1996-01-03 Lucas Ind Plc Improvements in electrically-operated disc brake assemblies for vehicles
JP3623922B2 (ja) * 2001-02-14 2005-02-23 本田技研工業株式会社 電動パワーステアリング装置
JP4182726B2 (ja) * 2002-02-20 2008-11-19 日本精工株式会社 リニアアクチュエータ
JP4565913B2 (ja) * 2004-07-15 2010-10-20 ミネベア株式会社 アクチュエータ
JP4240488B2 (ja) * 2005-02-01 2009-03-18 株式会社デンソー バルブリフト制御装置のアクチュエータ
JP4786240B2 (ja) * 2005-07-27 2011-10-05 Ntn株式会社 電動式直動アクチュエータおよび電動式ブレーキ装置
US8230963B2 (en) * 2009-08-31 2012-07-31 Jtekt Corporation Electric power steering system
JP2011185328A (ja) * 2010-03-05 2011-09-22 Honda Motor Co Ltd 直動アクチュエータ及びこれを備えたロボット
CN102947620B (zh) * 2010-04-26 2014-04-02 日本精工株式会社 直动致动器
JP5756304B2 (ja) * 2011-02-22 2015-07-29 ミネベア株式会社 リニアアクチュエータ
DE102013225200A1 (de) * 2013-12-06 2015-06-11 Continental Teves Ag & Co. Ohg Linearaktuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362388A (ja) * 2001-06-01 2002-12-18 Mando Corp 自動車用電動式パワーステアリング装置
JP2009095174A (ja) * 2007-10-11 2009-04-30 Nidec Sankyo Corp 直動アクチュエータ
JP2014018007A (ja) 2012-07-10 2014-01-30 Nsk Ltd 電動アクチュエータ
JP2014059031A (ja) * 2012-09-19 2014-04-03 Ntn Corp 減速機
JP2014109294A (ja) * 2012-11-30 2014-06-12 Minebea Co Ltd リニアアクチュエータ
WO2014103556A1 (ja) * 2012-12-28 2014-07-03 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置
JP2015061334A (ja) * 2013-09-17 2015-03-30 オリエンタルモーター株式会社 リニアアクチュエータ
JP2016031120A (ja) * 2014-07-29 2016-03-07 株式会社ジェイテクト 遊星ローラ式トラクションドライブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540920A4

Also Published As

Publication number Publication date
EP3540920A1 (en) 2019-09-18
US20190277373A1 (en) 2019-09-12
CN109923766A (zh) 2019-06-21
WO2018088244A8 (ja) 2019-05-31
EP3540920A4 (en) 2020-06-17
JP2018078698A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2021020312A1 (ja) クラッチ装置
US11428278B2 (en) Reverse input blocking clutch and actuator
WO2021020315A1 (ja) クラッチ装置
WO2014200052A1 (ja) 電動式直動アクチュエータおよび電動式ブレーキ装置
US11313422B2 (en) Electric disc brake
EP2891823B1 (en) Electric linear motion actuator and electric disk brake system
JP6815852B2 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
JP2016538487A (ja) 摩擦装置を備える構成群
WO2018003393A1 (ja) ディスクブレーキ
WO2014010103A1 (ja) 電動アクチュエータ
US11722035B2 (en) Electric motor with reverse input cutoff clutch
US20130168192A1 (en) Electric linear motion actuator and electric disk brake system
WO2019194143A1 (ja) 直動機構及びそれを備えた電動アクチュエータ
JP2005083474A (ja) 電動リニアアクチュエータ
WO2018116739A1 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
CN109477528B (zh) 旋转装置和待执行系统
JP2007333046A (ja) 電動アクチュエータ
WO2018096939A1 (ja) 電動アクチュエータ
WO2018088244A1 (ja) 直動式電動アクチュエータ
CN107701606B (zh) 双卷簧、旋转装置和待促动的系统
JP2019058032A (ja) 電動アクチュエータ
JP2018080776A (ja) 電動アクチュエータ
WO2018088143A1 (ja) 電動アクチュエータ
JP2008069793A (ja) 電動リニアアクチュエータ
WO2024063058A1 (ja) クラッチ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017870606

Country of ref document: EP

Effective date: 20190611