WO2019194143A1 - 直動機構及びそれを備えた電動アクチュエータ - Google Patents

直動機構及びそれを備えた電動アクチュエータ Download PDF

Info

Publication number
WO2019194143A1
WO2019194143A1 PCT/JP2019/014520 JP2019014520W WO2019194143A1 WO 2019194143 A1 WO2019194143 A1 WO 2019194143A1 JP 2019014520 W JP2019014520 W JP 2019014520W WO 2019194143 A1 WO2019194143 A1 WO 2019194143A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball screw
linear motion
motion mechanism
housing
electric motor
Prior art date
Application number
PCT/JP2019/014520
Other languages
English (en)
French (fr)
Inventor
尚人 宮脇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019194143A1 publication Critical patent/WO2019194143A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to a linear motion mechanism having a ball screw shaft and an electric actuator including the same.
  • an electric actuator using a linear motion mechanism having a ball screw shaft has been used as a means for conveying a workpiece or the like.
  • operation of brakes, steering, and the like using electric actuators has become widespread.
  • rotational movement by an electric motor or the like is converted into linear movement by a linear motion mechanism including a ball screw shaft and a ball screw nut screwed to the ball screw shaft.
  • Patent Document 1 discloses a ball screw shaft that is coaxially connected to a rotation shaft of an electric motor, a ball screw nut that is screwed to the ball screw nut via a plurality of balls, and a front end and a rear end of the ball screw nut.
  • a linear motion mechanism including a spline piston provided in the above is disclosed.
  • the rotation of the rotary shaft and the ball screw shaft is converted into a linear motion by the ball screw nut, and the spline piston slides linearly on the inner peripheral surface of the guide member.
  • An involute spline that is an involute-shaped groove or tooth is formed on the inner peripheral surface of the guide member and the outer peripheral surface of the spline piston so as to engage with each other.
  • the linear motion mechanism having such a configuration is used for, for example, a hydraulic pump for a brake
  • a cylinder is connected to the tip of the ball screw nut in the axial direction. It becomes difficult to support through.
  • the ball screw shaft is arranged coaxially with the rotating shaft via a bearing member such as a rolling bearing
  • the axis line between the rotating shaft and the ball screw shaft is accurately matched due to tolerances when incorporating the bearing member. It becomes difficult.
  • the tip of the ball screw shaft in the axial direction is a free end, it is difficult not only to match the axes but also to ensure the rigidity of the ball screw shaft. For this reason, when the ball screw shaft receives an external force in the axial direction, the rotating shaft and the ball screw shaft may be twisted at the connecting portion.
  • the present invention has been made in view of such a point, and an object thereof is to provide a linear motion mechanism that can stably support a ball screw shaft and a linear motion mechanism that linearly displaces a cylinder using the ball screw shaft.
  • An object is to provide an electric actuator.
  • a linear motion mechanism is a linear motion mechanism that is accommodated in a housing having an opening and that receives the rotational driving force of an electric motor to displace the output portion in the axial direction.
  • a ball screw shaft that is driven by the rotating shaft to rotate, and is configured to be non-rotatable around the axis and movable in the axial direction with respect to the housing, and a plurality of balls are inserted into the ball screw shaft within the hollow portion.
  • a ball screw nut screwed together, and the output portion is integrally connected to the axial front end of the ball screw nut to move the ball screw nut in the axial direction.
  • the ball screw nut and the output portion are made non-rotatable with respect to the housing by sliding in the opening of the housing and involute spline fitting between the opening of the housing and the output portion. It is provided.
  • the ball screw shaft can be stably supported. Further, the output portion can be displaced without being shaken along the axis. Further, the output part and the ball screw nut connected to the output part can be prevented from rotating with respect to the housing.
  • the output section is made of a metal middle cylinder having a resin layer on the surface, and the middle cylinder is provided with a plurality of involute spline-shaped teeth.
  • the mechanical strength of the output portion can be increased by the metal middle cylinder, and the resin layer is provided on the surface of the middle cylinder, so that the slidability with the opening of the housing can be enhanced.
  • the rotating shaft and the ball screw shaft are involute spline-coupled at each axial end, or the axial end of the ball screw shaft is press-fitted into the axial end of the rotating shaft. preferable.
  • the rotational torque of the rotating shaft can be transmitted to the ball screw shaft without loss.
  • the rotating shaft and the ball screw shaft can be connected to each other while maintaining the coaxiality.
  • the ball screw nut and the output portion are involute spline coupled to each other, or the axial rear end portion of the output portion is press-fitted into the axial front end portion of the ball screw nut.
  • the ball screw nut and the output portion can be connected to each other while maintaining the coaxiality.
  • An electric actuator includes the above-described linear motion mechanism, an electric motor that rotates the rotating shaft, an output portion that receives a rotational driving force of the electric motor, and is displaced in the axial direction, the linear motion mechanism, A housing that houses the output unit and the electric motor therein, the electric motor including a rotor having the rotating shaft, and a stator disposed at a predetermined interval on a radially outer side of the rotor. It is characterized by having.
  • the output unit can be displaced without being shaken along the axis of the rotation axis.
  • Another electric actuator includes the linear motion mechanism, the electric motor, an output portion that is displaced in the axial direction in response to the rotational driving force of the electric motor, and the linear motion mechanism and the output portion.
  • a first housing that is housed in the second housing, a second housing that houses the electric motor, and a rotational force transmitting member that transmits the rotational driving force of the electric motor to the rotational shaft of the linear motion mechanism.
  • a rotor having a rotation axis different from the rotation axis of the linear motion mechanism at the shaft center, and a stator disposed at a predetermined interval on a radially outer side of the rotor, and the linear motion mechanism The rotating shaft and the another rotating shaft are connected to each other by the rotational force transmitting member.
  • the output unit can be displaced without being shaken along the axis of the rotation axis of the linear motion mechanism.
  • the electric motor and the linear motion mechanism can be maintained or replaced separately.
  • the ball screw shaft can be stably supported. Further, the output unit can be displaced without being shaken along the axis of the rotation axis.
  • FIG. 1 is an external perspective view of an electric actuator according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 4A is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 4B is a partially enlarged view of region A in FIG. 4A.
  • FIG. 5A is a schematic cross-sectional view taken along line VV in FIG.
  • FIG. 5B is a partially enlarged view of region B in FIG. 5A.
  • FIG. 6 is a schematic cross-sectional view of an electric actuator according to Embodiment 2 of the present invention.
  • FIG. 1 is an external perspective view of the electric actuator according to the present embodiment
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 2
  • FIG. 4A is a schematic cross-sectional view taken along the line IV-IV
  • FIG. 4B shows a partially enlarged view of region A in FIG. 4A
  • FIG. 5B shows a partially enlarged view of region B in FIG. 5A.
  • the longitudinal direction of the rotating shaft may be referred to as an axial direction
  • the radial direction of the electric motor 10 may be referred to as a radial direction
  • the circumferential direction of the electric motor 10 may be referred to as a circumferential direction.
  • the side on which the cylinder head 62 is provided is called “front”, and the opposite side is called “rear”.
  • the center side of the electric motor 10, that is, the side on which the rotor 13 is provided. May be referred to as “inside” and the opposite side, that is, the stator 11 side as “outside”.
  • the electric actuator 100 includes an electric motor 10, a linear motion mechanism 20 that linearly moves in the axial direction in response to the rotational driving force of the electric motor 10, and the electric motor 10 and the linear motion
  • a housing 30 that houses the mechanism 20 therein, and an output unit 60 that is driven by the linear motion mechanism 20 and is displaced in the axial direction are provided.
  • the electric motor 10 has a stator 11 and a rotor 13.
  • the stator 11 projects radially inward from a substantially annular stator core 12, and a coil (not shown) is wound around a plurality of teeth (not shown) provided at predetermined intervals in the circumferential direction.
  • the stator 11 is disposed on the outer side in the radial direction of the rotor 13 with a predetermined distance from the rotor 13.
  • the rotor 13 has a rotating shaft 16 at the shaft center, and a rotor core 14 is fitted on the outer peripheral surface of the rotating shaft 16.
  • a plurality of permanent magnets 15 are embedded in the rotor core 14 at a predetermined interval in the circumferential direction.
  • the rotary shaft 16 is a cylindrical metal member having a hollow portion 16a opened at the front end in the axial direction, and a spline-shaped opening 16b is provided at the axial center of the rear end portion in the axial direction. That is, a plurality of grooves (involute splines) 16c are provided on the inner peripheral surface of the opening 16b with a predetermined interval in the circumferential direction.
  • the rotating shaft 16 is supported by the rolling bearings 70 and 71 fixed to the housing 30 so as to be rotatable with respect to the housing 30 and immovable in the axial direction, and a rotational driving force is transmitted when the electric motor 10 is driven. Rotate around the axis.
  • the rolling bearing may be referred to as a ball bearing or a bearing.
  • the linear motion mechanism 20 includes a ball screw shaft 40, a rotating shaft 16 of the electric motor 10, and a ball screw nut 50. These constituent members will be described later.
  • the housing 30 is made of a resin material, and the electric motor 10 and the linear motion mechanism 20 are accommodated in a space provided inside.
  • An opening 30a is provided in the front surface of the housing 30 in the axial direction, and the output unit 60 is slidably inserted into the opening 30a.
  • a plurality of grooves (involute splines) 30b are provided on the inner peripheral surface of the opening 30a at predetermined intervals in the circumferential direction (see FIG. 5A). Further, the position of the rotary shaft 16 with respect to the housing 30 is defined so that the center of the opening 30 a is positioned on the extension of the axis of the rotary shaft 16.
  • the housing 30 is provided with an opening for drawing out a wiring for supplying electric power to the electric motor 10.
  • the ball screw shaft 40 is a substantially cylindrical metal member, and a screw groove 40a is provided in a spiral shape on the outer peripheral surface.
  • a plurality of tooth portions (involute splines) 40 b extending to a predetermined length along the axial direction are provided at the axial rear end portion of the ball screw shaft 40.
  • the plurality of tooth portions 40 b are provided at predetermined intervals in the circumferential direction of the outer peripheral surface of the ball screw shaft 40.
  • a plurality of teeth 40 b provided at the axial rear end of the ball screw shaft 40 are provided in the plurality of grooves 16 c provided at the opening 16 b located at the axial rear end of the rotating shaft 16.
  • the ball screw shaft 40 is press-fitted and connected by an involute spline, and the ball screw shaft 40 is rotationally and integrally connected to the rotating shaft 16 in a state in which the rotating shaft 16 is prevented from rotating and axially stopped.
  • the ball screw nut 50 is a cylindrical metal member that is accommodated in the hollow portion 16a of the rotary shaft 16 and that is open at both ends in the axial direction, and is provided with a thread groove 50a in a spiral shape on the inner peripheral surface.
  • a plurality of groove portions (involute splines) 50b are formed at a front end portion in the axial direction of the ball screw nut 50 with a predetermined interval in the circumferential direction of the outer peripheral surface.
  • the ball screw nut 50 is screwed to the ball screw shaft 40 via a plurality of balls (not shown).
  • a plurality of balls accommodated between the screw groove 40a of the ball screw shaft 40 and the screw groove 50a of the ball screw nut 50 roll, so that the rotary shaft 16 and the ball screw shaft 40 connected thereto are rotated around the axis. , The rotational driving force transmitted from the ball screw shaft 40 is converted into a linear motion propulsion force, and the ball screw nut 50 moves in the axial direction along the ball screw shaft 40.
  • the output unit 60 driven by the linear motion mechanism 20 has a plurality of tooth portions (involute splines) 61a provided at predetermined intervals in the circumferential direction of the outer peripheral surface, and a cylinder whose both axial ends are open.
  • a cylindrical member 61 which is a metal member, a cylinder head 62 connected to the front end in the axial direction of the intermediate cylinder 61, and a resin layer 63 provided on the surface of the intermediate cylinder 61.
  • the output unit 60 may be simply referred to as a cylinder 60.
  • the output unit 60 may further include members other than the three members 61 to 63 described above, and may function as a pedestal feed mechanism connected to the output unit 60, for example.
  • the plurality of tooth portions 61 a are formed to extend in the axial direction from the rear end to the front end of the middle cylinder 61.
  • the axial rear end portion of the cylinder 60 is connected to the axial front end portion of the ball screw nut 50.
  • a plurality of teeth 61a provided on the inner cylinder 61 of the cylinder 60 are press-fitted and connected to the plurality of grooves 50b provided on the front end portion in the axial direction of the ball screw nut 50 by an involute spline.
  • the nut 50 is connected and fixed to the ball screw nut 50 in a state in which the nut 50 is prevented from rotating and is prevented from moving in the axial direction.
  • the resin layer 63 is not provided in a portion of the plurality of tooth portions 61a provided in the middle cylinder 61 that are press-fitted into the ball screw nut 50.
  • the cylinder 60 is slidably inserted into the opening 30a of the housing 30.
  • a plurality of teeth 61 a provided in the cylinder 60 are spline-fitted into a plurality of grooves 30 b provided in the opening 30 a of the housing 30. Is supported in a state in which the rotation is prevented.
  • a resin layer 63 is provided on the surface of the plurality of teeth 61 a that are involute spline fitted into the plurality of grooves 30 b of the housing 30.
  • the cylinder 60 and the housing 30 are involute spline fitted to each other, so that the cylinder 60 is supported so as not to rotate with respect to the housing 30 and to be slidable in the axial direction. This also prevents the connected ball screw nut 50 that is non-rotatably connected to the cylinder 60 from rotating against the housing 30.
  • the resin layer 63 of the cylinder 60 is provided to reduce friction with the housing 30 and to smoothly slide the cylinder 60 with respect to the housing 30.
  • the electric actuator 100 is assembled after a lubricant such as grease is applied to the sliding portion between the cylinder 60 and the housing 30.
  • a seal ring (not shown) such as an O ring may be provided on the outer peripheral surface of the cylinder head 62.
  • the tooth portion 61a of the cylinder 60 has a tooth surface in contact with the side surface of the groove portion 50b of the ball screw nut 50, while the tooth tip has a predetermined distance from the bottom surface of the groove portion 50b. And is press-fitted into the groove 50b.
  • the tooth portion 40b of the ball screw shaft 40 shown in FIG. 3 is also in contact with the side surface of the groove portion 16c of the rotating shaft 16 while the tooth tip is grooved with a predetermined distance from the groove portion 16c of the rotating shaft 16. 16c is press-fitted. Further, as shown in FIGS.
  • the tooth portion 61a of the cylinder 60 having the resin layer 63 provided on the surface thereof has a tooth surface close to the side surface of the groove portion 30b of the housing 30, while the tooth tip is the groove portion 30b.
  • Involute splines are fitted into the groove 30b with a predetermined distance from the bottom surface of the groove 30b. That is, each tooth part 40b, 61a, 61a and each groove part 16c, 50b, 30b are couple
  • a predetermined interval for example, an interval of about 1 ⁇ m is provided at a sliding portion of the opening 30a of the housing 30 and the output portion 60, that is, a portion where the groove portion 30b and the tooth surface of the tooth portion 61a are close to each other. This interval may be satisfied in the atmosphere of the environment where the electric actuator 100 is disposed, or for example, a lubricant or the like may enter.
  • the cylinder 60 slidably accommodated in a hollow cylinder moves in response to a brake operation and is introduced into the hollow cylinder.
  • the brake operation and the brake release operation of the vehicle are performed by changing the pressure of the brake oil.
  • the linear motion mechanism 20 is accommodated in the housing 30 having the opening 30a, and receives the rotational driving force of the electric motor 10 to displace the cylinder 60 as the output portion in the axial direction.
  • the linear motion mechanism 20 is provided so as to be rotatable about an axis with respect to the housing 30 and immovable in the axial direction, and is rotated by a rotational driving force of the electric motor 10, and has a rotary shaft 16 having a hollow portion 16a.
  • a ball screw shaft 40 accommodated coaxially with the rotary shaft 16 in the hollow portion 16a and rotated by being driven by the rotary shaft 16 is provided so as to be non-rotatable and movable in the axial direction with respect to the housing 30.
  • the cylinder 60 is connected to the front end of the ball screw nut 50 in the axial direction, and slides in the opening 30a of the housing 30 in accordance with the movement of the ball screw nut 50 in the axial direction.
  • the rotary shaft 16 and the ball screw shaft 40 are involute spline-coupled at the axial rear ends thereof.
  • the ball screw shaft 40 is stably supported coaxially with the rotary shaft 16, the ball screw shaft 40 and the cylinder 60 connected to the rotary shaft 16 via the ball screw nut 50 are connected to the axis of the rotary shaft 16. It can be displaced without shaking along.
  • linear motion mechanism 20 is configured such that the groove portion 30b provided on the inner peripheral surface of the opening 30a of the housing 30 and the tooth portion 61a provided on the cylinder 60 are spline-fitted to each other, whereby the cylinder 60
  • the ball screw nut 50 connected to the cylinder 60 is provided so as not to rotate with respect to the housing 30.
  • the housing 60 and the cylinder 60 are spline fitted to each other, so that the cylinder 60 is prevented from rotating with respect to the housing 30.
  • the ball screw nut 50 that is non-rotatably connected to the cylinder 60 is also prevented from rotating with respect to the housing 30.
  • the axial center of the cylinder 60 and the center of the opening 30a of the housing 30 are aligned, and the tooth portion 61a of the cylinder 60 and the groove portion 30b provided in the opening 30a of the housing 30 are aligned with each other.
  • the ball screw shaft 40 can be automatically arranged coaxially with respect to the opening 30 a of the housing 30 via the cylinder 60 and the ball screw nut 50.
  • the center of the rotating shaft 16 that supports both ends of the ball screw shaft 40 and the center of the opening 30a of the housing 30 can be arranged on the same axis, and the arrangement accuracy of the ball screw shaft 40, particularly the rotating shaft 16 can be set.
  • the degree of coincidence with the axis can be improved.
  • the cylinder 60 is hardly deformed. This improves the reliability of the linear motion mechanism 20.
  • the cylinder 60 is composed of a metal middle cylinder 61 having a resin layer 63 provided on the surface, and the middle cylinder 61 is provided with a plurality of involute spline-shaped tooth portions 61a.
  • the mechanical strength of the cylinder 60 can be increased by the metal middle cylinder 61, and the cylinder 60 is hardly deformed. Further, by disposing the resin layer 63 on the outer periphery of the middle cylinder 61, the backlash of the cylinder 60 when fitted into the opening 30a of the housing 30 made of a resin material can be reduced, and the slidability of the cylinder 60 with respect to the housing 30 can be reduced. Can be increased. Thereby, durability of the cylinder 60 and the housing 30 can be improved. As shown in this embodiment, it is particularly effective when the ball screw shaft 40 is cantilevered.
  • the rotating shaft 16 and the ball screw shaft 40 are connected to each other by involute spline connection, the ball screw shaft 40 is prevented from rotating with respect to the rotating shaft 16. As a result, the rotational torque of the rotating shaft 16 can be transmitted to the ball screw shaft 40 without loss. Further, by arranging the center of the opening 16 b of the rotating shaft 16 on the axis of the rotating shaft 16, the ball screw shaft 40 can be automatically arranged coaxially with the rotating shaft 16. Further, in the conventional configuration, the external force applied to the ball screw shaft 40 and the load of the ball screw shaft 40 itself are received by the ball bearing. However, according to the configuration of the present embodiment, these external force and load are received by the spline coupling surface. In order to receive it, the rotating shaft 16 and the ball screw shaft 40 can be connected to each other while maintaining the same degree of coaxiality. Moreover, durability of both connection parts can be improved. This improves the reliability of the linear motion mechanism 20.
  • the groove portion 50b of the ball screw nut 50 and the tooth portion 61a of the cylinder 60 are involute spline coupled to each other.
  • the ball screw nut 50 and the cylinder 60 are involute splined to each other, so that the cylinder 60 is prevented from rotating with respect to the ball screw nut 50. Further, since the cylinder 60 is automatically and coaxially arranged with respect to the ball screw nut 50, the ball screw shaft 40 screwed into the ball screw nut 50, the rotary shaft 16 and the cylinder 60 connected coaxially thereto, Can be arranged coaxially. Further, since the external force and load applied to the ball screw nut 50 and the cylinder 60 are received by the spline coupling surface, the ball screw nut 50 and the cylinder 60 can be connected to each other while maintaining the coaxiality. Moreover, durability of both connection parts can be improved. In addition, this improves the reliability of the linear motion mechanism 20.
  • the tooth portion 40b provided on the ball screw shaft 40 and the tooth portion 61a provided on the cylinder 60 are preferably involute.
  • the groove portion 16c provided on the rotating shaft 16 and the groove portion 50b provided on the ball screw nut 50 are preferably involute.
  • the electric actuator 100 includes the linear motion mechanism 20, the electric motor 10 that rotates the rotary shaft 16, the cylinder 60 that receives the rotational driving force of the electric motor 10 and is displaced in the axial direction,
  • the linear motion mechanism 20, the cylinder 60, and the housing 30 which accommodates the electric motor 10 are provided.
  • the electric motor 10 includes a rotor 13 having a rotation shaft 16 as an axis, and a stator 11 disposed at a predetermined interval on the radially outer side of the rotor 13.
  • the cylinder 60 can be displaced without being shaken along the axis of the rotating shaft 16.
  • the electric actuator 100 is used as a moving means such as a workpiece, the workpiece or the like can be accurately moved to a predetermined position.
  • the electric actuator 100 is used for a fluid pump such as a hydraulic pump, the fluid discharge amount and the discharge pressure can be accurately controlled.
  • the reliability of the linear motion mechanism 20 which is a main movable part can be improved, the reliability of the electric actuator 100 is also improved.
  • FIG. 6 is a schematic cross-sectional view of the electric actuator 200 according to the present embodiment.
  • the cross section shown in FIG. 6 corresponds to the cross section shown in FIG. Moreover, in this embodiment, about the location similar to Embodiment 1, the same code
  • the configuration shown in the first embodiment differs from the configuration shown in the present embodiment in the following points.
  • the electric motor 10 is accommodated in a housing (second housing) 31 separate from the linear motion mechanism 20 and the cylinder 60.
  • the housing (first housing) 30 that accommodates the linear motion mechanism 20 and the cylinder 60 is formed by connecting a front housing 30c at the front in the axial direction and a rear housing 30d at the rear in the axial direction.
  • An opening 30a and a plurality of groove portions 30b are provided in 30c.
  • first to third gears 80 to 82 are provided between the two rotary shafts 16 and 17.
  • first gear 80 is externally fitted to the rotating shaft 17 of the electric motor 10.
  • a second gear 81 is provided at a predetermined interval in the radial direction from the first gear 80
  • a third gear 82 is provided at a predetermined interval in the radial direction from the second gear 81, The third gear 82 is fitted on the rotary shaft 16 of the linear motion mechanism 20.
  • first gear 80 and the second gear 81 are arranged so that tooth portions (not shown) provided on the outer periphery of each other mesh with each other.
  • the second gear 81 is pivotally supported by a gear pin 81 b accommodated in the housing (first housing) 30.
  • the 2nd gear 81 and the 3rd gear 82 are arrange
  • the rotational driving force of the electric motor 10 is transmitted to the second gear 81 by meshing the tooth portion (not shown) of the first gear 80 and the tooth portion (not shown) of the second gear 81.
  • the second gear 81 rotates around the gear pin 81b.
  • the tooth portion (not shown) of the second gear 81 and the tooth portion (not shown) of the third gear 82 are engaged with each other, so that the rotational driving force of the electric motor 10 is transmitted to the third gear 82.
  • the rotating shaft 16 of the linear motion mechanism 20 rotates around its axis.
  • the rotating shaft 17 of the electric motor 10 is supported by ball bearings 73 and 74 fixed to the second housing 31 and rotates around the axis.
  • the electric actuator 200 includes the linear motion mechanism 20, the electric motor 10, the cylinder 60 that receives the rotational driving force of the electric motor 10 and is displaced in the axial direction, and the linear motion mechanism 20.
  • a housing (first housing) 30 that houses the cylinder 60 therein, a second housing 31 that houses the electric motor 10, and a first that transmits the rotational driving force of the electric motor 10 to the rotating shaft 16 of the linear motion mechanism 20.
  • the electric motor 10 includes a rotor 13 having a rotating shaft 17 at the shaft center, and a stator 11 disposed at a predetermined interval on the outer side in the radial direction of the rotor 13, and the rotating shaft 17 of the electric motor 10 and
  • the rotating shaft 16 of the linear motion mechanism 20 is connected to first to third gears (rotational force transmitting members) 80 to 82.
  • both ends of the ball screw shaft 40 can be stably supported by the rotating shaft 16 and the housing (first housing) 30 as in the configuration shown in the first embodiment.
  • the cylinder 60 as the output portion and the opening 30a of the housing 30 are fitted with a small gap so that the cylinder 60 can be displaced without being shaken along the axis of the rotation axis. can do.
  • the responsiveness of the brake can be improved.
  • the electric motor 10 is connected to the rotary shaft 16 of the linear motion mechanism 20 without a large loss.
  • the rotational driving force can be transmitted.
  • the second gear 81 may be omitted, and the driving force may be directly applied from the first gear 80 to the third gear 81.
  • a belt or the like may be used instead of the first to third gears 80 to 82 as a rotational force transmitting member for transmitting the rotational driving force of the electric motor 10 to the rotating shaft 16 of the linear motion mechanism 20.
  • the cylinder 60 and the ball screw nut 50 may be connected using a connection fixing member (not shown).
  • a connection fixing member not shown
  • the cylinder 60 and the ball screw nut 50 may be screwed together, or the cylinder 60 and the ball screw nut 50 may be connected by a connecting pin or the like provided penetrating in the radial direction.
  • a plurality of tooth portions 61 a may be provided in the cylinder 60 only at the connection portion with the ball screw nut 50.
  • the cylinder 60 can be reliably prevented from rotating with respect to the ball screw nut 50 and can be prevented from moving in the axial direction, and external forces applied to the ball screw nut 50 and the cylinder 60 can be reliably received.
  • the ball screw shaft 40 is provided with the tooth portion 40b
  • the rotary shaft 16 is provided with the groove portion 16c
  • the tooth portion 40b and the groove portion 16c are coupled in an involute spline so that the ball screw shaft 40 is rotated.
  • the groove portion 16 c is not provided in the opening 16 b of the rotating shaft 16, and the tooth portion 40 b may not be provided at the axial rear end portion of the ball screw shaft 40.
  • the axial rear end portion of the ball screw shaft 40 may be press-fitted into the opening 16b located at the axial rear end portion of the rotary shaft 16 so that the rotary shaft 16 and the ball screw shaft 40 are connected.
  • the rotational torque of the rotating shaft 16 can be transmitted to the ball screw shaft 40 without loss.
  • the opening 16b of the rotation shaft 16 and the axial rear end of the ball screw shaft 40 do not have to be circular, and may have other shapes.
  • the opening 16b of the rotating shaft 16 may be formed in a semicircular shape, and the axial rear end portion of the ball screw shaft 40 may have a semicircular cross-sectional shape corresponding to the shape of the opening 16b.
  • the ball screw shaft 40 is connected in a state of being prevented from rotating with respect to the rotation shaft.
  • the cross section of the opening 16b and the axial rear end of the ball screw shaft 40 may have a different shape, for example, a polygon. In that case, a triangle to an octagon are preferable. In either case, the ball screw shaft 40 is prevented from rotating with respect to the rotation shaft.
  • the plurality of tooth portions 40b of the ball screw shaft 40 may be formed by cutting a cylindrical metal member, or a plurality of teeth may be formed by externally fitting a gear having a plurality of teeth to the ball screw shaft 40.
  • the tooth part 40b may be provided.
  • the inner rotor type motor has been described as an example of the electric motor 10, an outer rotor type motor may be used.
  • the linear motion mechanism according to the present invention can support the ball screw shaft stably in the housing and can displace the cylinder in the axial direction, and thus is useful for application to an electric actuator used in a hydraulic pump or the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

直動機構20は、開口30aを有するハウジング30内に収容され、電動モータ10に駆動されて、ボールねじナット50に移動一体に連結されたシリンダ60を軸方向に変位させる。直動機構20は、ハウジング30に対して回転自在かつ軸方向に移動不能に設けられ、中空部16aを有する回転軸16と、中空部16a内に回転軸16と同軸に収容されたボールねじ軸40と、軸方向に移動自在に設けられ、ボールねじ軸40に螺合されたボールねじナット50と、を備えている。シリンダ60は開口30aにインボリュートスプライン嵌合し、ハウジング30に対して回転不能に設けられている。

Description

直動機構及びそれを備えた電動アクチュエータ
 本発明は、ボールねじ軸を有する直動機構及びそれを備えた電動アクチュエータに関する。
 従来、ワーク等の搬送手段として、ボールねじ軸を有する直動機構を用いた電動アクチュエータが使用されている。また、近年、車両の電動化の一環として、電動アクチュエータを用いてブレーキやステアリング等の操作を行うことが普及しつつある。このような電動アクチュエータでは、電動モータ等による回転運動を、ボールねじ軸とこれに螺合するボールねじナットとを備えた直動機構で直線運動に変換している。
 例えば、特許文献1には、電動モータの回転軸と同軸に連結されたボールねじ軸と、複数のボールを介してこれに螺合するボールねじナットと、ボールねじナットの前端及び後端のそれぞれに設けられたスプラインピストンと、を備えた直動機構が開示されている。また、この直動機構では、回転軸及びボールねじ軸の回転がボールねじナットで直線運動に変換され、スプラインピストンがガイド部材の内周面に摺動して直線的に移動する。ガイド部材の内周面及びスプラインピストンの外周面にはそれぞれが噛み合うようにインボリュート形状の溝部あるいは歯部であるインボリュートスプラインが形成されている。
特開2003-014070号公報
 特許文献1に開示された従来の直動機構では、回転軸とボールねじ軸の軸方向後端とが転がり軸受及びこれに軸支されたカップリングを挟んで位置固定される一方、ボールねじ軸の軸方向先端は別の転がり軸受を介して支持されている。
 ところで、このような構成の直動機構を、例えば、ブレーキ用の油圧ポンプに用いる場合、ボールねじナットの軸方向先端にはシリンダが連結されるため、ボールねじ軸の軸方向先端を転がり軸受を介して支持することは難しくなる。また、ボールねじ軸を転がり軸受等の軸受部材を介して回転軸と同軸に配置する場合、軸受部材を組み込むときの公差等によって、回転軸とボールねじ軸との間で軸線を正確に一致させることが難しくなる。ボールねじ軸の軸方向先端が自由端であると、軸線の一致だけでなく、ボールねじ軸の剛性を確保することも難しくなる。このため、ボールねじ軸が軸方向に外力を受けると、連結部で回転軸とボールねじ軸とがこじれるおそれがあった。
 本発明はかかる点に鑑みなされたもので、その目的は、ボールねじ軸を用いてシリンダを直線的に変位させる直動機構において、ボールねじ軸を安定に支持できる直動機構及びそれを備えた電動アクチュエータを提供することにある。
 上記目的を達成するために、本発明に係る直動機構は、開口を有するハウジング内に収容され、電動モータの回転駆動力を受けて出力部を軸方向に変位させる直動機構であって、前記ハウジングに対して軸線回りに回転自在かつ軸方向に移動不能に設けられ、前記電動モータの回転駆動力によって回転し、中空部を有する回転軸と、前記中空部内に前記回転軸と同軸に収容され、前記回転軸によって駆動されて回転するボールねじ軸と、前記ハウジングに対して軸線回りに回転不能かつ軸方向に移動自在に設けられ、前記中空部内で前記ボールねじ軸に複数のボールを介して螺合されたボールねじナットと、を備え、前記出力部は、前記ボールねじナットの軸方向前端部に移動一体に連結されていて該ボールねじナットの軸方向への移動に応じて前記ハウジングの開口内を摺動し、かつ前記ハウジングの開口と前記出力部とが互いにインボリュートスプライン嵌合することで、前記ボールねじナット及び前記出力部は、前記ハウジングに対して回転不能に設けられていることを特徴とする。
 この構成によれば、ボールねじ軸を安定して支持することができる。また、出力部を軸線に沿ってぶれることなく変位させることができる。また、出力部及び出力部に連結されたボールねじナットをハウジングに対して回り止めがなされた状態とすることができる。
 前記出力部は、表面に樹脂層が設けられた金属製の中筒からなり、前記中筒にはインボリュートスプライン形状の複数の歯部が設けられていることが好ましい。
 この構成によれば、金属製の中筒により出力部の機械的強度を高くできるとともに、中筒の表面に樹脂層が設けられることで、ハウジングの開口との摺動性を高めることができる。また、歯部でのバックラッシの低減による異音の発生を防止でき、高い応答性も確保でき、かつ耐久性を高めることができる。
 前記回転軸と前記ボールねじ軸とは互いの軸方向端部においてインボリュートスプライン結合しているか、または前記回転軸の軸方向端部に前記ボールねじ軸の軸方向端部が圧入されていることが好ましい。
 この構成によれば、回転軸の回転トルクをロスすることなくボールねじ軸に伝達できる。また、回転軸とボールねじ軸とが同軸度を保ちながら、両者を連結できる。
 前記ボールねじナットと前記出力部とは互いにインボリュートスプライン結合しているか、または前記ボールねじナットの軸方向前端部に前記出力部の軸方向後端部が圧入されていることが好ましい。
 この構成によれば、ボールねじナットと出力部とが同軸度を保ちながら、両者を連結できる。
 本発明に係る電動アクチュエータは、上記の直動機構と、前記回転軸を回転させる電動モータと、前記電動モータの回転駆動力を受けて軸方向に変位する出力部と、前記直動機構と前記出力部と前記電動モータとを内部に収容するハウジングと、を備え、前記電動モータは、前記回転軸を有するロータと、前記ロータの径方向外側に所定の間隔をあけて配設されたステータと、を有していることを特徴とする。
 この構成によれば、出力部を、回転軸の軸線に沿ってぶれることなく変位させることができる。
 本発明に係る別の電動アクチュエータは、上記の直動機構と、電動モータと、電動モータの回転駆動力を受けて軸方向に変位する出力部と、前記直動機構と前記出力部とを内部に収容する第1ハウジングと、前記電動モータを収容する第2ハウジングと、前記電動モータの回転駆動力を前記直動機構の回転軸に伝達する回転力伝達部材と、を備え、前記電動モータは、軸心に前記直動機構の回転軸とは別の回転軸を有するロータと、前記ロータの径方向外側に所定の間隔をあけて配設されたステータと、を有し、前記直動機構の回転軸及び前記別の回転軸は前記回転力伝達部材によって互いに連結されていることを特徴とする。
 この構成によれば、出力部を、直動機構の回転軸の軸線に沿ってぶれることなく変位させることができる。また、電動モータと直動機構とを別個にメンテナンスまたは交換することができる。
 本発明の直動機構によれば、ボールねじ軸を安定して支持することができる。また、出力部を、回転軸の軸線に沿ってぶれることなく変位させることができる。
図1は、本発明の実施形態1に係る電動アクチュエータの外観斜視図である。 図2は、図1のII-II線での断面模式図である 図3は、図2のIII-III線での断面模式図である。 図4Aは、図2のIV-IV線での断面模式図である。 図4Bは、図4Aにおける領域Aの部分拡大図である。 図5Aは、図2のV-V線での断面模式図である。 図5Bは、図5Aにおける領域Bの部分拡大図である。 図6は、本発明の実施形態2に係る電動アクチュエータの断面模式図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 [電動アクチュエータの構成及び動作]
 図1は、本実施形態に係る電動アクチュエータの外観斜視図を、図2は、図1のII-II線での断面模式図をそれぞれ示す。また、図3は、図2のIII-III線での、図4Aは、IV-IV線での、図5Aは、V-V線での断面模式図をそれぞれ示す。また、図4Bは、図4Aにおける領域Aの部分拡大図を、図5Bは、図5Aにおける領域Bの部分拡大図をそれぞれ示す。なお、以降の説明において、回転軸の長手方向を軸方向と、電動モータ10の半径方向を径方向と呼び、電動モータ10の円周方向を周方向と呼ぶことがある。また、軸方向において、シリンダヘッド62が設けられた側を「前」と、その反対側を「後」と呼び、径方向において、電動モータ10の中心側、つまり、ロータ13が設けられた側を「内」と、その反対側、つまり、ステータ11側を「外」と呼ぶことがある。
 図1から図5Bに示すように、電動アクチュエータ100は、電動モータ10と、電動モータ10の回転駆動力を受けて軸方向に直線的に移動する直動機構20と、電動モータ10と直動機構20とを内部に収容するハウジング30と、直動機構20に駆動されて軸方向に変位する出力部60と、を備えている。
 電動モータ10は、ステータ11とロータ13とを有している。ステータ11は、略円環形状のステータコア12から径方向内側に突出し、周方向に所定の間隔をあけて設けられた複数のティース(図示せず)にコイル(図示せず)が巻回されてなる。ステータ11は、ロータ13の径方向外側に、ロータ13と所定の間隔をあけて配設されている。ロータ13は、軸心に回転軸16を有し、回転軸16の外周面にロータコア14が外嵌されている。また、ロータコア14には周方向に所定の間隔をあけて複数の永久磁石15が埋設されている。
 回転軸16は、軸方向前端が開口した中空部16aを有する円筒状の金属部材であり、軸方向後端部の軸心には、スプライン形状の開口16bが設けられている。つまり、開口16bの内周面には、周方向に所定の間隔をあけて複数の溝部(インボリュートスプライン)16cが設けられている。回転軸16は、ハウジング30に固定された転がり軸受70,71によって、ハウジング30に対して回転自在かつ軸方向に移動不能に支持され、電動モータ10が駆動することで回転駆動力が伝達されて軸線周りに回転する。なお、以下の説明において、転がり軸受は、玉軸受、軸受ということもある。
 直動機構20は、ボールねじ軸40と、電動モータ10の回転軸16と、ボールねじナット50とで構成されている。これらの構成部材については後述する。
 ハウジング30は樹脂材料からなり、内部に設けられた空間に、電動モータ10と直動機構20とが収容されている。ハウジング30の軸方向前面には開口30aが設けられており、開口30aに対して出力部60が摺動自在に挿通されている。開口30aの内周面には周方向に所定の間隔をあけて複数の溝部(インボリュートスプライン)30bが設けられている(図5A参照)。また、回転軸16の軸線の延長上に開口30aの中心が位置するように、ハウジング30に対する回転軸16の位置が規定されている。なお、図示しないが、ハウジング30には電動モータ10に電力を供給するための配線を引き出すための開口が設けられている。
 次に、直動機構20の各構成部材について説明する。ただし、回転軸16に関しては前述しており、細部の説明は省略する。
 ボールねじ軸40は略円柱状の金属部材であり、外周面にらせん状にねじ溝40aが設けられている。また、図2,3に示すように、ボールねじ軸40の軸方向後端部には、軸方向に沿って所定の長さに伸びた複数の歯部(インボリュートスプライン)40bが設けられている。また、複数の歯部40bは、ボールねじ軸40の外周面の周方向に所定の間隔をあけて設けられている。図3に示すように、回転軸16の軸方向後端に位置する開口16bに設けられた複数の溝部16cに、ボールねじ軸40の軸方向後端部に設けられた複数の歯部40bがインボリュートスプラインで圧入結合されており、ボールねじ軸40は、回転軸16に対して回り止め及び軸方向への移動止めがなされた状態で、回転軸16に回転一体に連結固定されている。
 ボールねじナット50は、回転軸16の中空部16aに収容され、軸方向両端が開口した円筒状の金属部材であり、内周面にはらせん状にねじ溝50aが設けられている。また、ボールねじナット50の軸方向前端部には、外周面の周方向に所定の間隔をあけて複数の溝部(インボリュートスプライン)50bが形成されている。ボールねじナット50は、図示しない複数のボールを介してボールねじ軸40に螺合されている。ボールねじ軸40のねじ溝40aとボールねじナット50のねじ溝50aとの間に収容された複数のボールが転動することで、回転軸16及びこれに連結されたボールねじ軸40が軸線周りに回転すると、ボールねじ軸40から伝達された回転駆動力が直線運動の推進力に変換され、ボールねじナット50はボールねじ軸40に沿って軸方向に移動する。
 また、直動機構20に駆動される出力部60は、外周面の周方向に所定の間隔をあけて設けられた複数の歯部(インボリュートスプライン)61aを有し、軸方向両端が開口した円筒状の金属部材である中筒61と、中筒61の軸方向前端部に連結されたシリンダヘッド62と、中筒61の表面に設けられた樹脂層63とを有し、シリンダとして構成されている。なお、以降の説明において、出力部60を単にシリンダ60と呼ぶことがある。ただし、出力部60が、上記の3つの部材61~63以外の部材をさらに有して、例えば、出力部60に連結された台座の送り機構として機能してもよい。複数の歯部61aは、中筒61の軸方向後端から前端まで軸方向に延びて形成されている。図4Aに示すように、シリンダ60の軸方向後端部はボールねじナット50の軸方向前端部に連結されている。ボールねじナット50の軸方向前端部に設けられた複数の溝部50bに、シリンダ60の中筒61に設けられた複数の歯部61aがインボリュートスプラインで圧入結合されており、シリンダ60は、ボールねじナット50に対して回り止め及び軸方向への移動止めがなされた状態で、ボールねじナット50に連結固定されている。なお、図4A,4Bに示すように、中筒61に設けられた複数の歯部61aのうち、ボールねじナット50に圧入嵌合された部分には、樹脂層63は設けられていない。
 また、前述したように、シリンダ60はハウジング30の開口30aに摺動自在に挿通されている。図5A,図5Bに示すように、ハウジング30の開口30aに設けられた複数の溝部30bに、シリンダ60に設けられた複数の歯部61aがスプライン嵌合しており、シリンダ60は、ハウジング30に対して回り止めがなされた状態で支持されている。なお、ハウジング30の複数の溝部30bにインボリュートスプライン嵌合する複数の歯部61aの表面には樹脂層63が設けられている。つまり、シリンダ60とハウジング30とが互いにインボリュートスプライン嵌合することで、シリンダ60は、ハウジング30に対して回転不能かつ軸方向に摺動自在に支持されている。また、このことにより、シリンダ60に対して回転不能に連結された連結されたボールねじナット50はハウジング30に対して回り止めがなされる。また、シリンダ60の樹脂層63は、ハウジング30との摩擦を低減し、ハウジング30に対してシリンダ60を滑らかに摺動させるため設けられている。また、シリンダ60とハウジング30との間の摺動部にはグリース等の潤滑剤が塗布された上で、電動アクチュエータ100の組み立てが行われる。なお、電動アクチュエータ100を流体ポンプの駆動源として用いる場合は、シリンダヘッド62の外周面にOリング等のシールリング(図示せず)が設けられていてもよい。
 また、図4A,4Bにそれぞれ示すように、シリンダ60の歯部61aは、歯面がボールねじナット50の溝部50bの側面に接する一方、歯先は溝部50bの底面とは所定の間隔をあけて溝部50bに圧入されている。図示しないが、図3に示すボールねじ軸40の歯部40bも、歯面が回転軸16の溝部16cの側面に接する一方、歯先は回転軸16の溝部16cと所定の間隔をあけて溝部16cに圧入されている。さらに、図5A,5Bにそれぞれ示すように、表面に樹脂層63が設けられた、シリンダ60の歯部61aは、歯面がハウジング30の溝部30bの側面に近接する一方、歯先は溝部30bの底面とは所定の間隔をあけて溝部30bにインボリュートスプライン嵌合されている。つまり、各歯部40b,61a,61aと各溝部16c,50b,30bとはそれぞれ歯面合わせがなされた状態で結合または嵌合されている。
 このようにすることで、互いに結合または嵌合される2つの部材の同軸度を保つことができる。例えば、ボールねじ軸40の歯部40bの歯先と回転軸16の溝部16cの底面とを所定の間隔をあけて配置することで、回転軸16とボールねじ軸40との同軸度を保って、両者を結合することができる。また、シリンダ60の歯部61aの歯先とボールねじナット50の溝部50bの底面とを所定の間隔をあけて配置することで、ボールねじナット50とシリンダ60との同軸度を保って、両者を結合することができる。同様に、シリンダ60の歯部61aの歯先とハウジング30の溝部30bの底面とを所定の間隔をあけて配置することで、シリンダ60とハウジング30の開口30aとの同軸度を保って、シリンダ60をハウジング30に嵌合することができる。なお、ハウジング30の開口30aと出力部60の摺動箇所、つまり、溝部30bと歯部61aの歯面とが近接する箇所では、所定の間隔、例えば、1μm程度の間隔が設けられている。この間隔は、電動アクチュエータ100が配置された環境の雰囲気で満たされるようにしてもよいし、例えば、潤滑剤等が入り込むようにしてもよい。
 次に、電動アクチュエータ100の動作について説明する。電動モータ10に電力を供給すると、ステータ11とロータ13との間でトルクが働き、ロータ13の軸心に配置された回転軸16がハウジング30に固定された玉軸受70,71に支持されて軸線周りに回転する。同時に、回転軸16に連結されたボールねじ軸40も軸線周りに回転する。ボールねじ軸40の回転に応じて、ボールねじ軸40に螺合されたボールねじナット50が軸方向に移動する。また、ボールねじナット50に連結されたシリンダ60が軸方向に沿って直線的に移動する。例えば、ブレーキ用の油圧ポンプにこの電動アクチュエータ100を組み込んで使用する場合、図示しない中空筒部に摺動自在に収容されたシリンダ60がブレーキ操作に応じて移動して、中空筒部内に導入されたブレーキオイルの圧力を変化させて車両のブレーキ動作及びブレーキ解除動作が行われる。
 [効果等]
 以上説明したように、本実施形態に係る直動機構20は、開口30aを有するハウジング30内に収容され、電動モータ10の回転駆動力を受けて出力部であるシリンダ60を軸方向に変位させる。また、この直動機構20は、ハウジング30に対して軸線回りに回転自在かつ軸方向に移動不能に設けられ、電動モータ10の回転駆動力によって回転し、中空部16aを有する回転軸16と、中空部16a内に回転軸16と同軸に収容され、回転軸16によって駆動されて回転するボールねじ軸40と、ハウジング30に対して回転不能かつ軸方向に移動自在に設けられ、中空部16a内でボールねじ軸40に複数のボールを介して螺合されたボールねじナット50と、を備えている。また、シリンダ60は、ボールねじナット50の軸方向前端部に移動一体に連結されていてボールねじナット50の軸方向への移動に応じてハウジング30の開口30a内を摺動する。さらに、回転軸16とボールねじ軸40とが互いの軸方向後端部においてインボリュートスプライン結合している。
 直動機構20をこのような構成とすることで、軸受部材等に支持されていないボールねじ軸40の軸方向前端側が、ボールねじ軸40に螺合されたボールねじナット50及びボールねじナット50に連結されたシリンダ60を介してハウジング30に支持される。また、ボールねじ軸40の軸方向後端部は、ハウジング30に対して位置固定された回転軸16に連結されている。このことにより、ボールねじ軸40の両端部は、互いに軸方向に関して位置が固定された回転軸16及びハウジング30に安定して支持される。また、ボールねじ軸40が回転軸16と同軸に安定して支持されることにより、ボールねじナット50を介してボールねじ軸40及び回転軸16に連結されたシリンダ60を、回転軸16の軸線に沿ってぶれることなく変位させることができる。
 また、本実施形態に係る直動機構20は、ハウジング30の開口30aの内周面に設けられた溝部30bとシリンダ60に設けられた歯部61aとが互いにスプライン嵌合することで、シリンダ60及びシリンダ60に連結されたボールねじナット50は、ハウジング30に対して回転不能に設けられる。
 この構成によれば、ハウジング30とシリンダ60とが互いにスプライン嵌合することで、シリンダ60はハウジング30に対して回り止めがなされる。また、シリンダ60に対して回転不能に連結されたボールねじナット50もハウジング30に対して回り止めがなされる。また、シリンダ60の軸心とハウジング30の開口30aの中心とを位置合わせして、シリンダ60の歯部61aとハウジング30の開口30aに設けられた溝部30bとを歯面合わせを行った上で嵌合することで、シリンダ60及びボールねじナット50を介して、ボールねじ軸40をハウジング30の開口30aに対して自動的に同軸に配置することができる。つまり、ボールねじ軸40の両端部をそれぞれ支持する回転軸16の中心とハウジング30の開口30aの中心とを同じ軸線上に配置することができ、ボールねじ軸40の配置精度、特に回転軸16の軸線との一致度を向上することができる。また、シリンダ60に加わる外力や荷重をスプライン結合面で受け止めるため、シリンダ60の変形等が起こりにくくなる。このことにより、直動機構20の信頼性が向上する。
 また、シリンダ60は、表面に樹脂層63が設けられた金属製の中筒61からなり、中筒61にはインボリュートスプライン形状の複数の歯部61aが設けられている。
 この構成によれば、金属製の中筒61によりシリンダ60の機械的強度を高くでき、シリンダ60の変形が起こりにくくなる。また、中筒61の外周に樹脂層63を配置することで、樹脂材料からなるハウジング30の開口30aに嵌合される際のシリンダ60のガタを低減でき、ハウジング30に対するシリンダ60の摺動性を高めることができる。このことにより、シリンダ60及びハウジング30の耐久性を高めることができる。本実施形態に示すように、ボールねじ軸40が片持ち支持されている場合は特に有効である。なお、この摺動性を高めるために、ハウジング30とシリンダ60との摺動部にグリース等の潤滑剤を塗布したりすることが有効であることは言うまでもない。また、このことにより、電動アクチュエータ100の性能を高めることができる。例えば、ブレーキ用の油圧ポンプにこの電動アクチュエータ100を組み込んで使用する場合、ブレーキの応答性を高めることができる。
 また、回転軸16とボールねじ軸40とが互いにインボリュートスプライン結合して連結されているため、ボールねじ軸40は回転軸16に対して回り止めがなされている。このことにより、回転軸16の回転トルクをロスすることなくボールねじ軸40に伝達できる。また、回転軸16の開口16bの中心を回転軸16の軸線上に配置することで、ボールねじ軸40を回転軸16に対して自動的に同軸に配置することができる。さらに、従来の構成では、ボールねじ軸40に加わる外力やボールねじ軸40自体の荷重を玉軸受で受けていたが、本実施形態の構成によれば、これらの外力や荷重をスプライン結合面で受け止めるため、回転軸16とボールねじ軸40とが互いに同軸度を保ちながら、両者を連結できる。また、両者の連結部の耐久性を高めることができる。このことにより、直動機構20の信頼性が向上する。
 また、本実施形態に係る直動機構20は、ボールねじナット50の溝部50bとシリンダ60の歯部61aとが互いにインボリュートスプライン結合している。
 ボールねじナット50とシリンダ60とが互いにインボリュートスプライン結合することで、シリンダ60はボールねじナット50に対して回り止めがなされている。また、シリンダ60がボールねじナット50に対して自動的に同軸に配置されるため、ボールねじナット50に螺合されたボールねじ軸40及びこれに同軸に連結された回転軸16とシリンダ60とを同軸に配置できる。また、ボールねじナット50及びシリンダ60に加わる外力や荷重をスプライン結合面で受け止めるため、ボールねじナット50とシリンダ60とが互いに同軸度を保ちながら、両者を連結できる。また、両者の連結部の耐久性を高めることができる。また、このことにより、直動機構20の信頼性が向上する。
 なお、回転軸16とボールねじ軸40及びボールねじナット50とシリンダ60を、それぞれ滑らかに結合させるために、また、シリンダ60とハウジング30の開口30aとを、滑らかに嵌合させるために、例えば、ボールねじ軸40に設けられた歯部40bやシリンダ60に設けられた歯部61aをインボリュート形状にするのが好ましい。回転軸16に設けられた溝部16cやボールねじナット50に設けられた溝部50bも同様に、インボリュート形状にするのが好ましい。ただし、バックラッシが大きくならないように歯部40b,61a及び溝部16c、50bのそれぞれの形状を調整する必要がある。これらの形状は、各部品の加工公差や組立公差、また、バックラッシの許容量等に応じて適宜修正されうる。
 また、本実施形態に係る電動アクチュエータ100は、上記の直動機構20と、回転軸16を回転させる電動モータ10と、電動モータ10の回転駆動力を受けて軸方向に変位するシリンダ60と、直動機構20とシリンダ60と電動モータ10とを内部に収容するハウジング30と、を備えている。また、電動モータ10は、回転軸16を軸心に有するロータ13と、ロータ13の径方向外側に所定の間隔をあけて配設されたステータ11とを有している。
 電動アクチュエータ100をこのような構成とすることで、シリンダ60を、回転軸16の軸線に沿ってぶれることなく変位させることができる。このことにより、電動アクチュエータ100をワーク等の移動手段に用いる場合、ワーク等を所定の位置に正確に移動させることができる。また、この電動アクチュエータ100を油圧ポンプ等の流体ポンプに用いる場合、流体の吐出量や吐出圧力を正確に制御することができる。また、主な可動部品である直動機構20の信頼性を向上できるため、電動アクチュエータ100の信頼性も向上する。
 (実施形態2)
 図6は、本実施形態に係る電動アクチュエータ200の断面模式図を示す。なお、図6に示す断面は、図2に示す断面に対応している。また、本実施形態において、実施形態1と同様の箇所については、同一の符号を付して詳細な説明を省略する。
 実施形態1に示す構成と本実施形態に示す構成とでは、以下の点で異なる。
 まず、電動モータ10が直動機構20及びシリンダ60とは別のハウジング(第2ハウジング)31に収容されている。なお、直動機構20及びシリンダ60を収容するハウジング(第1ハウジング)30は、軸方向前部にある前部ハウジング30cと軸方向後部にある後部ハウジング30dとを連結してなり、前部ハウジング30cに開口30a及び複数の溝部30bが設けられている。
 次に、直動機構20の回転軸16と電動モータ10の回転軸17とは別個に設けられており、これら2つの回転軸16,17の間に第1~第3ギア80~82が設けられている点で異なる。具体的には、電動モータ10の回転軸17には第1ギア80が外嵌されている。また、第1ギア80と径方向で所定の間隔をあけて第2ギア81が設けられており、第2ギア81と径方向で所定の間隔をあけて第3ギア82が設けられており、第3ギア82は直動機構20の回転軸16に外嵌されている。
 また、第1ギア80と第2ギア81とは互いの外周に設けられた歯部(図示せず)同士がかみ合うように配置されている。また、第2ギア81はハウジング(第1ハウジング)30内に収容されたギアピン81bに軸支されている。第2ギア81と第3ギア82とは互いの外周に設けられた歯部(図示せず)同士がかみ合うように配置されている。電動モータ10の回転軸17が回転すると、回転軸17に回転一体に連結された第1ギア80も同時に回転する。この場合、第1ギア80の歯部(図示せず)と第2ギア81の歯部(図示せず)とがかみ合うことで第2ギア81に電動モータ10の回転駆動力が伝達されて、第2ギア81がギアピン81bの周りに回転する。同様に、第2ギア81の歯部(図示せず)と第3ギア82の歯部(図示せず)とがかみ合うことで第3ギア82に電動モータ10の回転駆動力が伝達されて、直動機構20の回転軸16がその軸線周りに回転する。
 なお、電動モータ10の回転軸17は、第2ハウジング31に固定された玉軸受73,74に支持されて軸線周りに回転する。
 以上説明したように、本実施形態の電動アクチュエータ200は、直動機構20と、電動モータ10と、電動モータ10の回転駆動力を受けて軸方向に変位するシリンダ60と、直動機構20とシリンダ60とを内部に収容するハウジング(第1ハウジング)30と、電動モータ10を収容する第2ハウジング31と、電動モータ10の回転駆動力を直動機構20の回転軸16に伝達する第1~第3ギア(回転力伝達部材)80~82と、を備えている。電動モータ10は、軸心に回転軸17を有するロータ13と、ロータ13の径方向外側に所定の間隔をあけて配設されたステータ11と、を有し、電動モータ10の回転軸17及び直動機構20の回転軸16は、第1~第3ギア(回転力伝達部材)80~82に連結されている。
 電動アクチュエータ200をこのような構成とすることで、実施形態1に示す構成と同様に、ボールねじ軸40の両端部を回転軸16及びハウジング(第1ハウジング)30によって安定して支持することができ、かつ、出力部であるシリンダ60とハウジング30の開口30aとが実施形態1と同様に、微小の隙間をもって嵌合することで、シリンダ60を、回転軸の軸線に沿ってぶれることなく変位することができる。このことにより、例えば、ブレーキ用の油圧ポンプにこの電動アクチュエータ200を組み込んで使用する場合、ブレーキの応答性を高めることができる。
 また、電動モータ10の回転軸17として中空部を有する特殊な形状の部材を用いることがないため、電動モータ10のコストを低減できる。また、電動モータ10と直動機構20とを別々のハウジング30,31にそれぞれ収容することにより、両者のメンテナンスや交換を独自に行うことができる。
 また、電動モータ10の回転軸17と直動機構20の回転軸16とを第1~第3ギア80~82で互いに連結するため、大きなロスなく直動機構20の回転軸16に電動モータ10の回転駆動力を伝達できる。なお、第2ギア81を省略し、第1ギア80から第3ギア81に直接、駆動力をつたえてもよい。また、電動モータ10の回転駆動力を直動機構20の回転軸16に伝達させる回転力伝達部材として、第1~第3ギア80~82の代わりにベルト等を用いるようにしてもよい。
 (その他の実施形態)
 なお、シリンダ60とボールねじナット50とを図示しない連結固定部材を用いて連結するようにしてもよい。例えば、シリンダ60とボールねじナット50とをねじ止めするようにしてもよいし、シリンダ60及びボールねじナット50を径方向に貫通して設けられた連結ピン等で連結するようにしてもよい。また、ボールねじナット50との連結部分にのみ、シリンダ60に複数の歯部61aを設けるようにしてもよい。ボールねじナット50に対してシリンダ60を確実に回り止めし、かつ及び軸方向への移動止めができるとともに、ボールねじナット50及びシリンダ60に加わる外力等を確実に受け止めることができる。
 また、実施形態1,2において、ボールねじ軸40に歯部40bを設け、回転軸16に溝部16cを設け、歯部40bと溝部16cをインボリュートスプライン結合することで、ボールねじ軸40を回転軸16に同軸に連結しているが、回転軸16の開口16bに溝部16cを設けず、かつボールねじ軸40の軸方向後端部に歯部40bを設けなくてもよい。ボールねじ軸40の軸方向後端部が回転軸16の軸方向後端部に位置する開口16bに圧入されて、回転軸16とボールねじ軸40とが連結されるようにしてもよい。この構成によっても、回転軸16の回転トルクをロスすることなくボールねじ軸40に伝達できる。また、この場合には、回転軸16の開口16b及びボールねじ軸40の軸方向後端部は円形でなくてもよく、他の形状としてもよい。例えば、回転軸16の開口16bを半円状に形成し、ボールねじ軸40の軸方向後端部を、開口16bの形状に対応させて、半円状の断面形状としてもよい。この構成によっても、ボールねじ軸40は回転軸に対して回り止めがなされた状態で連結される。また、開口16b及びボールねじ軸40の軸方向後端部の断面を別の形状にしてもよく、例えば、多角形にしてもよい。その場合は、三角形から八角形であるのが好ましい。いずれの場合も、ボールねじ軸40は回転軸に対して回り止めがなされる。
 なお、ボールねじ軸40の複数の歯部40bは、円柱状の金属部材を切削加工して形成してもよいし、ボールねじ軸40に複数の歯を有する歯車を外嵌することで複数の歯部40bを設けるようにしてもよい。また、電動モータ10として、インナーロータ型のモータを例にとって説明したが、アウターロータ型のモータとしてもよい。
 本発明に係る直動機構は、ボールねじ軸を安定してハウジング内に支持し、シリンダを軸方向に変位させることができるため、油圧ポンプ等に用いられる電動アクチュエータに適用する上で有用である。
10  電動モータ
11  ステータ
13  ロータ
16,17  回転軸
16a 中空部
16b 開口
16c 溝部(インボリュートスプライン)
20  直動機構
30  ハウジング(第1ハウジング)
30a 開口
30b 溝部(インボリュートスプライン)
31  第2ハウジング
40  ボールねじ軸
40a ねじ溝
40b 歯部(インボリュートスプライン)
50  ボールねじナット
50a ねじ溝
50b 溝部(インボリュートスプライン)
60  出力部(シリンダ)
61  中筒
61a 歯部(インボリュートスプライン)
62  ヘッド(シリンダヘッド)
63  樹脂層
70,71,73,74 玉軸受(転がり軸受、軸受)
80  第1ギア(回転力伝達部材)
81  第2ギア(回転力伝達部材)
82  第3ギア(回転力伝達部材)
100 電動アクチュエータ
200 電動アクチュエータ

Claims (6)

  1.  開口を有するハウジング内に収容され、電動モータの回転駆動力を受けて出力部を軸方向に変位させる直動機構であって、
     前記ハウジングに対して軸線回りに回転自在かつ軸方向に移動不能に設けられ、前記電動モータの回転駆動力によって回転し、中空部を有する回転軸と、
     前記中空部内に前記回転軸と同軸に収容され、前記回転軸によって駆動されて回転するボールねじ軸と、
     前記ハウジングに対して軸線回りに回転不能かつ軸方向に移動自在に設けられ、前記中空部内で前記ボールねじ軸に複数のボールを介して螺合されたボールねじナットと、
    を備え、
     前記出力部は、前記ボールねじナットの軸方向前端部に移動一体に連結されていて該ボールねじナットの軸方向への移動に応じて前記ハウジングの開口内を摺動し、かつ前記ハウジングの開口と前記出力部とが互いにインボリュートスプライン嵌合することで、前記ボールねじナット及び前記出力部は、前記ハウジングに対して回転不能に設けられていることを特徴とする直動機構。
  2.  請求項1に記載の直動機構において、
     前記出力部は、表面に樹脂層が設けられた金属製の中筒からなり、前記中筒にはインボリュートスプライン形状の複数の歯部が設けられていることを特徴とする直動機構。
  3.  請求項1または2に記載の直動機構において、
     前記回転軸と前記ボールねじ軸とは互いの軸方向端部においてインボリュートスプライン結合しているか、または前記回転軸の軸方向端部に前記ボールねじ軸の軸方向端部が圧入されていることを特徴とする直動機構。
  4.  請求項1ないし3のいずれか1項に記載の直動機構において、
     前記ボールねじナットと前記出力部とは互いにインボリュートスプライン結合しているか、または前記ボールねじナットの軸方向前端部に前記出力部の軸方向後端部が圧入されていることを特徴とする直動機構。
  5.  請求項1ないし4のいずれか1項に記載の直動機構と、
     前記回転軸を回転させる電動モータと、
     前記電動モータの回転駆動力を受けて軸方向に変位する出力部と、
     前記直動機構と前記出力部と前記電動モータとを内部に収容するハウジングと、を備え、
     前記電動モータは、前記回転軸を有するロータと、前記ロータの径方向外側に所定の間隔をあけて配設されたステータと、を有していることを特徴とする電動アクチュエータ。
  6.  請求項1ないし4のいずれか1項に記載の直動機構と、
     電動モータと、
     前記電動モータの回転駆動力を受けて軸方向に変位する出力部と、
     前記直動機構と前記出力部とを内部に収容する第1ハウジングと、
     前記電動モータを収容する第2ハウジングと、
     前記電動モータの回転駆動力を前記直動機構の回転軸に伝達する回転力伝達部材と、を備え、
     前記電動モータは、軸心に前記直動機構の回転軸とは別の回転軸を有するロータと、前記ロータの径方向外側に所定の間隔をあけて配設されたステータと、を有し、
     前記直動機構の回転軸及び前記別の回転軸は前記回転力伝達部材によって互いに連結されていることを特徴とする電動アクチュエータ。
PCT/JP2019/014520 2018-04-06 2019-04-01 直動機構及びそれを備えた電動アクチュエータ WO2019194143A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-073604 2018-04-06
JP2018073604 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019194143A1 true WO2019194143A1 (ja) 2019-10-10

Family

ID=68100713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014520 WO2019194143A1 (ja) 2018-04-06 2019-04-01 直動機構及びそれを備えた電動アクチュエータ

Country Status (1)

Country Link
WO (1) WO2019194143A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111319597A (zh) * 2020-03-31 2020-06-23 常州中车铁马科技实业有限公司 驱动模块、电机械制动装置、制动夹钳单元及轨道车辆
JP2021079535A (ja) * 2019-11-14 2021-05-27 徐歡 金属製カーテンウォールパネル成形用切断加工装置と加工方法
WO2023026808A1 (ja) * 2021-08-24 2023-03-02 日本精工株式会社 ボールねじ装置およびその製造方法
EP4159968A3 (de) * 2021-09-29 2023-06-21 U-Shin Deutschland Zugangssysteme GmbH Antrieb für eine klappe
EP4299394A1 (en) * 2022-06-27 2024-01-03 Hyundai Mobis Co., Ltd. Brake device for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184744A (en) * 1981-04-25 1982-11-13 Yoshida Dental Mfg Co Ltd Operation apparatus
JPH04355644A (ja) * 1991-05-31 1992-12-09 Ookubo Haguruma Kogyo Kk 駆動装置
JP2011179583A (ja) * 2010-03-01 2011-09-15 Jtekt Corp 電動アクチュエータおよび変速機駆動装置
JP2013100921A (ja) * 2010-04-26 2013-05-23 Nsk Ltd 直動アクチュエータ
JP2014018007A (ja) * 2012-07-10 2014-01-30 Nsk Ltd 電動アクチュエータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184744A (en) * 1981-04-25 1982-11-13 Yoshida Dental Mfg Co Ltd Operation apparatus
JPH04355644A (ja) * 1991-05-31 1992-12-09 Ookubo Haguruma Kogyo Kk 駆動装置
JP2011179583A (ja) * 2010-03-01 2011-09-15 Jtekt Corp 電動アクチュエータおよび変速機駆動装置
JP2013100921A (ja) * 2010-04-26 2013-05-23 Nsk Ltd 直動アクチュエータ
JP2014018007A (ja) * 2012-07-10 2014-01-30 Nsk Ltd 電動アクチュエータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021079535A (ja) * 2019-11-14 2021-05-27 徐歡 金属製カーテンウォールパネル成形用切断加工装置と加工方法
JP7209921B2 (ja) 2019-11-14 2023-01-23 温嶺市山市金徳利電器配件厂 金属製カーテンウォールパネル成形用切断加工装置と加工方法
CN111319597A (zh) * 2020-03-31 2020-06-23 常州中车铁马科技实业有限公司 驱动模块、电机械制动装置、制动夹钳单元及轨道车辆
WO2023026808A1 (ja) * 2021-08-24 2023-03-02 日本精工株式会社 ボールねじ装置およびその製造方法
JP7276629B1 (ja) * 2021-08-24 2023-05-18 日本精工株式会社 ボールねじ装置およびその製造方法
EP4159968A3 (de) * 2021-09-29 2023-06-21 U-Shin Deutschland Zugangssysteme GmbH Antrieb für eine klappe
EP4299394A1 (en) * 2022-06-27 2024-01-03 Hyundai Mobis Co., Ltd. Brake device for vehicle

Similar Documents

Publication Publication Date Title
WO2019194143A1 (ja) 直動機構及びそれを備えた電動アクチュエータ
JP5293887B2 (ja) 直動アクチュエータ
EP2532915A1 (en) Disk brake device equipped with electric parking mechanism
US9512909B2 (en) Actuator assembly for translating a movable element of a driveline component
JP2005083474A (ja) 電動リニアアクチュエータ
KR20020073502A (ko) 액츄에이터 및 브레이크 캘리퍼
JP2022536416A (ja) 円形波動ドライブ
KR100852870B1 (ko) 클러치 작동 장치
JP5853616B2 (ja) アクチュエータ及びその製造方法
JP2007333046A (ja) 電動アクチュエータ
WO2018116739A1 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
JP5867257B2 (ja) 直動アクチュエータ
JP4514021B2 (ja) ボールねじアクチュエータ
US20070012126A1 (en) Electro-mechanical screw actuator assembly
WO2016017437A1 (ja) 無段変速機用アクチュエータ及び無段変速機
JP2008069793A (ja) 電動リニアアクチュエータ
KR20220158757A (ko) 원형파 드라이브
US20240271683A1 (en) Linear actuator
US20230151863A1 (en) Actuator assembly for a vehicle brake and electromechanical vehicle brake
JP2016156389A (ja) 終減速装置
JP2020048392A (ja) 電動アクチュエータ
JP6348306B2 (ja) 電動アクチュエータ
US12070984B1 (en) Stabilizer bar disconnect
WO2023062824A1 (ja) ディスクブレーキ及び遊星歯車減速機構
US20230151862A1 (en) Actuator assembly for a vehicle brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP