WO2018096621A1 - 無段変速機 - Google Patents

無段変速機 Download PDF

Info

Publication number
WO2018096621A1
WO2018096621A1 PCT/JP2016/084826 JP2016084826W WO2018096621A1 WO 2018096621 A1 WO2018096621 A1 WO 2018096621A1 JP 2016084826 W JP2016084826 W JP 2016084826W WO 2018096621 A1 WO2018096621 A1 WO 2018096621A1
Authority
WO
WIPO (PCT)
Prior art keywords
pri
pulley
pressure
oil
piston area
Prior art date
Application number
PCT/JP2016/084826
Other languages
English (en)
French (fr)
Inventor
啓 寺井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP16922354.2A priority Critical patent/EP3546793B1/en
Priority to MX2019005796A priority patent/MX2019005796A/es
Priority to US16/461,935 priority patent/US10865859B2/en
Priority to PCT/JP2016/084826 priority patent/WO2018096621A1/ja
Priority to CN201680090868.2A priority patent/CN109964059B/zh
Priority to JP2018552326A priority patent/JP6702430B2/ja
Publication of WO2018096621A1 publication Critical patent/WO2018096621A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0846CVT using endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/065Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the friction or endless flexible member type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/30Hydraulic or pneumatic motors or related fluid control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66263Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using only hydraulical and mechanical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges

Definitions

  • the present invention relates to a continuously variable transmission.
  • JP2002-523711A discloses a continuously variable transmission that controls oil flow in and out of a primary pulley oil chamber by an electric oil pump disposed in an oil passage between a primary pulley oil chamber and a secondary pulley oil chamber.
  • the above document does not mention the magnitude relationship between the piston area of the primary pulley and the piston area of the secondary pulley.
  • the piston area of the primary pulley and the piston area of the secondary pulley are important factors that affect the output required of the electric oil pump, for example, at the time of shifting. In other words, in the continuously variable transmission of the above document, there remains room for studying the magnitude relationship between the piston area of the primary pulley and the piston area of the secondary pulley.
  • an object of the present invention is to provide a continuously variable transmission in which the size relationship between the piston area of the primary pulley and the piston area of the secondary pulley is specified.
  • a continuously variable transmission includes an electric oil pump disposed in an oil passage between a piston oil chamber of a primary pulley and a piston oil chamber of a secondary pulley, and the piston of the primary pulley by the electric oil pump. And a controller that controls the oil in and out of the oil chamber.
  • the piston area of the primary pulley of the continuously variable transmission is smaller than the piston area of the secondary pulley.
  • FIG. 1 is a schematic configuration diagram of a vehicle.
  • FIG. 2 is a schematic configuration diagram of the hydraulic circuit.
  • FIG. 3 is a diagram showing the relationship between the required pump output and the PRI piston area.
  • FIG. 4 is a cross-sectional view showing the configuration of the electric oil pump.
  • FIG. 5 is a diagram illustrating a gear of the electric oil pump.
  • FIG. 6 is a diagram showing the relationship between the thrust ratio and the gear ratio.
  • FIG. 7 is a diagram illustrating an example of the use area of the PRI pressure and the SEC pressure.
  • FIG. 8 is a diagram illustrating another example of the use area of the PRI pressure and the SEC pressure.
  • FIG. 9 is a diagram for explaining the lower limit value of the PRI piston area determined from the component durability.
  • FIG. 10 is a diagram for explaining the lower limit value of the PRI piston area determined from the leak characteristics.
  • FIG. 11 is a schematic diagram of a general hydraulic circuit.
  • FIG. 1 is a schematic configuration diagram of a vehicle.
  • the vehicle includes an engine 1, a torque converter 2 with a lock-up clutch 2 a, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, drive wheels 6, and a hydraulic circuit 100.
  • Engine 1 constitutes a drive source for the vehicle.
  • the output of the engine 1 is transmitted to the drive wheels 6 via the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5.
  • the variator 4 is provided in a power transmission path for transmitting power from the engine 1 to the drive wheels 6 together with the torque converter 2, the forward / reverse switching mechanism 3, and the final reduction mechanism 5.
  • the forward / reverse switching mechanism 3 is provided between the torque converter 2 and the variator 4 in the power transmission path described above.
  • the forward / reverse switching mechanism 3 switches the rotation direction of the input rotation between a forward rotation direction corresponding to forward travel and a reverse rotation direction corresponding to reverse travel.
  • the forward / reverse switching mechanism 3 includes a forward clutch 31 and a reverse brake 32.
  • the forward clutch 31 is fastened when the rotation direction is the forward rotation direction.
  • the reverse brake 32 is fastened when the rotation direction is the reverse rotation direction.
  • One of the forward clutch 31 and the reverse brake 32 can be configured as a clutch that intermittently rotates between the engine 1 and the variator 4.
  • the variator 4 includes a primary pulley 41, a secondary pulley 42, and a belt 43 wound around the primary pulley 41 and the secondary pulley 42.
  • the primary is also referred to as PRI
  • the secondary is also referred to as SEC.
  • the variator 4 changes the belt width of the belt 43 by changing the groove width between the PRI pulley 41 and the SEC pulley 42 (hereinafter, also simply referred to as “winding diameter”) to change the belt type continuously variable transmission.
  • the mechanism is configured.
  • the PRI pulley 41 includes a fixed pulley 41a fixed to the primary shaft 51, and a movable pulley 41b that faces the fixed pulley 41a and is supported so as to be movable in the axial direction of the primary shaft 51 and relatively unrotatable.
  • a piston 41d fixed to the primary shaft 51 is provided on the opposite side of the movable pulley 41b to the fixed pulley 41a, and a PRI pulley oil chamber 41c as a piston oil chamber is formed between the fixed pulley 41a and the piston 41d.
  • the controller 10 controls the amount of oil supplied to the PRI pulley oil chamber 41c, the movable pulley 41b operates and the groove width of the PRI pulley 41 is changed.
  • the SEC pulley 42 includes a fixed pulley 42a fixed to the secondary shaft 52, and a movable pulley 42b opposed to the fixed pulley 42a and supported so as to be movable in the axial direction of the secondary shaft 52 and not relatively rotatable.
  • a piston 42d fixed to the secondary shaft 52 is provided on the opposite side of the movable pulley 42b to the fixed pulley 42a, and an SEC pulley oil chamber 42c as a piston oil chamber is formed between the fixed pulley 42a and the piston 42d.
  • the controller 10 controls the amount of oil supplied to the SEC pulley oil chamber 42c, the movable pulley 42b operates and the groove width of the SEC pulley 42 is changed.
  • the belt 43 has a V-shaped sheave surface formed by the fixed pulley 41a and the movable pulley 41b of the PRI pulley 41, and a V-shape formed by the fixed pulley 42a and the movable pulley 42b of the SEC pulley 42. Wound around the sheave surface.
  • the final deceleration mechanism 5 transmits the output rotation from the variator 4 to the drive wheels 6.
  • the final reduction mechanism 5 includes a plurality of gear trains and differential gears. The final reduction mechanism 5 rotates the drive wheels 6 via the axle.
  • the hydraulic circuit 100 supplies hydraulic pressure to the variator 4, specifically, the PRI pulley 41 and the SEC pulley 42.
  • the hydraulic circuit 100 supplies hydraulic pressure to the forward / reverse switching mechanism 3, the lockup clutch 2a, and a lubrication system and a cooling system (not shown).
  • the hydraulic circuit 100 is configured as follows.
  • FIG. 2 is a schematic configuration diagram of the hydraulic circuit 100.
  • the hydraulic circuit 100 includes an original pressure oil pump 101, a line pressure adjusting valve 102, a pressure reducing valve 103, a line pressure solenoid valve 104, a forward / reverse switching mechanism solenoid valve 105, a transmission circuit pressure solenoid valve 107, a manual A valve 108, a line pressure oil passage 109, a low pressure system control valve 130, a speed change circuit 110, and a line pressure electric oil pump 111 are provided.
  • the solenoid valve is referred to as SOL.
  • the original pressure oil pump 101 is a mechanical oil pump that is driven by the power of the engine 1.
  • the original pressure oil pump 101 is connected to a line pressure adjusting valve 102, a pressure reducing valve 103, a transmission circuit pressure SOL 107 and a transmission circuit 110 via a line pressure oil passage 109.
  • the line pressure oil passage 109 constitutes a line pressure oil passage.
  • the line pressure is a hydraulic pressure that is a source pressure of the PRI pressure or the SEC pressure.
  • the line pressure electric oil pump 111 is driven by an electric motor 117.
  • the line pressure electric oil pump 111 is operated to supply line pressure when the engine 1 is stopped by, for example, idling / stop control and the main pressure oil pump 101 is stopped accordingly.
  • the line pressure adjusting valve 102 adjusts the hydraulic pressure generated by the oil pump 101 to generate line pressure.
  • the generation of the line pressure by the oil pump 101 includes the generation of the line pressure under the action of the line pressure regulating valve 102 as described above. Oil that is relieved when the line pressure regulating valve 102 regulates pressure is supplied to the lock-up clutch 2a, the lubrication system, and the cooling system via the low-pressure control valve 130.
  • the pressure reducing valve 103 reduces the line pressure.
  • the hydraulic pressure reduced by the pressure reducing valve 103 is supplied to the line pressure SOL 104 and the forward / reverse switching mechanism SOL 105.
  • the line pressure SOL104 is a linear solenoid valve and generates a control hydraulic pressure corresponding to the control current.
  • the control hydraulic pressure generated by the line pressure SOL104 is supplied to the line pressure adjustment valve 102, and the line pressure adjustment valve 102 adjusts the pressure by operating according to the control hydraulic pressure generated by the line pressure SOL104. For this reason, the command value of the line pressure PL can be set by the control current to the line pressure SOL104.
  • the forward / reverse switching mechanism SOL 105 is a linear solenoid valve that generates hydraulic pressure in accordance with the control current.
  • the hydraulic pressure generated by the forward / reverse switching mechanism SOL 105 is supplied to the forward clutch 31 and the reverse brake 32 via a manual valve 108 that operates according to the operation of the driver.
  • the transmission circuit pressure SOL107 is a linear solenoid valve, and generates hydraulic pressure to be supplied to the transmission circuit 110 according to the control current. Therefore, the command value for the transmission circuit pressure can be set by the control current to the transmission circuit pressure SOL107.
  • the transmission circuit pressure generated by the transmission circuit pressure SOL 107 is supplied to the transmission oil passage 106.
  • the transmission circuit pressure may be generated by, for example, a SOL that generates a control hydraulic pressure corresponding to the control current and a pressure regulating valve that generates a control circuit pressure from the line pressure PL according to the control hydraulic pressure generated by the SOL.
  • the speed change circuit 110 includes a speed change oil path 106 connected to the line pressure oil path 109 via a speed change circuit pressure SOL107, and a speed change oil pump 112 interposed in the speed change oil path 106.
  • the speed change oil passage 106 communicates the PRI pulley oil chamber 41c and the SEC pulley oil chamber 42c.
  • the speed change oil path 106 is provided with a branch path that branches from between the speed change oil pump 112 and the PRI pulley oil chamber 41c.
  • An orifice 122 is provided in the branch path, and oil is discharged from the orifice 122 to the outside of the speed change oil path 106.
  • the orifice 122 is formed so as to have a small diameter in a part of the oil passage, and an end of the speed change oil passage 106 opposite to the branch point is opened. Oil always leaks from this open end.
  • oil is supplied to the PRI pulley oil chamber 41 c by the transmission oil pump 112
  • a part of the oil leaks from the orifice 122. Oil discharged from the orifice to the outside of the speed change oil passage 106 is discharged to a space in the case of the continuously variable transmission.
  • the outside of the speed change oil passage 106 (the tip of the orifice 122) in this embodiment is a space, but the outside of the speed change oil passage 106 (the tip of the orifice 122) is more hydraulic than the speed change oil passage 106.
  • the oil path may be low. That is, the outside of the speed change oil passage 106 may be any place where the oil pressure is lower than that of the speed change oil passage 106.
  • the orifice 122 is an example of an oil discharge mechanism.
  • the speed change oil pump 112 is driven by an electric motor 113 and can switch a rotation direction between a forward direction and a reverse direction via an inverter 114.
  • the forward direction is a direction in which oil is sent from the SEC pulley oil chamber 42c side to the PRI pulley oil chamber 41c side
  • the reverse direction is an oil direction from the PRI pulley oil chamber 41c side to the SEC pulley oil chamber 42c side. It is the direction to send.
  • the shifting oil pump 112, the electric motor 113, and the inverter 114 may be collectively referred to as an electric oil pump 123.
  • the oil is supplied from the line pressure oil passage 109 to the transmission oil passage 106 so that the SEC-side hydraulic pressure is also not lower than the transmission circuit pressure command value.
  • the command value of the transmission circuit pressure is set in consideration of preventing the belt 43 from slipping.
  • the hydraulic pressure of the transmission oil passage 106 closer to the PRI pulley oil chamber 41 c (hereinafter also referred to as “PRI side”) than the transmission oil pump 112 is also referred to as PRI-side hydraulic pressure.
  • the shift oil pump 112 controls the oil flow in and out of the PRI pulley oil chamber 41c.
  • the outline of the shift control will be described later.
  • the force for clamping the belt 43 so as not to slip is controlled by controlling the hydraulic pressure supplied to the SEC pulley oil chamber 42c.
  • the vehicle further includes a controller 10.
  • the controller 10 is an electronic control device, and a signal from the sensor / switch group 11 is input to the controller 10.
  • the controller 10 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 10 with a plurality of microcomputers.
  • the sensor switch group 11 includes, for example, an accelerator pedal opening sensor that detects the accelerator pedal opening of the vehicle, a brake sensor that detects the brake depression force of the vehicle, a vehicle speed sensor that detects the vehicle speed Vsp, and the rotational speed NE of the engine 1.
  • the sensor switch group 11 further includes, for example, a PRI pressure sensor 115 that detects the PRI pressure, a SEC pressure sensor 116 that detects the SEC pressure, a PRI rotation speed sensor 120 that detects the input side rotation speed of the PRI pulley 41, and a SEC pulley 42. It includes a SEC rotation speed sensor 121 that detects the output side rotation speed, a pump rotation speed sensor 118 that detects the rotation speed of the shifting oil pump 112, and an oil temperature sensor 119 that detects the temperature of the oil.
  • a signal from the sensor / switch group 11 may be input to the controller 10 via another controller, for example. The same applies to signals such as information generated by other controllers based on signals from the sensor / switch group 11.
  • the controller 10 controls the hydraulic circuit 100 based on signals from the sensor / switch group 11. Specifically, the controller 10 controls the line pressure SOL 104 and the shift circuit 110 shown in FIG. The controller 10 is further configured to control the forward / reverse switching mechanism SOL 105 and the transmission circuit pressure SOL 107.
  • the controller 10 In controlling the line pressure SOL104, the controller 10 energizes the line pressure SOL104 with a control current corresponding to the command value of the line pressure PL.
  • the controller 10 sets a target gear ratio based on a signal from the sensor / switch group 11.
  • the winding diameter (target winding diameter) of each of the pulleys 41 and 42 for realizing the target gear ratio is determined.
  • the groove widths (target groove widths) of the pulleys 41 and 42 for realizing the target winding diameter are determined.
  • the movable pulley 41b of the PRI pulley 41 moves in response to the oil being taken in and out from the PRI pulley oil chamber 41c by the speed change oil pump 112, and the movable pulley 42b of the SEC pulley 42 is also moved accordingly. Moving. That is, there is a correlation between the amount of movement of the movable pulley 41b of the PRI pulley 41 and the amount of movement of the movable pulley 42b of the SEC pulley 42.
  • the controller 10 operates the shift oil pump 112 so that the position of the movable pulley 41b of the PRI pulley 41 is a position corresponding to the target gear ratio. Whether or not the movable pulley 41b is at a desired position is calculated by calculating the actual gear ratio from the detection values of the PRI rotational speed sensor 120 and the SEC rotational speed sensor 121, and whether the actual gear ratio matches the target gear ratio. Judgment by whether or not.
  • the operation of the speed change oil pump 112 by the controller 10 is not limited to the speed change. Even when the target speed ratio does not change, the controller 10 operates the speed change oil pump 112 when oil leaks from the pulley oil chambers 41c and 42c and the actual speed ratio changes. In the present embodiment, control for maintaining such a target gear ratio is also included in the shift control.
  • the shift control of the present embodiment is feedback control for converging the position of the movable pulley 41b of the PRI pulley 41 to the target position.
  • the control object of the feedback control is not the oil pressure of the pulley oil chambers 41c and 42c but the groove width of the PRI pulley 41, in other words, the position of the movable pulley 41b.
  • a sensor that detects the position of the movable pulley 41b may be provided to determine whether or not the movable pulley 41b is at a position corresponding to the target gear ratio.
  • the electric motor 113 has a characteristic that the accuracy of the rotational speed control is remarkably lowered when the rotational speed command value is extremely small. Therefore, the oil flow rate F that can be discharged while the control oil pump 112 maintains the control accuracy is set. Has a lower limit. For this reason, for example, when the flow rate (also referred to as a leak flow rate) Fb leaking in the PRI pulley oil chamber 41c is less than the lower limit (also referred to as the lower limit flow rate Fmin) of the oil flow rate F, the leak cannot be compensated with high accuracy.
  • the shift oil pump 112 is made to discharge the lower limit flow rate Fmin, and a part thereof is discharged through the orifice 122.
  • the orifice 122 is an example of an oil discharge mechanism and is not limited to this.
  • an on-off valve may be used. When using the on-off valve, the on-off control may be executed only when the leak flow rate Fb is smaller than the lower limit flow rate Fmin. According to this, wasteful oil outflow can be suppressed.
  • the electric oil pump 123 By the way, in designing a continuously variable transmission, there is a desire to make the electric oil pump 123 as small as possible from the viewpoint of cost, size, weight, and the like.
  • the electric motor 113 must be able to generate an output necessary for shifting. That is, the electric oil pump 123 can be reduced in size by reducing the output required of the electric motor 113 for shifting. Accordingly, in the present embodiment, attention is paid to the magnitude relationship between the piston area of the PRI pulley 41 (hereinafter also referred to as “PRI piston area”) and the piston area of the SEC pulley 42 (hereinafter also referred to as “SEC piston area”). The size of the oil pump 123 is reduced.
  • PRI piston area the magnitude relationship between the PRI piston area and the SEC piston area
  • FIG. 3 is a diagram showing the relationship between the required pump output and the PRI piston area when the PRI piston area is changed with the SEC piston area being constant.
  • the “pump required output” referred to here is a pump output required for the electric oil pump 123 for shifting, that is, an output of the electric motor 113 required for shifting.
  • Fsa (Vp / Np) ⁇ C (1)
  • Fsa differential thrust
  • Vp PRI pulley speed
  • Np PRI rotation speed
  • C constant determined by belt characteristics Since PRI rotation speed Np can be regarded as the engine rotation speed, from equation (1), when the engine rotation speed is low It can be seen that the difference thrust becomes larger. That is, the differential thrust is greater in the downshift performed mainly when the engine speed is low than in the upshift.
  • the required pump output is expressed by the product of the shift speed and the differential thrust, so the downshift requires a higher pump output than the upshift.
  • the output of the electric oil pump 123 (hereinafter, also referred to as “pump output”) is expressed by Expression (2).
  • Ppump ⁇ P ⁇ Qp (2)
  • Ppump pump output
  • ⁇ P front-rear differential pressure of the electric oil pump
  • Qp flow rate passing through the electric oil pump
  • front-rear differential pressure ⁇ P and pass flow rate Qp of the electric oil pump 123 at the time of downshift are expressed by the equation (3), respectively. (4).
  • Fp Ap ⁇ Pp (5)
  • Fs As ⁇ Ps (6)
  • Fs SEC thrust
  • Ap PRI piston area
  • As SEC piston area
  • Pp PRI pressure
  • Ps SEC pressure
  • the smaller the PRI piston area the smaller the passage flow rate Qp of the electric oil pump 123 and the front-back differential pressure ⁇ P. Therefore, the pump output Ppump also decreases from the equation (2). I understand. Therefore, as shown in FIG. 3, the smaller the PRI piston area, the lower the required pump output during downshifting.
  • Expression (12) is obtained by substituting Expression (11) into Expression (10).
  • the electric oil pump 123 needs to satisfy the required pump output in both the downshift and the upshift. That is, the higher one of the required pump output that satisfies the downshift requirement and the required pump output that satisfies the upshift requirement is the output required for the electric oil pump 123.
  • the output required for the electric oil pump 123 is a required pump output that satisfies the downshift request.
  • the output required for the electric oil pump 123 is the required pump output that satisfies the downshift requirement.
  • the required pump output that satisfies the downshift requirement is smaller than the PRI piston area ⁇ SEC piston area.
  • the required pump output satisfying the downshift requirement is equal to the required pump output satisfying the upshift requirement.
  • the required pump output satisfying the upshift requirement becomes higher than the required pump output satisfying the downshift requirement. That is, the output required for the electric oil pump 123 is a required pump output that satisfies the upshift request.
  • the required pump output that satisfies the upshift requirement increases as the PRI piston area decreases. Therefore, the output required of the electric oil pump 123 increases as the PRI piston area decreases from Ap1.
  • the electric oil pump 123 is required as compared with the PRI piston area ⁇ SEC piston area. Output is small.
  • the PRI piston area is made smaller than the SEC piston area. Therefore, the output requested
  • the PRI piston area is Ap1, that is, an area where the pump required output satisfying the downshift request and the pump required output satisfying the upshift request are equal.
  • FIG. 4 is a view showing the structure of the oil pump 112 for shifting.
  • the shift oil pump 112 includes two gears 201 and 202 inside the housing 200.
  • the two gears 201 and 202 are engaged with each other and rotated, and the suction force generated by the rotation sucks oil from the suction port and discharges it from the discharge port.
  • the two gears 201 and 202 are assembled with backlash. Then, the tooth tips contact each other due to the differential pressure described above. Therefore, when the above-mentioned differential pressure is reversed and the suction side becomes higher than the discharge side, the backlash direction is also reversed, and rattling noise and vibration are generated. Further, in the absence of the above-described differential pressure, since the force for pressing the two gears 201 and 202 is lost, rattling noise and vibration are likely to occur.
  • the generation of the rattling noise and vibration described above can be suppressed as described below.
  • FIG. 6 shows the relationship between the thrust ratio and the gear ratio when the gear ratio is fixed to a predetermined gear ratio in a state where torque is transmitted from the engine 1 to the drive wheels 6 (hereinafter also referred to as “drive state”). It is a figure which shows an example.
  • the thrust ratio here is a value obtained by dividing the PRI thrust by the SEC thrust.
  • the thrust ratio when the speed ratio is fixed is 1 when the speed ratio is the lowest, and the thrust ratio increases proportionally as the speed ratio becomes higher, and becomes 2 when the speed ratio is highest.
  • FIG. 8 shows the case of PRI piston area ⁇ SEC piston area.
  • PRI piston area SEC piston area
  • PRI pressure SEC pressure when the thrust ratio is the lowest gear ratio. That is, it is used in a region where the rattling noise and vibration described with reference to FIGS. 5 and 6 may occur.
  • the oil passage (transmission oil passage 106) between the piston oil chamber (PRI pulley oil chamber 41 c) of the primary pulley 41 and the piston oil chamber (SEC pulley oil chamber 42 c) of the secondary pulley 42.
  • a control unit (controller 10) that controls the oil flow in and out of the PRI primary pulley oil chamber 41c by the electric oil pump 123.
  • the piston area of the primary pulley 41 is smaller than the piston area of the secondary pulley 42. Thereby, since a pump required output falls, the electric oil pump 123 can be reduced in size.
  • the present embodiment is the same as the first embodiment in that the PRI piston area is smaller than the SEC piston area.
  • the PRI piston area is smaller than the SEC piston area.
  • FIG. 9 is a diagram showing the relationship between the PRI piston area and the PRI pressure at the maximum thrust, where the vertical axis is the PRI pressure and the horizontal axis is the PRI thrust.
  • the maximum thrust referred to here is a thrust required to realize a predetermined gear ratio under the most severe conditions, that is, when the gear ratio is the lowest gear ratio and the torque transmitted from the engine 1 is the maximum torque.
  • the upper limit value (Ppri1) of the PRI pressure based on the durability of these parts is obtained, and the PRI piston area is set so that the maximum thrust does not exceed this.
  • the minimum value of the PRI piston area is the PRI piston area Ap2 where the maximum thrust is Ppri1.
  • FIG. 10 is a diagram illustrating the relationship between the PRI pressure and the PRI thrust in the first quadrant, and the relationship between the PRI pressure and the leak amount in the second quadrant.
  • the required thrust here is a thrust required to realize a certain gear ratio. When the most severe condition, that is, when the speed ratio is the lowest speed ratio and the torque transmitted from the engine 1 is the maximum torque, the required thrust is the maximum thrust. Further, the leak amount here is a leak amount in the PRI pulley oil chamber 41c.
  • the amount of leakage increases as the PRI pressure increases.
  • the leaked amount is compensated by the main pressure oil pump 101 or the line pressure electric oil pump 111. That is, the amount of leakage that can be compensated (hereinafter also referred to as “supply flow rate limit value”) is determined by the discharge capacity of the oil pump 101 for the source pressure and the like.
  • the PRI pressure when the required thrust is generated increases as the PRI piston area decreases.
  • the PRI pressure when the upper limit value of the leak amount that can be compensated by the original pressure oil pump 101 or the like is Qleak_max is Ppri1. That is, the upper limit value of the PRI pressure determined based on the leak amount is set to Ppri1. Then, the PRI piston area is set so that the required thrust can be generated when the PRI pressure is Ppri1, which is the upper limit value.
  • the minimum value of the PRI piston area is the PRI piston area Ap3 that generates the necessary thrust when the PRI pressure is Ppri1. This is because if the PRI piston area is smaller than Ap3, the PRI pressure when generating the required thrust becomes higher than Ppri1.
  • the PRI piston area can be further reduced.
  • the electric oil pump 123 can be further downsized.
  • the original pressure oil pump 101 and the like are increased in size. That is, when setting the PRI piston area based on the leakage characteristics, it is necessary to take into account the supply flow rate limit value and to make the electric oil pump 123 smaller and the original pressure oil pump 101 larger in size. is there.
  • the magnitude relationship between the lower limit value Ap2 of the PRI piston area based on the above-described component durability and the lower limit value Ap3 of the PRI piston area based on the leak characteristics is determined by the specifications of the continuously variable transmission to which the present embodiment is applied.
  • the lower limit value Ap2 of the PRI piston area based on the component durability and the lower limit value Ap3 of the PRI piston area based on the leak characteristic are calculated, and the minimum PRI piston area satisfying both the lower limit values is adopted.
  • the PRI piston area is smaller than the SEC piston area as described in the first embodiment.
  • the minimum value Ap1 of the PRI piston area described in the first embodiment and Ap2 and Ap3 described in the present embodiment may be calculated, and the minimum value satisfying all of these may be employed.
  • the piston area of the primary pulley 41 is determined based on the leak characteristic of the oil passage with respect to the hydraulic pressure of the PRI pulley oil chamber 41c, and the amount of oil passage leak when the thrust of the primary pulley 41 becomes maximum. Is set to a size that does not exceed a preset supply flow rate limit value. As a result, the leaked oil can be reliably compensated. Further, it is possible to suppress an increase in size of the original pressure oil pump 101 and the like due to a reduction in the piston area of the primary pulley 41.
  • the piston area of the primary pulley 41 is set such that the hydraulic pressure in the piston oil chamber of the primary pulley 41 does not exceed the upper limit hydraulic pressure determined from the component pressure resistance when the thrust of the primary pulley 41 becomes maximum. Set. Thereby, component durability is securable. Moreover, the cost increase by the required component durability becoming high can be suppressed.
  • the electric oil pump 123 can be downsized by making the PRI piston area smaller than the SEC piston area. That is, in the first and second embodiments, the transmission circuit 110 arranges the electric oil pump 123 in the oil path between the PRI pulley oil chamber 41c and the SECI pulley oil chamber 42c, and the electric oil pump 123 causes the PRI pulley to move. It is assumed that the oil chamber 41c is controlled to enter and exit the oil.
  • FIG. 11 is a hydraulic circuit diagram for controlling the flow rate supplied to the PRI oil chamber and the hydraulic pressure of the SECI pulley oil chamber by reducing the hydraulic pressure generated by the original pressure oil pump, respectively, which is generally known from the past. is there.
  • the oil pressure generated by the oil pump 300 is reduced by the pressure reducing valve 301, and further adjusted by the SEC pressure reducing valve 302 and the PRI pressure reducing valve 304, whereby the oil chamber of the SECI pulley oil chamber 303 and the PRI oil
  • the amount of oil in the chamber 305 is controlled. That is, in the configuration of FIG. 11, it is not possible to adjust the hydraulic pressure higher than the hydraulic pressure generated by the oil pump 300.
  • the PRI thrust is represented by the product of the pressure Ppri reduced by the pressure reducing valve 304 and the PRI piston area
  • the SEC thrust is the difference between the pressure Psec reduced by the pressure reducing valve 302 and the SEC piston area. Expressed as a product. Since the PRI thrust needs to be larger than the SEC thrust during the upshift, if the PRI piston area is equal to the SEC piston area, the hydraulic pressure generated by the oil pump 300 for the source pressure must be at least Ppri or more. I must. Since the SEC thrust needs to be maintained at such a level that belt slip does not occur, the pressure Psec cannot be reduced for upshifting.
  • the PRI thrust must be increased by making the PRI piston area larger than the SEC piston area. That is, when the oil pump 300 is downsized in the configuration of FIG. 11, the magnitude relationship between the PRI piston area and the SEC piston area is opposite to that in the first and second embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

プライマリプーリのピストン面積とセカンダリプーリのピストン面積の大小関係が特定された無段変速機を提供することを課題とする。課題を解決する手段として、無段変速機(4)は、プライマリプール(41)のピストン油室(41c)とセカンダリプーリ(42)のピストン油室(42c)との間の油路(106)に配置される電動オイルポンプ(123)と、電動オイルポンプ(123)によりプライマリプール(41)のピストン油室(41c)の油の出入りを制御する制御部(10)と、を備える。そして、無段変速機(4)のプライマリプール(41)のピストン面積(41c)は、セカンダリプーリ(42)のピストン面積(42c)よりも小さい。

Description

無段変速機
 本発明は、無段変速機に関する。
 JP2002-523711Aには、プライマリプーリ油室とセカンダリプーリ油室との間の油路に配置した電動オイルポンプによりプライマリプーリ油室の油の出入りを制御する無段変速機が開示されている。
 しかしながら、上記文献ではプライマリプーリのピストン面積とセカンダリプーリのピストン面積との大小関係について言及されていない。プライマリプーリのピストン面積及びセカンダリプーリのピストン面積は、例えば変速時に電動オイルポンプに要求される出力に影響を与える重要な因子である。すなわち、上記文献の無段変速機においては、プライマリプーリのピストン面積とセカンダリプーリのピストン面積との大小関係について検討の余地が残されている。
 そこで本発明は、上記事情に鑑みて、プライマリプーリのピストン面積とセカンダリプーリのピストン面積の大小関係が特定された無段変速機を提供することを目的とする。
 本発明のある態様によれば、無段変速機はプライマリプーリのピストン油室とセカンダリプーリのピストン油室との間の油路に配置される電動オイルポンプと、電動オイルポンプによりプライマリプーリのピストン油室の油の出入りを制御する制御部とを備える。そして、無段変速機のプライマリプーリのピストン面積は、セカンダリプーリのピストン面積よりも小さい。
図1は、車両の概略構成図である。 図2は、油圧回路の概略構成図である。 図3は、ポンプ必要出力とPRIピストン面積との関係を示す図である。 図4は、電動オイルポンプの構成を示す断面図である。 図5は、電動オイルポンプの歯車を示す図である。 図6は、推力比と変速比との関係を示す図である。 図7は、PRI圧及びSEC圧の使用領域の一例を示す図である。 図8は、PRI圧及びSEC圧の使用領域の他の例を示す図である。 図9は、部品耐久性から定まるPRIピストン面積下限値を説明する為の図である。 図10は、リーク特性から定まるPRIピストン面積下限値を説明する為の図である。 図11は、一般的な油圧回路の概略図である。
 以下、図面等を参照して、本発明の実施形態について説明する。
 (第1実施形態)
 図1は、車両の概略構成図である。車両は、エンジン1と、ロックアップクラッチ2a付きトルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6と、油圧回路100と、を備える。
 エンジン1は、車両の駆動源を構成する。エンジン1の出力は、トルクコンバータ2、前後進切替機構3、バリエータ4、及び終減速機構5を介して駆動輪6へと伝達される。したがって、バリエータ4は、トルクコンバータ2や前後進切替機構3や終減速機構5とともに、エンジン1から駆動輪6に動力を伝達する動力伝達経路に設けられる。
 前後進切替機構3は、上述の動力伝達経路においてトルクコンバータ2とバリエータ4との間に設けられる。前後進切替機構3は、前進走行に対応する正転方向と後退走行に対応する逆転方向との間で、入力される回転の回転方向を切り替える。
 前後進切替機構3は具体的には、前進クラッチ31と、後退ブレーキ32と、を備える。前進クラッチ31は、回転方向を正転方向とする場合に締結される。後退ブレーキ32は、回転方向を逆転方向とする場合に締結される。前進クラッチ31及び後退ブレーキ32の一方は、エンジン1とバリエータ4と間の回転を断続するクラッチとして構成することができる。
 バリエータ4は、プライマリプーリ41と、セカンダリプーリ42と、プライマリプーリ41及びセカンダリプーリ42に巻き掛けられたベルト43と、を有する。以下では、プライマリをPRIとも称し、セカンダリをSECとも称す。バリエータ4は、PRIプーリ41とSECプーリ42との溝幅を変更することでベルト43の巻掛け径(以下、単に「巻掛け径」ともいう)を変更し、変速を行うベルト式無段変速機構を構成している。
 PRIプーリ41は、プライマリ軸51に固定された固定プーリ41aと、固定プーリ41aと対向し、かつプライマリ軸51の軸線方向に移動可能かつ相対回転不能に支持された可動プーリ41bと、を備える。可動プーリ41bの固定プーリ41aと反対側には、プライマリ軸51に固定されたピストン41dが設けられ、固定プーリ41aとピストン41dとの間にピストン油室としてのPRIプーリ油室41cが形成される。コントローラ10がPRIプーリ油室41cに供給されるオイル量を制御することにより、可動プーリ41bが作動し、PRIプーリ41の溝幅が変更される。
 SECプーリ42は、セカンダリ軸52に固定された固定プーリ42aと、固定プーリ42aと対向し、かつセカンダリ軸52の軸線方向に移動可能かつ相対回転不能に支持された可動プーリ42bと、を備える。可動プーリ42bの固定プーリ42aと反対側には、セカンダリ軸52に固定されたピストン42dが設けられ、固定プーリ42aとピストン42dとの間にピストン油室としてのSECプーリ油室42cが形成される。コントローラ10がSECプーリ油室42cに供給されるオイル量を制御することにより、可動プーリ42bが作動し、SECプーリ42の溝幅が変更される。
 ベルト43は、PRIプーリ41の固定プーリ41aと可動プーリ41bとにより形成されるV字形状をなすシーブ面と、SECプーリ42の固定プーリ42aと可動プーリ42bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。
 終減速機構5は、バリエータ4からの出力回転を駆動輪6に伝達する。終減速機構5は、複数の歯車列やディファレンシャルギアを有して構成される。終減速機構5は、車軸を介して駆動輪6を回転する。
 油圧回路100は、バリエータ4、具体的にはPRIプーリ41及びSECプーリ42に油圧を供給する。油圧回路100は、前後進切替機構3やロックアップクラッチ2a、及び図示しない潤滑系や冷却系にも油圧を供給する。油圧回路100は具体的には、次のように構成される。
 図2は、油圧回路100の概略構成図である。油圧回路100は、元圧用オイルポンプ101と、ライン圧調整弁102と、減圧弁103と、ライン圧ソレノイドバルブ104と、前後進切替機構用ソレノイドバルブ105と、変速回路圧ソレノイドバルブ107と、マニュアルバルブ108と、ライン圧油路109と、低圧系制御弁130と、変速用回路110と、ライン圧用電動オイルポンプ111と、を備える。以下では、ソレノイドバルブをSOLと称す。
 元圧用オイルポンプ101は、エンジン1の動力によって駆動する機械式のオイルポンプである。元圧用オイルポンプ101は、ライン圧油路109を介して、ライン圧調整弁102と、減圧弁103と、変速回路圧SOL107及び変速用回路110と、に接続される。ライン圧油路109はライン圧の油路を構成する。ライン圧は、PRI圧やSEC圧の元圧となる油圧である。
 ライン圧用電動オイルポンプ111は、電動モータ117によって駆動する。ライン圧用電動オイルポンプ111は、例えばアイドリング・ストップ制御によりエンジン1が停止し、これに伴い元圧用オイルポンプ101が停止した場合に、ライン圧を供給するために稼働する。
 ライン圧調整弁102は、オイルポンプ101が発生させる油圧を調整してライン圧を生成する。オイルポンプ101がライン圧を発生させることは、このようなライン圧調整弁102の作用のもと、ライン圧を発生させることを含む。ライン圧調整弁102が調圧時にリリーフするオイルは、低圧系制御弁130を介してロックアップクラッチ2a、潤滑系、及び冷却系に供給される。
 減圧弁103は、ライン圧を減圧する。減圧弁103によって減圧された油圧は、ライン圧SOL104や前後進切替機構用SOL105に供給される。
 ライン圧SOL104は、リニアソレノイドバルブであり、制御電流に応じた制御油圧を生成する。ライン圧SOL104が生成した制御油圧は、ライン圧調整弁102に供給され、ライン圧調整弁102は、ライン圧SOL104が生成した制御油圧に応じて作動することで調圧を行う。このため、ライン圧SOL104への制御電流によってライン圧PLの指令値を設定することができる。
 前後進切替機構用SOL105は、リニアソレノイドバルブであり、制御電流に応じた油圧を生成する。前後進切替機構用SOL105が生成した油圧は、運転者の操作に応じて作動するマニュアルバルブ108を介して前進クラッチ31や後退ブレーキ32に供給される。
 変速回路圧SOL107は、リニアソレノイドバルブであり、制御電流に応じて変速用回路110に供給する油圧を生成する。このため、変速回路圧SOL107への制御電流によって変速回路圧の指令値を設定することができる。変速回路圧SOL107が生成した変速回路圧は、変速用油路106に供給される。変速回路圧は例えば、制御電流に応じた制御油圧を生成するSOLと、当該SOLが生成した制御油圧に応じてライン圧PLから制御回路圧を生成する調圧弁とによって生成されてもよい。
 変速用回路110は、変速回路圧SOL107を介してライン圧油路109と接続される変速用油路106と、変速用油路106に介装される変速用オイルポンプ112と、を備える。変速用油路106はPRIプーリ油室41cとSECプーリ油室42cとを連通する。また、変速用油路106には、変速用オイルポンプ112とPRIプーリ油室41cとの間から分岐する分岐路が設けられている。そして、分岐路には、オリフィス122が設けられており、オリフィス122から変速用油路106の外にオイルが排出される。具体的には、オリフィス122は、油路の一部において径が小さくなるように形成されており、変速用油路106における分岐点の反対側の端が開放されている。この開放端からは常にオイルがリークし続ける。変速用オイルポンプ112によってPRIプーリ油室41cにオイルが供給される場合には、一部のオイルがオリフィス122からリークすることになる。オリフィスから変速用油路106の外に排出されるオイルは、無段変速機のケース内の空間に排出される。このように、本実施形態の変速用油路106の外(オリフィス122の先)は空間であるが、変速用油路106の外(オリフィス122の先)は、変速用油路106よりも油圧の低い油路となっていてもよい。すなわち、変速用油路106の外は、変速用油路106より油圧が低い場所であれば良い。なお、オリフィス122は、オイル排出機構の一例である。
 変速用オイルポンプ112は、電動モータ113により駆動され、インバータ114を介して回転方向を正方向と逆方向に切り替え可能である。ここでいう正方向とは、オイルをSECプーリ油室42c側からPRIプーリ油室41c側へ送る方向であり、逆方向とは、オイルをPRIプーリ油室41c側からSECプーリ油室42c側へ送る方向である。なお、以下の説明においては、変速用オイルポンプ112と電動モータ113とインバータ114とを一体として電動オイルポンプ123と称することもある。
 変速用オイルポンプ112が正方向に回転すると、変速用油路106及びSECプーリ油室42cにあるオイルがPRIプーリ油室41cに供給される。これによりPRIプーリ41の可動プーリ41bが固定プーリ41aに近づく方向に移動し、PRIプーリ41の溝幅が減少する。一方、SECプーリ42の可動プーリ42bは固定プーリ42aから遠ざかる方向に移動し、SECプーリ42の溝幅が増大する。なお、変速用オイルポンプ112が正回転する際には、変速用オイルポンプ112よりもSECプーリ油室42c側(以下、「SEC側」とも称する)の変速用油路106の油圧(以下、「SEC側油圧」とも称する)が変速回路圧の指令値を下回らないように、ライン圧油路109から変速用油路106へオイルが供給される。変速回路圧の指令値は、ベルト43の滑りを防止すること等を考慮して設定される。なお、変速用オイルポンプ112よりもPRIプーリ油室41c側(以下、「PRI側」とも称する)の変速用油路106の油圧を、PRI側油圧とも称する。
 また、変速用オイルポンプ112が逆方向に回転すると、PRIプーリ油室41cからオイルが流出する。これによりPRIプーリ41の可動プーリ41bが固定プーリ41aから離れる方向に移動し、PRIプーリ41の溝幅が増大する。一方、SECプーリ42の可動プーリ42bは固定プーリ42aに近づく方向に移動し、SECプーリ42の溝幅が減少する。PRIプーリ油室41cから流出したオイルが流入することでSEC側油圧は上昇するが、変速回路圧SOL107によりSEC側油圧が指令値を超えないように制御される。すなわち、SEC側油圧が指令値を超える場合には、変速回路圧SOL107を介して変速用油路106からオイルが排出される。一方、SEC側油圧が指令値未満の場合には、変速回路圧SOL107を介してライン圧油路109からオイルが流入する。
 上記の通り、本実施形態の無段変速機では、変速用オイルポンプ112によりPRIプーリ油室41cのオイルの出入りを制御することによって変速を行う。変速制御の概要については後述する。なお、ベルト43が滑らないようにクランプする力(クランプ力)の制御は、SECプーリ油室42cへ供給する油圧を制御することによって行う。
 図1に戻り、車両はコントローラ10をさらに備える。コントローラ10は電子制御装置であり、コントローラ10には、センサ・スイッチ群11からの信号が入力される。なお、コントローラ10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ10を複数のマイクロコンピュータで構成することも可能である。
 センサ・スイッチ群11は例えば、車両のアクセルペダル開度を検出するアクセルペダル開度センサや、車両のブレーキ踏力を検出するブレーキセンサや、車速Vspを検出する車速センサや、エンジン1の回転速度NEを検出するエンジン回転速度センサを含む。
 センサ・スイッチ群11はさらに例えば、PRI圧を検出するPRI圧センサ115、SEC圧を検出するSEC圧センサ116、PRIプーリ41の入力側回転速度を検出するPRI回転速度センサ120、SECプーリ42の出力側回転速度を検出するSEC回転速度センサ121、変速用オイルポンプ112の回転速度を検出するポンプ回転速度センサ118、及びオイルの温度を検出する油温センサ119を含む。センサ・スイッチ群11からの信号は例えば、他のコントローラを介してコントローラ10に入力されてもよい。センサ・スイッチ群11からの信号に基づき他のコントローラで生成された情報等の信号についても同様である。
 コントローラ10は、センサ・スイッチ群11からの信号に基づき油圧回路100を制御する。具体的には、コントローラ10は、図2に示すライン圧SOL104や変速用回路110を制御する。コントローラ10はさらに、前後進切替機構用SOL105や変速回路圧SOL107を制御するように構成される。
 ライン圧SOL104を制御するにあたり、コントローラ10は、ライン圧PLの指令値に応じた制御電流をライン圧SOL104に通電する。
 変速制御を実行するにあたり、コントローラ10はセンサ・スイッチ群11からの信号に基づいて目標変速比を設定する。目標変速比が定まれば、当該目標変速比を実現するための各プーリ41、42の巻掛け径(目標巻掛け径)が定まる。目標巻掛け径が定まれば、目標巻掛け径を実現するための各プーリ41、42の溝幅(目標溝幅)が定まる。
 また、変速用回路110では、変速用オイルポンプ112によるPRIプーリ油室41cからのオイルの出し入れに応じてPRIプーリ41の可動プーリ41bが移動し、これに応じてSECプーリ42の可動プーリ42bも移動する。つまり、PRIプーリ41の可動プーリ41bの移動量とSECプーリ42の可動プーリ42bの移動量とには相関がある。
 そこでコントローラ10は、PRIプーリ41の可動プーリ41bの位置が目標変速比に応じた位置になるように変速用オイルポンプ112を稼働させる。可動プーリ41bが所望の位置にあるか否かは、PRI回転速度センサ120及びSEC回転速度センサ121の検出値から実変速比を算出し、この実変速比と目標変速比とが一致しているか否かによって判断する。
 また、コントローラ10が変速用オイルポンプ112を稼働させるのは、変速時に限られるわけではない。目標変速比が変化しない場合でも、各プーリ油室41c、42cからオイルがリークして実変速比が変化した場合には、コントローラ10は変速用オイルポンプ112を稼働させる。本実施形態においては、このような目標変速比を維持するための制御も、変速制御に含めることとする。
 すなわち、本実施形態の変速制御は、PRIプーリ41の可動プーリ41bの位置を目標位置に収束させるフィードバック制御である。そして、当該フィードバック制御の制御対象は、各プーリ油室41c、42cの油圧ではなく、PRIプーリ41の溝幅、換言すると可動プーリ41bの位置である。
 なお、可動プーリ41bの位置を検出するセンサを設けて、可動プーリ41bが目標変速比に応じた位置にあるか否かを判断してもよい。
 ここで、オリフィス122を設ける理由について説明する。電動モータ113は、回転数の指令値が極めて小さい場合には回転数制御の精度が著しく低下するという特性があるため、変速用オイルポンプ112が制御精度を保った状態で吐出できるオイル流量Fには下限がある。このため、例えばPRIプーリ油室41cにおいてリークする流量(リーク流量ともいう)Fbがオイル流量Fの下限(下限流量Fminともいう)より少ない場合には、リーク分を精度良く補填することができない。そこで、オリフィス122を設け、リーク流量Fbが下限流量Fminより少ない場合であっても、変速用オイルポンプ112に下限流量Fminを吐出させ、オリフィス122を介してその一部を排出する。これにより、PRIプーリ油室41cにはリーク流量Fbと同量のオイルが供給されるようになる。なお、オリフィス122はオイル排出機構の一例であって、これに限られるわけではない。例えば、開閉弁を用いてもよい。開閉弁を用いる場合は、リーク流量Fbが下限流量Fminより少ない場合にだけ開閉制御を実行すればよい。これによれば、無駄なオイルの流出を抑制することができる。
 ところで、無段変速機を設計するにあたり、コストやサイズや重量等の観点から、電動オイルポンプ123をできるだけ小さくしたいという要望がある。その一方で、電動モータ113は変速に必要な出力を発生できなければならない。つまり、変速のために電動モータ113に要求される出力を低下させれば、電動オイルポンプ123の小型化を図ることができる。そこで本実施形態では、PRIプーリ41のピストン面積(以下、「PRIピストン面積」ともいう)とSECプーリ42のピストン面積(以下、「SECピストン面積」ともいう)との大小関係に着目し、電動オイルポンプ123の小型化を図る。以下、図3を参照してPRIピストン面積とSECピストン面積との大小関係について説明する。
 図3は、SECピストン面積を一定としてPRIピストン面積を変化させた場合における、ポンプ必要出力とPRIピストン面積との関係を示す図である。ここでいう「ポンプ必要出力」とは、変速するために電動オイルポンプ123に要求されるポンプ出力、つまり変速するために必要となる電動モータ113の出力である。
 なお、図3では、ダウンシフト時の変速速度(以下、「ダウンシフト速度」ともいう)がアップシフト時の変速速度(以下、「アップシフト速度」ともいう)より高いものとする。これは、ダウンシフトはアクセルペダルの踏み込みに応じたいわゆるキックダウンを行う場合や、減速時に再発進や再加速に備えて変速比をロー側へ戻す場合のように、速やかな加速が要求される場合に実行されるため、アップシフトに比べて要求される変速速度が高いためである。また、図3はアップシフト速度及びダウンシフト速度がそれぞれ所定速度の場合について示しており、各変速速度を変化させると、図中の特性線の傾きも変化する。
 まず、PRIピストン面積とSECピストン面積(図中のAs)が等しい場合に、ダウンシフト時のポンプ必要出力の方がアップシフト時のポンプ必要出力より大きい理由について説明する。
 変速時に発生する差推力は、式(1)で表される。
  Fsa=(Vp/Np)×C   ・・・(1)
  Fsa:差推力、Vp:PRIプーリ速度、Np:PRI回転数、C:ベルトの特性で定まる定数
 PRI回転数Npはエンジン回転数と同視できるので、式(1)から、エンジン回転数が低い場合の方が、差推力が大きくなることがわかる。すなわち、主にエンジン回転数が低い場合に行われるダウンシフトの方が、アップシフトに比べて差推力が大きくなる。
 そして、ポンプ必要出力は、変速速度と差推力との積で表されるので、ダウンシフトの方がアップシフトよりもポンプ必要出力が高くなる。
 次に、ダウンシフト時にPRIピストン面積が小さくなるほどポンプ必要出力が小さくなる理由について説明する。
 電動オイルポンプ123の出力(以下、「ポンプ出力」ともいう)は、式(2)で表される。
  Ppump=ΔP×Qp   ・・・(2)
  Ppump:ポンプ出力、ΔP:電動オイルポンプの前後差圧、Qp:電動オイルポンプを通過する流量
 そして、ダウンシフト時の電動オイルポンプ123の前後差圧ΔP、通過流量Qpは、それぞれ式(3)、(4)で表される。
  ΔP=Ps-Pp      ・・・(3)
  Pp:PRI圧、Ps:SEC圧
  Qp=Ap×Vp      ・・・(4)
  Ap:PRIピストン面積
 式(4)から、ダウンシフト時にはPRIピストン面積Apを小さくするほど通過流量Qpが減少することがわかる。
 また、PRI推力及びSEC推力はそれぞれ式(5)、(6)で表される。
  Fp=Ap×Pp   ・・・(5)
  Fs=As×Ps   ・・・(6)
  Fp:PRI推力、Fs:SEC推力、Ap:PRIピストン面積、As:SECピストン面積、Pp:PRI圧、Ps:SEC圧
 ダウンシフト時はSEC推力がPRI推力より大きくなるので、差推力Fsaは式(7)で表される。
  Fsa=Fs-Fp   ・・・(7)
 式(7)に式(1)、式(5)、式(6)を代入すると、式(8)が得られる。
  Pp=(As・Ps-Vp・C/Np)/Ap   ・・・(8)
 式(8)から、ダウンシフト時にはPRIピストン面積を小さくするほどPRI圧が高まることがわかる。そして、式(3)に式(8)を代入すると、式(9)が得られる。
  ΔP=Ps-(As・Ps-Vp・C/Np)/Ap   ・・・(9)
 この式(9)から、ダウンシフト時にはPRIピストン面積を小さくするほど電動オイルポンプ123の前後差圧ΔPが小さくなることがわかる。
 上記のように、ダウンシフト時には、PRIピストン面積を小さくするほど、電動オイルポンプ123の通過流量Qpは減少し、前後差圧ΔPも低下するので、式(2)よりポンプ出力Ppumpも低下することがわかる。したがって、図3に示すように、PRIピストン面積が小さくなるほど、ダウンシフト時のポンプ必要出力が低下することになる。
 一方、アップシフト時は、PRI推力がSEC推力より大きくなるので、差推力は式(10)で表される。
  Fsa=Fp-Fs   ・・・(10)
 また、アップシフト時の電動オイルポンプ123の前後差圧ΔPは、式(11)で表される。なお、電動オイルポンプ123の通過流量Qpは式(4)と同じである。
  ΔP=Pp-Ps      ・・・(11)
 式(9)に式(1)、式(10)を代入すると、式(11)が得られる。
  Pp=(As・Ps-Vp・C/Np)/Ap   ・・・(11)
 式(11)から、アップシフト時にはPRIピストン面積を小さくするほどPRI圧が高まることがわかる。
 そして、式(10)に式(11)を代入することで式(12)が得られる。
  ΔP=(As・Ps-Vp・C/Np)/Ap-Ps   ・・・(12)
 この式(12)から、アップシフト時にはPRIピストン面積を小さくするほど電動オイルポンプ123の前後差圧ΔPが大きくなることがわかる。
 上記のように、アップシフト時には、PRIピストン面積を小さくするほど、電動オイルポンプ123の前後差圧ΔPは上昇する。ただし、電動オイルポンプ123の通過流量Qpは減少するので、図3に示すように、ポンプ出力Ppumpは上昇するもののPRIピストン面積の変化量に対するポンプ必要出力の変化量はダウンシフト時に比べて小さくなる。
 次に、PRIピストン面積の設定について説明する。
 電動オイルポンプ123は、ダウンシフト及びアップシフトのいずれの場合にもポンプ必要出力を満足する必要がある。すなわち、ダウンシフト要求を満たすポンプ必要出力とアップシフト要求を満たすポンプ必要出力のいずれか高い方が電動オイルポンプ123に要求される出力となる。
 図3に示す通り、PRIピストン面積≧SECピストン面積の場合には、ダウンシフト要求を満たすポンプ必要出力の方がアップシフト要求を満たすポンプ必要出力より高い。したがって、電動オイルポンプ123に要求される出力は、ダウンシフト要求を満たすポンプ必要出力となる。
 PRIピストン面積<SECピストン面積の場合も、PRIピストン面積がAp1より大きい場合には、電動オイルポンプ123に要求される出力は、ダウンシフト要求を満たすポンプ必要出力となる。ただし、ダウンシフト要求を満たすポンプ必要出力はPRIピストン面積≧SECピストン面積の場合に比べて小さくなる。
 PRIピストン面積がAp1の場合には、ダウンシフト要求を満たすポンプ必要出力とアップシフト要求を満たすポンプ必要出力とが等しくなる。
 そして、PRIピストン面積がAp1より小さくなると、アップシフト要求を満たすポンプ必要出力の方がダウンシフト要求を満たすポンプ必要出力より高くなる。すなわち、電動オイルポンプ123に要求される出力は、アップシフト要求を満たすポンプ必要出力となる。アップシフト要求を満たすポンプ必要出力は、PRIピストン面積が小さくなるほど大きくなるので、PRIピストン面積がAp1より小さくなるほど、電動オイルポンプ123に要求される出力は大きくなる。ただし、アップシフト要求を満たすポンプ必要出力は、上述した通りダウンシフト要求を満たすポンプ必要出力よりも変化が緩やかなので、PRIピストン面積≧SECピストン面積の場合に比べれば、電動オイルポンプ123に要求される出力は小さい。
 そこで、本実施形態では、PRIピストン面積をSECピストン面積よりも小さくする。これにより、電動オイルポンプ123に要求される出力を低下させることができる。換言すると、より小型の電動モータ113を用いることが可能となる。その結果、電動オイルポンプの小型化を図ることができる。
 なお、電動オイルポンプ123に要求される出力をもっとも小さくする場合には、PRIピストン面積をAp1、つまりダウンシフト要求を満たすポンプ必要出力とアップシフト要求を満たすポンプ必要出力とが等しくなる面積にする。
 次に、PRIピストン面積をSECピストン面積より小さくすることで得られる他の効果について説明する。
 図4は、変速用オイルポンプ112の構造を示す図である。変速用オイルポンプ112は、ハウジング200の内部に2つの歯車201、202を備える。これら2つの歯車201、202は噛み合って回転し、その回転による吸引力で油を吸入口から吸入して、吐出口から吐出する。
 変速比を一定に維持する場合には、2つの歯車201、202は停止する。このとき、吐出側(高圧)と吸入側(低圧)との差圧により生じる押圧力(図中の矢印)によって、歯車201は軸受203と回転軸201Aとのクリアランス分だけ吸入側に移動し、歯車201の歯先がハウジング200の内周壁(図中のシール部205)に押し付けられる。歯車202も同様に、歯先がシール部205に押し付けられる。また、2つの歯車201、202は上記の通り噛み合っている。これらにより、吸入側と吐出側との間のオイルシール性が発揮される。
 換言すると、吐出側と吸入側との差圧が無い状態は、オイルシール性の観点からは不安定な状態といえる。
 また、図5に示す通り、2つの歯車201、202はバックラッシュを設けて組み付けられている。そして、上述した差圧によって互いの歯先が接触する。したがって、上述した差圧が逆転して吸入側の方が吐側より高圧になると、バックラッシュの方向も逆転し、歯打ち音や振動が発生する。また、上述した差圧が無い場合には、2つの歯車201、202を互いに押し付ける力がなくなるため、歯打ち音や振動が発生し易くなる。
 本実施形態によれば、以下に説明する通り、上述した歯打ち音や振動の発生を抑制することができる。
 図6は、エンジン1から駆動輪6にトルクを伝達している状態(以下、「ドライブ状態」ともいう)において、変速比を所定変速比に固定する場合の推力比と変速比との関係の一例を示す図である。ここでいう推力比とは、PRI推力をSEC推力で除した値である。
 図示する通り、変速比を固定する場合の推力比は、変速比が最ローの場合は1で、変速比がハイ側になるほど推力比は比例的に大きくなり、最ハイの場合は2となる。この関係を、縦軸をPRI圧とし横軸をSEC圧として書き直すと、図7、図8のようになる。図7はPRIピストン面積=SECピストン面積の場合である。図8はPRIピストン面積<SECピストン面積の場合である。実際に使用するPRI圧の上限をPprimax、同じくSEC圧の上限をPsecmaxとすると、図7、8のいずれにおいても、実線で囲まれた部分が実際に使用される領域となる。以下、それぞれの図について説明する。
 図7に示す通り、PRIピストン面積=SECピストン面積の場合には、推力比が1となる最ロー変速比のときに、PRI圧=SEC圧となる。つまり、図5、図6を用いて説明した歯打ち音や振動が発生するおそれがある領域で使用されることとなる。
 これに対しPRIピストン面積<SECピストン面積にすると、上述した通りPRI圧はPRIピストン面積=SECピストン面積の場合より高くなるので、推力比が1となる最ロー変速比の場合でもPRI圧はSEC圧より高くなる。その結果、図8に示す通り、最ロー変速比の場合でもPRI圧=SEC圧となることがない。換言すると、常にPRI圧>SEC圧となる。したがって、上述した歯打ち音や振動の発生を抑制することができる。
 以上のように本実施形態では、プライマリプーリ41のピストン油室(PRIプーリ油室41c)とセカンダリプーリ42のピストン油室(SECプーリ油室42c)との間の油路(変速用油路106)に配置される電動オイルポンプ123と、電動オイルポンプ123によりPRIプライマリプーリ油室41cの油の出入りを制御する制御部(コントローラ10)と、を備える。そして、プライマリプーリ41のピストン面積が、セカンダリプーリ42のピストン面積よりも小さい。これにより、ポンプ必要出力が低下するので、電動オイルポンプ123の小型化を図ることができる。
 (第2実施形態)
 本実施形態は、PRIピストン面積をSECピストン面積より小さくする点では第1実施形態と同様であるが、PRIピストン面積を設定するにあたり、上述した電動オイルポンプ123の小型化の観点だけでなく、さらに他の要素も考慮することとする。以下、考慮する要素毎に説明する。
 (部品耐久性)
 図9は、縦軸をPRI圧とし、横軸をPRI推力として、PRIピストン面積と最大推力時におけるPRI圧との関係を示す図である。ここでいう最大推力とは、最も厳しい条件、つまり変速比が最ロー変速比でエンジン1から伝達されるトルクが最大トルク、において、所定の変速比を実現するために必要な推力である。
 図9に示す通り、PRIピストン面積を小さくするほど、同一推力におけるPRI圧は高くなる。このため、油圧回路に用いられるシール部材等の耐圧性や、配管やジョイント等の部品強度等といった、部品耐久性が問題となる。
 そこで、これら部品耐久性に基づくPRI圧の上限値(Ppri1)を求め、最大推力がこれを超えないようにPRIピストン面積を設定する。図9においては、PRIピストン面積の最小値は、最大推力がPpri1となるPRIピストン面積Ap2となる。
 (リーク特性)
 図10は、第1象限にPRI圧とPRI推力との関係を示し、第2象限にPRI圧とリーク量との関係を示した図である。ここでいう必要推力とは、ある変速比を実現するために必要となる推力である。最も厳しい条件、つまり変速比が最ロー変速比でエンジン1から伝達されるトルクが最大トルクの場合に、必要推力=最大推力となる。また、ここでいうリーク量とは、PRIプーリ油室41cにおけるリーク量である。
 図10に示す通り、リーク量はPRI圧が高いほど多くなる。PRIプーリ油室41cでリークが発生すると、元圧用オイルポンプ101またはライン圧用電動オイルポンプ111によってリークした分が補填される。つまり、補填可能なリーク量(以下、「供給流量制限値」ともいう)は元圧用オイルポンプ101等の吐出能力によって定まる。
 また、図10に示す通り、必要推力を発生するときのPRI圧は、PRIピストン面積が小さくなるほど高くなる。
 そこで、元圧用オイルポンプ101等で補填可能なリーク量の上限値をQleak_maxとしたときのPRI圧をPpri1とする。つまり、リーク量に基づいて定まるPRI圧の上限値をPpri1とする。そして、PRI圧が上限値であるPpri1のときに必要推力を発生し得るようにPRIピストン面積を設定する。図10においては、PRIピストン面積の最小値は、PRI圧がPpri1のときに必要推力を発生するPRIピストン面積Ap3となる。PRIピストン面積がAp3より小さくなると、必要推力を発生する際のPRI圧がPpri1より高くなってしまうからである。
 なお、元圧用オイルポンプ101等の吐出能力を高くするほどQleak_maxは多くなり、Ppri1も高くなるので、PRIピストン面積をより小さくすることができる。その結果、電動オイルポンプ123をより小型化することができる。しかし、電動オイルポンプ123を小型化することができても、元圧用オイルポンプ101等が大型化してしまう。すなわち、リーク特性に基づいてPRIピストン面積を設定する際には、供給流量制限値を考慮して、電動オイルポンプ123の小型化と元圧用オイルポンプ101等の大型化との調和を図る必要がある。
 上述した部品耐久性に基づくPRIピストン面積の下限値Ap2と、リーク特性に基づくPRIピストン面積の下限値Ap3との大小関係は、本実施形態を適用する無段変速機の仕様等により定まる。
 そこで本実施形態では、部品耐久性に基づくPRIピストン面積の下限値Ap2と、リーク特性に基づくPRIピストン面積の下限値Ap3とを算出し、両下限値を満足する最小のPRIピストン面積を採用する。むろん、第1実施形態で説明した通りPRIピストン面積をSECピストン面積より小さくすることを前提とする。
 なお、第1実施形態で説明したPRIピストン面積の最小値Ap1と、本実施形態で説明したAp2、Ap3とを算出し、これら全てを満足する最小値を採用してもよい。
 以上の通り本実施形態では、プライマリプーリ41のピストン面積を、PRIプーリ油室41cの油圧に対する油路のリーク特性に基づいて、プライマリプーリ41の推力が最大となったときの油路のリーク量が予め設定した供給流量制限値を超えない大きさに設定する。これにより、リークした分の油を確実に補填することができる。また、プライマリプーリ41のピストン面積を小さくすることによる元圧用オイルポンプ101等の大型化を抑制できる。
 また、本実施形態では、プライマリプーリ41のピストン面積を、プライマリプーリ41の推力が最大となったときのプライマリプーリ41のピストン油室の油圧が部品耐圧性から定まる上限油圧を超えない大きさに設定する。これにより、部品耐久性を確保することができる。また、要求される部品耐久性が高くなることによるコストアップを抑制できる。
 ところで、PRIピストン面積をSECピストン面積より小さくすることで、電動オイルポンプ123の小型化を図ることができるのは、図2に示した変速用回路110に特有のものである。つまり、第1、第2の実施形態は、変速用回路110がPRIプーリ油室41cとSECIプーリ油室42cとの間の油路に電動オイルポンプ123を配置し、電動オイルポンプ123によりPRIプーリ油室41cの油の出入りを制御するものであることが前提となる。
 そして、後述する従来から一般的に用いられている変速用の油圧回路では、PRIピストン面積をSECピストン面積より小さくすることはできない。このことについて図11を参照して説明する。
 図11は、従来から一般的に知られているPRI油室へ供給する流量とSECIプーリ油室の油圧を、それぞれ元圧用のオイルポンプで生成した油圧を減圧することによって制御する油圧回路図である。
 図11の構成では、オイルポンプ300によって生成した油圧を減圧弁301により低下させ、それをさらにSEC減圧弁302とPRI減圧弁304で調整することによって、SECIプーリ油室303の油室やPRI油室305の油量を制御する。すなわち、図11の構成では、オイルポンプ300で生成した油圧よりも高い油圧に調整することができない。
 また、図11の構成においては、PRI推力は減圧弁304で低下させた圧力PpriとPRIピストン面積との積で表され、SEC推力は減圧弁302で低下させた圧力PsecとSECピストン面積との積で表される。アップシフトの際にはPRI推力をSEC推力よりも大きくする必要があるので、PRIピストン面積とSECピストン面積とが等しい場合には、元圧用のオイルポンプ300で生成する油圧は少なくともPpri以上でなければならない。そして、SEC推力をベルト滑りが生じない大きさに保つ必要があるため、アップシフトのために圧力Psecを小さくすることはできない。このような構成で元圧用のオイルポンプ300の小型化を図るためには、PRIピストン面積をSECピストン面積より大きくすることによってPRI推力を増大させるしかない。すなわち、図11の構成においてオイルポンプ300の小型化を図る場合には、PRIピストン面積とSECピストン面積との大小関係が第1実施形態及び第2実施形態とは反対になる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (3)

  1.  プライマリプーリのピストン油室とセカンダリプーリのピストン油室との間の油路に配置される電動オイルポンプと、
     前記電動オイルポンプにより前記プライマリプーリのピストン油室の油の出入りを制御する制御部と、
    を備える無段変速機において、
     前記プライマリプーリのピストン面積が、前記セカンダリプーリのピストン面積よりも小さい無段変速機。
  2.  請求項1に記載の無段変速機において、
     前記プライマリプーリのピストン面積は、前記プライマリプーリのピストン油室の油圧に対する前記油路のリーク特性に基づいて、前記プライマリプーリの推力が最大となったときの前記油路のリーク量が予め設定した供給流量制限値を超えない大きさに設定されている無段変速機。
  3.  請求項1に記載の無段変速機において、
     前記プライマリプーリのピストン面積は、前記プライマリプーリの推力が最大となったときの前記プライマリプーリのピストン油室の油圧が油圧回路に用いられる部品の耐圧性から定まる上限油圧を超えない大きさに設定されている無段変速機。
PCT/JP2016/084826 2016-11-24 2016-11-24 無段変速機 WO2018096621A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16922354.2A EP3546793B1 (en) 2016-11-24 2016-11-24 Continuously variable transmission
MX2019005796A MX2019005796A (es) 2016-11-24 2016-11-24 Transmision continuamente variable.
US16/461,935 US10865859B2 (en) 2016-11-24 2016-11-24 Continuously variable transmission
PCT/JP2016/084826 WO2018096621A1 (ja) 2016-11-24 2016-11-24 無段変速機
CN201680090868.2A CN109964059B (zh) 2016-11-24 2016-11-24 无级变速器
JP2018552326A JP6702430B2 (ja) 2016-11-24 2016-11-24 無段変速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084826 WO2018096621A1 (ja) 2016-11-24 2016-11-24 無段変速機

Publications (1)

Publication Number Publication Date
WO2018096621A1 true WO2018096621A1 (ja) 2018-05-31

Family

ID=62195817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084826 WO2018096621A1 (ja) 2016-11-24 2016-11-24 無段変速機

Country Status (6)

Country Link
US (1) US10865859B2 (ja)
EP (1) EP3546793B1 (ja)
JP (1) JP6702430B2 (ja)
CN (1) CN109964059B (ja)
MX (1) MX2019005796A (ja)
WO (1) WO2018096621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176472A1 (ja) * 2021-02-22 2022-08-25 ジヤトコ株式会社 センサの配置構造

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2002523711A (ja) 1998-08-27 2002-07-30 ギア チェイン インダストリアル ベー.フェー. Vベルト無段変速機のための制御システム
JP2006090474A (ja) * 2004-09-24 2006-04-06 Jatco Ltd ベルト式無段変速機
JP2006523292A (ja) * 2003-03-19 2006-10-12 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 無段変速機における比の変化率を制御する方法およびシステム
JP2008240894A (ja) * 2007-03-27 2008-10-09 Jtekt Corp 無段変速機のサーボポンプの流量制御方法および流量制御装置
JP2011085175A (ja) * 2009-10-14 2011-04-28 Toyota Motor Corp ベルト型無段変速機の油圧制御装置
JP2016011728A (ja) * 2014-06-30 2016-01-21 ジヤトコ株式会社 無段変速機の制御装置及び制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475416A (en) * 1982-07-27 1984-10-09 Borg-Warner Corporation Continuously variable transmission down shift control
DE3934506C1 (ja) * 1989-10-16 1991-05-08 Ford-Werke Ag, 5000 Koeln, De
DE19918541A1 (de) * 1999-04-23 2000-10-26 Zahnradfabrik Friedrichshafen Umschlingungsgetriebe
WO2001020198A1 (en) * 1999-09-15 2001-03-22 Van Doorne's Transmissie B.V. Control system for continuously variable transmission and continuously variable transmission wherein such is utilised
US6287227B1 (en) * 1999-09-20 2001-09-11 General Motors Corporation Hydraulic control for a continuously variable transmission
JP4038097B2 (ja) * 2002-09-03 2008-01-23 ジヤトコ株式会社 ベルト式無段変速機の油圧センサフェール制御装置
JP3786198B2 (ja) * 2002-09-30 2006-06-14 ジヤトコ株式会社 ベルト式無段変速機の変速油圧制御装置
DE10354157A1 (de) * 2003-11-21 2005-06-23 Zf Friedrichshafen Ag Kegelscheibenumschlingungsgetriebe
US7686715B2 (en) * 2004-07-08 2010-03-30 Gm Global Technology Operations, Inc. Hybrid clamping mechanism for belt continuously variable transmission and method of use thereof
JP4145856B2 (ja) * 2004-10-05 2008-09-03 ジヤトコ株式会社 ベルト式無段変速機のライン圧制御装置
JP4649998B2 (ja) * 2005-01-17 2011-03-16 トヨタ自動車株式会社 無段変速機の受圧面差を伴う変速制御装置
JP4641852B2 (ja) * 2005-04-11 2011-03-02 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
WO2008050687A1 (fr) 2006-10-23 2008-05-02 Jtekt Corporation Dispositif de commande pour une transmission continue, procédé de commande de débit et dispositif de commande de débit
JP5476505B2 (ja) * 2011-02-24 2014-04-23 本田技研工業株式会社 無段変速機の油圧制御装置
NL1039925C2 (nl) * 2012-12-03 2014-06-04 Gear Chain Ind Bv Stelsel voor het regelen van een continu variabele transmissie.
WO2015125718A1 (ja) * 2014-02-20 2015-08-27 ジヤトコ株式会社 油圧制御装置、及びその制御方法
NL1041280B1 (nl) * 2015-04-21 2017-01-26 Gear Chain Ind Bv Regelstelsel voor een continu variabele transmissie.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523711A (ja) 1998-08-27 2002-07-30 ギア チェイン インダストリアル ベー.フェー. Vベルト無段変速機のための制御システム
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2006523292A (ja) * 2003-03-19 2006-10-12 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 無段変速機における比の変化率を制御する方法およびシステム
JP2006090474A (ja) * 2004-09-24 2006-04-06 Jatco Ltd ベルト式無段変速機
JP2008240894A (ja) * 2007-03-27 2008-10-09 Jtekt Corp 無段変速機のサーボポンプの流量制御方法および流量制御装置
JP2011085175A (ja) * 2009-10-14 2011-04-28 Toyota Motor Corp ベルト型無段変速機の油圧制御装置
JP2016011728A (ja) * 2014-06-30 2016-01-21 ジヤトコ株式会社 無段変速機の制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546793A4

Also Published As

Publication number Publication date
US20190323581A1 (en) 2019-10-24
CN109964059A (zh) 2019-07-02
CN109964059B (zh) 2022-12-02
EP3546793A1 (en) 2019-10-02
JP6702430B2 (ja) 2020-06-03
EP3546793A4 (en) 2019-11-13
MX2019005796A (es) 2019-08-12
EP3546793B1 (en) 2021-03-03
US10865859B2 (en) 2020-12-15
JPWO2018096621A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
US8062156B2 (en) Control device for continuously variable transmission
WO2018043052A1 (ja) 無段変速機の制御方法及び制御装置
JP5376054B2 (ja) 車両用変速制御装置
JP6673483B2 (ja) 無段変速機、及び、その制御方法
WO2018096621A1 (ja) 無段変速機
JP2007132420A (ja) 車両用ベルト式無段変速機の油圧制御装置
WO2018047559A1 (ja) 無段変速機及び無段変速機の制御方法
US10527164B2 (en) Method for controlling continuously variable transmission and continuously variable transmission system
CN109973644B (zh) 车辆用动力传递装置的控制装置
US10815846B2 (en) Continuously variable transmission and method for controlling continuously variable transmission
JP2017211008A (ja) 無段変速機の制御方法
JP4830914B2 (ja) 無段変速機の変速制御装置
JP4462164B2 (ja) 油圧制御装置
US10781919B2 (en) Method for controlling continuously variable transmission and continuously variable transmission system
JP6896343B2 (ja) 無段変速機の制御装置
JP2020197187A (ja) 車両の制御装置及び車両の制御方法
JP7058909B2 (ja) ベルト式無段変速機の制御装置
JP2006046515A (ja) 自動変速機の油圧制御装置
JP2005042799A (ja) 無段変速機の油圧制御装置
JPH0626373A (ja) 自動変速機を備えた車両の制御装置
JP2007064371A (ja) 無段変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922354

Country of ref document: EP

Effective date: 20190624