WO2018092795A1 - 赤外線センサ - Google Patents

赤外線センサ Download PDF

Info

Publication number
WO2018092795A1
WO2018092795A1 PCT/JP2017/041045 JP2017041045W WO2018092795A1 WO 2018092795 A1 WO2018092795 A1 WO 2018092795A1 JP 2017041045 W JP2017041045 W JP 2017041045W WO 2018092795 A1 WO2018092795 A1 WO 2018092795A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared sensor
infrared
unit
detection unit
detection
Prior art date
Application number
PCT/JP2017/041045
Other languages
English (en)
French (fr)
Inventor
延亮 島本
那由多 南
俊哉 五十嵐
浩 山中
昌良 村上
杉山 貴則
翔 嶋田
上田 智
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018551657A priority Critical patent/JP6979621B2/ja
Publication of WO2018092795A1 publication Critical patent/WO2018092795A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts

Definitions

  • This disclosure relates to an infrared sensor that detects the temperature of an object in a non-contact manner.
  • Patent Documents 1 and 2 an infrared sensor having a substrate, an infrared detection element provided on the substrate, and a package covering the infrared detection element is known. Further, an infrared sensor in which this infrared sensor is integrally packaged by a resin mold is known.
  • the conventional infrared sensor has a problem that it is not easy to mount the infrared sensor on a separate member.
  • An object of the present invention is to solve the above problems and provide an infrared sensor that can be easily mounted on another member.
  • JP 2015-200559 A Japanese Patent Laying-Open No. 2015-049073
  • the present disclosure includes a detection unit that has a window hole on a surface thereof and detects infrared rays, and a support unit in which a lead frame is integrally molded, and one end of the lead frame is connected to the detection unit. It was set as the structure connected to the back surface.
  • Front view of infrared sensor according to first embodiment of first disclosure Side view of the infrared sensor Rear view of the infrared sensor Side sectional view of the detection part of the same infrared sensor Enlarged view of the lead frame of the infrared sensor Side sectional view of a modification of the infrared sensor according to the second embodiment of the first disclosure AA line sectional view of the infrared sensor Enlarged view of the infrared sensor connector
  • Front view of infrared sensor according to third embodiment of first disclosure Side view of the infrared sensor Side view of the infrared sensor Side view of infrared sensor of embodiment 4 of first disclosure
  • Rear view of the infrared sensor Front view of infrared sensor according to embodiment 1 of second disclosure
  • Side view of the infrared sensor Top view of the infrared sensor The figure which shows the relationship between the rotation direction of the pixel part of the same infrared sensor, and a detection part.
  • Embodiment 1 Below, the infrared sensor 1 in Embodiment 1 is demonstrated, using drawing.
  • FIG. 1 is a front view of the infrared sensor 1 according to the first embodiment
  • FIG. 2 is a side view of the infrared sensor 1
  • FIG. 3 is a rear view of the infrared sensor 1
  • FIG. 4 is a detection unit 2 side of the infrared sensor 1.
  • a cross-sectional view is shown. In the drawing, components that are not visible from the outside are indicated by broken lines.
  • the infrared sensor 1 has a detection unit 2, a support unit 3, and a lead frame 4 that connects the support unit 3 and the detection unit 2.
  • a shaft portion 5 Connected to the support portion 3 are a shaft portion 5, a scanning portion that rotates the support portion 3 via the shaft portion 5, and a connector 6.
  • the lead frame 4 is made of phosphor bronze and plated with tin, copper, silver or the like.
  • the lead frame 4 is not limited to phosphor bronze as long as it can be soldered, and may be formed of a material other than iron such as iron or copper.
  • the lead frame 4 extends in the X-axis direction.
  • the direction in which the lead frame 4 extends is defined as the X-axis direction
  • the direction in which the shaft portion 5 extends is defined as the Y-axis direction
  • the direction perpendicular to the X-axis direction and the Y-axis direction is described as the Z-axis direction.
  • the detection unit 2 includes a substrate 7, an infrared detection element 8 provided on the substrate 7, a package 9 that covers the infrared detection element 8, and a processing circuit 10.
  • a cover 11 that covers the infrared detection element 8 and the processing circuit 10 is provided in the package 9.
  • the detection unit 2 has a front surface 12 and a back surface 13, and a window hole 14 is provided in the front surface 12 of the package 9 of the front surface 12 of the detection unit 2, and a lens 15 is disposed so as to close the window hole 14.
  • the substrate 7 has a first main surface 16 and a second main surface 17, and the infrared detection element 8 and the package 9 are provided on the first main surface 16.
  • a land 18 is formed on the second main surface 17.
  • the land 18 has a rectangular shape or a circular shape, and has a good solder durability and solder coatability. Even if the shape of the land 18 is not circular, good solder durability and solder coatability can be obtained if the land 18 has no corners.
  • Passive components 19 such as capacitors, resistors, and inductors and the lead frame 4 are soldered to the lands 18. In the conventional configuration, it is necessary to dispose the passive component far from the detection unit. However, since the passive component 19 can be mounted at a position close to the detection unit 2 in the infrared sensor 1, the wiring can be shortened. Thereby, since the influence of parasitic impedance can be reduced, the noise path is reduced and the stability of the temperature output of the sensor is improved. Moreover, the infrared sensor 1 can be reduced in size by directly arranging the passive component 19 on the detector.
  • the infrared detecting element 8 has a thermal infrared detector in which a temperature sensing portion is embedded, and the temperature sensing portion is constituted by a thermopile that converts thermal energy generated by infrared rays emitted from a detected object into electrical energy.
  • the thermoelectric conversion part is used.
  • the infrared sensor 1 includes an a ⁇ b pixel unit (non-contact infrared detecting element) having a MOS transistor for taking out a temperature sensing unit and an output voltage of the temperature sensing unit on one surface side of a semiconductor substrate. They are arranged in a two-dimensional array of rows and columns, and the pixel portion in the first embodiment is configured in 8 ⁇ 8.
  • the arrangement of the pixel portions is not limited to 8 ⁇ 8, and may be 16 ⁇ 4, for example.
  • the infrared detection element 8 is connected to the substrate 7 by wire bonding.
  • Package 9 is made of ceramic material. Since the thermal expansion coefficient of the package 9 is close to that of the passive component 19, the thermal stress durability of the solder in the land 18 is improved. If the thermal stress durability of the solder is not taken into account, the package 9 can be formed of a material other than ceramic such as a metal material or glass epoxy resin.
  • the package 9 has a side surface 20 between the front surface 12 and the back surface 13. In the following description, the direction from the infrared detection element 8 toward the front surface (Z-axis + side direction) will be described as the forward direction.
  • the support portion 3 is formed of LCP (Liquid Crystal Polymer) having high heat resistance during reflow.
  • LCP Liquid Crystal Polymer
  • a resin material other than LCP may be used as the material of the support part 3, but it is preferable to select a material having high heat resistance during reflow.
  • the 1st wall part 21, the 2nd wall part 22, the 3rd wall part 23, and the 4th wall part 24 are formed in the rectangular cylinder shape so that the outer side of the side surface 20 may be enclosed.
  • the Y-axis direction-side of the support portion 3 is the first wall portion 21, the X-axis direction-side is the second wall portion 22, the Y-axis direction-side is the third wall portion 23, and the X-axis direction-side is the fourth wall portion. 24.
  • the detection part 2 can be supported firmly, but the support part 3 does not need to be formed in a rectangular cylinder shape.
  • a structure in which a part of the support part 3 is curved or a structure without the third wall part 23 may be used.
  • a shaft portion 5 and a connector 6 are soldered so as to abut on the shaft portion 5 on the first surface of the first wall portion 21 of the support portion 3 on the Y axis direction negative side.
  • the connector 6 may not be in contact with the shaft portion 5.
  • the shaft portion 5 is formed as a separate part from the support portion 3, and the shaft portion 5 and the support portion 3 are connected.
  • the shaft portion 5 and the support portion 3 are separate components, the configuration of the mold used when manufacturing the infrared sensor 1 is simplified, so that the cost can be reduced. Moreover, since the direction of the rotating shaft 25 of the infrared sensor 1 and the visual field of the infrared sensor 1 can be changed by exchanging the shaft portion 5, the versatility of the infrared sensor 1 is improved. Note that the shaft portion 5 and the support portion 3 may be integrally formed depending on the use application of the infrared sensor 1. A shaft portion 5 is connected to the support portion 3, and the shaft portion 5 is connected to the scanning portion.
  • a convex portion 26 for positioning is provided on the surface 4.
  • One convex portion 26 is provided on the second surface and the fourth surface, and two convex portions 26 are provided on the third surface.
  • the number and location of the convex portions 26 are not limited to this.
  • the scanning unit is composed of a motor, and the support unit 3 is rotated around the rotation shaft 25 by the scanning unit. As the support unit 3 rotates, the detection unit 2 rotates around the rotation shaft 25. The detection unit 2 acquires a thermal image every time it rotates. The detection unit 2 rotates by a predetermined angle, and when the rotation of the detection unit 2 in one direction is completed, rotation in the opposite direction is started. When the rotation of the detection unit 2 in one direction is completed, the thermal images are added to obtain a high-resolution thermal image.
  • a lead frame 4 is integrally formed on the support portion 3, one end of the lead frame 4 extends from the inside of the support portion 3 and is connected to the detection portion 2, and the other end of the lead frame 4 is soldered to a connector terminal.
  • the FIG. 5 is an enlarged view of the lead frame 4 as seen from the Y axis direction plus side. As shown in FIG. 5, the other end of the lead frame 4 may be folded in two to form the connector terminal 27.
  • the connector 6 may not be soldered to the support portion 3. Further, since there is no need to provide the connector terminal 27, the number of parts can be reduced, soldering is not required, and the cost can be reduced.
  • the infrared sensor 1 supports the detection unit 2 with the support unit 3 connected to the scanning unit via the lead frame 4, the number of assembly parts can be reduced, and the positional accuracy of the lens 15 and the scanning unit can be reduced. high.
  • the heat capacity of the package is large. Therefore, the heat capacity of the package when wire bonding the infrared detection element is large, and the heating time for wire bonding is long. Become.
  • the infrared sensor 1 since there is no problem that the heat capacity of the package 9 is large, the time required for heating for wire bonding is shorter than that of the conventional infrared sensor, and mass productivity is improved.
  • the infrared sensor integrally packaged by the conventional resin mold since the heat capacity of the package is large, it takes a long time until the heat generated in the processing circuit reaches the thermal equilibrium state in the entire package after the infrared sensor is energized. On the other hand, in the infrared sensor 1, the time required for the temperature output of the infrared sensor 1 to be stabilized can be shortened.
  • FIG. 6 is a cross-sectional side view of the infrared sensor 31 of the second embodiment
  • FIG. 7 is a cross-sectional view of the infrared sensor 31 taken along line AA in FIG. 6
  • FIG. 8 is a view from the X-axis direction + side of the connector 6 of the infrared sensor 31. An enlarged view is shown.
  • the infrared sensor 31 has a detection unit 2, a support unit 32, and a lead frame 33 that connects the support unit 32 and the detection unit 2.
  • the support portion 32 has a shaft portion 5 and a connector terminal 34.
  • a second support portion 35 is provided outside the support portion 32, and a lead frame 33 extending from the support portion 32 to the outside of the support portion 32 is connected to the second support portion 35.
  • a support portion 32 extends in front of the detection portion 2, and an aperture 36 (a diaphragm) is provided in the front direction of the surface 12 of the detection portion 2.
  • the aperture 36 is provided so that the optical axis coincides with the lens 15.
  • the detection area of the infrared detection element 8 can be set by the lens 15 and the aperture 36. Further, since the lens 15 and the aperture 36 are separated from each other, off-axis light to the lens 15 is blocked by the aperture 36. As a result, the occurrence of off-axis aberration of the lens 15 can be suppressed.
  • the lead frame 33 has a spring portion 37 between the support portion 32 and the second support portion 35. Since the lead frame 33 includes the spring portion 37, even when vibration is applied to the infrared sensor 31, image blur due to vibration can be suppressed and thermal image disturbance can be suppressed.
  • the connector terminal 34 of the infrared sensor 31 is formed by folding the lead frame 33 in two.
  • the lead frame 33 is bent toward the Y-axis direction minus side to form a spring structure. Thereby, the lead frame 33 can be easily used as the connector terminal 34.
  • FIG. 9 is a front view of the infrared sensor 41 of the third embodiment
  • FIG. 10 is a side view of the infrared sensor 41.
  • the infrared sensor 41 has a detection unit 2, a support unit 42, and a lead frame 4 that connects the support unit 42 and the detection unit 2.
  • the support portion 42 is mounted on the mounting surface 45 of the printed circuit board 43 with solder.
  • the printed circuit board 43 is provided with an MCU 44 (Memory Control Unit) that processes the output signal of the detection unit 2.
  • MCU 44 Memory Control Unit
  • the support part 42 is formed in a rectangular cylindrical shape like the support part 3 of the first embodiment, and is arranged on the printed circuit board 43 so that the surface 12 of the detection part 2 is orthogonal to the mounting surface 45 of the printed circuit board 43.
  • the MCU 44 When the infrared sensor 41 is used, the MCU 44 generates heat, but since the detection unit 2 is mounted on the printed circuit board 43 via the support unit 42, the transmission of heat generated by the MCU 44 to the detection unit 2 can be suppressed. It is possible to reduce the output deviation of the infrared sensor 41.
  • FIG. 11 shows an infrared sensor 41 in which the shape of the support portion 42 is changed and the visual field direction V is changed.
  • the surface 12 of the detection unit 2 is not orthogonal to the mounting surface 45 of the printed circuit board 43. Since the infrared sensor 41 can easily change the viewing direction V of the detection unit 2 according to the application, the versatility of the infrared sensor 41 is improved.
  • FIG. 12 is a side view of the infrared sensor 51 of the fourth embodiment
  • FIG. 13 is a rear view of the detection unit 2 of the infrared sensor 51.
  • the infrared sensor 51 includes a detection unit 2, a support unit 52, and a lead frame 4 that connects the support unit 52 and the detection unit 2.
  • the support part 52 is mounted on the printed circuit board 53 with solder.
  • the printed circuit board 53 is provided with an MCU 44 that processes the output signal of the detection unit 2. Since the infrared sensor 51 suppresses the heat generated in the MCU 44 transmitted through the printed circuit board 53 through the support portion 52, the output deviation of the infrared sensor 51 can be reduced.
  • a through hole 54 is provided in the printed circuit board 53, and the detection unit 2 is mounted on the printed circuit board 53 so that the window hole 14 (see FIG. 1) faces the through hole 54. Since the detection unit 2 is disposed on the through hole 54, the viewing direction V of the detection unit 2 can be set on the side opposite to the mounting surface 45 of the printed circuit board 53. Thereby, the versatility of the infrared sensor 51 is improved.
  • the infrared sensor (1; 31; 41; 51) of the first aspect includes a detection unit (2) having a window hole (14) on the surface (12) and detecting infrared rays, and a lead frame (4; 33). And an integrally molded support portion (3:32; 42; 52). One end of the lead frame (4; 33) is connected to the back surface (13) of the detection unit (2).
  • the infrared sensor (1; 31; 41; 51) of the second aspect can be realized by a combination with the first aspect.
  • the lead frame (4; 33) is connected to the back surface (13) of the detection unit (2) with solder.
  • the infrared sensor (1; 31; 41; 51) of the third aspect can be realized by a combination with the first or second aspect.
  • the detection unit (2) has a side surface (20) between the front surface (12) and the back surface (13).
  • the support (3; 32; 42; 52) surrounds the outside of the side surface (20).
  • the infrared sensor (1; 41; 51) of the fourth aspect can be realized by a combination with any one of the first to third aspects.
  • the support portion (3; 42; 52) has a convex portion (26) protruding inside the support portion (3; 42; 52).
  • the infrared sensor (31) of the fifth aspect can be realized by a combination with any one of the first to fourth aspects.
  • the support part (32) has an aperture (36) protruding in the direction of the surface (12) of the detection part (2).
  • the infrared sensor (31) of the sixth aspect can be realized by a combination with any one of the first to fifth aspects.
  • the infrared sensor (31) further includes a second support portion (35) outside the support portion (32).
  • the lead frame (33) has a spring portion (37) between the support portion (3) and the second support portion (35).
  • the infrared sensor (1; 31; 41; 51) of the seventh aspect can be realized by a combination with any one of the first to sixth aspects.
  • the support portion (3; 32; 42; 52) is formed of a resin material.
  • the infrared sensor (1; 31; 41; 51) of the eighth aspect can be realized by a combination with any one of the first to seventh aspects.
  • the detection unit (2) includes a substrate (7), an infrared detection element (8) provided on the substrate (7), and the infrared detection element (8) on the substrate (7). And a package (9) provided so as to cover the window and having the window hole (14) formed therein.
  • the package (9) is made of a ceramic material.
  • the infrared sensor (1; 31; 41; 51) of the ninth aspect can be realized by a combination with any one of the first to eighth aspects.
  • the infrared sensor (1; 31; 41; 51) includes a scanning unit that rotationally scans the detection unit (2), the scanning unit, and the support unit (3; 32; 42; 52). It further had a shaft part (5) for connecting.
  • the infrared sensor (1) of the tenth aspect can be realized by a combination with the ninth aspect.
  • the infrared sensor (1) further includes a connector (6) connected to the support portion (3; 32; 42; 52).
  • the infrared sensor (1; 31) of the eleventh aspect can be realized by a combination with the tenth aspect.
  • the other end of the lead frame (4; 33) is a connector terminal (27; 34).
  • the infrared sensor (31) of the twelfth aspect can be realized by a combination with the eleventh aspect.
  • the connector terminal (34) has a spring structure.
  • the infrared sensor (41; 51) of the thirteenth aspect can be realized by a combination with any one of the first to eighth aspects.
  • the infrared sensor (41; 51) further includes a printed circuit board (43; 53).
  • the support portion (3) is mounted on the mounting surface (45) of the printed circuit board (43; 53).
  • the infrared sensor (41) of the fourteenth aspect can be realized by a combination with the thirteenth aspect.
  • the surface (12) of the detection unit (2) is not orthogonal to the mounting surface (45) of the printed circuit board (43).
  • the infrared sensor (51) of the fifteenth aspect can be realized by a combination with the thirteenth aspect.
  • the printed circuit board (53) has a through hole (54).
  • the detection unit (2) is mounted on the printed circuit board (53) so that the window hole (14) faces the through hole (54).
  • the infrared sensor (1; 31; 41; 51) of the present disclosure supports the detection unit (2) by the lead frame (4; 33) mounted on the support unit (3; 32; 42; 52). Infrared sensors (1; 31; 41; 51) can be easily mounted.
  • the present disclosure relates to an infrared sensor that detects the temperature of an object in a non-contact manner.
  • infrared sensors that detect a wide range of infrared rays by rotating the infrared sensor with a motor are known.
  • Japanese Patent Laid-Open No. 1-277796 Japanese Patent Publication No. 5-20659, Japanese Patent Laid-Open No. 6-102097, Japanese Patent Laid-Open No. 8-75555, Japanese Patent No. 3241835, Japanese Patent No. 3409497, Japanese Patent No. 5900781 And Japanese Patent No. 5967392
  • the above-described conventional infrared sensor has a problem that the infrared sensor cannot be reduced in height because the detection unit of the infrared sensor is provided above the drive unit.
  • This disclosure is intended to solve the above problems and provide an infrared sensor with a reduced height.
  • the present disclosure includes a driving unit provided in the direction of a first axis, and a second unit connected to the driving unit and having a second direction different from the direction of the first axis by power of the driving unit. And a detecting unit connected to the rotating unit and rotating around the second axis to detect infrared rays.
  • FIG. 14 is a front view of the infrared sensor 101 of the first embodiment
  • FIG. 15 is a side view of the infrared sensor 101
  • FIG. 16 is a top view of the infrared sensor 101.
  • the infrared sensor 101 includes a fixed unit 102, a drive unit 104 that is fixed to the fixed unit 102 and rotates around a first shaft 103, and power that is connected to the drive unit 104 and transmitted from the drive unit 104.
  • Rotating part 106 rotating around second axis 105, detecting part 107 connected to rotating part 106 for detecting infrared rays, case 108 covering drive part 104 and fixing part 102, and cover covering detecting part 107
  • a processing circuit for processing the detection result of the detection unit 107.
  • the first axis 103 and the second axis 105 are oriented in different directions, and thereafter, the direction orthogonal to the first axis 103 and the second axis 105 is the X-axis direction, and the direction of the first axis 103 is The Y-axis direction and the direction of the second axis 105 will be described as the Z-axis direction.
  • the driving unit 104 is constituted by a motor such as a stepping motor, and is fixed to a fixing unit 102 formed of a metal material such as SUS.
  • the drive unit 104 has a worm 109.
  • the rotating unit 106 has a worm wheel 110.
  • the worm wheel 110 of the rotating unit 106 is connected to the worm 109 of the driving unit 104, and converts the rotation of the worm 109 rotated around the first shaft 103 into rotation around the second shaft 105.
  • the motor power transmitted through the worm 109 and the worm wheel 110 rotates the detection unit 107 connected to the rotation unit 106 around the second shaft 105.
  • FIG. 17 is a diagram illustrating the rotation direction of the detection unit 107.
  • the detection unit 107 includes a thermal infrared detector in which a temperature sensing unit is embedded, and the temperature sensing unit includes a thermopile that converts thermal energy generated by infrared rays radiated from the detection target into electrical energy. A thermoelectric converter is used.
  • the infrared sensor 101 includes an a ⁇ b pixel unit 112 (non-contact infrared detection element) having a MOS transistor for taking out a temperature sensing unit and an output voltage of the temperature sensing unit on one surface side of the semiconductor substrate. They are arranged in a two-dimensional array of a rows and b columns, and the pixel portion 112 in the first embodiment is configured to be 8 ⁇ 8.
  • the arrangement of the pixel unit 112 is not limited to 8 ⁇ 8, and may be 16 ⁇ 4, for example.
  • the pixel portion 112 is arranged so as to be inclined with respect to the rotation direction in both the row L direction and the column C direction.
  • the arrangement of the pixel unit 112 is not limited to FIG. 17.
  • the end of the pixel unit 112 in the column C direction is shifted by the row L, and the pixel unit 112 is arranged in a step shape. You may do it.
  • Detecting unit 107 is rotated by driving unit 104.
  • the detection unit 107 rotates around the second shaft 105, and acquires a thermal image each time the detection unit 107 rotates by a predetermined angle.
  • the detection unit 107 finishes rotating in one direction it rotates in the opposite direction.
  • the thermal images obtained during the rotation are added together. By adding the thermal images, a high-resolution thermal image can be obtained.
  • the drive unit 104 rotates the detection unit 107 so that the detection region of the pixel unit 112 after one rotation overlaps the detection region of the pixel unit 112 before rotation.
  • the pixel unit 112 is arranged so that the pixel unit 112 is arranged on the array and the detection unit 107 is rotated in the row L direction or the column C direction of the pixel unit 112. The resolution of the image can be improved.
  • FIG. 19 is a side view of the infrared sensor 101 in a state where the driving unit 104 is covered with the case 108.
  • the driving unit 104 is not covered with the case 108.
  • the case 108 is made of a resin material such as polycarbonate and covers a part of the fixed portion 102 and the drive portion 104.
  • the detection unit 107 is exposed from the case 108. Since there is the case 108 between the drive unit 104 and the detection unit 107, the transfer of heat generated in the drive unit 104 to the detection unit 107 can be reduced.
  • the case 108 is provided with a correction plate 113 at a position between the detection unit 107 and the drive unit 104 outside the case 108.
  • the correction plate 113 is made of a resin material such as polycarbonate.
  • the temperature of the correction plate 113 is constantly measured by a thermocouple or the like.
  • the detection unit 107 is scanned so that the correction plate 113 enters the field of view of the detection unit 107. Since the temperature of the correction plate 113 is measured by a thermocouple, the temperature of the correction plate 113 is detected by the detection unit 107 and the output of the detection unit 107 is corrected. Thereby, even when the environmental temperature of the infrared sensor 101 changes, the change in the output of the detection unit 107 due to the environmental temperature change can be always corrected. For this reason, compared with the case where the correction plate 113 is not provided, the detection accuracy of the infrared sensor 101 can be improved.
  • the correction plate 113 is formed of a resin material, it may be formed of a metal material such as copper.
  • the detection unit 107 is covered with a cover and protected from dust and the like. Since the cover is formed of a transparent material, infrared rays can be detected even when the cover is provided.
  • FIG. 20 is a partially enlarged cross-sectional view of the infrared sensor 101.
  • FIG. 20 is a view showing the relationship between the case 108, the rotating unit 106, and the worm wheel 110. As shown in FIG. 20, the rotating portion 106 and the case 108 are connected by a spring 114. Since the rotation unit 106 is held by the case 108 with a spring 114, the rotation unit 106 can be prevented from being displaced with respect to the fixed unit 102 when vibration is applied to the infrared sensor 101. Thereby, the detection accuracy of the infrared sensor 101 is improved. Note that a leaf spring may be used as the spring 114.
  • FIG. 21 shows a side view of an infrared sensor 101 according to a modification of the first embodiment.
  • the detection surface 111 of the detection unit 107 does not have an angle with respect to the rotation axis. That is, the detection surface 111 is attached to the rotating shaft so as to be in the YZ plane.
  • FIG. 22 is a front view of the infrared sensor 121 of the second embodiment
  • FIG. 23 is a side view of the infrared sensor 121
  • FIG. 24 is a top view of the infrared sensor 121
  • FIG. 25 is covered by a case 108 of the infrared sensor 121
  • FIG. 26 is a side view of the infrared sensor 121 covered with the case 108.
  • the infrared sensor 121 includes a first fixing unit 122, a second fixing unit 123, a driving unit 104 that is fixed to the first fixing unit 122 and rotates around the first shaft 103, A transmission unit 124 connected to the drive unit 104 and fixed to the second fixing unit 123; and a rotation unit 106 connected to the transmission unit 124 and rotated around the second shaft 105 by power transmitted from the drive unit 104; A detection unit 107 connected to the rotation unit 106 to detect infrared rays, a case 108 that covers the drive unit 104 and the fixed unit 102, a cover that covers the detection unit 107, and a processing circuit that processes the detection result of the detection unit 107. is doing.
  • the transmission unit 124 includes a first connection unit 125 and a second connection unit 126.
  • the first connecting portion 125 is a worm wheel and is connected to the worm 109 of the driving unit 104.
  • the second connecting portion 126 has a gear shape and is connected to a gear 127 provided in the rotating portion 106.
  • the first connection part 125 is provided on the + side in the Z-axis direction with respect to the second connection part 126, and the first connection part 125 is disposed between the second connection part 126 and the detection unit 107. .
  • the first fixing part 122 is made of a metal such as SUS, and the second fixing part 123 is made of a resin material such as polycarbonate. For this reason, the thermal conductivity of the second fixing portion 123 is lower than the thermal conductivity of the first fixing portion 122. Since the drive unit 104 is fixed to the first fixing unit 122 and the transmission unit 124 is fixed to the second fixing unit 123, heat generated in the driving unit 104 is prevented from being transmitted to the transmission unit 124. Is done.
  • the driving unit 104 is covered with a case 108.
  • the case 108 is connected to the Z axis + side of the transmission part 124 and has a stepped part 128 on the transmission part 124. Since the case 108 has the step portion 128, the transmission portion 124 is pressed down, and the transmission portion 124 can be fixed more firmly than in the case where the step portion 128 is not provided.
  • the detection unit 107 is covered with a cover and protected from dust and the like. Since the cover is formed of a transparent material, infrared rays can be detected even when the cover is provided.
  • the rotating part 106 and the case 108 are connected by a spring 114. Since the rotation unit 106 is held by the case 108 with a spring 114, the rotation unit 106 can be prevented from being displaced with respect to the fixed unit 102 when vibration is applied to the infrared sensor 101.
  • the infrared sensor (101; 121) includes a drive unit (104) provided in the direction of the first axis (103) and the drive unit (104) connected to the drive unit (104).
  • a rotating part (106) that rotates around the second axis (105) in a direction different from the direction of the first axis (103) by power, and the second axis ( 105) and a detection unit (107) for detecting infrared rays.
  • the infrared sensor (121) of the second aspect can be realized by a combination with the first aspect.
  • the infrared sensor (121) further includes a transmission part (124) between the rotating part (106) and the driving part (104).
  • the infrared sensor (121) of the third aspect can be realized by a combination with the second aspect.
  • the transmission unit (124) includes a first connection unit (125) connected to the driving unit (104) and a second connection unit (connected to the rotating unit (106) ( 126).
  • the first connection part (125) is between the drive part (104) and the second connection part (126) in the direction of the second axis (105).
  • the infrared sensor (121) of the fourth aspect can be realized by a combination with the second aspect.
  • the infrared sensor (121) further includes a first fixing part (122) and a second fixing part (123).
  • the driving unit (104) is disposed on the first fixing unit (122).
  • the transmission part (124) is disposed on the second fixing part (123).
  • the infrared sensor (121) of the fifth aspect can be realized by a combination with the fourth aspect.
  • the thermal conductivity of the second fixing portion (123) is smaller than the thermal conductivity of the first fixing portion (122).
  • the infrared sensor (101; 121) of the sixth aspect can be realized by a combination with any one of the first to fifth aspects.
  • the detection surface (111) of the detection unit (107) is inclined with respect to the second axis (105).
  • the infrared sensor (101) of the seventh aspect can be realized by a combination with any one of the first to sixth aspects.
  • the infrared sensor (101) further includes a case (108) that covers the drive unit (104).
  • the detection unit (107) is exposed from the case (108).
  • the infrared sensor (101) of the eighth aspect can be realized by a combination with the seventh aspect.
  • the case (108) has a correction plate (113).
  • the infrared sensor (121) of the ninth aspect can be realized by a combination with the first aspect.
  • the infrared sensor (121) includes a case (108) that covers the drive unit (104), and a transmission unit (124) between the rotation unit (106) and the drive unit (104). It has further.
  • the detection unit (107) is exposed from the case (108).
  • the case (108) has a step portion (128) in front of the transmission portion (124) in the direction of the second axis (105).
  • the infrared sensor (101; 121) of the tenth aspect can be realized by a combination with any one of the seventh to ninth aspects.
  • the infrared sensor (101; 121) further includes a cover that covers the detection unit (107) and the case (108).
  • the infrared sensor (101; 121) of the eleventh aspect can be realized by a combination with any one of the seventh to tenth aspects.
  • the infrared sensor (101; 121) further includes a spring (114) connecting the case (108) and the rotating part (106).
  • the drive unit (104) and the rotation unit (106) for rotating the infrared detection unit (107) have different configurations and have different rotation axes. As a result, the height can be reduced.
  • the present disclosure relates to an infrared sensor that detects the temperature of an object in a non-contact manner.
  • the conventional infrared sensor has a problem in that the connector portion is provided on the lower surface of the substrate, and an installation stand is required to connect the infrared sensor to the motor, so that the infrared sensor is enlarged.
  • This disclosure aims to solve the above problems and provide an infrared sensor that can be miniaturized.
  • the present disclosure includes a detection unit that detects infrared rays, a support unit that supports the detection unit, and a scanning unit that scans the detection unit, and the support unit has a plan view.
  • a connection portion that extends outside the support portion and is connected to the scanning portion is provided.
  • FIG. 27 is a diagram showing the relationship between the infrared sensor 201 and the scanning unit 206
  • FIG. 28 is a top view of the detection unit 202 of the infrared sensor 201 of the first embodiment
  • FIG. 29 is a bottom view of the detection unit 202 of the infrared sensor 201
  • 30 is a side view of the scanning unit 206 connected to the detection unit 202 of the infrared sensor 201
  • FIG. 32 is a side sectional view of the detection unit 202 of the infrared sensor 201
  • FIG. The figure showing the relationship is shown.
  • the infrared sensor 201 is connected to the detection unit 202, the support unit 203, the connection unit 204 provided in the support unit 203, the connector unit 205 provided in the support unit 203, and the connection unit 204 to rotate the detection unit 202.
  • a scanning unit 206 for scanning is formed in a frame shape having a hollow, and the detection unit 202 is connected to the support unit 203.
  • the connecting portion 204 has a concave portion 207, the scanning portion 206 has a convex portion 208, and the convex portion 208 is inserted into the concave portion 207 and fixed with an adhesive.
  • the convex portion 208 may be formed in the connecting portion 204 and the concave portion 207 may be formed in the scanning portion 206.
  • a connector part 205 extends in the X-axis direction outside the support part 203 in plan view.
  • the connecting portion 204 extends in the Y-axis direction outside the support portion 203 in plan view.
  • the direction toward the hollow of the support portion 203 is the inside, and the direction away from the hollow is the outside.
  • the extending direction of the connector portion 205 (see FIG. 28) in FIG. 27 is the X-axis direction
  • the extending direction of the connecting portion 204 is the Y-axis direction
  • the direction orthogonal to both the X-axis and Y-axis axes Is described as the Z-axis direction.
  • the + side in the Z-axis direction is the front and the-side in the Z-axis direction is the back.
  • the detection unit 202 includes a substrate 209, an infrared detection element 210 provided on the substrate 209, a processing circuit 211 that processes the output of the infrared detection element 210, a cover 212 that covers the infrared detection element 210 and the processing circuit 211, An infrared detection element 210, a processing circuit 211, and a package 213 that covers a cover 212 are provided.
  • the substrate 209 has a first main surface 214 and a second main surface 215 that is the back surface of the first main surface 214.
  • the infrared detection element 210, the processing circuit 211, the cover 212, and the package 213 are provided on the first main surface 214.
  • a hole 216 is provided in front of the infrared sensor 201 of the package 213, and the hole 216 is covered with a lens 217.
  • a land 218 is formed on the second main surface 215.
  • An electronic component 219 such as a capacitor, resistor, and inductor and a lead frame 220 are soldered to the land 218.
  • the influence of parasitic impedance can be reduced. For this reason, the noise path is reduced and the stability of the temperature output of the sensor is improved.
  • the infrared sensor 201 can be reduced in size by directly arranging the passive components on the detector.
  • the infrared detecting element 210 has a thermal infrared detector in which a temperature sensing part is embedded, and the temperature sensing part is constituted by a thermopile that converts thermal energy generated by infrared rays radiated from an object to be detected into electrical energy.
  • the thermoelectric conversion part is used.
  • the infrared sensor 201 includes an a ⁇ b pixel portion (non-contact infrared detection element) having a MOS transistor for taking out a temperature sensing portion and an output voltage of the temperature sensing portion on one surface side of the semiconductor substrate. They are arranged in a two-dimensional array of rows and columns, and the pixel portion is configured as 16 ⁇ 4. Note that the pixel portion need not be 16 ⁇ 4, for example, 8 ⁇ 8.
  • the infrared detection element 210 is connected to the substrate 209 by wire bonding.
  • the package 213 is made of a ceramic material. Since the thermal expansion coefficient of the package 213 is close to that of the passive component, the thermal stress durability of the solder in the land 218 is improved. Note that when the thermal stress durability of the solder is not taken into consideration, the package 213 can be formed of a material other than ceramic such as a metal material or glass epoxy resin.
  • the scanning unit 206 is configured by a motor, and the support unit 203 is rotated around the rotation shaft 221 by the scanning unit 206. As the support unit 203 rotates, the detection unit 202 rotates around the rotation shaft 221. The detection unit 202 acquires a thermal image each time it rotates. The detection unit 202 rotates by a predetermined angle, and when the rotation of the detection unit 202 in one direction is completed, rotation in the opposite direction is started. When the rotation of the detection unit 202 in one direction is completed, the thermal images are added to obtain a high-resolution thermal image.
  • the scanning unit 206 is provided with a convex portion 208.
  • the convex portion 208 includes a first convex portion 223 that extends in the first direction 222, and a second portion that extends from the center of the first convex portion 223 in a second direction 224 that is orthogonal to the first direction 222. It is formed in a T shape having a convex portion 225.
  • the 1st convex part 223 and the 2nd convex part 225 are formed in the rectangular parallelepiped shape. That is, the length L P1 in the first direction 222 of the first convex portion 223 is longer than the length L P2 in the second direction 224 of the first convex portion 223, and the second length of the second convex portion 225 is second.
  • the length L P3 in the first direction 224 is longer than the length L P4 in the first direction 222 of the second protrusion 225.
  • the support part 203 is formed of LCP resin (Liquid Crystal Polymer: liquid crystal polymer) having high heat resistance during reflow.
  • LCP resin Liquid Crystal Polymer: liquid crystal polymer
  • a resin material other than the LCP resin may be used as the material of the support portion 203, but it is preferable to select a material having high heat resistance during reflow.
  • the support portion 203 is formed in a frame shape having a hollow, and supports the detection portion 202 by supporting the outer peripheral portion of the second main surface 215 of the substrate 209. In addition, even if the support part 203 does not have a frame shape, for example, the detection part 202 can be supported by a structure that supports three sides of the outer periphery of the substrate 209.
  • the detection part 202 can be supported more firmly by making the support part 203 into a frame shape. Since the support portion 203 is hollow, the land 218 is provided on the second main surface 215 of the substrate 209 of the detection portion 202, and the electronic component 219 and the lead frame 220 can be mounted.
  • a lead frame 220 is formed on the support portion 203 simultaneously with the LCP resin. The lead frame 220 extends in the X-axis direction.
  • the lead frame 220 is made of phosphor bronze and plated with tin, copper, silver or the like.
  • the lead frame 220 is not limited to phosphor bronze as long as it can be soldered, and may be formed of a material other than iron, such as iron or copper.
  • the connector part 205 extends to the X axis direction-side of the support part 203.
  • the connector part 205 is formed integrally with the support part 203.
  • a lead frame 220 simultaneously molded on the support unit 203 is connected to the connector unit 205, and the detection unit 202 can be connected to an exterior component such as a board 209 on which an electric control microcomputer is mounted via the connector unit 205. Become.
  • the connecting portion 204 extends to the Y axis direction-side of the support portion 203. After the connection portion 204 and the connector portion 205 are formed on the support portion 203, the lead frame 220 simultaneously molded on the support portion 203 needs to be cut. However, if the position of the connection portion 204 is close to the lead frame 220, the lead frame 220 is required. Since the connecting portion 204 interferes when the lead frame 220 is cut, it is difficult to cut the lead frame 220. However, since the connecting portion 204 extends in the Y-axis direction minus side, the connecting portion 204 does not interfere when the lead frame 220 is cut.
  • the lead frame 220 can be continuously cut after the lead frame 220 is simultaneously molded to the support portion 203, the workability and tact of the process of forming the support portion 203 are improved.
  • the connecting portion 204 is arranged in a direction orthogonal to the connector portion 205 with respect to the detecting portion 202, the workability and tact of the process of forming the supporting portion 203 are further improved.
  • the support part 203 can be reduced in size.
  • connection part 204 is formed integrally with the support part 203.
  • a concave portion 207 is provided on the negative side of the connecting portion 204 in the Z-axis direction.
  • the recess 207 includes a first recess 226 that extends in the first direction 222 and a second recess 227 that extends from the center of the first recess 226 in a second direction 224 orthogonal to the first direction 222. It is formed in a T shape having The first recess 226 and the second recess 227 are formed in a rectangular parallelepiped shape.
  • the length L R1 of the first recess 226 in the first direction 222 is longer than the length L R2 of the first recess 226 in the second direction 224, and the second direction 224 of the second recess 227.
  • the length L R3 is longer than the length L R4 of the second recess 227 in the first direction 222.
  • the difference L D1 between the length L P1 in the first direction 222 of the first convex portion 223 and the length L R1 in the first direction 222 of the first concave portion 226 is the difference between the first convex portion 223 and the length L R1 . It is shorter than the difference L D2 between the length L P2 in the second direction 224 and the length L R2 in the second direction 224 of the first recess 226. That is, the fitting tolerance between the first concave portion 226 and the first convex portion 223 is such that the longer side is more severe than the shorter side.
  • connection part 204 and the scanning part 206 can be positioned by fitting the first convex part 223 and the first concave part 226 on the long side, and further, the first convex part 223 and the first convex part 226 can be positioned.
  • the fluidity of the adhesive can be ensured by the gap on the short side of the recess 226. Since the fluidity of the adhesive can be secured, the adhesive can be surely filled into the first recess 226, the support 203 is firmly fixed to the scanning unit 206, and the adhesive flows out from the first recess 226 to the outside. Can be prevented.
  • the difference L D3 between the length L P3 of the second protrusion 225 in the second direction 224 and the length L R3 of the second recess 227 in the second direction 224 is the second protrusion 225 length L R3 . It is shorter than the difference L D4 between the length L P4 in the first direction 222 and the length L R4 in the first direction 222 of the second recess 227. That is, the fitting tolerance between the second concave portion 227 and the second convex portion 225 is such that the longer side is more strict than the shorter side. Thereby, the positioning accuracy of the support part 203 and the scanning part 206 is improved, and the fluidity of the adhesive is ensured.
  • the convex part 208 and the recessed part 207 were made into T shape, it is not restricted to this, For example, you may make another shape, such as a cross shape, an ellipse shape, and a triangle. Even in this case, it is possible to secure the fluidity of the adhesive while positioning the support portion 203 with high accuracy by providing a place where the fitting tolerance of the convex portion 208 and the concave portion 207 is severe and a place where the tolerance is not severe.
  • the degree of freedom of arrangement of the connection portion 204 can be improved as compared with the case of a press-fitting structure or a snap-fit structure.
  • the package 213 formed of ceramic and the support portion 203 formed of heat-resistant resin can be mounted by reflow soldering regardless of the structure and material on the connection portion 204 side. For this reason, a design freedom improves.
  • the positional relationship between the package 213 and the rotation shaft 221 of the scanning unit 206 can be easily changed depending on the shape of the scanning unit 206 connected to the connection unit 204, the structure is highly versatile.
  • the infrared sensor 201 has a structure in which the package 213 is electrically and physically connected to the scanning unit 206, the reliability of the infrared sensor 201 is high.
  • the infrared sensor (201) of the first aspect includes a detection unit (202) that detects infrared rays, a support unit (203) that supports the detection unit (202), and a scanning unit that scans the detection unit (202). (206).
  • the support part (203) has a connection part (204) that extends outside the support part (203) in a plan view and is adhesively connected to the scanning part (206).
  • the infrared sensor (201) of the second aspect can be realized by a combination with the first aspect.
  • the connecting portion (204) has a recess (207) extending in the first direction (222).
  • the scanning part (206) has a convex part (208) extending in the first direction (222).
  • the convex part (208) is inserted and connected to the concave part (207).
  • the infrared sensor (201) of the third aspect can be realized in combination with the second aspect.
  • the infrared sensor (201) of the fourth aspect can be realized by a combination with the second or third aspect.
  • the recess (207) is formed in a T shape.
  • the convex part (208) is formed in a T-shape.
  • the infrared sensor (201) of the fifth aspect can be realized by a combination with any one of the first to fourth aspects.
  • the support portion (203) further includes a connector portion (205).
  • the connector part (205) extends from the support part (203) in a direction different from the connection part (204) with respect to the detection part (202).
  • the infrared sensor (201) of the sixth aspect can be realized by a combination with the fifth aspect.
  • the direction connecting the detection unit (202) and the connector unit (205) is orthogonal to the direction connecting the detection unit (202) and the connection unit (204).
  • the infrared sensor (201) of the seventh aspect can be realized by a combination with any one of the first to sixth aspects.
  • the support portion (203) is formed in a frame shape having a hollow.
  • the infrared sensor (201) of the eighth aspect can be realized by a combination with any one of the first to seventh aspects.
  • the detection unit (202) processes a substrate (209), an infrared detection element (210) provided on the substrate (209), and an output of the infrared detection element (210).
  • a circuit (211), an infrared detection element (210), and a cover (212) covering the processing circuit (211) are provided.
  • the infrared sensor (201) of the ninth aspect can be realized by a combination with the eighth aspect.
  • the substrate (209) has a first main surface (214) and a second main surface (215) which is the back surface of the first main surface (214).
  • the infrared detection element (210) is provided on the first main surface (214).
  • the second main surface (215) and the support portion (203) are connected by a lead frame (220).
  • the infrared sensor (201) of the tenth aspect can be realized by a combination with the ninth aspect.
  • an electronic component (219) is further provided on the second main surface (215).
  • the infrared sensor (201) of the present disclosure is connected to the convex portion (208) provided in the scanning portion (206) by the concave portion (207) provided in the support portion (203), the infrared sensor (201). Can be scanned without increasing the size.
  • the present disclosure relates to an infrared sensor that detects the temperature of an object in a non-contact manner.
  • an infrared sensor having a substrate, an infrared detection element provided on the substrate, and a package covering the infrared detection element is known. (See JP2008-128913 and JP2012-8003)
  • the conventional infrared sensor has a problem that it is difficult to manage the flow of the adhesive attached to the cap when the cap is connected to the substrate.
  • This disclosure is intended to solve the above-described problems and provide an infrared sensor that can easily manage the flow of an adhesive attached to a cap when the cap is connected to a substrate.
  • the present disclosure provides a substrate having a first main surface, an infrared detection element provided on the first main surface, and a processing circuit element provided on the first main surface. And a cap having a window hole, and the infrared detection element, the processing circuit element, and a package that covers the cap and is provided with a lens in front of the window hole. It was set as the structure connected to the 1st recessed part provided between the said processing circuit element of the main surface, and the said package.
  • FIG. 33 is a side sectional view of the infrared sensor 301 according to the first embodiment
  • FIG. 34 is a bottom view of the infrared sensor 301
  • FIG. 35 is a top view of the substrate 302 of the infrared sensor 301.
  • the infrared sensor 301 includes a substrate 302, an infrared detection element 303 provided on the substrate 302, a processing circuit element 304 that controls the output of the infrared detection element 303, a cap 306 having a window hole 305, and an infrared detection element 303.
  • the substrate 302 has a first main surface 310 and a second main surface 311 that is the back surface of the first main surface 310, and the infrared detection element 303, the processing circuit element 304, and the cap 306 are arranged on the first main surface 310. Has been.
  • the infrared sensor 301 will be described in detail.
  • the horizontal direction in FIG. 33 (the direction parallel to the first main surface 310) is the X-axis direction
  • the direction perpendicular to the X axis in the surface direction of the first main surface 310 is the Y-axis direction.
  • the direction connecting the infrared detection element 303 and the lens 309 is defined as the Z-axis direction, and for convenience of explanation, the + side in the Z-axis direction is described as the front, and the ⁇ side in the Z-axis direction is described as the back.
  • the present invention is not limited to this. .
  • the infrared detecting element 303 has a thermal infrared detector in which a temperature sensing unit is embedded, and the temperature sensing unit is configured by a thermopile that converts thermal energy generated by infrared rays radiated from an object to be detected into electrical energy.
  • the thermoelectric conversion part is used.
  • the infrared sensor 301 includes an a ⁇ b pixel unit (non-contact infrared detection element) having a MOS transistor for taking out a temperature sensing unit and an output voltage of the temperature sensing unit on one surface side of the semiconductor substrate. They are arranged in a two-dimensional array of rows and columns, and the pixel portion is configured as 16 ⁇ 4.
  • the pixel portion need not be 16 ⁇ 4, for example, 8 ⁇ 8.
  • the infrared detection element 303 is connected to the processing circuit element 304 by wire bonding.
  • the a row of the pixel portion is arranged in the X axis direction, and the b column is arranged in the Y axis direction.
  • the circuit configuration of the processing circuit element 304 may be appropriately designed according to the type of the infrared detection element 303 and the like. For example, a control circuit that controls the infrared detection element 303, an amplification circuit that amplifies the output voltage of the infrared detection element 303, and a plurality of input pads that are electrically connected to a plurality of output pads of the infrared detection element 303 A circuit configuration including a multiplexer or the like that alternatively inputs the output voltage to the amplifier circuit may be employed.
  • the processing circuit element 304 is connected to the substrate 302 by wire bonding.
  • the package 307 is formed of a resin material and is connected to the connection portion 312 near the outer periphery of the substrate 302 with an adhesive.
  • An epoxy material is used for the adhesive.
  • the package 307 may be formed using a metal material, the degree of freedom in designing the package 307 can be improved by forming the package 307 using a resin material.
  • the package 307 has an opening 308 in front of the infrared detection element 303, and a lens 309 is provided so as to cover the opening 308.
  • the length L 1 inside the package 307 in the X-axis direction is shorter than the length L 2 between the + side end and the ⁇ side end of the first recess 314 in the X-axis direction. For this reason, as shown in FIG.
  • the inner wall of the package 307 in the X-axis direction is in a suspended state.
  • a taper 313 is provided inside the package 307, and the distance from the taper 313 to the substrate 302 increases from the inside to the outside of the package 307.
  • variation in the X-axis direction when the package 307 is mounted can be reduced.
  • a taper is provided so that the taper floats in the air, so that variations in the Y-axis direction when the package 307 is mounted can be reduced.
  • the lens 309 uses an aspherical lens made of a semiconductor lens, and even a lens 309 having a short focal length and a large aperture diameter has a smaller aberration than a spherical lens formed by cutting. The thickness is reduced.
  • the lens 309 is connected to the package 307 with an epoxy material adhesive.
  • a window hole 305 is provided in front of the infrared detection element 303 of the cap 306.
  • the infrared light that has entered the package 307 through the lens 309 passes through the window hole 305 and enters the infrared detection element 303.
  • the cap 306 is made of phosphor bronze. Thereby, the periphery (cap 306) of the infrared detection element 303 is quickly brought into a thermal equilibrium state, and the startup drift time of the infrared sensor 301 can be shortened.
  • the cap 306 is provided so as to cover the infrared detection element 303 and the processing circuit element 304. As a result, the influence of radiation noise can be reduced, and a decrease in detection accuracy due to foreign matter can be prevented.
  • the cap 306 is formed of a conductive material, the durability of the cap 306 against radiation noise is improved. Even if the phosphor bronze is not used, the same effect can be obtained even when iron is plated with nickel or formed of a conductive material such as SUS.
  • the cap 306 is painted black. Thereby, it is possible to prevent infrared rays from being reflected by the cap 306 and entering the infrared detection element 303, and the detection accuracy of the infrared sensor 301 can be improved.
  • the substrate 302 is made of a ceramic material. By forming the ceramic material, the package 307 quickly enters a thermal equilibrium state, and the startup drift time of the infrared sensor 301 can be shortened. Depending on the intended use of the infrared sensor 301, a material other than ceramic may be used.
  • a first recess 314 and a second recess 315 are provided on the first main surface 310 of the substrate 302. In the infrared sensor 301, the second recess 315 is provided at the center of the substrate 302, and the first recess 314 is provided outside the second recess 315. The second recess 315 may be provided at a position shifted from the center of the substrate 302 as long as it is inside the first recess 314.
  • the first recess 314 is provided in the vicinity of the outer periphery in the X-axis direction of the substrate 302 so as to extend in the Y-axis direction. Note that the first recess 314 may be provided in an annular shape along the outer periphery of the first main surface 310.
  • the cap 306 is connected to the substrate 302 with an adhesive 317 at the first recess 314. Since the first concave portion 314 is provided, the adhesive accumulates in the first concave portion 314, so that the wire bond pad on the substrate 302 can be prevented from being contaminated. In addition, the height variation of the cap 306 due to the adhesive 317 can be reduced. Thereby, the mass productivity of the infrared sensor 301 is improved.
  • the adhesive 317 is accumulated in the first recess 314, it is not necessary to secure a space for the adhesive 317 to be glued, so that the infrared sensor 301 can be downsized. As described above, by providing the first recess 314 and connecting the cap 306 to the first recess 314, it is easy to manage the flow of the adhesive 317 and the mass productivity is improved.
  • a ground pattern 316 is provided in the first recess 314.
  • the cap 306 is connected to the ground pattern 316 with a conductive material, for example, silver paste as an adhesive 317. Since the cap 306 and the adhesive 317 are formed of a conductive material, the cap 306 and the ground pattern 316 are electrically connected. Since the infrared detection element 303 and the processing circuit element 304 are covered with the ground pattern 316, durability against radiation noise is improved.
  • the processing circuit element 304 is accommodated in the second recess 315.
  • the depth of the second recess 315 is the same as the depth of the first recess 314.
  • the first recess 314 and the first recess 314 having the same depth can be easily cut by cutting the same layer.
  • Two recesses 315 can be formed. Between the 1st recessed part 314 and the 2nd recessed part 315, the mounting part 318 in which the board
  • the infrared detecting element 303 is disposed on the mounting portion 318 so as to cover the second recess 315. As a result, the infrared detection element 303 is spaced apart from the front of the processing circuit element 304. Since the infrared detection element 303 and the processing circuit element 304 are separated from each other, it is not necessary to bond the infrared detection element 303 to the processing circuit element 304. Therefore, the surface of the processing circuit element 304 is damaged when the infrared detection element 303 is mounted. The risk that occurs can be reduced. Thereby, mass productivity improves. Moreover, since the mounting part 318 and the connection part 312 are not cut, the height from the 2nd main surface 311 is equal. Thereby, since the dispersion
  • the infrared detection element 303 is provided in front of the processing circuit element 304 and the lens 309 is provided in front of the infrared detection element 303, dew condensation occurs in the infrared sensor 301, and the lens 309 and the infrared detection element 303 Even if moisture adheres, the infrared detection element 303 and the lens 309 are warmed by heat generated by the processing circuit element 304, and the moisture can be removed. Thereby, the detection accuracy of the infrared sensor 301 is improved.
  • a land 319 is provided on the second main surface 311 of the substrate 302. Of the lands 319, the lands 319 provided at the same positions as the processing circuit elements 304 in a plan view function as thermal pads. By providing the land 319 to be a thermal pad on the second main surface 311, the heat generated by the processing circuit element 304 can be radiated to the outside, and the startup drift time can be shortened.
  • the infrared sensor (301) of the first aspect includes a substrate (302) having a first main surface (310), an infrared detection element (303) provided on the first main surface (310), A processing circuit element (304) provided on the first main surface (310), a cap (306) having a window hole (305), the infrared detection element (303), and the processing circuit element (304). And a package (307) covering the cap (306).
  • the cap (306) is connected to a first recess (314) provided between the processing circuit element (304) on the first main surface (310) and the package (307).
  • the infrared sensor (301) of the second aspect can be realized by a combination with the first aspect.
  • the first main surface (310) has a second recess (315).
  • the processing circuit element (304) is accommodated in the second recess (315).
  • the infrared detection element (303) is provided so as to cover the second recess (315).
  • the infrared sensor (301) of the third aspect can be realized by a combination with the second aspect.
  • the infrared detection element (303) and the processing circuit element (304) are separated from each other.
  • the infrared sensor (301) of the fourth aspect can be realized by a combination with the second or third aspect.
  • the infrared detection element (303) and the package (307) are arranged on the same plane of the first main surface (310).
  • the infrared sensor (301) of the fifth aspect can be realized by a combination with any one of the second to fourth aspects.
  • the package (307) has a taper (313).
  • the infrared sensor (301) of the sixth aspect can be realized by a combination with any one of the first to fifth aspects.
  • the first main surface (310) has a ground pattern (316).
  • the cap (306) is formed of a conductive material.
  • the cap (306) and the ground pattern (316) are connected by a conductive adhesive (317).
  • the infrared sensor (301) of the seventh aspect can be realized by a combination with any one of the first to sixth aspects.
  • the substrate (302) has a second main surface (311) which is the back surface of the first main surface (310).
  • a land (319) is provided on the second main surface (311).
  • the infrared sensor (301) of the eighth aspect can be realized by a combination with the seventh aspect.
  • the land (319) overlaps the processing circuit element (304) in plan view.
  • the infrared sensor (301) of the ninth aspect can be realized by a combination with any one of the first to eighth aspects.
  • the cap (306) is blackened.
  • the infrared sensor (301) of the tenth aspect can be realized by a combination with any one of the first to ninth aspects.
  • the package (307) is made of resin.
  • the infrared sensor (301) of the eleventh aspect can be realized by a combination with any one of the first to tenth aspects.
  • the cap (306) is made of phosphor bronze.
  • the infrared sensor (301) of the twelfth aspect can be realized by a combination with any one of the first to eleventh aspects.
  • the substrate (302) is made of ceramic.
  • the first recess (314) is provided on the first main surface (310) of the substrate (302), and the cap (306) is connected to the first recess (314). With the configuration, it is possible to easily manage the flow of the adhesive (317).
  • the first disclosure is useful for an air-conditioning control device or the like that changes a control method according to a person's temperature because an infrared sensor can be easily mounted.
  • the second disclosure is useful for an air-conditioning control device or the like that changes the control method in accordance with the temperature of a person because the infrared sensor can be reduced in height.
  • the third disclosure is useful for an air conditioning control device and the like because it can be configured to be capable of rotational scanning while reducing the size of the infrared sensor.
  • the control method according to the temperature of the person is particularly important. This is useful for changing air-conditioning control devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本開示は、赤外線を検出する検出部をリードフレームが一体成形された支持部とリードフレームを介して接続することで、赤外線センサを別部材に容易に実装できる赤外線センサを提供することを目的とする。本開示は、表面(12)に窓孔(14)を有し赤外線を検出する検出部(2)と、リードフレーム(4)が一体成型された支持部(3)と、を備え、リードフレーム(4)の一端が検出部(2)の裏面(13)に接続されている構成とした。

Description

赤外線センサ
 本開示は、対象物の温度を非接触で検出する赤外線センサに関する。
 従来、基板と、基板に設けられた赤外線検出素子と、赤外線検出素子を覆うパッケージを有した赤外線センサが知られている。また、この赤外線センサが樹脂モールドによって一体的にパッケージングされた赤外線センサが知られている。(特許文献1、2)
 しかしながら、上記従来の赤外線センサでは、赤外線センサを別部材に実装が容易でないという課題があった。
 本発明は、上記課題を解決し、別部材への実装が容易な赤外線センサを提供することを目的とする。
特開2015-200559号公報 特開2015-049073号公報
 上記課題を解決するために本開示は、表面に窓孔を有し赤外線を検出する検出部と、リードフレームが一体成型された支持部と、を備え、前記リードフレームの一端が前記検出部の裏面に接続されている構成とした。
第1の開示の実施の形態1の赤外線センサの正面図 同赤外線センサの側面図 同赤外線センサの背面図 同赤外線センサの検出部の側断面図 同赤外線センサのリードフレームの拡大図 第1の開示の実施の形態2の赤外線センサの変形例の側断面図 同赤外線センサのAA線断面図 同赤外線センサのコネクタ拡大図 第1の開示の実施の形態3の赤外線センサの正面図 同赤外線センサの側面図 同赤外線センサの側面図 第1の開示の実施の形態4の赤外線センサの側面図 同赤外線センサの背面図 第2の開示の実施の形態1の赤外線センサの正面図 同赤外線センサの側面図 同赤外線センサの上面図 同赤外線センサの画素部と検出部の回転方向の関係を示す図 同赤外線センサの画素部の別の配置の仕方を示す図 同赤外線センサの側面図 同赤外線センサの一部拡大断面図 同赤外線センサの変形例の側面図 第2の開示の実施の形態2の赤外線センサの正面図 同赤外線センサの側面図 同赤外線センサの上面図 同赤外線センサの側面図 同赤外線センサの正面図 第3の開示の実施の形態1の赤外線センサの走査部と接続された検出部の側面図 同赤外線センサの検出部の上面図 同赤外線センサの検出部の下面図 同赤外線センサの走査部の一部拡大図 同赤外線センサの検出部の側断面図 同赤外線センサの凸部と凹部の関係を表す図 第4の開示の実施の形態1の赤外線センサの側断面図 同赤外線センサの下面図 同赤外線センサの基板の上面図
(第1の開示)
 以下に、実施の形態に係る赤外線センサについて図面を用いて説明をする。なお、各図面において、同様の構成については、同一の符号を付し、説明を省略する。また、各実施の形態における各構成要素は矛盾のない範囲で任意に組み合わせても良い。
 (実施の形態1)
 以下に、実施の形態1における赤外線センサ1について図面を用いながら説明する。
 図1は実施の形態1の赤外線センサ1の正面図、図2は同赤外線センサ1の側面図、図3は同赤外線センサ1の背面図、図4は同赤外線センサ1の検出部2の側断面図を示している。図面において、外部から見えない構成については破線で示している。
 赤外線センサ1は、検出部2と、支持部3と、支持部3と検出部2を接続するリードフレーム4を有している。支持部3には、軸部5と、軸部5を介して支持部3を回転させる走査部と、コネクタ6が接続されている。リードフレーム4はリン青銅で形成され、すずや銅、銀などでめっきされている。リードフレーム4ははんだ付けができればリン青銅に限定されず、鉄や銅等の鉄以外の材料で形成しても良い。リードフレーム4はX軸方向に延在している。以降では、リードフレーム4が延在している方向をX軸方向、軸部5の延在している方向をY軸方向、X軸方向とY軸方向が直交する方向をZ軸方向として説明する。
 検出部2は、基板7と、基板7に設けられた赤外線検出素子8と、赤外線検出素子8を覆うパッケージ9と、処理回路10を有している。パッケージ9内には赤外線検出素子8と処理回路10を覆うカバー11が設けられている。検出部2は表面12と裏面13を有し、検出部2の表面12のパッケージ9の表面12には窓孔14が設けられており、窓孔14を塞ぐようにレンズ15が配置されている。基板7は第1の主面16と第2の主面17を有し、赤外線検出素子8とパッケージ9は第1の主面16に設けられている。第2の主面17にはランド18が形成されている。ランド18は矩形状又は円形状になっており、はんだ耐久性とはんだ塗布性が良好な形状である。ランド18の形状は円形状でなくても、角のない形状なら良好なはんだ耐久性とはんだ塗布性を得ることができる。ランド18には、コンデンサ、抵抗、インダクタ等の受動部品19とリードフレーム4がはんだ付けされている。従来の構成では受動部品は検出部から遠い場所に配置する必要があったが、赤外線センサ1では受動部品19を検出部2に近い位置に実装可能なため配線を短くすることができる。これにより、寄生インピーダンスの影響を低減することができるためノイズパスが低減され、センサの温度出力の安定性が向上する。また、受動部品19を検出器に直接配置することで赤外線センサ1を小型化することができている。
 赤外線検出素子8は、感温部が埋設された熱型赤外線検出器を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサ1は、感温部および感温部の出力電圧を取り出すためのMOSトランジスタを有したa×b個の画素部(非接触赤外線検知素子)が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されており、実施の形態1における画素部は8×8に構成されている。画素部の配置の仕方は8×8に限らず、例えば、16×4としても良い。赤外線検出素子8はワイヤーボンディングにより基板7に接続されている。
 パッケージ9はセラミック材料が用いられている。パッケージ9の熱膨張係数が受動部品19の熱膨張係数に近いため、ランド18におけるはんだの熱応力耐久性が向上している。なお、はんだの熱応力耐久性を考慮しない場合、パッケージ9を金属材料やガラスエポキシ樹脂等のセラミック以外の材料で形成することもできる。パッケージ9は、表面12と裏面13の間に側面20を有している。以降の説明では、赤外線検出素子8から前面に向かう方向(Z軸+側の方向)を前方方向として説明する。
 支持部3はリフロー時の耐熱性の高いLCP(Liquid Crystal Polymer:液晶ポリマー)で形成されている。支持部3の材料にはLCP以外の樹脂材料を用いても良いがリフロー時の耐熱性の高い材料を選択すると好適である。支持部3は側面20の外側を囲むように第1の壁部21、第2の壁部22、第3の壁部23、第4の壁部24が矩形筒状に形成されている。支持部3のY軸方向-側が第1の壁部21、X軸方向-側が第2の壁部22、Y軸方向+側が第3の壁部23、X軸方向+側が第4の壁部24である。このように形成すれば、検出部2を強固に支持することができるが、支持部3は矩形筒状に形成しなくてもよい。例えば、支持部3の一部が湾曲した構造や第3の壁部23がない構造としても良い。支持部3の第1の壁部21のY軸方向-側の第1の面には軸部5と、軸部5と当接するようにコネクタ6がはんだ付けされている。コネクタ6は軸部5と当接していなくても良い。軸部5は支持部3と別部品として形成され、軸部5と支持部3を接続されている。軸部5と支持部3を別部品とすることにより赤外線センサ1を製造する際に用いる金型の構成が簡素化されるためコストを低減することができる。また、軸部5を交換することで赤外線センサ1の回転軸25と赤外線センサ1の視野の方向を変えることができるため、赤外線センサ1の汎用性が向上する。なお、赤外線センサ1の使用用途によっては、軸部5と支持部3とを一体に形成しても良い。支持部3には軸部5が接続され、軸部5は走査部と接続されている。第2の壁部22のX軸方向+側の第2の面、第3の壁部23のY軸方向-側の第3の面、第4の壁部24のX軸方向-側の第4の面には位置決め用の凸部26が設けられている。第2の面と第4の面には凸部26が1つ設けられ、第3の面には凸部26が2つ設けられている。ただし、凸部26の数と配置場所はこれに限定されるものではない。凸部26が設けられていることによって検出部2と支持部3とを高精度にマウントすることができる。第3の壁部23は2つの凸部26が設けられているため、検出部2と支持部3とをより高精度にマウントできる。
 走査部はモータで構成されており、支持部3は走査部によって回転軸25の周りに回転する。支持部3が回転することにより、検出部2が回転軸25の周りに回転する。検出部2は回転する毎に熱画像を取得する。検出部2は所定の角度回転し、検出部2の一方向への回転が完了すると反対方向への回転を開始する。検出部2の一方向への回転が完了したときに熱画像を足し合わせ、高解像度の熱画像を取得する。
 支持部3にはリードフレーム4が一体成形されており、リードフレーム4の一端が支持部3の内側から延出して検出部2と接続され、リードフレーム4の他端がコネクタ端子とはんだ付けされる。図5はY軸方向+側から見たリードフレーム4の拡大図である。図5に示すようにリードフレーム4の他端を2つ折にしてコネクタ端子27としても良い。リードフレーム4をコネクタ端子27として用いる場合は、コネクタ6を支持部3とはんだ付けしなくても良い。また、コネクタ端子27を設ける必要がないため、部品点数を削減し、はんだ付けをする必要がなく、コストを低減することが可能となる。
 赤外線センサ1は、リードフレーム4を介して走査部と接続された支持部3で検出部2を支持しているため、組み立て部品の数を減らすことができ、レンズ15と走査部の位置精度が高い。
 先行技術文献に示す従来の樹脂モールドによって一体的にパッケージングされた赤外線センサではリードフレームと樹脂の界面に隙間が生じ易いが、赤外線センサ1は支持部3に一体成形されたリードフレーム4で検出部2を支持する構造のためこのようなリークパスが存在しなく、気密性が向上している。これにより、検出部2のパッケージ9内部への異物の侵入を防止することができ、赤外線検出素子8に異物が付着することによる誤検知を防止することができる。
 また、従来の樹脂モールドによって一体的にパッケージングされた赤外線センサでは、パッケージの熱容量が大きいため、赤外線検出素子をワイヤボンドする際のパッケージの熱容量が大きくワイヤボンドのための加熱にかかる時間が長くなる。一方、赤外線センサ1では、パッケージ9の熱容量が大きいという課題が無いため、従来の赤外線センサよりもワイヤボンドのための加熱にかかる時間が短くなり、量産性が向上している。
 また、従来の樹脂モールドによって一体的にパッケージングされた赤外線センサではパッケージの熱容量が大きいため、赤外線センサの通電後に処理回路の発熱がパッケージ全体で熱平衡状態になるまでの時間が長くなる。一方、赤外線センサ1では、赤外線センサ1の温度出力が安定するまでにかかる時間を短くすることができる。
 (実施の形態2)
 実施の形態2について図面を用いて説明する。
 図6に実施の形態2の赤外線センサ31の側断面図、図7に同赤外線センサ31の図6のAA線断面図、図8に同赤外線センサ31のコネクタ6のX軸方向+側から見た拡大図を示す。
 赤外線センサ31は、検出部2と、支持部32と、支持部32と検出部2を接続するリードフレーム33を有している。支持部32には軸部5とコネクタ端子34とを有している。支持部32の外側には第2の支持部35が設けられており、支持部32から支持部32の外側に延在したリードフレーム33は第2の支持部35と接続されている。赤外線センサ31では支持部32が検出部2の前方に延在しており、検出部2の表面12の前方方向にアパーチャ36(絞り)が設けられている。アパーチャ36はレンズ15と光軸が一致するように設けられている。検出部2のレンズ15の前方にアパーチャ36が設けられていることによって、赤外線検出素子8の検知エリアをレンズ15とアパーチャ36とで設定することが可能になっている。また、レンズ15とアパーチャ36とが離間していることにより、アパーチャ36によってレンズ15への軸外光が遮られる。これによってレンズ15の軸外収差の発生を抑制することができている。
 図7に示すように、赤外線センサ31では、リードフレーム33が支持部32と第2の支持部35の間にばね部37を有している。リードフレーム33がばね部37を有していることで、赤外線センサ31に振動が加わった場合でも振動による撮像ぶれを抑制し、熱画像の乱れを抑制することができる。
 図8に示すように、赤外線センサ31のコネクタ端子34は、リードフレーム33を2つ折にすることで形成されている。リードフレーム33はY軸方向-側に折り曲げられ、ばね構造になっている。これにより、リードフレーム33を容易にコネクタ端子34にすることができる。
 (実施の形態3)
 実施の形態3の赤外線センサ41について図面を用いながら説明する。
 図9は実施の形態3の赤外線センサ41の正面図、図10は同赤外線センサ41の側面図を示している。
 赤外線センサ41は、検出部2と、支持部42と、支持部42と検出部2を接続するリードフレーム4を有している。支持部42はプリント基板43の実装面45にはんだで実装されている。プリント基板43には検出部2の出力信号を処理するMCU44(Memory Control Unit)が設けられている。
 支持部42は実施の形態1の支持部3と同様に矩形筒状に形成され、検出部2の表面12がプリント基板43の実装面45と直交するようにプリント基板43に配置されている。赤外線センサ41を使用する際にMCU44が発熱するが検出部2が支持部42を介してプリント基板43に実装されているため、MCU44で生じた熱の検出部2への伝達を抑制することができ、赤外線センサ41の出力ズレを低減することができる。
 また、赤外線センサ41は樹脂により形成された支持部42に検出部2を実装して形成するため、支持部42の形状を変更しやすく、支持部42の形状を変更することで、プリント基板43に対する検出部2の視野方向Vを容易に変更することができる。支持部42の形状を変更し、視野方向Vを変更した赤外線センサ41を図11に示す。図11の赤外線センサ41では、検出部2の表面12がプリント基板43の実装面45に対して直交していない。赤外線センサ41は、用途に応じて検出部2の視野方向Vを容易に変更可能なため、赤外線センサ41の汎用性が向上する。
 (実施の形態4)
 実施の形態4の赤外線センサ51について図面を用いながら説明する。
 図12は実施の形態4の赤外線センサ51の側面図、図13は同赤外線センサ51の検出部2の背面図を示している。
 赤外線センサ51は、検出部2と、支持部52と、支持部52と検出部2を接続するリードフレーム4を有している。支持部52はプリント基板53にはんだで実装されている。プリント基板53には検出部2の出力信号を処理するMCU44が設けられている。赤外線センサ51は、プリント基板53を介して伝達するMCU44で生じた熱を支持部52を介することで抑制しているため、赤外線センサ51の出力ズレを低減することができる。
 プリント基板53には貫通孔54が設けられており、検出部2は窓孔14(図1参照)が貫通孔54の方向を向くように、プリント基板53に実装されている。検出部2が貫通孔54上に配置されていることにより、プリント基板53の実装面45と反対側を検出部2の視野方向Vとすることができる。これにより、赤外線センサ51の汎用性が向上する。
 (まとめ)
 第1の態様の赤外線センサ(1;31;41;51)は、表面(12)に窓孔(14)を有し赤外線を検出する検出部(2)と、リードフレーム(4;33)が一体成型された支持部(3:32;42;52)と、を備える。前記リードフレーム(4;33)の一端が前記検出部(2)の裏面(13)に接続されている。
 第2の態様の赤外線センサ(1;31;41;51)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記リードフレーム(4;33)は前記検出部(2)の前記裏面(13)にはんだで接続されている。
 第3の態様の赤外線センサ(1;31;41;51)は、第1又は第2の態様との組み合わせにより実現され得る。第3の態様では、前記検出部(2)は、前記表面(12)と前記裏面(13)との間に側面(20)を有する。前記支持部(3;32;42;52)は前記側面(20)の外側を囲んでいる。
 第4の態様の赤外線センサ(1;41;51)は、第1~第3の態様のいずれか一つとの組み合わせにより実現され得る。第4の態様では、前記支持部(3;42;52)は、前記支持部(3;42;52)の内側に突出した凸部(26)を有している。
 第5の態様の赤外線センサ(31)は、第1~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、前記支持部(32)は、前記検出部(2)の表面(12)方向に突出したアパーチャ(36)を有している。
 第6の態様の赤外線センサ(31)は、第1~第5の態様のいずれか一つとの組み合わせにより実現され得る。第6の態様では、前記赤外線センサ(31)は、前記支持部(32)の外側に第2の支持部(35)をさらに有する。前記リードフレーム(33)が、前記支持部(3)と前記第2の支持部(35)の間にばね部(37)を有している。
 第7の態様の赤外線センサ(1;31;41;51)は、第1~第6の態様のいずれか一つとの組み合わせにより実現され得る。第7の態様では、前記支持部(3;32;42;52)は樹脂材料で形成されている。
 第8の態様の赤外線センサ(1;31;41;51)は、第1~第7の態様のいずれか一つとの組み合わせにより実現され得る。第8の態様では、前記検出部(2)は、基板(7)と、前記基板(7)に設けられた赤外線検出素子(8)と、前記基板(7)に前記赤外線検出素子(8)を覆うように設けられ前記窓孔(14)が形成されたパッケージ(9)と、を有する。前記パッケージ(9)がセラミック材料で形成されている。
 第9の態様の赤外線センサ(1;31;41;51)は、第1~第8の態様のいずれか一つとの組み合わせにより実現され得る。第9の態様では、前記赤外線センサ(1;31;41;51)は、前記検出部(2)を回転走査する走査部と、前記走査部と前記支持部(3;32;42;52)を接続する軸部(5)をさらに有した。
 第10の態様の赤外線センサ(1)は、第9の態様との組み合わせにより実現され得る。第10の態様では、前記赤外線センサ(1)は、前記支持部(3;32;42;52)に接続されたコネクタ(6)をさらに有した。
 第11の態様の赤外線センサ(1;31)は、第10の態様との組み合わせにより実現され得る。第11の態様では、前記リードフレーム(4;33)の他端がコネクタ端子(27;34)となっている。
 第12の態様の赤外線センサ(31)は、第11の態様との組み合わせにより実現され得る。第12の態様では、前記コネクタ端子(34)がばね構造を有している。
 第13の態様の赤外線センサ(41;51)は、第1~第8の態様のいずれか一つとの組み合わせにより実現され得る。第13の態様では、前記赤外線センサ(41;51)は、プリント基板(43;53)をさらに有する。前記支持部(3)が前記プリント基板(43;53)の実装面(45)に実装されている。
 第14の態様の赤外線センサ(41)は、第13の態様との組み合わせにより実現され得る。第14の態様では、前記検出部(2)の表面(12)が前記プリント基板(43)の前記実装面(45)と直交していない。
 第15の態様の赤外線センサ(51)は、第13の態様との組み合わせにより実現され得る。第15の態様では、前記プリント基板(53)が貫通孔(54)を有する。前記検出部(2)は前記窓孔(14)が前記貫通孔(54)を向くように前記プリント基板(53)に実装されている。
 本開示の赤外線センサ(1;31;41;51)は、支持部(3;32;42;52)に実装されたリードフレーム(4;33)で検出部(2)を支持しているため、容易に赤外線センサ(1;31;41;51)を実装可能となっている。
 (第2の開示)
 本開示は、対象物の温度を非接触で検出する赤外線センサに関する。
 従来、赤外線センサをモータで回転走査することにより、広範囲の赤外線を検出する赤外線センサが知られている。(特開平1-277796号公報、特公平5-20659号公報、特開平6-102097号公報、特開平8-75555号公報、特許第3241835号公報、特許第3409497号公報、特許第5900781号公報、及び特許第5967392号公報参照)
 しかしながら、上記従来の赤外線センサでは、駆動部の上部に赤外線センサの検出部が設けられているため、赤外線センサを低背化することができないという課題があった。
 本開示は、上記課題を解決し、低背化した赤外線センサを提供することを目的とする。
 上記課題を解決するために本開示は、第1の軸の方向に設けられた駆動部と、前記駆動部と接続され前記駆動部の動力により前記第1の軸の方向と異なる方向の第2の軸の周りに回転する回転部と、前記回転部に接続され前記第2の軸の周りに回転し赤外線を検出する検出部と、を有した構成とした。
 以下に、実施の形態に係る赤外線センサについて図面を用いて説明をする。なお、各図面において、同様の構成については、同一の符号を付し、説明を省略する。また、各実施の形態における各構成要素は矛盾のない範囲で任意に組み合わせても良い。
 (実施の形態1)
 以下に、実施の形態1における赤外線センサ101について図面を用いながら説明する。
 図14は実施の形態1の赤外線センサ101の正面図、図15は同赤外線センサ101の側面図、図16は同赤外線センサ101の上面図である。
 実施の形態1の赤外線センサ101は、固定部102と、固定部102に固定され第1の軸103の周りに回転する駆動部104と、駆動部104に接続され駆動部104から伝達された動力により第2の軸105の周りに回転する回転部106と、回転部106に接続され赤外線を検出する検出部107と、駆動部104と固定部102を覆うケース108と、検出部107を覆うカバーと、検出部107の検出結果を処理する処理回路を有している。第1の軸103と第2の軸105は異なる方向を向いており、これ以降は第1の軸103と第2の軸105に直交する方向をX軸方向、第1の軸103の方向をY軸方向、第2の軸105の方向をZ軸方向として説明する。
 駆動部104はステッピングモータ等のモータにより構成されており、SUS等の金属材料で形成された固定部102に固定されている。駆動部104は、ウォーム109を有している。回転部106はウォームホイール110を有している。回転部106のウォームホイール110は駆動部104のウォーム109と接続されており、第1の軸103の周りに回転したウォーム109の回転を第2の軸105の周りの回転に変換している。ウォーム109とウォームホイール110を介して伝達されたモータの動力は、回転部106に接続された検出部107を第2の軸105の周りに回転させる。
 検出部107は、図15に示すように、検出面111が第2の軸105に対してY軸方向から見て角度θだけ傾いて接続されている。検出部107は傾いて接続されていることにより、赤外線センサ101の視野角が広くなり、広範囲の熱画像を取得することができる。図17は、検出部107の回転方向を示す図である。検出部107は、感温部が埋設された熱型赤外線検出器を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサ101は、感温部および感温部の出力電圧を取り出すためのMOSトランジスタを有したa×b個の画素部112(非接触赤外線検知素子)が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されており、実施の形態1における画素部112は8×8に構成されている。画素部112の配置の仕方は8×8に限らず、例えば、16×4としても良い。画素部112は、図17の様に行L方向と列C方向のどちらも回転方向に対して傾けて配置されている。画素部112の配置の仕方は図17に限らず、例えば、図18に示すように画素部112の列C方向の端部が行Lによってずれており、画素部112が段状に配置されるようにしても良い。
 検出部107は駆動部104により回転する。検出部107に駆動部104の動力が伝達されると、検出部107は第2の軸105の周りに回転し、検出部107が所定の角度回転するたびに熱画像を取得する。検出部107が1方向に回転し終えると、反対方向に回転をする。検出部107の1方向への回転が完了した後、または、検出部107が1往復した後に、回転中に得られた熱画像を足し合わせる。熱画像を足し合わせることにより、高解像度の熱画像を得ることができる。駆動部104は1回の回転後の画素部112の検出領域が回転前の画素部112の検出領域と重なるように検出部107を回転させる。これにより、熱画像の解像度が向上する。図17や図18の様に画素部112を配置することにより、画素部112をアレイ上に配置して画素部112の行L方向又は列C方向に検出部107を回転させた場合よりも熱画像の解像度を向上させることができる。
 図19は駆動部104がケース108で覆われた状態の赤外線センサ101の側面図である。図19では駆動部104はケース108で覆われて見えていない。ケース108はポリカーボネート等の樹脂材料で形成されており、固定部102の一部と駆動部104を覆っている。検出部107はケース108から露出している。駆動部104と検出部107の間にケース108があるため、駆動部104で生じた熱の検出部107への伝達を低減することができる。ケース108は、ケース108外側の検出部107と駆動部104の間の位置に補正板113が設けられている。補正板113はポリカーボネート等の樹脂材料で形成されている。補正板113の温度は熱電対等により、常時計測されている。検出部107は、検出部107の視野内に補正板113が入るように走査される。補正板113の温度は熱電対により計測されているため、補正板113の温度を検出部107で検出し、検出部107の出力を補正する。これにより、赤外線センサ101の環境温度が変化した場合でも環境温度変化による検出部107の出力の変化を常時補正することができる。このため、補正板113を設けない場合に比べ、赤外線センサ101の検出精度を向上させることができる。なお、補正板113を樹脂材料で形成しているが、銅などの金属材料で形成しても良い。
 検出部107はカバーに覆われており、塵埃等から保護されている。カバーは透明な材料で形成されているため、カバーを設けても赤外線を検出することができる。
 図20は、赤外線センサ101の一部拡大断面図である。図20はケース108と回転部106、ウォームホイール110の関係を示した図である。図20に示すように、回転部106とケース108はばね114で接続されている。回転部106はばね114でケース108に抑えられているため、赤外線センサ101に振動が加わった場合に固定部102に対して回転部106がずれることを防止することができる。これにより、赤外線センサ101の検出精度が向上する。なお、ばね114には板ばねを用いても良い。
 (実施の形態1の変形例)
 図21に実施の形態1の変形例の赤外線センサ101の側面図を示す。
 図21に示すように、変形例の赤外線センサ101は検出部107の検出面111が回転軸に対して角度を有していない。すなわち、検出面111がYZ平面状にあるように回転軸に取り付けられている。このように検出部107を設けることにより、検出面111を回転軸に対して傾けたときに比べて検出部107により得られた熱画像の処理を簡単に行うことができる。
 (実施の形態2)
 実施の形態2の赤外線センサ121について図面を用いながら説明する。
 図22は実施の形態2の赤外線センサ121の正面図、図23は同赤外線センサ121の側面図、図24は同赤外線センサ121の上面図、図25は同赤外線センサ121のケース108に覆われた正面図、図26は同赤外線センサ121のケース108に覆われた側面図である。
 実施の形態2の赤外線センサ121は、第1の固定部122と、第2の固定部123と、第1の固定部122に固定され第1の軸103の周りに回転する駆動部104と、駆動部104と接続され第2の固定部123に固定された伝達部124と、伝達部124と接続され駆動部104から伝達された動力により第2の軸105の周りに回転する回転部106と、回転部106に接続され赤外線を検出する検出部107と、駆動部104と固定部102を覆うケース108と、検出部107を覆うカバーと、検出部107の検出結果を処理する処理回路を有している。
 伝達部124は、第1の接続部125と第2の接続部126を有している。第1の接続部125はウォームホイールになっており、駆動部104のウォーム109と接続されている。第2の接続部126は歯車形状になっており、回転部106に設けられた歯車127と接続されている。第1の接続部125は第2の接続部126よりもZ軸方向+側に設けられており、第2の接続部126と検出部107の間に第1の接続部125が配置されている。これにより、実施の形態2の赤外線センサ121は実施の形態1の赤外線センサ101に比べてさらに低背化することができている。
 第1の固定部122はSUS等の金属により形成されており、第2の固定部123はポリカーボネート等の樹脂材料により形成されている。このため、第2の固定部123の熱伝導率は第1の固定部122の熱伝導率よりも低い。駆動部104が第1の固定部122に固定され、伝達部124が第2の固定部123に固定されていることにより、駆動部104で発生した熱が伝達部124に伝わるのを抑制することができている。
 駆動部104はケース108により覆われている。ケース108は伝達部124のZ軸+側と接続されており、伝達部124上で段差部128を有している。ケース108は段差部128を有していることにより、伝達部124を押さえつけており、段差部128を設けない場合に比べて、伝達部124をより強固に固定することができている。
 検出部107はカバーに覆われており、塵埃等から保護されている。カバーは透明な材料で形成されているため、カバーを設けても赤外線を検出することができる。
 回転部106とケース108はばね114で接続されている。回転部106はばね114でケース108に抑えられているため、赤外線センサ101に振動が加わった場合に固定部102に対して回転部106がずれることを防止することができる。
 (まとめ)
 第1の態様の赤外線センサ(101;121)は、第1の軸(103)の方向に設けられた駆動部(104)と、前記駆動部(104)と接続され前記駆動部(104)の動力により前記第1の軸(103)の方向と異なる方向の第2の軸(105)の周りに回転する回転部(106)と、前記回転部(106)に接続され前記第2の軸(105)の周りに回転し赤外線を検出する検出部(107)と、を有した。
 第2の態様の赤外線センサ(121)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記赤外線センサ(121)は、前記回転部(106)と前記駆動部(104)の間に伝達部(124)をさらに有した。
 第3の態様の赤外線センサ(121)は、第2の態様との組み合わせにより実現され得る。第3の態様では、前記伝達部(124)は、前記駆動部(104)と接続された第1の接続部(125)と、前記回転部(106)と接続された第2の接続部(126)を有する。前記第1の接続部(125)は前記第2の軸(105)の方向において前記駆動部(104)と前記第2の接続部(126)の間にある。
 第4の態様の赤外線センサ(121)は、第2の態様との組み合わせにより実現され得る。第4の態様では、前記赤外線センサ(121)は、第1の固定部(122)と第2の固定部(123)をさらに備える。前記駆動部(104)は前記第1の固定部(122)に配置される。前記伝達部(124)は前記第2の固定部(123)に配置されている。
 第5の態様の赤外線センサ(121)は、第4の態様との組み合わせにより実現され得る。第5の態様では、前記第2の固定部(123)の熱伝導率は前記第1の固定部(122)の熱伝導率よりも小さい。
 第6の態様の赤外線センサ(101;121)は、第1~第5の態様のいずれか一つとの組み合わせにより実現され得る。第6の態様では、前記検出部(107)の検出面(111)は前記第2の軸(105)に対して傾いている。
 第7の態様の赤外線センサ(101)は、第1~第6の態様のいずれか一つとの組み合わせにより実現され得る。第7の態様では、前記赤外線センサ(101)は、前記駆動部(104)を覆うケース(108)をさらに有する。前記検出部(107)は前記ケース(108)から露出している。
 第8の態様の赤外線センサ(101)は、第7の態様との組み合わせにより実現され得る。第8の態様では、前記ケース(108)は補正板(113)を有している。
 第9の態様の赤外線センサ(121)は、第1の態様との組み合わせにより実現され得る。第9の態様では、前記赤外線センサ(121)は、前記駆動部(104)を覆うケース(108)と、前記回転部(106)と前記駆動部(104)の間に伝達部(124)とをさらに有する。前記検出部(107)は前記ケース(108)から露出する。前記ケース(108)は、前記伝達部(124)の前記第2の軸(105)の方向の前方に段差部(128)を有している。
 第10の態様の赤外線センサ(101;121)は、第7~第9の態様のいずれか一つとの組み合わせにより実現され得る。第10の態様では、前記赤外線センサ(101;121)は、前記検出部(107)と前記ケース(108)を覆うカバーをさらに備えた。
 第11の態様の赤外線センサ(101;121)は、第7~第10の態様のいずれか一つのとの組み合わせにより実現され得る。第11の態様では、前記赤外線センサ(101;121)は、前記ケース(108)と前記回転部(106)とを接続するばね(114)をさらに備えた。
 本開示の赤外線センサ(101;121)は、駆動部(104)と赤外線の検出部(107)を回転させる回転部(106)とを別の構成で、かつ、回転軸が異なる構成としたことにより、低背化することができている。
 (第3の開示)
 本開示は、対象物の温度を非接触で検出する赤外線センサに関する。
 従来、基板と、非接触で赤外線を検出する赤外線センサと、この赤外線センサをモータにより走査して広範囲な温度分布を取得することが知られている。(特開2007-171058号公報、及び特許第6004244号公報参照)
 しかしながら、上記従来の赤外線センサでは、基板の下面にコネクタ部が設けられ、赤外線センサをモータと接続しようとすると設置台が必要となるため赤外線センサが大型化するという課題があった。
 本開示は、上記課題を解決し、小型化可能な赤外線センサを提供することを目的とする。
 上記課題を解決するために本開示は、赤外線を検出する検出部と、前記検出部を支持する支持部と、前記検出部を走査する走査部と、を有し、前記支持部は、平面視で前記支持部の外側に延出し前記走査部と接続される接続部を有している構成とした。
 以下に、実施の形態に係る赤外線センサについて図面を用いて説明をする。なお、各図面において、同様の構成については、同一の符号を付し、説明を省略する。また、各実施の形態における各構成要素は矛盾のない範囲で任意に組み合わせても良い。
 (実施の形態1)
 以下に、実施の形態1における赤外線センサ201について図面を用いながら説明する。
 図27は同赤外線センサ201と走査部206の関係を示した図、図28は実施の形態1の赤外線センサ201の検出部202の上面図、図29は同赤外線センサ201の検出部202の下面図、図30は同赤外線センサ201の検出部202と接続される走査部206の側面図、図32は同赤外線センサ201の検出部202の側断面図、図32は凸部208と凹部207の関係を表す図を示している。
 赤外線センサ201は、検出部202と、支持部203と、支持部203に設けられた接続部204と、支持部203に設けられたコネクタ部205と、接続部204に接続され検出部202を回転走査する走査部206とを有している。支持部203は中空を有した枠形状に形成され、検出部202は支持部203に接続されている。接続部204は凹部207を有し、走査部206は凸部208を有し、凸部208が凹部207に挿入され、接着剤で固定されている。なお、接続部204に凸部208を形成し、走査部206に凹部207を形成しても良い。平面視で支持部203の外側のX軸方向にはコネクタ部205が延出している。接続部204は、平面視で支持部203の外側のY軸方向に延出している。ここでは、支持部203の中空に向かう方向を内側、中空から離れる方向を外側としている。以降の説明では、図27におけるコネクタ部205(図28参照)の延出方向をX軸方向、接続部204の延出方向をY軸方向、X軸とY軸の両方の軸と直交する方向をZ軸方向として説明する。なお、Z軸方向の+側を前方、Z軸方向の-側を後方として説明する。
 検出部202は、基板209と、基板209に設けられた赤外線検出素子210と、赤外線検出素子210の出力を処理する処理回路211と、赤外線検出素子210と処理回路211とを覆うカバー212と、赤外線検出素子210と処理回路211とカバー212を覆うパッケージ213とを有している。基板209は第1の主面214と第1の主面214の裏面である第2の主面215を有している。赤外線検出素子210、処理回路211、カバー212、パッケージ213は第1の主面214に設けられている。パッケージ213の赤外線センサ201の前方には孔216が設けられており、孔216はレンズ217で覆われている。第2の主面215にはランド218が形成されている。ランド218には、コンデンサ、抵抗、インダクタ等の電子部品219とリードフレーム220がはんだ付けされている。電子部品219が第2の主面215に設けられていることにより、寄生インピーダンスの影響を低減することができる。このため、ノイズパスが低減され、センサの温度出力の安定性が向上する。また、受動部品を検出器に直接配置することで赤外線センサ201を小型化することができている。
 赤外線検出素子210は、感温部が埋設された熱型赤外線検出器を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサ201は、感温部および感温部の出力電圧を取り出すためのMOSトランジスタを有したa×b個の画素部(非接触赤外線検知素子)が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されており、画素部は16×4に構成されている。なお、画素部は16×4でなくても良く、例えば、8×8としても良い。赤外線検出素子210はワイヤーボンディングにより基板209に接続されている。
 パッケージ213はセラミック材料が用いられている。パッケージ213の熱膨張係数が受動部品の熱膨張係数に近いため、ランド218におけるはんだの熱応力耐久性が向上している。なお、はんだの熱応力耐久性を考慮しない場合、パッケージ213を金属材料やガラスエポキシ樹脂等のセラミック以外の材料で形成することもできる。
 走査部206は、モータで構成されており、支持部203は走査部206によって回転軸221の周りに回転する。支持部203が回転することにより、検出部202が回転軸221の周りに回転する。検出部202は回転する毎に熱画像を取得する。検出部202は所定の角度回転し、検出部202の一方向への回転が完了すると反対方向への回転を開始する。検出部202の一方向への回転が完了したときに熱画像を足し合わせ、高解像度の熱画像を取得する。走査部206には凸部208が設けられている。凸部208は第1の方向222に延在した第1の凸部223と、第1の凸部223の中央部から第1の方向222と直交する第2の方向224に延出した第2の凸部225を有した、T字形状に形成されている。第1の凸部223と第2の凸部225は直方体形状に形成されている。すなわち、第1の凸部223の第1の方向222の長さLP1は第1の凸部223の第2の方向224の長さLP2よりも長く、第2の凸部225の第2の方向224の長さLP3は第2の凸部225の第1の方向222の長さLP4よりも長い。
 支持部203は、リフロー時の耐熱性の高いLCP樹脂(Liquid Crystal Polymer:液晶ポリマー)で形成されている。支持部203の材料にはLCP樹脂以外の樹脂材料を用いても良いがリフロー時の耐熱性の高い材料を選択すると好適である。支持部203は、中空を有した枠形状に形成され、基板209の第2の主面215の外周部を支持することで検出部202を支持している。なお、支持部203は枠形状でなくても、例えば、基板209の外周の3辺を支持する構造としても検出部202を支持することができる。ただし、支持部203を枠形状とすることでより強固に検出部202を支持することができる。支持部203は中空を有しているため、検出部202の基板209の第2の主面215にランド218を設け、電子部品219とリードフレーム220を実装することが可能となる。支持部203にはリードフレーム220がLCP樹脂と同時成型されている。リードフレーム220はX軸方向に延在している。リードフレーム220はリン青銅で形成され、すずや銅、銀などでめっきされている。リードフレーム220ははんだ付けができればリン青銅に限定されず、鉄や銅等の鉄以外の材料で形成しても良い。
 コネクタ部205は、支持部203のX軸方向-側に延出している。コネクタ部205は支持部203と一体に形成されている。支持部203に同時成型されたリードフレーム220がコネクタ部205と接続されており、コネクタ部205を介して、検出部202を電気制御用マイコンが搭載された基板209などの外装部品と接続可能になる。
 接続部204は、支持部203のY軸方向-側に延出している。支持部203に接続部204とコネクタ部205を形成した後、支持部203に同時成型されたリードフレーム220を切断する必要があるが、接続部204の位置がリードフレーム220に近いとリードフレーム220の切断時に接続部204が干渉してしまうため、リードフレーム220の切断が困難となる。しかしながら、接続部204がY軸方向-側に延出しているため、リードフレーム220切断時に接続部204が干渉しない。このため、リードフレーム220を支持部203に同時成型した後に連続してリードフレーム220の切断を行えるため、支持部203を形成する工程の作業性やタクトが向上する。特に、赤外線センサ201では、接続部204が検出部202に対してコネクタ部205と直交する方向に配置されているため、支持部203を形成する工程の作業性とタクトがより向上し、また、支持部203を小型化することができる。
 接続部204は支持部203と一体に形成されている。接続部204のZ軸方向-側には凹部207が設けられている。凹部207は第1の方向222に延在した第1の凹部226と、第1の凹部226の中央部から第1の方向222と直交する第2の方向224に延出した第2の凹部227を有した、T字形状に形成されている。第1の凹部226と第2の凹部227は直方体形状に形成されている。すなわち、第1の凹部226の第1の方向222の長さLR1は第1の凹部226の第2の方向224の長さLR2よりも長く、第2の凹部227の第2の方向224の長さLR3は第2の凹部227の第1の方向222の長さLR4よりも長い。
 ここで、第1の凸部223の第1の方向222の長さLP1と第1の凹部226の第1の方向222の長さLR1の差LD1は、第1の凸部223の第2の方向224の長さLP2と第1の凹部226の第2の方向224の長さLR2の差LD2よりも短い。つまり、第1の凹部226と第1の凸部223のはめあい公差が長辺側の方が短辺側よりも厳しくなるようにしている。このため、長辺側で第1の凸部223と第1の凹部226をはめ合わせることで接続部204と走査部206の位置決めをすることができ、さらに、第1の凸部223と第1の凹部226の短辺側の隙間で接着剤の流動性を確保することができる。接着剤の流動性を確保できるため、接着剤を第1の凹部226に確実に充填でき、支持部203を強固に走査部206に固定するとともに、第1の凹部226から接着剤が外部に流出することを防止することができる。また、第2の凸部225の第2の方向224の長さLP3と第2の凹部227の第2の方向224の長さLR3の差LD3は、第2の凸部225の第1の方向222の長さLP4と第2の凹部227の第1の方向222の長さLR4の差LD4よりも短い。つまり、第2の凹部227と第2の凸部225のはめあい公差が長辺側の方が短辺側よりも厳しくなるようにしている。これにより、支持部203と走査部206の位置決め精度を向上させ、さらに、接着剤の流動性を確保している。なお、凸部208と凹部207をT字形状としたが、この限りではなく、例えば、十字形状や楕円形状、3角形などの別の形状にしても良い。この場合でも、凸部208と凹部207のはめあい公差が厳しい場所と厳しくない場所を設けることで、支持部203の位置決めを高精度に行いつつ、接着剤の流動性も確保することができる。
 このように、支持部203と走査部206を接着接続する構造とすることで、圧入構造やスナップフィット構造とした場合に比べ、接続部204の配置自由度を向上させることができる。これにより、セラミックで形成されたパッケージ213と耐熱性樹脂で形成された支持部203を、接続部204側の構造や材料に依らずにリフローはんだ実装することができる。このため、設計自由度が向上する。また、接続部204と接続される走査部206の形状によって、パッケージ213と走査部206の回転軸221の位置関係を容易に変更できるため、汎用性が高い構造となっている。
 また、赤外線センサ201はパッケージ213を走査部206に電気的、物理的に接続する構造としているため、赤外線センサ201の信頼性が高くなっている。
 (まとめ)
 第1の態様の赤外線センサ(201)は、赤外線を検出する検出部(202)と、前記検出部(202)を支持する支持部(203)と、前記検出部(202)を走査する走査部(206)と、を有する。前記支持部(203)は、平面視で前記支持部(203)の外側に延出し前記走査部(206)と接着接続される接続部(204)を有している。
 第2の態様の赤外線センサ(201)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記接続部(204)は第1の方向(222)に延在した凹部(207)を有する。前記走査部(206)は第1の方向(222)に延在した凸部(208)を有する。前記凸部(208)が前記凹部(207)に挿入され、接続されている。
 第3の態様の赤外線センサ(201)は、第2の態様との組み合わせにより実現され得る。第3の態様では、前記凸部(208)の前記第1の方向(222)の長さ(LP1)と前記凹部(207)の前記第1の方向(222)の長さ(LR1)の差(LD1)は、前記凸部(208)の前記第1の方向(222)と直交する第2の方向(224)の長さ(LP2)と前記凹部(207)の前記第2の方向(224)の長さ(LR2)の差(LD2)よりも短い。
 第4の態様の赤外線センサ(201)は、第2又は第3の態様との組み合わせにより実現され得る。第4の態様では、前記凹部(207)はT字形状に形成される。前記凸部(208)はT字形状に形成されている。
 第5の態様の赤外線センサ(201)は、第1~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、前記支持部(203)はコネクタ部(205)をさらに有する。前記コネクタ部(205)は前記検出部(202)に対して前記接続部(204)と異なる方向に前記支持部(203)から延出している。
 第6の態様の赤外線センサ(201)は、第5の態様との組み合わせにより実現され得る。第6の態様では、前記検出部(202)と前記コネクタ部(205)を結ぶ方向は、前記検出部(202)と前記接続部(204)を結ぶ方向と直交する。
 第7の態様の赤外線センサ(201)は、第1~第6の態様のいずれか一つとの組み合わせにより実現され得る。第7の態様では、前記支持部(203)は中空を有した枠形状に形成されている。
 第8の態様の赤外線センサ(201)は、第1~第7の態様のいずれか一つとの組み合わせにより実現され得る。第8の態様では、前記検出部(202)は、基板(209)と、前記基板(209)に設けられた赤外線検出素子(210)と、前記赤外線検出素子(210)の出力を処理する処理回路(211)と、前記赤外線検出素子(210)と前記処理回路(211)を覆うカバー(212)と、を有している。
 第9の態様の赤外線センサ(201)は、第8の態様との組み合わせにより実現され得る。第9の態様では、前記基板(209)は第1の主面(214)と、前記第1の主面(214)の裏面である第2の主面(215)を有する。前記赤外線検出素子(210)は前記第1の主面(214)に設けられる。前記第2の主面(215)と前記支持部(203)とがリードフレーム(220)で接続されている。
 第10の態様の赤外線センサ(201)は、第9の態様との組み合わせにより実現され得る。第10の態様では、前記第2の主面(215)に電子部品(219)がさらに設けられている。
 本開示の赤外線センサ(201)は、支持部(203)に設けられた凹部(207)で走査部(206)に設けられた凸部(208)と接続されているため、赤外線センサ(201)を大型化せずに走査可能になっている。
 (第4の開示)
 本開示は、対象物の温度を非接触で検出する赤外線センサに関する。
 従来、基板と、基板に設けられた赤外線検出素子と、赤外線検出素子を覆うパッケージを有した赤外線センサが知られている。(特開2008-128913号公報、及び特開2012-8003号公報参照)
 しかしながら、上記従来の赤外線センサでは、キャップを基板に接続する際にキャップにつけた接着剤の流れ出しの管理が難しいという課題があった。
 本開示は、上記課題を解決し、キャップを基板に接続する際にキャップにつけた接着剤の流れ出しの管理を容易にした赤外線センサを提供することを目的とする。
 上記課題を解決するために本開示は、第1の主面を有した基板と、前記第1の主面に設けられた赤外線検出素子と、前記第1の主面に設けられた処理回路素子と、窓孔を有したキャップと、前記赤外線検出素子と前記処理回路素子と前記キャップを覆い前記窓孔の前方にレンズが設けられたパッケージと、を有し、前記キャップは、前記第1の主面の前記処理回路素子と前記パッケージの間に設けられた第1の凹部に接続されている構成とした。
 (実施の形態1)
 以下に、実施の形態1における赤外線センサ301について図面を用いながら説明する。
 図33は実施の形態1の赤外線センサ301の側断面図、図34は同赤外線センサ301の下面図、図35は同赤外線センサ301の基板302の上面図を示している。
 赤外線センサ301は、基板302と、基板302に設けられた赤外線検出素子303と、赤外線検出素子303の出力を制御する処理回路素子304と、窓孔305を有したキャップ306と、赤外線検出素子303と処理回路素子304とキャップ306を覆ったパッケージ307と、パッケージ307の開口部308に設けられたレンズ309とを有している。基板302は第1の主面310と第1の主面310の裏面の第2の主面311を有し、赤外線検出素子303と処理回路素子304とキャップ306は第1の主面310に配置されている。
 以下に、赤外線センサ301について詳細に説明する。以下の説明では、図33の横方向(第1の主面310と平行な方向)をX軸方向とし、第1の主面310の面方向でX軸と直交する方向をY軸方向とし、赤外線検出素子303とレンズ309を結ぶ方向をZ軸方向とし、説明の便宜上、Z軸方向の+側を前方、Z軸方向の-側を後方として説明するが、これに限定されるものではない。
 赤外線検出素子303は、感温部が埋設された熱型赤外線検出器を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサ301は、感温部および感温部の出力電圧を取り出すためのMOSトランジスタを有したa×b個の画素部(非接触赤外線検知素子)が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されており、画素部は16×4に構成されている。なお、画素部は16×4でなくても良く、例えば、8×8としても良い。赤外線検出素子303はワイヤーボンディングにより処理回路素子304に接続されている。画素部のa行はX軸方向に配置され、b列はY軸方向に配置されている。
 処理回路素子304の回路構成は、赤外線検出素子303の種類などに応じて適宜設計すればよい。例えば、赤外線検出素子303を制御する制御回路、赤外線検出素子303の出力電圧を増幅する増幅回路、赤外線検出素子303の複数の出力用のパッドに電気的に接続された複数の入力用のパッドの出力電圧を択一的に増幅回路に入力するマルチプレクサなどを備えた回路構成としても良い。処理回路素子304はワイヤーボンディングにより基板302に接続されている。
 パッケージ307は樹脂材料で形成され、基板302の外周近傍の接続部312と接着剤で接続されている。接着剤にはエポキシ材料が用いられている。パッケージ307を金属材料で形成しても良いが、樹脂材料で形成することでパッケージ307の設計の自由度が向上することができる。パッケージ307は赤外線検出素子303の前方に開口部308を有し、開口部308を覆うようにレンズ309が設けられている。パッケージ307の内側のX軸方向の長さLは、第1の凹部314のX軸方向の+側の端部と-側の端部との間の長さLよりも短い。このため、図33に示すように、パッケージ307のX軸方向の内壁は宙に浮いた状態になっている。パッケージ307の内側にはテーパ313が設けられ、テーパ313から基板302までの距離はパッケージ307の内側から外側に向かって長くなる。テーパ313が設けられていることでパッケージ307を実装する際のX軸方向のばらつきを低減できる。なお、Y軸方向についても同様にテーパを設け、テーパが宙に浮く構造とすることでパッケージ307の実装時のY軸方向のばらつきを低減することができる。
 レンズ309は、半導体レンズからなる非球面レンズを用いており、短焦点でかつ開口径が大きいレンズ309でも切削加工により形成される球面レンズよりも収差を小さく出来ており、短焦点化によりパッケージ307の薄型化を図っている。レンズ309はエポキシ材料の接着剤でパッケージ307に接続されている。
 キャップ306の赤外線検出素子303の前方には窓孔305が設けられている。レンズ309を通過してパッケージ307内に入射した赤外線は窓孔305を通過して赤外線検出素子303に入射する。キャップ306は、リン青銅で形成されている。これにより、赤外線検出素子303の周囲(キャップ306)が早く熱平衡状態になり、赤外線センサ301の起動ドリフトの時間の短縮することができる。キャップ306は赤外線検出素子303と処理回路素子304を覆うようにして設けられている。これにより、輻射ノイズの影響を低減することができるとともに、異物による検出精度の低下を防止することが出来る。また、キャップ306が導電性の材料で形成されていることにより、キャップ306の輻射ノイズに対する耐久性を向上させている。なお、リン青銅としなくても、鉄にニッケルでめっきをしたものや、SUS等の導電性の材料により形成しても同様の効果を得ることができる。また、キャップ306は黒く塗装されている。これにより、赤外線がキャップ306に反射して赤外線検出素子303に入射することを防止することができ、赤外線センサ301の検出精度を向上することができている。
 基板302はセラミック材料で形成されている。セラミック材料で形成することでパッケージ307が早く熱平衡状態になり、赤外線センサ301の起動ドリフトの時間を短縮することができる。赤外線センサ301の使用用途によってはセラミック以外の材料を用いても良い。基板302の第1の主面310には、第1の凹部314と第2の凹部315が設けられている。赤外線センサ301では、第2の凹部315は基板302の中央部に設けられ、第1の凹部314は第2の凹部315の外側に設けられている。第2の凹部315は第1の凹部314の内側であれば、基板302の中央部からずれた位置に設けられていても良い。第1の凹部314は基板302のX軸方向の外周近傍にY軸方向に延在するように設けられている。なお、第1の凹部314は第1の主面310の外周に沿うように環状になるように設けても良い。キャップ306は第1の凹部314で基板302と接着剤317で接続されている。第1の凹部314が設けられていることで、接着剤が第1の凹部314に溜まるため、基板302上のワイヤーボンドパッドが汚染されることを防止することができる。また、接着剤317によるキャップ306の高さばらつきを低減することができる。これにより、赤外線センサ301の量産性が向上する。また、接着剤317が第1の凹部314に溜まることにより接着剤317の糊しろ分のスペースを確保する必要がなくなるため、赤外線センサ301を小型化することができる。このように、第1の凹部314を設け、第1の凹部314にキャップ306を接続することで接着剤317の流れ出しの管理が容易になり、量産性が向上している。
 第1の凹部314には、グランドパターン316が設けられている。キャップ306はグランドパターン316に導電性材料の、例えば、銀ペーストが接着剤317として接続される。キャップ306と接着剤317が導電性の材料で形成されているため、キャップ306とグランドパターン316が導通する。赤外線検出素子303、処理回路素子304がグランドパターン316で覆われることで輻射ノイズに対する耐久性が向上する。
 第2の凹部315には、処理回路素子304が収容されている。第2の凹部315の深さは第1の凹部314の深さと同じであり、基板302として積層基板を用いる場合には同じ層を切削すれば容易に同じ深さの第1の凹部314と第2の凹部315を形成することができる。第1の凹部314と第2の凹部315の間には、基板302が切削されていない載置部318が設けられている。
 載置部318には、赤外線検出素子303が第2の凹部315を覆うように配置されている。これにより、赤外線検出素子303が処理回路素子304の前方に離間して配置される。赤外線検出素子303と処理回路素子304が離間されていることにより、赤外線検出素子303を処理回路素子304に接着する必要がないため、赤外線検出素子303のマウント時に処理回路素子304の表面に傷が発生するリスクを低減することができる。これにより、量産性が向上する。また、載置部318と接続部312は切削されていないため、第2の主面311からの高さが等しくなっている。これにより、焦点距離のばらつきを低減することができるため、赤外線センサ301の光学ばらつきを低減でき、赤外線センサ301の検出精度を向上できる。
 また、処理回路素子304の前方に赤外線検出素子303が設けられ、赤外線検出素子303の前方にレンズ309が設けられていることにより、赤外線センサ301に結露が生じ、レンズ309と赤外線検出素子303に水分が付着しても、処理回路素子304の発熱によって赤外線検出素子303とレンズ309が温まり、水分を除去することができる。これにより、赤外線センサ301の検出精度が向上する。
 基板302の第2の主面311には、ランド319が設けられている。ランド319のうち、平面視で処理回路素子304と同じ位置に設けられているランド319はサーマルパッドとして機能する。第2の主面311にサーマルパッドとなるランド319を設けることで処理回路素子304の発熱を外部に放熱することができ、起動ドリフトの時間を短縮することができる。
 (まとめ)
 第1の態様の赤外線センサ(301)は、第1の主面(310)を有した基板(302)と、前記第1の主面(310)に設けられた赤外線検出素子(303)と、前記第1の主面(310)に設けられた処理回路素子(304)と、窓孔(305)を有したキャップ(306)と、前記赤外線検出素子(303)と前記処理回路素子(304)と前記キャップ(306)を覆ったパッケージ(307)と、を有する。前記キャップ(306)は、前記第1の主面(310)の前記処理回路素子(304)と前記パッケージ(307)の間に設けられた第1の凹部(314)に接続されている。
 第2の態様の赤外線センサ(301)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記第1の主面(310)は第2の凹部(315)を有する。前記処理回路素子(304)は前記第2の凹部(315)に収容される。前記赤外線検出素子(303)は前記第2の凹部(315)を覆うように設けられている。
 第3の態様の赤外線センサ(301)は、第2の態様との組み合わせにより実現され得る。第3の態様では、前記赤外線検出素子(303)と前記処理回路素子(304)は離間している。
 第4の態様の赤外線センサ(301)は、第2又は第3の態様との組み合わせにより実現され得る。第4の態様では、前記赤外線検出素子(303)と前記パッケージ(307)は前記第1の主面(310)の同一平面上に配置されている。
 第5の態様の赤外線センサ(301)は、第2~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、前記パッケージ(307)はテーパ(313)を有している。
 第6の態様の赤外線センサ(301)は、第1~第5の態様のいずれか一つとの組み合わせにより実現され得る。第6の態様では、前記第1の主面(310)はグランドパターン(316)を有する。前記キャップ(306)は導電性材料で形成される。前記キャップ(306)と前記グランドパターン(316)が導電性接着剤(317)で接続されている。
 第7の態様の赤外線センサ(301)は、第1~第6の態様のいずれか一つとの組み合わせにより実現され得る。第7の態様では、前記基板(302)は前記第1の主面(310)の裏面の第2の主面(311)を有する。前記第2の主面(311)にランド(319)が設けられている。
 第8の態様の赤外線センサ(301)は、第7の態様との組み合わせにより実現され得る。第8の態様では、前記ランド(319)は平面視で前記処理回路素子(304)と重なっている。
 第9の態様の赤外線センサ(301)は、第1~第8の態様のいずれか一つとの組み合わせにより実現され得る。第9の態様では、前記キャップ(306)が黒化処理されている。
 第10の態様の赤外線センサ(301)は、第1~第9の態様のいずれか一つとの組み合わせにより実現され得る。第10の態様では、前記パッケージ(307)は樹脂で形成されている。
 第11の態様の赤外線センサ(301)は、第1~第10の態様のいずれか一つとの組み合わせにより実現され得る。第11の態様では、前記キャップ(306)はリン青銅で形成されている。
 第12の態様の赤外線センサ(301)は、第1~第11の態様のいずれか一つとの組み合わせにより実現され得る。第12の態様では、前記基板(302)はセラミックで形成されている。
 本開示の赤外線センサ(301)は、基板(302)の第1の主面(310)に第1の凹部(314)を設け、キャップ(306)が第1の凹部(314)に接続される構成としたことで接着剤(317)の流れ出し管理を容易にできる。
 第1の開示は、赤外線センサを容易に実装することができるため、人の温度に応じて制御の仕方を変更する空調制御装置等に有用である。
 第2の開示は、赤外線センサを低背化することができるため、人の温度に応じて制御の仕方を変更する空調制御装置等に有用である。
 第3の開示は、赤外線センサを小型化しつつ、回転走査可能に構成することができるので、空調制御装置等に有用である。
 第4の開示は、キャップを基板に接続する際にキャップ接着剤の流れ出しの管理を容易にし、赤外線センサの量産性を向上させることができるため、特に、人の温度に応じて制御の仕方を変更する空調制御装置等に有用である。
 1、31、41、51 赤外線センサ
 2 検出部
 3、32、42、52 支持部
 4、33 リードフレーム
 5 軸部
 6 コネクタ
 7 基板
 8 赤外線検出素子
 9 パッケージ
 10 処理回路
 11 カバー
 12 表面
 13 裏面
 14 窓孔
 15 レンズ
 16 第1の主面
 17 第2の主面
 18 ランド
 19 受動部品
 20 側面
 21 第1の壁部
 22 第2の壁部
 23 第3の壁部
 24 第4の壁部
 25 回転軸
 26 凸部
 27、34 コネクタ端子
 35 第2の支持部
 36 アパーチャ
 37 ばね部
 43、53 プリント基板
 44 MCU
 45 実装面
 54 貫通孔
 101、121 赤外線センサ
 102 固定部
 103 第1の軸
 104 駆動部
 105 第2の軸
 106 回転部
 107 検出部
 108 ケース
 109 ウォーム
 110 ウォームホイール
 111 検出面
 112 画素部
 113 補正板
 114 ばね
 122 第1の固定部
 123 第2の固定部
 124 伝達部
 125 第1の接続部
 126 第2の接続部
 127 歯車
 128 段差部
 201 赤外線センサ
 202 検出部
 203 支持部
 204 接続部
 205 コネクタ部
 206 走査部
 207 凹部
 208 凸部
 209 基板
 210 赤外線検出素子
 211 処理回路
 212 カバー
 213 パッケージ
 214 第1の主面
 215 第2の主面
 216 孔
 217 レンズ
 218 ランド
 219 電子部品
 220 リードフレーム
 221 回転軸
 222 第1の方向
 223 第1の凸部
 224 第2の方向
 225 第2の凸部
 226 第1の凹部
 227 第2の凹部
 301 赤外線センサ
 302 基板
 303 赤外線検出素子
 304 処理回路素子
 305 窓孔
 306 キャップ
 307 パッケージ
 308 開口部
 309 レンズ
 310 第1の主面
 311 第2の主面
 312 接続部
 313 テーパ
 314 第1の凹部
 315 第2の凹部
 316 グランドパターン
 317 接着剤
 318 載置部
 319 ランド

Claims (18)

  1.  表面に窓孔を有し赤外線を検出する検出部と、
     リードフレームが一体成型された支持部と、を備え、
     前記リードフレームの一端が前記検出部の裏面に接続されている
     赤外線センサ。
  2.  前記リードフレームは前記検出部の前記裏面にはんだで接続されている
     請求項1に記載の赤外線センサ。
  3.  前記検出部は、前記表面と前記裏面との間に側面を有し、
     前記支持部は前記側面の外側を囲んでいる
     請求項1または2に記載の赤外線センサ。
  4.  前記支持部は、前記支持部の内側に突出した凸部を有している
     請求項1~3のいずれかに記載の赤外線センサ。
  5.  前記支持部は、前記検出部の表面方向に突出したアパーチャを有している
     請求項1~4のいずれかに記載の赤外線センサ。
  6.  前記支持部の外側に第2の支持部をさらに有し、
     前記リードフレームが、前記支持部と前記第2の支持部の間にばね部を有している
     請求項1~5のいずれかに記載の赤外線センサ。
  7.  前記支持部は樹脂材料で形成されている
     請求項1~6のいずれかに記載の赤外線センサ。
  8.  前記検出部は、基板と、基板に設けられた赤外線検出素子と、前記基板に前記赤外線検出素子を覆うように設けられ前記窓孔が形成されたパッケージと、を有し、
     前記パッケージがセラミック材料で形成されている
     請求項1~7のいずれかに記載の赤外線センサ。
  9.  前記検出部を回転走査する走査部と、
     前記走査部と前記支持部を接続する軸部をさらに有した
     請求項1~8のいずれかに記載の赤外線センサ。
  10.  前記支持部に接続されたコネクタをさらに有した
     請求項9に記載の赤外線センサ。
  11.  前記リードフレームの他端がコネクタ端子となっている
     請求項10に記載の赤外線センサ。
  12.  前記コネクタ端子がばね構造を有している
     請求項11に記載の赤外線センサ。
  13.  プリント基板をさらに有し、
     前記支持部が前記プリント基板の実装面に実装されている
     請求項1~8のいずれかに記載の赤外線センサ。
  14.  前記検出部の表面が前記プリント基板の前記実装面と直交していない
     請求項13に記載の赤外線センサ。
  15.  前記プリント基板が貫通孔を有し、
     前記検出部は前記窓孔が前記貫通孔を向くように前記プリント基板に実装されている
     請求項13に記載の赤外線センサ。
  16.  第1の軸の方向に設けられた駆動部と、
     前記駆動部と接続され前記駆動部の動力により前記第1の軸の方向と異なる方向の第2の軸の周りに回転する回転部と、
     前記回転部に接続され前記第2の軸の周りに回転し赤外線を検出する検出部と、を有した
     赤外線センサ。
  17.  赤外線を検出する検出部と、
     前記検出部を支持する支持部と、
     前記検出部を走査する走査部と、を有し、
     前記支持部は、平面視で前記支持部の外側に延出し前記走査部と接着接続される接続部を有している
     赤外線センサ。
  18.  第1の主面を有した基板と、
     前記第1の主面に設けられた赤外線検出素子と、
     前記第1の主面に設けられた処理回路素子と、
     窓孔を有したキャップと、
     前記赤外線検出素子と前記処理回路素子と前記キャップを覆ったパッケージと、を有し、
     前記キャップは、前記第1の主面の前記処理回路素子と前記パッケージの間に設けられた第1の凹部に接続されている
     赤外線センサ。
PCT/JP2017/041045 2016-11-15 2017-11-15 赤外線センサ WO2018092795A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551657A JP6979621B2 (ja) 2016-11-15 2017-11-15 赤外線センサ

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016222127 2016-11-15
JP2016-222127 2016-11-15
JP2016236311 2016-12-06
JP2016-236311 2016-12-06
JP2016-239981 2016-12-12
JP2016239981 2016-12-12
JP2017007187 2017-01-19
JP2017-007187 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018092795A1 true WO2018092795A1 (ja) 2018-05-24

Family

ID=62145471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041045 WO2018092795A1 (ja) 2016-11-15 2017-11-15 赤外線センサ

Country Status (2)

Country Link
JP (1) JP6979621B2 (ja)
WO (1) WO2018092795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038828A1 (ja) * 2020-08-19 2022-02-24 パナソニックIpマネジメント株式会社 赤外線センサ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118524U (ja) * 1987-01-26 1988-08-01
JPH08170930A (ja) * 1994-12-19 1996-07-02 Matsushita Electric Ind Co Ltd 赤外線検出装置
JP2007173292A (ja) * 2005-12-19 2007-07-05 Sharp Corp リード端子導出型電子部品
US20080164415A1 (en) * 2006-12-27 2008-07-10 Oliver Kierse Control aperture for an IR sensor
JP2012098088A (ja) * 2010-10-29 2012-05-24 Tdk Corp 温度センサ
JP2013088248A (ja) * 2011-10-17 2013-05-13 Panasonic Corp 赤外線センサ
JP2014095674A (ja) * 2012-11-12 2014-05-22 Panasonic Corp 赤外線検出器およびその製造方法
JP2014174127A (ja) * 2013-03-13 2014-09-22 Mitsubishi Materials Corp 赤外線センサ装置
JP2015200559A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 赤外線センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057254B2 (ja) * 2013-01-23 2017-01-11 パナソニックIpマネジメント株式会社 赤外線受光ユニット、赤外線式ガスセンサ
JP6418517B2 (ja) * 2014-06-06 2018-11-07 パナソニックIpマネジメント株式会社 赤外線センサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118524U (ja) * 1987-01-26 1988-08-01
JPH08170930A (ja) * 1994-12-19 1996-07-02 Matsushita Electric Ind Co Ltd 赤外線検出装置
JP2007173292A (ja) * 2005-12-19 2007-07-05 Sharp Corp リード端子導出型電子部品
US20080164415A1 (en) * 2006-12-27 2008-07-10 Oliver Kierse Control aperture for an IR sensor
JP2012098088A (ja) * 2010-10-29 2012-05-24 Tdk Corp 温度センサ
JP2013088248A (ja) * 2011-10-17 2013-05-13 Panasonic Corp 赤外線センサ
JP2014095674A (ja) * 2012-11-12 2014-05-22 Panasonic Corp 赤外線検出器およびその製造方法
JP2014174127A (ja) * 2013-03-13 2014-09-22 Mitsubishi Materials Corp 赤外線センサ装置
JP2015200559A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 赤外線センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038828A1 (ja) * 2020-08-19 2022-02-24 パナソニックIpマネジメント株式会社 赤外線センサ

Also Published As

Publication number Publication date
JP6979621B2 (ja) 2021-12-15
JPWO2018092795A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
KR100614476B1 (ko) 카메라 모듈 및 카메라 모듈의 제조 방법
JP5287906B2 (ja) 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
US6823747B2 (en) Capacitive sensor
US7755694B2 (en) Image sensor package and image capture device with same
JP5913284B2 (ja) 光学モジュール及び支持板を持つ装置
JP2008211378A (ja) 撮像装置
US7679156B2 (en) Optical module and optical system
JP7007888B2 (ja) 3d光電式撮像モジュール
KR20140012697A (ko) 적외선 센서
CN114270537B (zh) 光传感器模块以及光传感器模块的制造方法
US6829953B2 (en) Capacitive sensor
US20060203875A1 (en) Optical module comprising an image sensor and a lens unit that is supported on the sensitive surface of the image sensor
WO2018092795A1 (ja) 赤外線センサ
EP2838252B1 (en) Image sensing module and method of manufacturing the same
JP5481290B2 (ja) 焦電型赤外線センサ
JP5376865B2 (ja) 固体撮像装置及び電子撮像装置
TWI758549B (zh) 基板積層體、及攝像裝置
JP2002009264A (ja) 固体撮像素子および撮像装置
JP2012083556A (ja) カメラモジュール
JP5333641B2 (ja) 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
CN113424514B (zh) 包括液体透镜的相机模块及其控制方法
JP2012029028A (ja) センサパッケージ、撮像装置及び携帯電子機器
EP3471391B1 (en) A camera
JP2013078026A (ja) 撮像モジュール
US20240219675A1 (en) Vehicular imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872664

Country of ref document: EP

Kind code of ref document: A1