WO2018092564A1 - 車両制御装置、及び車両制御方法 - Google Patents

車両制御装置、及び車両制御方法 Download PDF

Info

Publication number
WO2018092564A1
WO2018092564A1 PCT/JP2017/039079 JP2017039079W WO2018092564A1 WO 2018092564 A1 WO2018092564 A1 WO 2018092564A1 JP 2017039079 W JP2017039079 W JP 2017039079W WO 2018092564 A1 WO2018092564 A1 WO 2018092564A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
host vehicle
vehicle
course
unit
Prior art date
Application number
PCT/JP2017/039079
Other languages
English (en)
French (fr)
Inventor
敬之 弘光
真司 北浦
明宏 貴田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to DE112017005803.1T priority Critical patent/DE112017005803B4/de
Priority to CN201780070625.7A priority patent/CN109963759B/zh
Priority to US16/461,164 priority patent/US11136013B2/en
Publication of WO2018092564A1 publication Critical patent/WO2018092564A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • the present disclosure relates to a vehicle control device that performs vehicle control based on target detection information and a vehicle control method.
  • Patent Document 1 there is a collision determination device that performs a collision determination between a host vehicle and a target to make the vehicle travel safe (for example, Patent Document 1).
  • the system ECU acquires the behavior of the host vehicle from a vehicle speed sensor or the like, and predicts the course of the host vehicle.
  • the radar ECU detects the position of the other vehicle (target) by the millimeter wave radar device, and predicts the course of the other vehicle based on the change in the position. Then, the system ECU performs a collision determination based on the predicted course of the host vehicle and the predicted course of the other vehicle, and executes a vehicle control such as braking the vehicle when it is determined that a collision occurs. Thereby, traveling safety of the vehicle can be achieved.
  • the millimeter wave radar device detects position information of another vehicle based on a reflected wave from the other vehicle. For this reason, when estimating the course of another vehicle based on the detection information from the millimeter wave radar device, there is a possibility that the course is erroneously estimated due to the influence of an unnecessary reflected wave (unnecessary wave). Specifically, in such a case, when the host vehicle moves backward to perform parallel parking, there is a stopped vehicle directly behind the host vehicle, and the side of the stopped vehicle is diagonally behind the stopped vehicle. There may be a case where there is a traveling vehicle passing there.
  • the course of the traveling vehicle is incorrect. Specifically, a route is estimated such that the traveling vehicle turns and passes directly behind the host vehicle (more specifically, the position of the stopped vehicle) and further approaches the rear of the host vehicle. The reason why the course approaching the rear of the host vehicle is estimated is that the traveling vehicle is affected by the straight traveling. In this way, when the collision determination is performed based on the wrong course, it is determined that the vehicle collides with the traveling vehicle even though the collision does not occur. Therefore, unnecessary vehicle control may be performed, such as unnecessary braking or warning.
  • the present disclosure has been made in view of the above circumstances, and has as its main purpose to provide a vehicle control device and a vehicle control method that suppress unnecessary vehicle control.
  • This disclosure is as follows in order to solve the above problems.
  • the vehicle control device of the present disclosure includes an acquisition unit that acquires a detection information based on the reflected wave from the search device that transmits the search wave and receives the reflected wave reflected by the target, and based on the detection information, A target information detecting unit for detecting the position of the target, a target route estimating unit for estimating a course of the target based on a change in the position of the target detected by the target information detecting unit, Based on the own vehicle course estimating unit that estimates the course of the vehicle, the course of the target estimated by the target course estimating unit, and the course of the own vehicle estimated by the own vehicle course estimating unit.
  • a collision determination unit that determines whether or not the vehicle and the target collide, and when the collision determination unit determines that the host vehicle and the target collide, vehicle control of the host vehicle is executed.
  • Set vehicle control unit and non-operation area of the vehicle control It includes an area setting unit that, the, the area setting unit, in the lateral direction perpendicular to the traveling direction of the vehicle, sets a predetermined range position to the target object is detected as a reference as the inactive regions.
  • the inoperative region is set within a predetermined range based on the target.
  • vehicle control is executed. That is, when the target actually turns, the target is detected in a region other than the non-operating region. In this case, vehicle control can be appropriately executed.
  • FIG. 1 is a block diagram of PCSS.
  • FIG. 2 is a diagram showing the course of the target
  • FIG. 3 is a diagram showing the detection range of the radar sensor
  • 4 (a) and 4 (b) are diagrams showing the situation when a false detection occurs
  • FIG. 5 is a diagram showing a non-operating region
  • FIG. 6 is a flowchart showing the collision determination process.
  • FIG. 1 shows a pre-crash safety system (hereinafter referred to as PCSS: Pre-crash safety system) 100 to which a vehicle control device and a vehicle control method are applied.
  • the PCSS 100 is an example of a vehicle system mounted on a vehicle, detects an object positioned around the vehicle, and when the detected object and the vehicle may collide, A collision mitigation operation (PCS) is performed.
  • PCS collision mitigation operation
  • a vehicle on which the PCSS 100 is mounted is referred to as a host vehicle CS
  • an object to be detected is referred to as a target Ob.
  • the driving assistance ECU 20 functions as a vehicle control device.
  • the various sensors are connected to the driving support ECU 20, and output to the driving support ECU 20 the detection information of the target Ob and the vehicle information related to the host vehicle CS.
  • the various sensors include a radar sensor 31 as a search device, a vehicle speed sensor 32, and a steering angle sensor 33.
  • the radar sensor 31 is, for example, a known millimeter wave radar device that uses a high frequency signal in the millimeter wave band as a transmission wave.
  • the radar sensor 31 is provided at the rear end of the host vehicle CS, and has a detection range as a region that falls within a predetermined detection angle.
  • the position Pr of the target Ob within the detection range is detected.
  • an exploration wave is transmitted at a predetermined period, and a reflected wave is received by a plurality of antennas.
  • the distance from the target Ob is calculated from the transmission time of the exploration wave and the reception time of the reflected wave. Further, the relative velocity is calculated from the frequency of the reflected wave reflected by the target Ob, which has changed due to the Doppler effect.
  • the direction of the target Ob is calculated from the phase difference of the reflected waves received by the plurality of antennas.
  • the relative position of the target Ob with respect to the host vehicle CS can be specified.
  • the radar sensor 31 transmits an exploration wave, receives a reflected wave, calculates a distance, calculates an azimuth, and calculates a relative velocity at predetermined intervals. Then, the radar sensor 31 outputs the driving assistance ECU 20 with the calculated distance from the target Ob, the direction of the target Ob, and the relative speed as radar detection information. The radar sensor 31 may calculate the relative position of the target object Ob and output it as radar detection information.
  • the vehicle speed sensor 32 detects the current vehicle speed of the host vehicle CS. The detected vehicle speed is input to the driving assistance ECU 20.
  • the steering angle sensor 33 detects the steering angle of the steering wheel (or tire). The detected steering angle is input to the driving assistance ECU 20.
  • the brake device 40 includes a brake mechanism that changes the braking force of the host vehicle CS and a brake ECU that controls the operation of the brake mechanism.
  • the brake ECU is communicably connected to the driving support ECU 20, and controls the brake mechanism under the control of the driving support ECU 20.
  • the brake mechanism includes, for example, a master cylinder, a wheel cylinder that applies braking force to wheels (tires), and an ABS actuator that adjusts the distribution of pressure (hydraulic pressure) from the master cylinder to the wheel cylinder.
  • the ABS actuator is connected to the brake ECU, and the amount of operation with respect to the wheels (tires) is adjusted by adjusting the hydraulic pressure from the master cylinder to the wheel cylinder under the control of the brake ECU.
  • the alarm device 50 warns the driver that there is a target Ob approaching the rear of the vehicle under the control of the driving support ECU 20.
  • the alarm device 50 includes, for example, a speaker provided in the passenger compartment and a display unit that displays an image.
  • the seat belt device 60 includes a seat belt provided in each seat of the own vehicle and a pretensioner that pulls in the seat belt.
  • the seat belt device 60 performs a preliminary operation of retracting the seat belt when the possibility of the host vehicle CS colliding with the target Ob increases as the operation of the PCS. If the collision cannot be avoided, the seat belt is retracted to remove the slack, and the driver or other passenger is fixed to the seat to protect the passenger.
  • the transmission 70 sets the shift position of the host vehicle CS when a shift lever (not shown) is operated by a driver.
  • the shift position includes, for example, an R position (reverse) that is a position indicating that the host vehicle CS is moving backward, and a D position (drive) that is a position indicating that the host vehicle CS is moving forward. is there.
  • the shift position includes an N position (neutral) and a P position (parking). Information indicating the shift position is input to the driving support ECU 20.
  • the driving support ECU 20 is configured as a well-known microcomputer including a CPU, a ROM, and a RAM, and performs vehicle control on the host vehicle CS with reference to a calculation program and control data in the ROM.
  • the driving assistance ECU 20 causes the PCS to be performed when the host vehicle CS is moving backward, that is, when the shift position is the R position.
  • the driving support ECU 20 acquires radar detection information from the radar sensor 31 and detects the position Pr of the target Ob based on the acquired radar detection information. Then, based on the detection result, the driving support ECU 20 causes the PCS to be executed with at least one of the devices 40, 50, 60 as a control target.
  • the driving support ECU 20 executes a program stored in the ROM, thereby obtaining an acquisition unit 21, a target information detection unit 22, a target course estimation unit 23, a host vehicle course estimation unit 24, and a collision determination.
  • the acquisition unit 21 acquires radar detection information input from the radar sensor 31.
  • the acquisition unit 21 acquires information indicating the vehicle speed of the host vehicle CS from the vehicle speed sensor 32, and acquires information indicating the steering angle from the steering angle sensor 33. Further, the acquisition unit 21 acquires information indicating the shift position from the transmission 70.
  • the target information detection unit 22 detects the position Pr of the target Ob based on the radar detection information. Specifically, the target information detection unit 22 detects the position Pr on the coordinates with the host vehicle CS as the origin based on the distance and direction from the target Ob included in the radar detection information. In this coordinate, the X axis is set along the vehicle width direction of the host vehicle CS, and the Y axis direction is set along the traveling direction of the host vehicle CS. More specifically, the origin is set as the origin at the midpoint of the rear wheel of the host vehicle CS. Thereby, the relative position of the target Ob with respect to the host vehicle CS is detected. The lateral direction orthogonal to the traveling direction (Y-axis direction) is the vehicle width direction (X-axis direction). Further, when the radar detection information includes the relative position of the target Ob, it may be obtained as a detection result. This position Pr is recorded in the history information.
  • the target course estimation unit 23 estimates the course of the target Ob based on the change in the position Pr stored as the history information. For example, the moving direction vector of the target Ob is calculated as the course of the target Ob.
  • FIG. 2 shows the position Pr of the target Ob at each time from time t1 to time t4 of the vehicle detected as the target Ob, and the course of the target Ob calculated from the position Pr. The time t4 becomes the position Pr of the latest target Ob recorded in the history information.
  • the target course estimation unit 23 estimates the course of the target Ob using a known linear interpolation operation such as a least square method for a straight line passing through the position closest to each position Pr.
  • the own vehicle course estimation unit 24 estimates the course of the host vehicle CS based on the vehicle speed and the steering angle.
  • the course of the host vehicle CS is estimated by calculating the turning direction, turning radius, turning center, and the like based on the vehicle speed and the steering angle.
  • the steering angle is 0 degree
  • the course of the host vehicle CS is estimated by a straight line
  • the steering angle is other than 0 degree
  • the course of the host vehicle CS is estimated by a curve.
  • the turning direction may be specified based on the steering angle
  • the course of the host vehicle CS may be estimated from a straight line along the turning direction.
  • the vehicle speed is 0 km / h
  • the host vehicle is stopped, and the course of the host vehicle CS is fixed at a local point.
  • the collision determination unit 25 determines whether or not the host vehicle CS and the target Ob collide based on the estimated course of the target Ob and the course of the host vehicle CS (whether or not there is a possibility of a collision). judge. For example, when the course of the target Ob and the course of the host vehicle CS intersect, the collision determination unit 25 determines that the host vehicle CS and the target Ob may collide.
  • the collision determination unit 25 may determine whether or not to collide in consideration of the vehicle width of the host vehicle CS. For example, the collision determination unit 25 determines, based on the estimated path of the host vehicle CS and the vehicle width of the host vehicle CS, the path through which the left rear end portion (for example, the left rear wheel or the left tail lamp) passes, The path through which the rear end portion (for example, the right rear wheel or the right tail lamp) passes is estimated. And the collision determination part 25 may determine based on whether one of the estimated courses and the course of the target Ob intersect. Similarly, the collision determination may be performed in consideration of the width of the target object Ob.
  • the vehicle control unit 26 calculates a collision allowance time (TTC) until the vehicle Ob collides with the subject vehicle CS with respect to the target Ob determined to be likely to collide.
  • the collision allowance time is calculated by dividing the distance (inter-vehicle distance) from the target Ob by the relative speed with respect to the target Ob.
  • the relative speed may be the relative speed included in the radar detection information.
  • the vehicle control unit 26 controls the alarm device 50, the brake device 40, and the seat belt device 60 in accordance with TTC, thereby implementing PCS.
  • the detection angle of the radar sensor 31 attached to the rear of the vehicle is set wider than that of the radar sensor attached to the front of the vehicle.
  • the radar sensor 31 detects within the range of a predetermined distance (for example, 10 m to 20 m) in the Y-axis direction from the rear of the host vehicle CS so that not only the host vehicle lane but also the adjacent lane of the host vehicle lane is detected. Has horns.
  • the radar sensor 31 has a detection angle ⁇ of about 50 to 140 degrees, and a detection range is a range up to a distance of about 50 m from the host vehicle CS.
  • a radar sensor mounted in front of the vehicle has a detection angle ⁇ of about 20 to 30 degrees, and a range up to a distance of about 100 m from the host vehicle CS is often used as a detection range.
  • the driving assistance ECU 20 acquires radar detection information from the radar sensor 31 having such a detection range and detects the position Pr of the target Ob, it is effective in the rear of the host vehicle CS that has many blind spots for the driver. It is possible to detect a target Ob and perform a collision determination.
  • FIG. 4 shows a situation in which there is a target Ob (traveling vehicle) passing through the side (lateral) of the stop vehicle TS from diagonally behind.
  • a target Ob traveling vehicle traveling from behind the host vehicle CS travels straight in a lane adjacent to the roadside belt and passes by the side of the host vehicle CS (in FIG. 4, an arrow Y1). ).
  • FIG. 4 (b) when the target Ob is lined up close to the stopped vehicle TS, it is affected by reflected waves (unnecessary waves) from the stopped vehicle TS, There is a possibility that the unnecessary wave is erroneously detected as a reflected wave from the target Ob.
  • the driving support ECU 20 estimates the course of the target Ob based on the change (history information) of the position Ob of the target Ob. This is for estimating the course Y2 (indicated by an arrow in FIG. 4B).
  • the course Y2 a course in which the target Ob passes directly behind the host vehicle CS (more specifically, the position of the stop vehicle TS) and further approaches the rear of the host vehicle CS is estimated. It is to be noted that the course Y2 that is approaching directly behind the host vehicle CS is affected by the past position Pr (t1) to position Pr (t3) detected when the target Ob is traveling straight ahead. Because. If the collision determination is made based on the wrong course as described above, it is determined that the vehicle collides with the traveling vehicle even though the collision does not occur, and unnecessary PCS may be performed.
  • the driving support ECU 20 includes a region setting unit 27 that sets a non-operational region F1 in which vehicle control related to PCS is not executed. This will be described in detail below.
  • the area setting unit 27 sets the inoperative area F1 with reference to the position Pr of the target Ob. Specifically, the region setting unit 27 sets a range wider than the width of the lane with the target Ob as the center in the vehicle width direction (X-axis direction) as the inoperative region F1. At this time, if the position of the host vehicle CS and the position of the target Ob are different in the X-axis direction, the region setting unit 27 does not operate at least on the host vehicle CS side with respect to the target Ob in the X-axis direction. Region F1 is set.
  • the region setting unit 27 sets the inoperative region F1 within a range of 3 m on the host vehicle CS side with the detected position Pr of the target object Ob as the center in the X-axis direction. Moreover, the area setting unit 27 sets a non-operation area F1 for each target Ob.
  • region F1 is set only at the time of the initial detection of the target Ob. Further, when the position of the host vehicle CS and the position of the target Ob are not different in the X-axis direction, the non-operation areas F1 are set on both sides in the X-axis direction with the target Ob as the center.
  • FIG. 5 illustrates the situation of the vehicle by way of example.
  • FIG. 5 shows a situation where the target Ob (another vehicle) is traveling on the left rear side of the host vehicle CS. More specifically, the target Ob indicates a situation where the vehicle is traveling in the center of the lane adjacent to the roadside zone.
  • the area setting unit 27 detects the target Ob
  • the non-operating area in the range of 3 m on the own vehicle CS side (right side in FIG. 5) with the position Pr of the detected target Ob as the center (reference).
  • Set F1 The non-operation area F1 is set to be unlimited in the Y-axis direction.
  • the range of the non-operation area F1 may be arbitrarily changed. For example, a range corresponding to the vehicle width of the host vehicle CS or the width of the target Ob may be set. Further, for example, it may be set in a range of 1 m to 5 m. Moreover, you may set the non-operation area
  • the non-operation area F1 may be set within a range of 1 m to 3 m away from the target Ob. Further, a range in the Y-axis direction may be determined. For example, you may set in the range from the position Pr of the detected target Ob to the own vehicle CS.
  • the area setting unit 27 may reset the inoperative area F1 when the host vehicle CS turns. Specifically, after the non-operation area F1 is set, it may be reset when the host vehicle CS moves a predetermined distance (for example, 3 m) in the X-axis direction. Further, when the steering angle is other than 0 degrees, the non-operation area F1 may be reset. That is, when the host vehicle CS moves in the X-axis direction, it may approach the target Ob and possibly collide. Further, when the position Pr of the target object Ob can no longer be detected (out of the detection range), it may be reset.
  • And driving assistance ECU20 performs a collision determination process for every predetermined period (for example, 80 ms), in order to implement PCS.
  • predetermined period for example, 80 ms
  • the driving support ECU 20 acquires radar detection information input from the radar sensor 31 (step S101).
  • the acquisition unit 21 acquires information indicating the vehicle speed of the host vehicle CS from the vehicle speed sensor 32, and acquires information indicating the steering angle from the steering angle sensor 33. Further, the acquisition unit 21 acquires information indicating the shift position from the transmission 70.
  • the driving support ECU 20 determines whether or not the R position is set (step S102). When it is not the R position (step S102: No), the driving assistance ECU 20 ends the collision determination process.
  • step S102 when it is the R position (step S102: Yes), the driving assistance ECU 20 detects the position Pr of the target Ob based on the radar detection information (step S103). Further, the driving assistance ECU 20 records the detected position Pr in the history information.
  • the driving support ECU 20 determines whether or not the detected target Ob is detected for the first time (at the first detection) (step S104). Specifically, it is determined based on whether or not history information for the target Ob exists. When the target Ob is detected for the first time (step S104: Yes), the driving assistance ECU 20 sets the non-operation area F1 of the target Ob with reference to the target Ob (step S105). Thereafter, the driving assistance ECU 20 ends the collision determination process.
  • step S104 the driving assistance ECU 20 determines whether or not the detected position Pr of the target Ob is within the inoperative area F1 of the target Ob. Determination is made (step S106). That is, the driving assistance ECU 20 determines whether or not the position Pr of the target object Ob is in the non-operation area F1 in the X-axis direction. The driving assistance ECU 20 determines that it is not in the non-operation area F1 when the non-operation area F1 is not set.
  • step S106 When it is determined that the position Pr of the detected target Ob is within the non-operation area F1 of the target Ob (step S106: Yes), the driving assistance ECU 20 ends the collision determination process. Thereby, collision determination is not performed and, as a result, PCS is not performed.
  • step S106 When it is determined that the detected position Pr of the target Ob is not within the inoperative area F1 of the target Ob (step S106: No), the driving support ECU 20 is based on the change of the position Pr stored as history information. The course of the target Ob is estimated (step S107). Further, the driving assistance ECU 20 estimates the course of the host vehicle CS based on the steering angle or the like (step S108).
  • the driving support ECU 20 determines the possibility of collision between the host vehicle CS and the target Ob based on the estimated course of the target Ob and the course of the host vehicle CS (step S109). When it determines with there being no collision possibility (step S109: No), driving assistance ECU20 complete
  • step S109 if it is determined that there is a possibility of collision (step S109: Yes), the driving assistance ECU 20 calculates a collision margin time (step S110). Then, the driving assistance ECU 20 determines whether or not the calculated collision allowance time is equal to or less than a predetermined first time (step S111).
  • the first time is a threshold for indicating the PCS start timing, and is set to a value such as 30 seconds, for example. When it determines with it not being 1st time or less (step S111: No), driving assistance ECU20 complete
  • driving assistance ECU20 implements PCS by controlling alarm device 50, brake device 40, and seatbelt device 60 according to collision margin time.
  • Step S112 For example, when the collision margin time is equal to or shorter than the first time, the driving assistance ECU 20 controls the alarm device 50 to output an alarm.
  • the collision margin time is equal to or shorter than a second time (for example, 15 seconds) shorter than the first time, in addition to the alarm device 50, the driving assistance ECU 20 controls the brake device 40 to brake the host vehicle CS.
  • the driving assistance ECU 20 controls the seat belt device 60, Pull in the belt. Then, the collision determination process ends.
  • the driving assistance ECU 20 When the driving assistance ECU 20 detects the target Ob, the driving assistance ECU 20 sets the non-operation area F1 within a predetermined range based on the target Ob in the X-axis direction orthogonal to the traveling direction of the host vehicle CS. As a result, even if there is a cause of generation of an unnecessary reflected wave such as a stopped vehicle (that is, a cause of erroneous detection) in the non-operation area F1, the collision determination is not performed and unnecessary PCS is not performed. For this reason, for example, even when the other vehicle goes straight in the adjacent lane, even if the vehicle passes the side of the own vehicle and the stopped vehicle, unnecessary PCS is performed, that is, vehicle control for performing PCS is suppressed. be able to.
  • a stop vehicle that is, a cause of erroneous detection
  • the radar sensor 31 has a detection range for detecting the position Pr of the target Ob existing in at least the own lane and the adjacent lane adjacent to the own lane behind the own vehicle CS. For this reason, the target Ob is detected over a wide range even behind the host vehicle CS where there are many blind spots of the driver. Therefore, for example, when the host vehicle CS is moved backward in a parking lot or the like, even if the target Ob exists in the driver's blind spot, the collision can be effectively avoided or suppressed.
  • the possibility of erroneous detection increases compared to a narrow case (for example, when only the own lane is set as a detection range). For example, it is possible to make an erroneous detection between a stopped vehicle TS stopped in a roadside zone and a target Ob as a traveling vehicle that travels straight along a lane adjacent to the roadside zone and passes beside the stopped vehicle TS. Increases sex. In addition, for example, the possibility of erroneous detection between the vehicle behind the own lane and the target Ob passing through the adjacent lane increases.
  • the driving assistance ECU 20 sets the non-operation area F1 in a predetermined range in the X-axis direction with the target Ob as a reference, unnecessary PCS is performed even if the detection angle of the radar sensor 31 is thus widened. Can be suppressed.
  • the target Ob When the target Ob is detected in the adjacent lane, if the target Ob is detected within a range corresponding to the lane width in the X-axis direction with reference to the target Ob, there is a possibility that the target Ob is based on unnecessary reflected waves. Is expensive. On the other hand, the possibility that the target Ob is turning so as to enter the rear of the host vehicle CS is low (the target Ob is highly likely to go straight in the lane). This is because when the target Ob is detected in the adjacent lane, if the target Ob enters behind the host vehicle CS, it is considered to be detected outside the range corresponding to the lane width in the X-axis direction. is there.
  • the region setting unit 27 sets a range wider than at least the width of the lane with respect to the target Ob in the vehicle width direction (X-axis direction) as the inoperative region F1. Thereby, the area
  • the driving support ECU 20 sets the non-operation area F1 on the own vehicle CS side with respect to the target Ob. Thereby, while being able to set the non-operation area
  • the area setting unit 27 may set the non-operation area F1 when it is determined that the target Ob is a traveling vehicle. Thereby, even if it is a case where possibility that it will receive the influence by an unnecessary wave is low, it can suppress that the non-operation area
  • Whether or not the vehicle is a vehicle may be determined based on radar detection information such as the width of the target Ob, the intensity of the reflected wave, and the relative velocity.
  • a photographing device such as a camera may be provided, and based on the photographed image, for example, pattern matching may be performed to determine whether the vehicle is a vehicle.
  • -PCSS100 may be adopted in order to perform PCS on the target Ob in front of the host vehicle CS.
  • the area setting unit 27 may set the non-operation area F1 when the course of the target Ob is estimated.
  • the non-operation area F1 may be set based on the position Pr of the target Ob included in the history information.
  • the non-operation area F1 may be set based on the position Pr of the latest target Ob included in the history information, or may be set based on the first position Pr.
  • the non-operation area F1 may be set by calculating a reference position in the X-axis direction by averaging a plurality of positions Pr.
  • the area setting unit 27 may set the non-operation area F1 when it is determined that the target Ob is traveling straight on the side of the host vehicle CS (for example, an adjacent lane). Specifically, when the distance between the host vehicle CS and the target Ob in the X-axis direction is a predetermined distance or more, and the estimated course of the target Ob and the course of the host vehicle CS do not intersect.
  • the inoperative area F1 may be set.
  • the predetermined distance is set in consideration of the vehicle width and the width of the lane, and may be set to 1.5 m, for example.
  • the area F1 may be set. Specifically, a predetermined angle (for example, 20) within the range of 4 m in the Y-axis direction in front of the reference target Ob (the vehicle CS side) with the target Ob detected first as a reference.
  • the non-operation area F1 may be set. Thereby, while suppressing unnecessary PCS (vehicle control), the necessary PCS can be performed when the target Ob changes its course such as turning.
  • the area setting unit 27 does not operate when a target Ob that travels straight to the side of the host vehicle CS is detected behind the host vehicle CS and there is a stop vehicle immediately behind the host vehicle CS.
  • the area F1 may be set.
  • the case where there is a stop vehicle immediately behind the host vehicle CS is, for example, based on radar detection information, within the width of the host vehicle CS in the X-axis direction, and the distance in the Y-axis direction being a predetermined distance range. In this case, a stopped vehicle (target) different from the target Ob is detected.
  • region F1 can be set and unnecessary PCS can be suppressed.
  • the area setting unit 27 may not set the non-operation area F1 when the target Ob is detected on the own lane.
  • the millimeter wave radar device is employed as the exploration device, but a sonar that detects and measures an object (target) using sound waves may be employed.
  • the area setting unit 27 may change the range set as the inoperative area F1 according to the distance between the host vehicle CS and the target Ob in the X-axis direction. For example, when the distance between the host vehicle CS and the target Ob is large, the range may be widened as compared with the case where the distance is small.
  • the PCS is performed according to the collision margin time, but the predicted distance until the collision may be calculated and the PCS may be performed according to the predicted distance.
  • the driving assistance ECU 20 calculates the estimated distance by calculating the intersection of the estimated course and calculating the distance to the intersection.

Abstract

車両制御装置(20)は、探査装置(31)からその反射波に基づく検知情報を取得する取得部(21)と、物標の位置(Pr)を検出する物標情報検出部(22)と、物標の進路を推定する物標進路推定部(23)と、自車両(CS)の進路を推定する自車進路推定部(24)と、自車両と物標とが衝突するか否かを判定する衝突判定部(25)と、衝突すると判定された場合、車両制御を実行する車両制御部(26)と、車両制御の不作動領域(F1)を設定する領域設定部(27)と、を備える。領域設定部は、自車両の進行方向に直交する横方向において、物標が検出された位置を基準として所定範囲を不作動領域として設定する。

Description

車両制御装置、及び車両制御方法 関連出願の相互参照
 本出願は、2016年11月17日に出願された日本出願番号2016-224528号に基づくもので、ここにその記載内容を援用する。
 本開示は、物標の検知情報に基づく車両制御を実行する車両制御装置、及び車両制御方法に関する。
 従来、自車両と物標との衝突判定を行い、車両の走行安全を図る衝突判定装置が存在する(例えば、特許文献1)。特許文献1において、システムECUは、車速センサなどから自車両の挙動を取得し、自車両の進路を予測する。その一方、レーダECUは、ミリ波レーダ装置により他車両(物標)の位置を検出し、位置の変化に基づき、他車両の進路を予測する。そして、システムECUは、予測した自車両の進路と、予測された他車両の進路に基づき、衝突判定を行い、衝突すると判定された場合、車両に制動を加えるなどの車両制御を実行させる。これにより、車両の走行安全を図ることができる。
特開2007-317018号公報
 ところで、ミリ波レーダ装置は、他車両からの反射波に基づき、他車両の位置情報を検出するものである。このため、ミリ波レーダ装置からの検知情報に基づき他車両の進路を推定する場合、不要な反射波(不要波)の影響により、進路を誤って推測してしまう可能性がある。このような場合としては、具体的には、自車両が縦列駐車を行うために後退する際、自車両の真後ろに停止車両が存在するとともに、当該停止車両の斜め後方から停止車両の側方を通過する走行車両が存在する場合が考えられる。自車両後方から走行してくる走行車両が、隣接車線を直進して自車両の横を通過する場合であっても、当該走行車両が停止車両に接近して横に並んだ場合、停止車両から反射波(不要波)の影響を受け、当該不要波が、走行車両からの反射波であると誤検知される可能性がある。
 このように誤検知された場合、当該走行車両の進路が誤ったものとなる。具体的には、走行車両が、旋回して自車両の真後ろ(より詳しくは、停止車両の位置)を通過し、さらに自車両の後方に近づくような進路が推定される。なお、自車両の後方に近づくような進路が推定されるのは、走行車両が直進している影響を受けるからである。このように誤った進路に基づき、衝突判定が行われた場合、衝突しないにもかかわらず、走行車両と衝突すると判定される。このため、不要な制動や警告が実行されるなど、不要な車両制御が行われる可能性がある。
 本開示は、上記事情に鑑みてなされたものであり、不要な車両制御を抑制する車両制御装置及び車両制御方法を提供することを主たる目的とするものである。
 本開示は、上記課題を解決するために、以下のようにした。
 本開示の車両制御装置は、探査波を送信し、物標により反射された反射波を受信する探査装置からその反射波に基づく検知情報を取得する取得部と、前記検知情報に基づいて、前記物標の位置を検出する物標情報検出部と、前記物標情報検出部により検出された前記物標の位置の変化に基づき、前記物標の進路を推定する物標進路推定部と、自車両の進路を推定する自車進路推定部と、前記物標進路推定部により推定された前記物標の進路と、前記自車進路推定部により推定された前記自車両の進路に基づき、前記自車両と前記物標とが衝突するか否かを判定する衝突判定部と、前記衝突判定部により前記自車両と前記物標とが衝突すると判定された場合、前記自車両の車両制御を実行する車両制御部と、前記車両制御の不作動領域を設定する領域設定部と、を備え、前記領域設定部は、前記自車両の進行方向に直交する横方向において、前記物標が検出された位置を基準として所定範囲を前記不作動領域として設定する。
 自車両の進行方向に直交する横方向における所定範囲内に、物標と、物標以外のものであって探査波を反射するものとが横方向に並んだ場合、物標以外のものからの不要な反射波に基づき物標の位置を誤って検出する可能性がある。そこで、自車両の進行方向に直交する横方向において、物標を基準とした所定範囲で不作動領域を設定するようにした。これにより、不作動領域内において、例えば物標の横に停止車両などが存在し、当該停止車両などからの不要な反射波により物標の位置が誤検出されたとしても、誤検出された物標の位置(すなわち、不要波を発生させた停止車両などの位置)が不作動領域内に存在する限り、車両制御が実行されない。したがって、物標が例えば直進する場合に、物標以外のものからの反射波の影響を受けて、進路が誤って推定された場合であっても、不要な車両制御を抑制することができる。
 一方、反射波に基づき、不作動領域以外の領域において、物標の位置が検出された場合であって衝突すると判定された場合には、車両制御が実行される。すなわち、物標が実際に旋回した場合等においては、不作動領域以外の領域において物標が検出されるため、この場合においては、適切に車両制御を実行させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、PCSSの構成図であり、 図2は、物標の進路を示す図であり、 図3は、レーダセンサの検知範囲を示す図であり、 図4は、(a)及び(b)は、誤検知が生じる場合の状況を示す図であり、 図5は、不作動領域を示す図であり、 図6は、衝突判定処理を示すフローチャートである。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 図1は、車両制御装置、及び車両制御方法を適用したプリクラッシュセーフティシステム(以下、PCSS:Pre-crash safety systemと記載する。)100を示している。PCSS100は、車両に搭載される車両システムの一例であり、車両周囲に位置する物体を検出し、検出した物体と車両とが衝突するおそれがある場合、物体に対する自車両の衝突の回避動作、又は衝突の緩和動作(PCS)を実施させる。以下では、このPCSS100が搭載された車両を自車両CSと記載し、検出対象となる物体を物標Obと記載する。
 図1に示すPCSS100は、各種センサと、運転支援ECU20と、ブレーキ装置40と、警報装置50と、シートベルト装置60と、変速装置70と、を備えている。図1に示す実施形態において、運転支援ECU20が車両制御装置として機能する。
 各種センサは、運転支援ECU20に接続されており、物標Obの検知情報や自車両CSに関する車両情報を運転支援ECU20に出力する。図1では、各種センサには、探査装置としてのレーダセンサ31と、車速センサ32と、操舵角センサ33と、が含まれる。
 レーダセンサ31は、例えば、ミリ波帯の高周波信号を送信波とする公知のミリ波レーダ装置であり、自車両CSの後端部に設けられ、所定の検知角に入る領域を検知範囲とし、検知範囲内の物標Obの位置Prを検出する。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物標Obとの距離を算出する。また、物標Obに反射された反射波の、ドップラー効果により変化した周波数により、相対速度を算出する。加えて、複数のアンテナが受信した反射波の位相差により、物標Obの方位を算出する。なお、物標Obとの距離及び方位が算出できれば、その物標Obの、自車両CSに対する相対位置を特定することができる。
 レーダセンサ31は、所定周期毎に、探査波の送信、反射波の受信、距離の算出、方位の算出、及び相対速度の算出を行う。そして、レーダセンサ31は、算出した物標Obとの距離、物標Obの方位及び相対速度をレーダ検知情報として運転支援ECU20を出力する。なお、レーダセンサ31は、物標Obの相対位置を算出してレーダ検知情報として出力してもよい。
 車速センサ32は、自車両CSの現在の車速を検知する。検知された車速は、運転支援ECU20に入力される。操舵角センサ33は、ステアリングホイール(又はタイヤ)の操舵角を検知する。検知された操舵角は、運転支援ECU20に入力される。
 ブレーキ装置40は、自車両CSの制動力を変化させるブレーキ機構と、このブレーキ機構の動作を制御するブレーキECUとを備えている。ブレーキECUは、運転支援ECU20と通信可能に接続されており、運転支援ECU20の制御により、ブレーキ機構を制御する。ブレーキ機構は、例えば、マスターシリンダと、車輪(タイヤ)に制動力を与えるホイルシリンダと、マスターシリンダからホイルシリンダへの圧力(油圧)の分配を調整するABSアクチュエータとを備えている。ABSアクチュエータは、ブレーキECUに接続されており、このブレーキECUからの制御によりマスターシリンダからホイルシリンダへの油圧を調整することで、車輪(タイヤ)に対する作動量を調整する。
 警報装置50は、運転支援ECU20の制御により、ドライバに対して自車後方に接近する物標Obが存在することを警報する。警報装置50は、例えば、車室内に設けられたスピーカや、画像を表示する表示部により構成されている。
 シートベルト装置60は、自車の各座席に設けられたシートベルトや、このシートベルトを引き込むプリテンショナにより構成されている。シートベルト装置60は、PCSの動作として、自車両CSが物標Obに衝突する可能性が高まった場合に、シートベルトの引き込みの予備動作を行う。また衝突を回避できない場合には、シートベルトを引き込んで弛みを除くことにより、ドライバ等の乗員を座席に固定し、乗員の保護を行う。
 変速装置70は、図示しないシフトレバー等がドライバにより操作されることにより、自車両CSのシフトポジションを設定する。シフトポジションには、例えば、自車両CSが後退する状態であることを示す位置であるRポジション(リバース)、自車両CSが前進する状態であることを示す位置であるDポジション(ドライブ)が少なくともある。また、シフトポジションには、他に、Nポジション(ニュートラル)、Pポジション(パーキング)などもある。シフトポジションを示す情報は、運転支援ECU20に入力される。
 運転支援ECU20は、CPU、ROM、RAMを備える周知のマイクロコンピュータとして構成されており、ROM内の演算プログラムや制御データを参照して、自車両CSに対する車両制御を実施する。本実施形態において、運転支援ECU20は、自車両CSが後退している状態の場合、すなわち、シフトポジションがRポジションである場合に、PCSを実施させる。具体的には、運転支援ECU20は、シフトポジションがRポジションである場合、レーダセンサ31からのレーダ検知情報を取得し、取得したレーダ検知情報に基づいて物標Obの位置Prを検出する。そして、運転支援ECU20は、その検出結果に基づいて、各装置40,50,60の少なくともいずれかを制御対象としてPCSを実施させる。運転支援ECU20は、PCSを実施させるに際し、ROMに記憶されたプログラムを実行することで、取得部21、物標情報検出部22、物標進路推定部23、自車進路推定部24、衝突判定部25、車両制御部26、領域設定部27として機能する。各機能について、以下に説明する。
 取得部21は、レーダセンサ31から入力されたレーダ検知情報を取得する。また、取得部21は、車速センサ32から自車両CSの車速を示す情報を取得し、操舵角センサ33から操舵角を示す情報を取得する。また、取得部21は、変速装置70からシフトポジションを示す情報を取得する。
 物標情報検出部22は、レーダ検知情報に基づき、物標Obの位置Prを検出する。具体的には、物標情報検出部22は、レーダ検知情報に含まれる物標Obとの距離及び方位に基づき、自車両CSを原点とする座標上の位置Prを検出する。この座標では、自車両CSの車幅方向に沿ってX軸が設定され、自車両CSの進行方向に沿ってY軸方向が設定される。原点は、より詳しくは、自車両CSの後輪における中点が原点として設定される。これにより、自車両CSに対する物標Obの相対位置が検出される。なお、進行方向(Y軸方向)と直交する横方向が、車幅方向(X軸方向)となる。また、レーダ検知情報に物標Obの相対位置が含まれている場合、それを取得して検出結果としてもよい。この位置Prは、履歴情報に記録される。
 物標進路推定部23は、履歴情報として記憶されている位置Prの変化に基づいて、物標Obの進路を推定する。例えば、物標Obの進路として、物標Obの移動方向ベクトルを算出する。図2では、物標Obとして検出された車両の時刻t1からt4での各時刻での物標Obの位置Prと、この位置Prにより算出される物標Obの進路を示している。時刻t4が履歴情報に記録された最新の物標Obの位置Prとなる。例えば、物標進路推定部23は、各位置Prに最も近い位置を通る直線を最小二乗法といった周知の線形補間演算を用いて物標Obの進路を推定する。
 自車進路推定部24は、車速及び操舵角に基づき、自車両CSの進路を推定する。例えば、車速及び操舵角に基づき、旋回方向と、旋回半径と、旋回中心等を算出して、自車両CSの進路を推定する。操舵角が0度の場合には、自車両CSの進路は直線により推定され、操舵角が0度以外の場合には、自車両CSの進路は曲線により推定される。なお、操舵角に基づき、旋回方向を特定し、旋回方向に沿った直線により、自車両CSの進路を推定してもよい。また、車速が0km/hである場合には、自車両は停止していることとなり、自車両CSの進路は、現地点に固定される。
 衝突判定部25は、推定された物標Obの進路と自車両CSの進路とに基づいて、自車両CSと物標Obとが衝突するか否か(衝突可能性があるか否か)を判定する。例えば、衝突判定部25は、物標Obの進路と自車両CSの進路とが交わる場合、自車両CSと物標Obとが衝突する可能性があると判定する。
 なお、衝突判定を行う際、衝突判定部25は、自車両CSの車幅を考慮して衝突するか否かを判定してもよい。例えば、衝突判定部25は、推定した自車両CSの進路と自車両CSの車幅に基づき、自車両CSにおける左側後端部(例えば、左側後輪や左側テールランプ)が通過する進路と、右側後端部(例えば、右側後輪や右側テールランプ)が通過する進路とを推定する。そして、衝突判定部25は、推定した進路のいずれか一方と、物標Obの進路が交差するか否かに基づき、判定してもよい。同様に、物標Obの幅を考慮して衝突判定を行ってもよい。
 車両制御部26は、衝突する可能性があると判定した物標Obに対して、自車両CSと衝突するまでの衝突余裕時間(TTC)を算出する。衝突余裕時間は、物標Obとの距離(車間距離)を物標Obとの相対速度で除算することにより算出される。なお、相対速度は、レーダ検知情報に含まれている相対速度を利用すればよい。車両制御部26は、TTCに応じて、警報装置50、ブレーキ装置40、及びシートベルト装置60を制御することで、PCSを実施させる。
 ところで、車両前方に取り付けられるレーダセンサと比較して、車両後方に取り付けられるレーダセンサ31の検知角は、広く設定されている。例えば、レーダセンサ31は、自車両CSの後方からY軸方向に所定距離(例えば、10m~20m)の範囲内において、自車線のみならず、自車線の隣接車線まで検知範囲とするような検知角を有している。
 具体的には、図3に示すように、レーダセンサ31は、50度~140度程度の検知角αを有し、また、自車両CSから50m程度離れた距離までの範囲を検知範囲としている。一方、車両前方に取り付けられるレーダセンサの場合、20度~30度程度の検知角βを有する一方、自車両CSから100m程度離れた距離までの範囲を検知範囲としていることが多い。
 運転支援ECU20は、このような検知範囲を有するレーダセンサ31からのレーダ検知情報を取得して、物標Obの位置Prを検出するため、ドライバにとって死角が多い自車両CSの後方において、効果的に物標Obを検知し、衝突判定を行うことができる。
 特に、後退時において、自車両CSの斜め後方から、例えば、自車両の横を走行するような車両の位置は、認識しにくい。また、駐車場などにおいて自車両CSを駐車する際に後退させることが多いが、駐車場においては車両の速度が低速であるために車両の操舵角が大きくなりやすく、車両の動きが不規則になりやすい。この結果、駐車場などでは、ドライバの死角から他車両が旋回してくることが道路などと比較して多く、他車両の動きを把握しにくい。このため、車両後方のレーダセンサ31の検知角を広くして、自車両CSの後退時においてPCSを実施させることは、ドライバにとって特に有用となる。
 しかしながら、検知角を広くすることにより、不要な反射波の影響を受けて、物標Obの誤検出が生じる可能性が高くなる。誤検出が生じする状況としては、例えば、図4に示すような状況が考えられる。図4では、路側帯において自車両CSが縦列駐車を行うために真後ろへ後退する際(図4では矢印Y0で示す)、自車両CSの真後ろに停止車両TSが存在するとともに、当該停止車両TSの斜め後方から停止車両TSの側方(横)を通過する物標Ob(走行車両)が存在する状況を示している。
 また、図4では、自車両CSの後方から走行してくる物標Ob(走行車両)が、路側帯に隣接する車線を直進して、自車両CSの横を通過する(図4において矢印Y1で示す)。この場合であっても、図4(b)に示すように、当該物標Obが停止車両TSに接近して横に並んだ場合、停止車両TSから反射波(不要波)の影響を受け、当該不要波が、物標Obからの反射波であると誤検知される可能性がある。
 このように誤検知された場合、物標Obの位置Prが誤った位置Pr(t4)で検出されることとなり、その結果、当該物標Obの進路が誤ったものとなる。なぜならば、運転支援ECU20は、物標Obの位置Prの変化(履歴情報)に基づき、物標Obの進路を推定するため、誤検知された位置Pr(t4)の影響を受けると、誤った進路Y2(図4(b)において矢印で示す)を推定するためである。
 具体的には、進路Y2として、物標Obが、自車両CSの真後ろ(より詳しくは、停止車両TSの位置)を通過し、さらに自車両CSの後方に近づくような進路が推定される。なお、自車両CSの真後ろに近づくような進路Y2が推定されるのは、物標Obが直進していたときに検出された過去の位置Pr(t1)~位置Pr(t3)の影響を受けるからである。仮に、このように誤った進路に基づき、衝突判定が行われた場合、衝突しないにもかかわらず、走行車両と衝突すると判定され、不要なPCSが実施される可能性がある。
 なお、車両が前進している場合、このような不要なPCSは生じにくい。なぜならば、前方においてはレーダセンサの検知角が狭いため、自車両CSの近辺で他車両の旋回が行われても検知されにくいからである。また、はるか遠方において他車両が旋回する場合には、検知範囲に入り、誤検知する可能性があるが、衝突余裕時間が長いために、PCSが実施されないからである。
 そこで、運転支援ECU20は、PCSに関わる車両制御を実行させない不作動領域F1を設定する領域設定部27を備えている。以下、詳しく説明する。
 領域設定部27は、物標Obの位置Prを検出した場合、当該物標Obの位置Prを基準として、不作動領域F1を設定する。具体的には、領域設定部27は、車幅方向(X軸方向)において、物標Obを中心として車線の幅よりも広い範囲を不作動領域F1として設定する。その際、X軸方向において、自車両CSの位置と、物標Obの位置が相違する場合、領域設定部27は、X軸方向において、物標Obに対して少なくとも自車両CS側に不作動領域F1を設定する。より詳しく説明すると、領域設定部27は、X軸方向において、検出した物標Obの位置Prを中心として自車両CS側に、3mの範囲で不作動領域F1を設定する。また、領域設定部27は、物標Obごとにそれぞれ不作動領域F1を設定する。
 なお、Y軸方向においては、無制限に設定される。なお、車線の幅は、通常、2.5m~3.5m程度である。また、不作動領域F1は、物標Obの初回検出時のみ設定される。また、X軸方向において、自車両CSの位置と、物標Obの位置が相違しない場合、物標Obを中心としてX軸方向両側に不作動領域F1が設定される。
 図5において車両の状況を例示しつつ説明する。図5では、自車両CSの左後方において、物標Ob(他車両)が走行している状況を示している。より詳しくは、物標Obは、路側帯に隣接する車線の中央を走行している状況を示している。この場合、領域設定部27は、物標Obを検出すると、検出した物標Obの位置Prを中心(基準)として、自車両CS側(図5では右側)に、3mの範囲で不作動領域F1を設定する。不作動領域F1は、Y軸方向において、無制限に設定される。
 なお、不作動領域F1の範囲は、任意に変更してもよい。例えば、自車両CSの車幅や物標Obの幅に応じた範囲を設定してもよい。また、例えば、1m~5mのいずれかの範囲で設定してもよい。また、X軸方向において、物標Obの両側に不作動領域F1を設定してもよい。また、物標Obの中心位置を基準としたが、幅方向における物標Obの端部(例えば、自車両CS側の端部)を基準として、不作動領域F1を設定してもよい。また、初期検出時における物標Obの位置が含まれていなくてもよい。例えば、物標Obから1m~3m離れた範囲で不作動領域F1が設定されてもよい。また、Y軸方向の範囲を定めてもよい。例えば、検出された物標Obの位置Prから自車両CSまでの範囲内において設定してもよい。
 そして、不作動領域F1の設定後、領域設定部27は、当該物標Obが当該物標Obの不作動領域F1外において検出されるまで、当該不作動領域F1を維持する。そして、領域設定部27は、当該物標Obが不作動領域F1外において検出された場合、当該物標Obの不作動領域F1をリセットする。なお、領域設定部27は、自車両CSが旋回する場合、不作動領域F1をリセットしてもよい。具体的には、不作動領域F1が設定された後、X軸方向において、自車両CSが所定距離(例えば3m)移動した場合、リセットしてもよい。また、操舵角が0度以外となった場合に、不作動領域F1をリセットしてもよい。すなわち、X軸方向に自車両CSが移動すると、物標Obと接近し、衝突する可能性が生じるからである。また、物標Obの位置Prが検知できなくなった場合(検知範囲外となった場合)、リセットしてもよい。
 そして、運転支援ECU20は、PCSを実施させるため、衝突判定処理を所定周期(例えば、80ms)ごとに実行する。以下、図6に基づき、衝突判定処理について説明する。
 運転支援ECU20は、レーダセンサ31から入力されたレーダ検知情報を取得する(ステップS101)。また、取得部21は、車速センサ32から自車両CSの車速を示す情報を取得し、操舵角センサ33から操舵角を示す情報を取得する。また、取得部21は、変速装置70からシフトポジションを示す情報を取得する。
 運転支援ECU20は、Rポジションであるか否かを判定する(ステップS102)。Rポジションでない場合(ステップS102:No)、運転支援ECU20は、衝突判定処理を終了する。
 一方、Rポジションである場合(ステップS102:Yes)、運転支援ECU20は、レーダ検知情報に基づき、物標Obの位置Prを検出する(ステップS103)。また、運転支援ECU20は、検出した位置Prは、履歴情報に記録する。
 運転支援ECU20は、検出された物標Obが初めて検出されたもの(初回検出時)であるか否か判定する(ステップS104)。具体的には、当該物標Obに対する履歴情報が存在するか否かに基づき判定する。物標Obが初めて検出されたものである場合(ステップS104:Yes)、運転支援ECU20は、当該物標Obを基準として当該物標Obの不作動領域F1を設定する(ステップS105)。その後、運転支援ECU20は、衝突判定処理を終了する。
 一方、物標Obが初めて検出されたものでない場合(ステップS104:No)、運転支援ECU20は、検出した物標Obの位置Prが当該物標Obの不作動領域F1内であるか否かを判定する(ステップS106)。つまり、運転支援ECU20は、X軸方向において、物標Obの位置Prが不作動領域F1内であるか否かを判定する。なお、運転支援ECU20は、不作動領域F1が設定されていない場合、不作動領域F1内でないと判定する。
 検出した物標Obの位置Prが当該物標Obの不作動領域F1内であると判定した場合(ステップS106:Yes)、運転支援ECU20は、衝突判定処理を終了する。これにより、衝突判定が行われず、その結果、PCSも実施されない。
 検出した物標Obの位置Prが当該物標Obの不作動領域F1内でないと判定した場合(ステップS106:No)、運転支援ECU20は、履歴情報として記憶されている位置Prの変化に基づいて、物標Obの進路を推定する(ステップS107)。また、運転支援ECU20は、操舵角等に基づき、自車両CSの進路を推定する(ステップS108)。
 次に、運転支援ECU20は、推定された物標Obの進路と自車両CSの進路とに基づいて、自車両CSと物標Obとの衝突可能性を判定する(ステップS109)。衝突可能性がないと判定した場合(ステップS109:No)、運転支援ECU20は、衝突判定処理を終了する。
 一方、衝突する可能性があると判定した場合(ステップS109:Yes)、運転支援ECU20は、衝突余裕時間を算出する(ステップS110)。そして、運転支援ECU20は、算出した衝突余裕時間が予め決められた第1時間以下であるか否かを判定する(ステップS111)。第1時間は、PCSの開始タイミングを示すための閾値であり、例えば、30秒などの値が設定される。第1時間以下でないと判定された場合(ステップS111:No)、運転支援ECU20は、衝突判定処理を終了する。
 第1時間以下であると判定した場合(ステップS111:Yes)、運転支援ECU20は、衝突余裕時間に応じて警報装置50、ブレーキ装置40、及びシートベルト装置60を制御することで、PCSを実施させる(ステップS112)。例えば、衝突余裕時間が、第1時間以下である場合、運転支援ECU20は、警報装置50を制御して、警報を出力させる。衝突余裕時間が、第1時間よりも短い第2時間(例えば、15秒)以下である場合、警報装置50に加えて、運転支援ECU20は、ブレーキ装置40を制御して、自車両CSを制動させる。衝突余裕時間が、第2時間よりも短い第3時間(例えば、5秒)以下である場合、警報装置50及びブレーキ装置40に加えて、運転支援ECU20は、シートベルト装置60を制御し、シートベルトの引き込みなどを実施させる。そして、衝突判定処理を終了する。
 上記構成により、以下の効果を奏する。
 運転支援ECU20は、物標Obを検出した場合、自車両CSの進行方向に直交するX軸方向において、物標Obを基準とした所定範囲で不作動領域F1を設定するようにした。これにより、不作動領域F1内において、例えば停止車両など不要な反射波の発生原因(すなわち、誤検知の発生原因)が存在したとしても、衝突判定は実行されず、不要なPCSが実施されない。このため、例えば、他車両が隣接車線を直進する場合に自車両及び停止車両の横を通過したとしても、不要なPCSが実施されること、すなわち、PCSを実施させるための車両制御を抑制することができる。
 一方、反射波に基づき、不作動領域F1以外の領域において、物標Obが検出された場合、衝突判定が行われる。このため、例えば、隣接車線から自車線に物標Obが旋回して移動するような場合等においては、衝突判定が実行され、必要なPCSを実施することができる。
 レーダセンサ31は、自車両CSの後方において、少なくとも自車線及び自車線に隣接する隣接車線に存在する物標Obの位置Prを検知する検知範囲を有する。このため、ドライバの死角が多い自車両CSの後方であっても、広範囲にわたって物標Obが検知される。したがって、例えば、駐車場などにおいて自車両CSを後退させる場合において、ドライバの死角において物標Obが存在したとしても、効果的に衝突を回避又は抑制することができる。
 その反面、このようにレーダセンサ31の検知角を広くすると、狭い場合(例えば、自車線のみを検知範囲とする場合)と比較して誤検知が生じる可能性が増える。例えば、路側帯にて停止している停止車両TSと、路側帯に隣接する車線を直進し、当該停止車両TSの横を通過する走行車両としての物標Obとの間で、誤検知する可能性が増える。また、例えば、自車線において後方の車両と、隣接車線を通過する物標Obとの間で誤検知する可能性が増える。しかしながら、運転支援ECU20は、物標Obを基準としてX軸方向における所定の範囲において不作動領域F1を設定するため、このようにレーダセンサ31の検知角を広くしても、不要なPCSが実施させることを抑制することができる。
 隣接車線において物標Obを検知した場合、その後に、当該物標Obを基準としてX軸方向において車線幅に相当する範囲内で物標Obが検出されれば、不要な反射波に基づく可能性が高い。その一方、物標Obが自車両CSの後方に進入するように旋回している可能性が低い(物標Obが車線内で直進している可能性が高い)。なぜならば、隣接車線において物標Obを検知した場合、物標Obが自車両CSの後方に進入するのであれば、X軸方向において車線幅に相当する範囲外において検出されると考えられるからである。そこで、領域設定部27は、車幅方向(X軸方向)において、物標Obを基準として少なくとも車線の幅よりも広い範囲を不作動領域F1として設定した。これにより、不要なPCSが実施される可能性が高い領域を不作動領域F1とすることができ、不要なPCSの実施を抑制することができる。
 自車両CSから遠ざかる範囲に物標Obが移動したとしても衝突すると判定されない。つまり、自車両CSから遠ざかる範囲において物標Obが誤検出されても、衝突すると判定されないので、PCSも当然行われない。そこで、運転支援ECU20は、物標Obに対して自車両CS側に不作動領域F1を設定することとした。これにより、不作動領域F1を適切に設定することができるとともに、処理負担を少なくすることができる。
 (他の実施形態)
 本開示は、上記実施形態に限定されず、例えば以下のように実施してもよい。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 ・物標Obが走行車両である場合、誤った反射波(不要波)の影響を受ける可能性が高い。そこで、領域設定部27は、物標Obが走行車両であると判定した場合、不作動領域F1を設定してもよい。これにより、不要波による影響を受ける可能性が低い場合であっても、不作動領域F1が設定されることを抑制できる。なお、車両であるか否かは、例えば、物標Obの幅や、反射波の強度、相対速度などレーダ検知情報に基づき、判定すればよい。また、カメラなどの撮影装置を設けて、撮影画像に基づき、例えばパターンマッチングを行うことにより、車両か否かを判定してもよい。
 ・自車両CSの前方における物標Obに対してPCSを実施するために、PCSS100を採用してもよい。
 ・領域設定部27は、物標Obの進路が推定された場合に、不作動領域F1を設定してもよい。この場合、履歴情報に含まれる物標Obの位置Prを基準として、不作動領域F1を設定してもよい。例えば、履歴情報に含まれる最新の物標Obの位置Prを基準として、不作動領域F1を設定してもよいし、最初の位置Prを基準として、設定してもよい。また、複数の位置Prを平均して、X軸方向における基準位置を算出し、不作動領域F1を設定してもよい。
 ・領域設定部27は、物標Obが自車両CSの側方(例えば、隣接車線)を直進していると判定した場合に、不作動領域F1を設定してもよい。具体的には、X軸方向における自車両CSと物標Obとの距離が、所定距離以上である場合であって、推定された物標Obの進路と自車両CSの進路が交わらない場合に、不作動領域F1を設定してもよい。所定距離は、車幅や車線の幅を考慮して設定され、例えば、1.5mとしてもよい。
 また、例えば、物標Obの位置Prを所定周期ごとにサンプリングし、サンプリングされたすべての位置Prに対して、所定範囲内に存在する位置Prの割合が、所定割合以上である場合、不作動領域F1を設定してもよい。具体的には、最初に検出された物標Obを基準として、Y軸方向において4mの範囲内であって、基準とする物標Obの前方(自車両CS側)における所定角(例えば、20度)の範囲内にすべての位置Prのうち、9割以上物標Obの位置Prが検出された場合、不作動領域F1を設定してもよい。これにより、不要なPCS(車両制御)を抑制する一方、物標Obが旋回など、進路を変更した場合に、必要なPCSを実施することができる。
 ・領域設定部27は、自車両CSの後方において、自車両CSの側方を直進する物標Obが検出された場合であって、自車両CSの真後ろに停止車両が存在する場合に不作動領域F1を設定してもよい。自車両CSの真後ろに停止車両が存在する場合とは、例えば、レーダ検知情報に基づき、X軸方向において自車両CSの車幅内に存在し、かつ、Y軸方向における距離が所定距離の範囲内に物標Obとは異なる停止車両(物標)を検出した場合のことである。これにより、不要なPCSが実施される可能性が高い場合に、不作動領域F1を設定することができ、不要なPCSを抑制することができる。
 ・領域設定部27は、自車線上に、物標Obを検出した場合、不作動領域F1を設定しなくてもよい。
 ・上記実施形態において、探査装置として、ミリ波レーダ装置を採用したが、音波を用いて物体(物標)を探知及び測距するソナーを採用してもよい。
 ・領域設定部27は、X軸方向における自車両CSと物標Obとの距離に応じて、不作動領域F1として設定する範囲を変更してもよい。例えば、自車両CSと物標Obとの距離が大きい場合には、小さい場合と比較して、範囲を広くしてもよい。
 ・上記実施形態では、衝突余裕時間に応じて、PCSを実施させたが、衝突するまでの予測距離を算出し、予測距離に応じて、PCSを実施させてもよい。運転支援ECU20は、推定された進路の交点を算出し、交点までの距離を算出することにより予測距離を算出する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  探査波を送信し、物標(Ob)により反射された反射波を受信する探査装置(31)からその反射波に基づく検知情報を取得する取得部(21)と、
     前記検知情報に基づいて、前記物標の位置(Pr)を検出する物標情報検出部(22)と、
     前記物標情報検出部により検出された前記物標の位置の変化に基づき、前記物標の進路を推定する物標進路推定部(23)と、
     自車両(CS)の進路を推定する自車進路推定部(24)と、
     前記物標進路推定部により推定された前記物標の進路と、前記自車進路推定部により推定された前記自車両の進路に基づき、前記自車両と前記物標とが衝突するか否かを判定する衝突判定部(25)と、
     前記衝突判定部により前記自車両と前記物標とが衝突すると判定された場合、前記自車両の車両制御を実行する車両制御部(26)と、
     前記車両制御の不作動領域(F1)を設定する領域設定部(27)と、を備え、
     前記領域設定部は、前記自車両の進行方向に直交する横方向において、前記物標が検出された位置を基準として所定範囲を前記不作動領域として設定する車両制御装置(20)。
  2.  前記取得部は、前記探査装置から自車両の後方における前記物標の検知情報を取得し、前記物標情報検出部は、自車両の後方において、少なくとも前記自車両が走行する自車線及び前記自車線に隣接する隣接車線に存在する物標の位置を検出するものであり、
     前記物標進路推定部は、自車両の後方から近づいてくる物標の進路を推定し、
     前記自車進路推定部は、自車両が後退する場合に、自車両の進路を推定する請求項1に記載の車両制御装置。
  3.  前記所定範囲は、前記横方向において、前記物標を中心として少なくとも車線の幅よりも広い範囲である請求項2に記載の車両制御装置。
  4.  前記横方向において、前記物標の位置と前記自車両の位置とが相違する場合、前記不作動領域は、前記横方向において、前記物標に対して少なくとも自車両の側に設定される請求項1~3のうちいずれか1項に記載の車両制御装置。
  5.  前記領域設定部は、前記物標が走行車両であると判定した場合、前記不作動領域を設定する請求項1~4のうちいずれか1項に記載の車両制御装置。
  6.  探査波を送信し、物標により反射された反射波を受信する探査装置からその反射波に基づく検知情報を取得するステップ(S101)と、
     前記検知情報に基づいて、前記物標の位置を検出するステップ(S103)と、
     検出された前記物標の位置の変化に基づき、前記物標の進路を推定するステップ(S107)と、
     自車両の進路を推定するステップ(S108)と、
     推定された前記物標の進路と、推定された前記自車両の進路に基づき、前記自車両と前記物標とが衝突するか否かを判定するステップ(S109)と、
     前記自車両と前記物標とが衝突すると判定された場合、前記自車両の車両制御を実行するステップ(S112)と、
     前記車両制御の不作動領域を設定するステップ(S105)と、を含み、
     前記自車両の進行方向に直交する横方向において、前記物標が検出された位置を基準として所定範囲が、不作動領域として設定される車両制御方法。
PCT/JP2017/039079 2016-11-17 2017-10-30 車両制御装置、及び車両制御方法 WO2018092564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017005803.1T DE112017005803B4 (de) 2016-11-17 2017-10-30 Fahrzeugsteuervorrichtung und fahrzeugsteuerverfahren
CN201780070625.7A CN109963759B (zh) 2016-11-17 2017-10-30 车辆控制装置以及车辆控制方法
US16/461,164 US11136013B2 (en) 2016-11-17 2017-10-30 Vehicle control apparatus and vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-224528 2016-11-17
JP2016224528A JP6574407B2 (ja) 2016-11-17 2016-11-17 車両制御装置、及び車両制御方法

Publications (1)

Publication Number Publication Date
WO2018092564A1 true WO2018092564A1 (ja) 2018-05-24

Family

ID=62146222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039079 WO2018092564A1 (ja) 2016-11-17 2017-10-30 車両制御装置、及び車両制御方法

Country Status (5)

Country Link
US (1) US11136013B2 (ja)
JP (1) JP6574407B2 (ja)
CN (1) CN109963759B (ja)
DE (1) DE112017005803B4 (ja)
WO (1) WO2018092564A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017011139A1 (de) * 2017-12-01 2019-06-06 Lucas Automotive Gmbh Bremssteuerung und Bremssteuerungsverfahren zum Ermitteln eines Brems-Korrekturwerts für Notbremsvorgänge
JP6939723B2 (ja) * 2018-07-02 2021-09-22 株式会社デンソー 衝突判定装置
CN108859955A (zh) * 2018-07-15 2018-11-23 合肥市智信汽车科技有限公司 一种车辆碰撞预警系统
JP7192600B2 (ja) * 2019-03-20 2022-12-20 株式会社デンソー 警報装置
CN110908385A (zh) * 2019-12-05 2020-03-24 深圳市大富科技股份有限公司 行驶路线确定方法及相关设备
CN115023745A (zh) * 2020-01-31 2022-09-06 三菱电机株式会社 前车判定装置及前车判定程序
CN112277799B (zh) * 2020-10-30 2023-01-06 重庆长安汽车股份有限公司 一种汽车盲区检测报警方法及系统
JP7472816B2 (ja) * 2021-02-12 2024-04-23 トヨタ自動車株式会社 注意喚起装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181654U (ja) * 1982-05-31 1983-12-03 日産ディーゼル工業株式会社 車両の安全走行補助装置
JP2011191237A (ja) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd 物標認識装置
JP2013161434A (ja) * 2012-02-08 2013-08-19 Toyota Motor Corp 車両の周辺監視装置
JP2016192164A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 物体検知装置、及び物体検知方法
JP2016192166A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 車両制御装置、及び車両制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304517B2 (ja) * 2005-11-09 2009-07-29 トヨタ自動車株式会社 物体検出装置
JP2007317018A (ja) 2006-05-26 2007-12-06 Toyota Motor Corp 衝突判定装置
DE102008040627A1 (de) 2008-07-23 2010-02-04 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betrieb eines Lenkassistenzsystems mit Adaption bei Umfeldobjektannäherung
DE102011016217A1 (de) 2011-04-06 2012-10-11 Connaught Electronics Ltd. Verfahren und Kamerasystem zum Warnen eines Fahrers eines Kraftfahrzeugs vor einer Kollisionsgefahr und Kraftfahrzeug mit einem Kamerasystem
EP2763120B1 (en) * 2011-09-26 2017-12-27 Toyota Jidosha Kabushiki Kaisha Vehicle driving assistance system
CN104246849B (zh) * 2012-03-19 2018-01-02 丰田自动车株式会社 防撞辅助装置
EP3007149B1 (en) * 2013-05-31 2021-01-20 Toyota Jidosha Kabushiki Kaisha Driving assistance device for vehicles and onboard computer
WO2014196049A1 (ja) * 2013-06-06 2014-12-11 本田技研工業株式会社 接触回避支援装置
JP6174516B2 (ja) * 2014-04-24 2017-08-02 本田技研工業株式会社 衝突回避支援装置、衝突回避支援方法、及びプログラム
JP6396838B2 (ja) * 2015-03-31 2018-09-26 株式会社デンソー 車両制御装置、及び車両制御方法
JP2016224528A (ja) 2015-05-27 2016-12-28 キヤノンマーケティングジャパン株式会社 情報処理システム、その制御方法及びプログラム
JP6609237B2 (ja) * 2016-11-17 2019-11-20 株式会社デンソー 衝突判定装置、及び衝突判定方法
US11630197B2 (en) * 2019-01-04 2023-04-18 Qualcomm Incorporated Determining a motion state of a target object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181654U (ja) * 1982-05-31 1983-12-03 日産ディーゼル工業株式会社 車両の安全走行補助装置
JP2011191237A (ja) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd 物標認識装置
JP2013161434A (ja) * 2012-02-08 2013-08-19 Toyota Motor Corp 車両の周辺監視装置
JP2016192164A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 物体検知装置、及び物体検知方法
JP2016192166A (ja) * 2015-03-31 2016-11-10 株式会社デンソー 車両制御装置、及び車両制御方法

Also Published As

Publication number Publication date
JP2018079846A (ja) 2018-05-24
DE112017005803T5 (de) 2019-09-19
DE112017005803B4 (de) 2024-05-02
CN109963759A (zh) 2019-07-02
CN109963759B (zh) 2022-07-05
US11136013B2 (en) 2021-10-05
US20190275993A1 (en) 2019-09-12
JP6574407B2 (ja) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6574407B2 (ja) 車両制御装置、及び車両制御方法
US10011278B2 (en) Collision avoidance system
JP6561584B2 (ja) 車両制御装置、及び車両制御方法
US10793096B2 (en) Vehicle control device with object detection
JP5905846B2 (ja) 横断判定装置およびプログラム
US9594166B2 (en) Object detecting apparatus
CN109952241B (zh) 碰撞判定装置以及碰撞判定方法
JP6609237B2 (ja) 衝突判定装置、及び衝突判定方法
WO2014024294A1 (ja) 車両の警報装置
US20160116584A1 (en) Object detection apparatus
JP2008149860A (ja) 走行制御装置
CN109997055B (zh) 碰撞判定装置以及碰撞判定方法
JP6657673B2 (ja) 車両制御装置および車両制御方法
US20230166730A1 (en) Vehicle control device
JP7328863B2 (ja) 制御装置
JP4857745B2 (ja) 車両の障害物検知装置
JP7265971B2 (ja) 制御装置
JP7275000B2 (ja) 制御装置
WO2017154471A1 (ja) 横断判定装置
JP7377054B2 (ja) 制御装置
JP2014019194A (ja) 車両の警報装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870761

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17870761

Country of ref document: EP

Kind code of ref document: A1