WO2018090768A1 - 充放电装置 - Google Patents

充放电装置 Download PDF

Info

Publication number
WO2018090768A1
WO2018090768A1 PCT/CN2017/105825 CN2017105825W WO2018090768A1 WO 2018090768 A1 WO2018090768 A1 WO 2018090768A1 CN 2017105825 W CN2017105825 W CN 2017105825W WO 2018090768 A1 WO2018090768 A1 WO 2018090768A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
energy storage
bidirectional
storage unit
conversion unit
Prior art date
Application number
PCT/CN2017/105825
Other languages
English (en)
French (fr)
Inventor
贺文涛
周岿
单浩仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17872769.9A priority Critical patent/EP3534484B1/en
Publication of WO2018090768A1 publication Critical patent/WO2018090768A1/zh
Priority to US16/411,635 priority patent/US10847991B2/en

Links

Images

Classifications

    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to electronic circuit technologies, and in particular, to a charging and discharging device.
  • Charge and discharge devices have been widely used in the field of vehicles, communications, etc.
  • the current charging and discharging devices on many high-end electric vehicles include: three types of power conversion modules: vehicle charger, vehicle DCDC, and vehicle inverter. And AC charging and discharging sockets, high-voltage power batteries and low-pressure lead-acid batteries.
  • the vehicle-mounted inverter includes: an AC/DC conversion unit and a DC/DC isolation conversion unit, wherein the AC/DC conversion unit is One end is connected to the AC charging and discharging socket, and the second end of the AC/DC converting unit is connected to the first end of the DC/DC isolating conversion unit, and the second end of the DC/DC isolating conversion unit is connected to the high voltage power battery
  • the in-vehicle charger includes: an AC/DC conversion unit and a DC/DC isolation conversion unit.
  • the vehicle DCDC includes: a DC/DC boost conversion unit and a DC/DC isolation conversion unit, The first end of the DC/DC boost converter unit is connected to the high voltage power battery, and the first end of the DC/DC boost converter unit is isolated from the DC/DC A first end connected to the switching unit, the DC / DC isolation transformation unit is connected to the second end of the low-voltage lead-acid battery.
  • the charging and discharging device includes a large number of units, thereby causing a problem that the charging and discharging device and the electric vehicle in which the device is located are heavy in weight.
  • Embodiments of the present invention provide a charging and discharging device to reduce the weight of a charging and discharging device and the weight of a device in which the charging and discharging device is located.
  • An embodiment of the present invention provides a charging and discharging device, comprising: an AC charging and discharging unit, a bidirectional AC/DC converting unit, a bidirectional DC/DC isolation conversion unit, and a first energy storage unit, which are sequentially connected in series, the charging and discharging device further comprising: at least a switching unit, a DC/DC isolation conversion unit and a second energy storage unit, wherein the first end of each switching unit is connected to the bidirectional DC/DC isolation conversion unit, and the second end of each switching unit and the DC/DC isolation conversion unit a first end connection, the second end of the DC/DC isolation conversion unit is connected to the second energy storage unit;
  • each switching unit When the first energy storage unit is charged by the AC charging and discharging unit or the first energy storage unit charges the device to be charged through the AC charging and discharging unit, each switching unit is in an off state, and when the first energy storage unit is in the second state When the energy storage unit is charged, one of the at least one switching unit is in an on state.
  • the bidirectional AC/DC conversion unit, the bidirectional DC/DC isolation conversion unit and the DC/DC isolation conversion unit in the charging and discharging device replace the AC/DC conversion unit and the DC/included in the prior art vehicle inverter.
  • the DC isolation conversion unit and the on-board charger include: an AC/DC conversion unit and a vehicle DCDC including: a DC/DC isolation conversion unit, a DC/DC boost conversion unit, and a DC/DC isolation conversion unit.
  • the charging and discharging device not only realizes the functions of the vehicle-mounted inverter, the in-vehicle charger, and the on-board DCDC in the prior art, but also reduces the number of units included in the charging and discharging device compared to the prior art, thereby reducing the charging and discharging device.
  • the at least one switch unit is a first switch unit, the first end of the first switch unit is connected to the first end of the bidirectional DC/DC isolation conversion unit, and the second end of the first switch unit is isolated from the DC/DC The first end of the conversion unit is connected, wherein the first end of the bidirectional DC/DC isolation conversion unit is one end connected to the bidirectional AC/DC conversion unit;
  • the first switching unit When the voltage value of the first energy storage unit is less than the voltage threshold, the first switching unit is in an on state to enable the first energy storage unit to charge the second energy storage unit.
  • the first energy storage unit outputs high voltage direct current, and flows to the bidirectional DC/DC isolation conversion unit, and the bidirectional DC/DC isolation conversion unit can perform voltage conversion on the high voltage direct current and output the converted direct current to the direct current/
  • the DC isolation conversion unit and the DC/DC isolation conversion unit can further implement the step-down, and output the voltage-adjusted DC power to the second energy storage unit.
  • the at least one switch unit is a second switch unit, the first end of the second switch unit is connected to the second end of the bidirectional DC/DC isolation conversion unit, and the second end of the second switch unit is isolated from the DC/DC The first end of the conversion unit is connected, wherein the second end of the bidirectional DC/DC isolation conversion unit is an end connected to the first energy storage unit;
  • the second switching unit When the voltage value of the first energy storage unit is greater than or equal to the voltage threshold, the second switching unit is in an on state, so that the first energy storage unit charges the second energy storage unit.
  • the first energy storage unit outputs high-voltage direct current, and flows to the DC/DC isolation conversion unit, and the DC/DC isolation conversion unit can implement the voltage reduction, and outputs the voltage-adjusted direct current to the second energy storage unit.
  • the at least one switch unit is a first switch unit and a second switch unit, and the first end of the first switch unit is connected to the first end of the bidirectional DC/DC isolation conversion unit, where a second end of the switching unit is connected to the first end of the DC/DC isolation conversion unit, wherein the first end of the bidirectional DC/DC isolation conversion unit is an end connected to the bidirectional AC/DC conversion unit a first end of the second switch unit is connected to a second end of the bidirectional DC/DC isolation conversion unit, and a second end of the second switch unit is coupled to a first end of the DC/DC isolation conversion unit connection;
  • the first switching unit When the voltage value of the first energy storage unit is less than a voltage threshold, the first switching unit is in an on state, and the second switching unit is in an off state, so that the first energy storage unit is in a state Charging the second energy storage unit;
  • the first switching unit When the voltage value of the first energy storage unit is greater than or equal to the voltage threshold, the first switching unit is in an off state, and the second switching unit is in an on state, so that the first storage The energy unit charges the second energy storage unit.
  • the first option may be referred to, and details are not described herein; when the first switch unit is in the off state, the second switch unit is For the on state, refer to the second optional mode, and details are not described herein again.
  • the bidirectional AC/DC conversion unit is a bridgeless power factor correction PFC circuit.
  • the bidirectional DC/DC isolation conversion unit is a bidirectional resonant conversion circuit.
  • the DC/DC isolation conversion unit is an LLC circuit.
  • An embodiment of the present invention provides a charging and discharging device, comprising: an AC charging and discharging unit, a bidirectional AC/DC conversion unit, a bidirectional DC/DC isolation conversion unit, and a first energy storage unit connected in series, and the device further includes: at least one switch a unit, a DC/DC isolation conversion unit and a second energy storage unit, wherein the first end of each switching unit is connected to the bidirectional DC/DC isolation conversion unit, and the second end of each switching unit is coupled to the DC/DC isolation conversion unit a first end connection, the second end of the DC/DC isolation conversion unit is connected to the second energy storage unit; and when the first energy storage unit is charged or the first energy storage device by the AC charging and discharging unit When the unit charges the device to be charged through the AC charging and discharging unit, then each of the switching units is in an off state, and when the first energy storage unit charges the second energy storage unit, the at least One of the switching units is in an on state.
  • the charging and discharging device not only realizes the functions of the vehicle-mounted inverter, the vehicle-mounted charger, and the vehicle-mounted DCDC in the prior art, but also reduces the number of units included in the charging and discharging device compared with the prior art, thereby reducing the charging and discharging device. Weight and the weight of the equipment in which the device is located.
  • FIG. 1 is a schematic structural view of a charge and discharge device provided by the prior art
  • FIG. 2 is a schematic structural diagram of a charging and discharging device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 1 of current flow according to an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of current flow according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 3 of current flow according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram 4 of current flow according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a charging and discharging device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a charging and discharging device according to still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a charging and discharging device according to still another embodiment of the present invention.
  • the charging and discharging device includes a large number of units, thereby causing a problem that the charging and discharging device and the electric vehicle in which the device is located are heavy.
  • Embodiments of the present invention provide a charging and discharging device.
  • FIG. 2 is a schematic structural diagram of a charging and discharging device according to an embodiment of the present invention.
  • the device includes: an AC charging and discharging unit, a bidirectional AC/DC conversion unit, and a bidirectional DC/DC isolation conversion in series. a unit and a first energy storage unit, the device further comprising: at least one switch unit (in FIG.
  • At least one switch unit is a first switch unit and a second switch unit as an example), a DC/DC isolation conversion unit and a second An energy storage unit, the first end of each switch unit is connected to the bidirectional DC/DC isolation conversion unit, and the second end of each switch unit is connected to the first end of the DC/DC isolation conversion unit, and the DC/DC isolation conversion unit is The second end is connected to the second energy storage unit;
  • each of the switching units When the first energy storage unit is charged by the AC charging and discharging unit or the first energy storage unit charges the device to be charged through the AC charging and discharging unit, each of the switching units is in an off state, when the first energy storage unit is When the second energy storage unit is charged, one of the at least one switching unit is in an on state.
  • FIG. 3 is a first schematic diagram of current flow according to an embodiment of the present invention.
  • the external alternating current of the electric vehicle passes through the AC charging and discharging unit and the bidirectional AC/DC. Transformation unit, A bidirectional DC/DC isolation conversion unit for charging the first energy storage unit.
  • the AC charging and discharging unit may be an AC charging and discharging socket or an AC charging and discharging interface;
  • the bidirectional AC/DC converting unit is configured to convert the input alternating current into direct current and output to the bidirectional DC/DC isolation conversion unit;
  • the DC/DC isolation conversion unit is configured to perform voltage conversion on the input DC power, and output the converted DC power to the first energy storage unit to charge the first energy storage unit, where the first energy storage unit may be a battery.
  • the first energy storage unit may be a battery.
  • it can be a high-voltage power battery.
  • FIG. 4 is a schematic diagram 2 of current flow according to an embodiment of the present invention.
  • the high voltage direct current of the first energy storage unit passes through a bidirectional DC/DC isolation conversion unit.
  • the bidirectional AC/DC conversion unit and the AC charging and discharging unit are configured to charge the device to be charged connected to the AC charging and discharging unit.
  • the bidirectional DC/DC isolation conversion unit is configured to perform voltage conversion on the DC high voltage DC power, and output the converted DC power to the bidirectional AC/DC conversion unit;
  • the bidirectional AC/DC conversion unit is configured to convert the input DC power It is an alternating current, and the alternating current is output to the alternating current charging and discharging unit to charge the device to be charged connected to the alternating current charging and discharging unit.
  • the charging and discharging device charges the device to be charged, it is equivalent to realizing the process of charging the device to be charged by the in-vehicle inverter in the prior art.
  • FIG. 5 is a schematic diagram 3 of current flow according to an embodiment of the present invention. As shown in FIG. 5, the first energy storage unit outputs high voltage direct current, and the high voltage direct current is passed. The first switching unit flows to the DC/DC isolation conversion unit, and the DC/DC isolation conversion unit is configured to convert the high voltage direct current into a low voltage direct current and output the low voltage direct current to the second energy storage unit.
  • FIG. 6 is a schematic diagram 4 of current flow according to an embodiment of the present invention. As shown in FIG. 6 , the first energy storage unit outputs high voltage direct current, and the high voltage direct current flows to the DC/DC isolation conversion unit through the second switching unit, and DC/DC isolation.
  • the transform unit is configured to convert the high voltage direct current into a low voltage direct current and output the low voltage direct current to the second energy storage unit.
  • the embodiment of the invention provides a charging and discharging device, wherein the bidirectional AC/DC conversion unit, the bidirectional DC/DC isolation conversion unit and the DC/DC isolation conversion unit in the charging and discharging device replace the prior art vehicle inverter system.
  • AC/DC converter unit and DC/DC isolation converter unit including: AC/DC converter unit and vehicle DCDC included: DC/DC isolation converter unit and DC/DC boost converter unit and
  • DC/DC isolating conversion unit reduces the number of units included in the charging and discharging device, thereby reducing the weight of the charging and discharging device and the weight of the device in which the device is located.
  • FIG. 7 is a schematic structural diagram of a charge and discharge device according to another embodiment of the present invention. As shown in FIG. One end is connected to the first end of the bidirectional DC/DC isolation conversion unit, and the second end of the first switching unit is connected to the first end of the DC/DC isolation conversion unit, wherein the first end of the bidirectional DC/DC isolation conversion unit An end connected to the bidirectional AC/DC conversion unit; when the voltage value of the first energy storage unit is less than a voltage threshold, the first switching unit is in an on state to enable the first energy storage unit to charge the second energy storage unit .
  • the first energy storage unit outputs high voltage direct current, and flows to the bidirectional DC/DC isolation conversion unit
  • the bidirectional DC/DC isolation conversion unit can perform voltage conversion on the high voltage direct current and output the converted direct current to the direct current/
  • the DC isolation conversion unit and the DC/DC isolation conversion unit can further implement the step-down, and output the voltage-adjusted DC power to the second energy storage unit.
  • the voltage threshold can be set according to actual conditions.
  • FIG. 8 is a schematic structural diagram of a charge and discharge device according to another embodiment of the present invention. As shown in FIG. One end is connected to the second end of the bidirectional DC/DC isolation conversion unit, and the second end of the second switching unit is connected to the first end of the DC/DC isolation conversion unit, wherein the second end of the bidirectional DC/DC isolation conversion unit An end connected to the first energy storage unit; when the voltage value of the first energy storage unit is greater than or equal to the voltage threshold, the second switching unit is in an on state, so that the first energy storage unit is to the second energy storage unit Charging.
  • the first energy storage unit outputs high-voltage direct current, and flows to the DC/DC isolation conversion unit, and the DC/DC isolation conversion unit can implement the voltage reduction, and outputs the voltage-adjusted direct current to the second energy storage unit.
  • At least one switch unit is a first switch unit and a second switch unit, and the first end of the first switch unit and the first end of the bidirectional DC/DC isolation conversion unit Connecting, the second end of the first switch unit is connected to the first end of the DC/DC isolation conversion unit, wherein the first end of the bidirectional DC/DC isolation conversion unit is one end connected to the bidirectional AC/DC conversion unit, and the second The first end of the switch unit is connected to the second end of the bidirectional DC/DC isolation conversion unit, and the second end of the second switch unit is connected to the first end of the DC/DC isolation conversion unit; when the voltage value of the first energy storage unit is When the voltage threshold is less than the voltage threshold, the first switching unit is in an on state, and the second switching unit is in an off state, so that the first energy storage unit charges the second energy storage unit; when the voltage value of the first energy storage unit is greater than or When the voltage threshold is equal to the voltage threshold, the first switching unit is in an off state, and the second
  • the first option when the first switch unit is in the on state and the second switch unit is in the off state, the first option may be referred to, and details are not described herein;
  • the second switch unit when the second switch unit is in the on state, the second optional mode may be referred to, and details are not described herein again.
  • the bidirectional DC/DC isolation conversion unit since the bidirectional DC/DC isolation conversion unit has the function of adjusting the voltage, when the first energy storage unit charges the second energy storage unit, the high voltage direct current output by the first energy storage unit passes through the bidirectional DC. / DC isolation converter unit or without bidirectional DC / DC isolation converter unit, will generate DC current with different voltage values, so the voltage supplied to the second energy storage unit is also different.
  • the bidirectional AC/DC conversion unit is a Bridgeless Power Factor Correction (PFC) circuit.
  • PFC Bridgeless Power Factor Correction
  • the bidirectional DC/DC isolation conversion unit is a bidirectional resonant conversion circuit.
  • the DC/DC isolation conversion unit is an LLC circuit.
  • FIG. 9 is a schematic structural diagram of a charging and discharging device according to another embodiment of the present invention.
  • the device includes: an AC charging and discharging unit connected in series, a bidirectional AC/DC conversion unit, and a bidirectional
  • the DC/DC isolation conversion unit and the first energy storage unit further include: a first switch unit and a second switch unit, a DC/DC isolation conversion unit, and a second energy storage unit, the first end of the first switch unit and the bidirectional The first end of the DC/DC isolation conversion unit is connected, and the second end of the first switching unit is connected to the first end of the DC/DC isolation conversion unit, wherein the first end of the bidirectional DC/DC isolation conversion unit is in two-way communication One end of the DC/DC conversion unit is connected, the first end of the second switch unit is connected to the second end of the bidirectional DC/DC isolation conversion unit, and the second end of the second switch unit is connected to the first end of the DC/DC isolation conversion unit When the voltage value of the first energy
  • the bidirectional AC/DC conversion unit includes: switch tubes S7, S8, S9, S10, S11 and S12, AC power supply Vac, inductor La, inductor Lb, wherein S7 and S8 are connected in series, S9 and S10 are connected in series, and S11 and S12 are connected in series.
  • the series circuit composed of S7 and S8 is connected in parallel with the series circuit composed of S9 and S10 and the series circuit composed of S11 and S12.
  • One end of the AC power supply Vac is connected to S11, the other end is connected to the inductor La, and the AC power supply Vac is also connected to the AC charging and discharging unit.
  • Connection, the other end of La is connected to the series circuit composed of S7 and S8, one end of Lb is connected with La, and the other end is connected to the series circuit composed of S9 and S10;
  • the bidirectional DC/DC isolation conversion unit comprises: a series connection switch tube S1-S6, a capacitor Cp, wherein one end of the capacitor Cp is connected with the anode of the bus line, and the other end is connected with the cathode of the bus line; the bidirectional DC/DC isolation conversion unit further comprises: The switch tube Sr1-Sr6, the capacitor Cs1, wherein one end of the capacitor Cs1 is connected to the anode of the first energy storage unit, and the other end is connected to the cathode of the first energy storage unit; further comprising: three three-port multi-element resonators and three transformers T1, T2 and T3, wherein the first end of the multi-element resonant cavity 1 is connected between S1 and S2, the second end of the multi-element resonant cavity 1 is connected to the negative electrode of the bus bar, and the third end of the multi-element resonant cavity 1 is The primary winding of T1 is connected, and the secondary winding of T1 is connected between Sr
  • the negative pole is connected, the third end of the multi-element resonator 2 is connected to the T2 primary winding, the secondary winding of T2 is connected between Sr3 and Sr4; the first end of the multi-element resonant cavity 3 is connected between S5 and S6, The second end of the multi-element resonator 3 and the negative electrode of the bus bar Connected, the third end of the multi-element resonator 3 is connected to the T3 primary winding, and the secondary winding of T3 is connected between Sr5 and Sr6.
  • the DC/DC isolation conversion unit includes: switch tubes Sd1-Sd4, inductor Lr, capacitor Cr and capacitor Cs2, and transformer T4, wherein Sd1 and Sd2 are connected in series, one end of Lr is connected between Sd1 and Sd2, and the other end is connected with Cr, Cr The other end is connected to one end of the T4 primary winding, the other end of the T4 primary winding is connected to Sd2, the first end of the T4 secondary winding is connected to Sd3, the second end is connected to Sd4, and the third end is connected to Cs2;
  • the first switching unit comprises two switching tubes, and the second switching unit also comprises two switching tubes.
  • the switch tube may be an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (MOSFET), or the like.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the embodiment of the invention provides a charging and discharging device, wherein the bidirectional AC/DC conversion unit, the bidirectional DC/DC isolation conversion unit and the DC/DC isolation conversion unit in the charging and discharging device replace the prior art vehicle inverter system.
  • AC/DC converter unit and DC/DC isolation converter unit including: AC/DC converter unit and vehicle DCDC included: DC/DC isolation converter unit and DC/DC boost converter unit and
  • DC/DC isolating conversion unit reduces the number of units included in the charging and discharging device, thereby reducing the weight of the charging and discharging device and the weight of the device in which the device is located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种充放电装置,包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,还包括:至少一个开关单元、直流/直流隔离变换单元和第二储能单元,每个开关单元的第一端与双向直流/直流隔离变换单元连接,每个开关单元的第二端与直流/直流隔离变换单元的第一端连接,直流/直流隔离变换单元的第二端与第二储能单元连接;当通过交流充放电单元向第一储能单元充电或者第一储能单元通过交流充放电单元向待充电设备充电时,则每个开关单元为断开状态,当第一储能单元向第二储能单元充电时,则至少一个开关单元中的一个开关单元为导通状态。从而减少了充放电装置以及该装置所在设备的重量。

Description

充放电装置
本申请要求于2016年11月15日提交中国专利局、申请号为201611026863.1、申请名称为“充放电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及电子电路技术,尤其涉及一种充放电装置。
背景技术
充放电装置在车载、通讯等领域得到了广泛的应用,例如:在车载领域中,目前许多高端电动车上的充放电装置包括:车载充电机、车载DCDC、车载逆变器三种功率变换模块以及交流充放电插座、高压动力电池和低压铅酸电池。
图1为现有技术提供的充放电装置的结构示意图,如图1所示,车载逆变器包括:交流/直流变换单元和直流/直流隔离变换单元,其中,该交流/直流变换单元的第一端与该交流充放电插座连接,该交流/直流变换单元的第二端与该直流/直流隔离变换单元的第一端连接,该直流/直流隔离变换单元的第二端与高压动力电池连接;车载充电机包括:交流/直流变换单元和直流/直流隔离变换单元,同样地,该交流/直流变换单元的第一端与该交流充放电插座连接,该交流/直流变换单元的第二端与该直流/直流隔离变换单元的第一端连接,该直流/直流隔离变换单元的第二端与高压动力电池连接;车载DCDC包括:直流/直流升压变换单元和直流/直流隔离变换单元,直流/直流升压变换单元的第一端与高压动力电池连接,直流/直流升压变换单元的第一端与该直流/直流隔离变换单元的第一端连接,直流/直流隔离变换单元的第二端与低压铅酸电池连接。
然而,现有技术中充放电装置包括的单元较多,从而造成充放电装置以及该装置所在的电动车等设备的重量较重的问题。
发明内容
本发明实施例提供一种充放电装置,以降低充放电装置的重量,以及充放电装置所在设备的重量。
本发明实施例提供一种充放电装置,包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,该充放电装置还包括:至少一个开关单元、直流/直流隔离变换单元和第二储能单元,每个开关单元的第一端与双向直流/直流隔离变换单元连接,每个开关单元的第二端与直流/直流隔离变换单元的第一端连接,直流/直流隔离变换单元的第二端与第二储能单元连接;
当通过交流充放电单元向第一储能单元充电或者第一储能单元通过交流充放电单元向待充电设备充电时,则每个开关单元为断开状态,当第一储能单元向第二储能单元充电时,则至少一个开关单元中的一个开关单元为导通状态。
由于该充放电装置中的双向交流/直流变换单元、双向直流/直流隔离变换单元和直流/直流隔离变换单元替代了现有技术中车载逆变器所包括的:交流/直流变换单元和直流/直流隔离变换单元,以及车载充电机所包括的:交流/直流变换单元和车载DCDC所包括的:直流/直流隔离变换单元以及直流/直流升压变换单元和直流/直流隔离变换单元。因此该充放电装置不仅实现了现有技术中车载逆变器、车载充电机以及车载DCDC的功能,而且相对于现有技术该充放电装置所包括的单元数减少了,从而减少了充放电装置的重量以及该装置所在设备的重量。
可选地,至少一个开关单元为一个第一开关单元,第一开关单元的第一端与双向直流/直流隔离变换单元的第一端连接,第一开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,双向直流/直流隔离变换单元的第一端为与双向交流/直流变换单元连接的一端;
当第一储能单元的电压值小于电压阈值时,则第一开关单元为导通状态,以使第一储能单元向第二储能单元充电。
这种情况下,第一储能单元输出高压直流电,流向双向直流/直流隔离变换单元,该双向直流/直流隔离变换单元可以对高压直流电进行电压变换,并将变换后的直流电输出至该直流/直流隔离变换单元,直流/直流隔离变换单元进一步也可以实现降压,将经过电压调整后的直流电输出至第二储能单元。
可选地,至少一个开关单元为一个第二开关单元,第二开关单元的第一端与双向直流/直流隔离变换单元的第二端连接,第二开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,所述双向直流/直流隔离变换单元的第二端为与第一储能单元连接的一端;
当所述第一储能单元的电压值大于或者等于电压阈值时,则所述第二开关单元为导通状态,以使所述第一储能单元向所述第二储能单元充电。
这种情况下,第一储能单元输出高压直流电,流向直流/直流隔离变换单元,直流/直流隔离变换单元可以实现降压,将经过电压调整后的直流电输出至第二储能单元。
可选地,至少一个开关单元为一个第一开关单元和一个第二开关单元,所述第一开关单元的第一端与所述双向直流/直流隔离变换单元的第一端连接,所述第一开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,其中,所述双向直流/直流隔离变换单元的第一端为与所述双向交流/直流变换单元连接的一端,所述第二开关单元的第一端与所述双向直流/直流隔离变换单元的第二端连接,所述第二开关单元的第二端与所述直流/直流隔离变换单元的第一端连接;
当所述第一储能单元的电压值小于电压阈值时,则所述第一开关单元为导通状态,所述第二开关单元为断开状态,以使所述第一储能单元向所述第二储能单元充电;
当所述第一储能单元的电压值大于或者等于所述电压阈值时,则所述第一开关单元为断开状态,所述第二开关单元为导通状态,以使所述第一储能单元向所述第二储能单元充电。
当第一开关单元为导通状态,第二开关单元为断开状态时,可参考第一种可选方式,在此不再赘述;当第一开关单元为断开状态,第二开关单元为导通状态时,可参考第二种可选方式,在此不再赘述。
可选地,所述双向交流/直流变换单元为无桥功率因数校正PFC电路。
可选地,所述双向直流/直流隔离变换单元为双向谐振变换电路。
可选地,所述直流/直流隔离变换单元为LLC电路。
本发明实施例提供一种充放电装置,包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,该装置还包括:至少一个开关单元、直流/直流隔离变换单元和第二储能单元,每个开关单元的第一端与双向直流/直流隔离变换单元连接,每个开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,直流/直流隔离变换单元的第二端与所述第二储能单元连接;当通过所述交流充放电单元向所述第一储能单元充电或者所述第一储能单元通过所述交流充放电单元向待充电设备充电时,则所述每个开关单元为断开状态,当所述第一储能单元向所述第二储能单元充电时,则所述至少一个开关单元中的一个开关单元为导通状态。该充放电装置不仅实现了现有技术中车载逆变器、车载充电机以及车载DCDC的功能,而且相对于现有技术该充放电装置所包括的单元数减少了,从而减少了充放电装置的重量以及该装置所在设备的重量。
附图说明
图1为现有技术提供的充放电装置的结构示意图;
图2为本发明一实施例提供的一种充放电装置的结构示意图;
图3为本发明一实施例提供的电流流向示意图一;
图4为本发明一实施例提供的电流流向示意图二;
图5为本发明一实施例提供的电流流向示意图三;
图6为本发明一实施例提供的电流流向示意图四;
图7为本发明另一实施例提供的一种充放电装置的结构示意图;
图8为本发明再一实施例提供的一种充放电装置的结构示意图;
图9为本发明又一实施例提供的一种充放电装置的结构示意图。
具体实施方式
针对现有技术中充放电装置包括的单元较多,从而造成充放电装置以及该装置所在的电动车等设备的重量较重的问题。本发明实施例提供一种充放电装置。
图2为本发明一实施例提供的一种充放电装置的结构示意图,如图2所示,该装置包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,该装置还包括:至少一个开关单元(图2中以至少一个开关单元为一个第一开关单元和第二开关单元为例)、直流/直流隔离变换单元和第二储能单元,每个开关单元的第一端与双向直流/直流隔离变换单元连接,每个开关单元的第二端与直流/直流隔离变换单元的第一端连接,直流/直流隔离变换单元的第二端与第二储能单元连接;
当通过交流充放电单元向第一储能单元充电或者所述第一储能单元通过交流充放电单元向待充电设备充电时,则每个开关单元为断开状态,当第一储能单元向第二储能单元充电时,则至少一个开关单元中的一个开关单元为导通状态。
示例性的,当该充放电装置应用于电动车时,图3为本发明一实施例提供的电流流向示意图一,如图3所示,电动车外部交流电经过交流充放电单元、双向交流/直流变换单元、 双向直流/直流隔离变换单元,以实现对第一储能单元充电。可选地,该交流充放电单元可以为交流充放电插座或者交流充放电接口等;双向交流/直流变换单元用于将输入的交流电转换为直流电,并输出至双向直流/直流隔离变换单元;双向直流/直流隔离变换单元用于对输入的直流电进行电压变换,并将转换后的直流电输出至第一储能单元,以实现向第一储能单元充电,该第一储能单元可以是电池,例如:可以是高压动力电池。综上,当充放电装置在向第一储能单元充电时,则相当于实现了现有技术中通过车载充电机向高压动力电池充电的过程。
充放电装置向待充电设备的充电过程为:图4为本发明一实施例提供的电流流向示意图二,如图4所示,第一储能单元的高压直流电经过双向直流/直流隔离变换单元、双向交流/直流变换单元、交流充放电单元,以实现对与交流充放电单元连接的待充电设备充电。可选地,双向直流/直流隔离变换单元用于对直流高压直流电进行电压变换,并将变换后的直流电输出至双向交流/直流变换单元;该双向交流/直流变换单元用于将输入的直流电转换为交流电,并将该交流电输出至交流充放电单元,以实现对与交流充放电单元连接的待充电设备充电。综上,当充放电装置向待充电设备充电时,则相当于实现了现有技术中通过车载逆变器向待充电设备充电的过程。
第一储能单元向第二储能单元的充电过程为:图5为本发明一实施例提供的电流流向示意图三,如图5所示,第一储能单元输出高压直流电,该高压直流电经过第一开关单元流向直流/直流隔离变换单元,直流/直流隔离变换单元用于将高压直流电转换成低压直流电,并将该低压直流电输出至第二储能单元。图6为本发明一实施例提供的电流流向示意图四,如图6所示,第一储能单元输出高压直流电,该高压直流电经过第二开关单元流向直流/直流隔离变换单元,直流/直流隔离变换单元用于将高压直流电转换成低压直流电,并将该低压直流电输出至第二储能单元。综上,当第一储能单元向第二储能单元的充电时,则相当于实现了现有技术中通过车载DCDC的功能。
本发明实施例提供一种充放电装置,由于该充放电装置中的双向交流/直流变换单元、双向直流/直流隔离变换单元和直流/直流隔离变换单元替代了现有技术中车载逆变器所包括的:交流/直流变换单元和直流/直流隔离变换单元,车载充电机所包括的:交流/直流变换单元和车载DCDC所包括的:直流/直流隔离变换单元以及直流/直流升压变换单元和直流/直流隔离变换单元,相对于现有技术,充放电装置所包括的单元数减少了,从而减少了充放电装置的重量以及该装置所在设备的重量。
第一种可选方式,至少一个开关单元为一个第一开关单元,图7为本发明另一实施例提供的一种充放电装置的结构示意图,如图7所示,第一开关单元的第一端与双向直流/直流隔离变换单元的第一端连接,第一开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,双向直流/直流隔离变换单元的第一端为与双向交流/直流变换单元连接的一端;当第一储能单元的电压值小于电压阈值时,则第一开关单元为导通状态,以使第一储能单元向第二储能单元充电。这种情况下,第一储能单元输出高压直流电,流向双向直流/直流隔离变换单元,该双向直流/直流隔离变换单元可以对高压直流电进行电压变换,并将变换后的直流电输出至该直流/直流隔离变换单元,直流/直流隔离变换单元进一步也可以实现降压,将经过电压调整后的直流电输出至第二储能单元。需要说明的是,该电压阈值可以根据实际情况设置。
第二种可选方式,至少一个开关单元为一个第二开关单元,图8为本发明再一实施例提供的一种充放电装置的结构示意图,如图8所示,第二开关单元的第一端与双向直流/直流隔离变换单元的第二端连接,第二开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,双向直流/直流隔离变换单元的第二端为与第一储能单元连接的一端;当第一储能单元的电压值大于或者等于电压阈值时,则第二开关单元为导通状态,以使第一储能单元向第二储能单元充电。这种情况下,第一储能单元输出高压直流电,流向直流/直流隔离变换单元,直流/直流隔离变换单元可以实现降压,将经过电压调整后的直流电输出至第二储能单元。
第三种可选方式,如图2所示,至少一个开关单元为一个第一开关单元和一个第二开关单元,第一开关单元的第一端与双向直流/直流隔离变换单元的第一端连接,第一开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,双向直流/直流隔离变换单元的第一端为与双向交流/直流变换单元连接的一端,第二开关单元的第一端与双向直流/直流隔离变换单元的第二端连接,第二开关单元的第二端与直流/直流隔离变换单元的第一端连接;当第一储能单元的电压值小于电压阈值时,则第一开关单元为导通状态,第二开关单元为断开状态,以使第一储能单元向第二储能单元充电;当第一储能单元的电压值大于或者等于电压阈值时,则第一开关单元为断开状态,第二开关单元为导通状态,以使第一储能单元向第二储能单元充电。需要说明的是,这种情况下,当第一开关单元为导通状态,第二开关单元为断开状态时,可参考第一种可选方式,在此不再赘述;当第一开关单元为断开状态,第二开关单元为导通状态时,可参考第二种可选方式,在此不再赘述。
本发明实施例中,由于双向直流/直流隔离变换单元具有调整电压的功能,因此当第一储能单元向第二储能单元的充电时,第一储能单元所输出的高压直流电经过双向直流/直流隔离变换单元或者不经过双向直流/直流隔离变换单元,会产生具有不同的电压值的直流电流,从而向第二储能单元所提供的电压也不同。
可选地,双向交流/直流变换单元为无桥功率因数校正(Power Factor Correction,简称PFC)电路。
可选地,双向直流/直流隔离变换单元为双向谐振变换电路。
可选地,直流/直流隔离变换单元为LLC电路。
示例性的,图9为本发明又一实施例提供的一种充放电装置的结构示意图,如图9所示,该装置包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,还包括:一个第一开关单元和第二开关单元、直流/直流隔离变换单元和第二储能单元,第一开关单元的第一端与双向直流/直流隔离变换单元的第一端连接,第一开关单元的第二端与直流/直流隔离变换单元的第一端连接,其中,双向直流/直流隔离变换单元的第一端为与双向交流/直流变换单元连接的一端,第二开关单元的第一端与双向直流/直流隔离变换单元的第二端连接,第二开关单元的第二端与直流/直流隔离变换单元的第一端连接;当第一储能单元的电压值小于电压阈值时,则第一开关单元为导通状态,第二开关单元为断开状态,以使第一储能单元向第二储能单元充电;当第一储能单元的电压值大于或者等于电压阈值时,则第一开关单元为断开状态,第二开关单元为导通状态,以使第一储能单元向第二储能单元充电,直流/直流隔离变换单元的第二端与第二储能单元连接;
其中,双向交流/直流变换单元包括:开关管S7、S8、S9、S10、S11和S12,交流电源Vac,电感La、电感Lb,其中S7、S8串联,S9、S10串联,S11、S12串联,S7、S8组成的串联电路与S9、S10组成的串联电路以及S11、S12组成的串联电路并联,交流电源Vac一端与S11连接,另一端与电感La连接,并且交流电源Vac还与交流充放电单元连接,La的另一端接在S7、S8组成的串联电路上,Lb的一端与La连接,另一端接在S9、S10组成的串联电路上;
双向直流/直流隔离变换单元包括:串联的开关管S1-S6,电容Cp,其中电容Cp一端与母线的正极连接,另一端与母线的负极连接;双向直流/直流隔离变换单元还包括:串联的开关管Sr1-Sr6,电容Cs1,其中电容Cs1一端与第一储能单元的正极连接,另一端与第一储能单元的负极连接;还包括:三个三端口多元件谐振腔以及三个变压器T1、T2和T3,其中,多元件谐振腔1的第一端连接在S1和S2之间,多元件谐振腔1的第二端与母线的负极连接,多元件谐振腔1的第三端与T1原边绕组连接,T1的副边绕组连接在Sr1和Sr2之间;同样的,多元件谐振腔2的第一端连接在S3和S4之间,多元件谐振腔2的第二端与母线的负极连接,多元件谐振腔2的第三端与T2原边绕组连接,T2的副边绕组连接在Sr3和Sr4之间;多元件谐振腔3的第一端连接在S5和S6之间,多元件谐振腔3的第二端与母线的负极连接,多元件谐振腔3的第三端与T3原边绕组连接,T3的副边绕组连接在Sr5和Sr6之间。
直流/直流隔离变换单元包括:开关管Sd1-Sd4,电感Lr、电容Cr和电容Cs2、变压器T4,其中Sd1和Sd2串联,Lr的一端连接在Sd1和Sd2之间,另一端与Cr连接,Cr的另一端与T4原边绕组的一端连接,T4原边绕组的另一端与Sd2连接,T4副边绕组的第一端与Sd3连接,第二端与Sd4连接,第三端与Cs2连接;
第一开关单元包括两个开关管,第二开关单元同样包括两个开关管。
可选地,上述开关管可以是绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,简称IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,简称MOSFET)等。
本发明实施例提供一种充放电装置,由于该充放电装置中的双向交流/直流变换单元、双向直流/直流隔离变换单元和直流/直流隔离变换单元替代了现有技术中车载逆变器所包括的:交流/直流变换单元和直流/直流隔离变换单元,车载充电机所包括的:交流/直流变换单元和车载DCDC所包括的:直流/直流隔离变换单元以及直流/直流升压变换单元和直流/直流隔离变换单元,相对于现有技术,充放电装置所包括的单元数减少了,从而减少了充放电装置的重量以及该装置所在设备的重量。

Claims (7)

  1. 一种充放电装置,其特征在于,包括:依次串联的交流充放电单元、双向交流/直流变换单元、双向直流/直流隔离变换单元和第一储能单元,所述装置还包括:至少一个开关单元、直流/直流隔离变换单元和第二储能单元,每个开关单元的第一端与所述双向直流/直流隔离变换单元连接,所述每个开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,所述直流/直流隔离变换单元的第二端与所述第二储能单元连接;
    当通过所述交流充放电单元向所述第一储能单元充电或者所述第一储能单元通过所述交流充放电单元向待充电设备充电时,则所述每个开关单元为断开状态,当所述第一储能单元向所述第二储能单元充电时,则所述至少一个开关单元中的一个开关单元为导通状态。
  2. 根据权利要求1所述的充放电装置,其特征在于,所述至少一个开关单元为一个第一开关单元,所述第一开关单元的第一端与所述双向直流/直流隔离变换单元的第一端连接,所述第一开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,其中,所述双向直流/直流隔离变换单元的第一端为与所述双向交流/直流变换单元连接的一端;
    当所述第一储能单元的电压值小于电压阈值时,则所述第一开关单元为导通状态,以使所述第一储能单元向所述第二储能单元充电。
  3. 根据权利要求1所述充放电装置,其特征在于,所述至少一个开关单元为一个第二开关单元,所述第二开关单元的第一端与所述双向直流/直流隔离变换单元的第二端连接,所述第二开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,其中,所述双向直流/直流隔离变换单元的第二端为与所述第一储能单元连接的一端;
    当所述第一储能单元的电压值大于或者等于电压阈值时,则所述第二开关单元为导通状态,以使所述第一储能单元向所述第二储能单元充电。
  4. 根据权利要求1所述的充放电装置,其特征在于,所述至少一个开关单元为一个第一开关单元和一个第二开关单元,所述第一开关单元的第一端与所述双向直流/直流隔离变换单元的第一端连接,所述第一开关单元的第二端与所述直流/直流隔离变换单元的第一端连接,其中,所述双向直流/直流隔离变换单元的第一端为与所述双向交流/直流变换单元连接的一端,所述第二开关单元的第一端与所述双向直流/直流隔离变换单元的第二端连接,所述第二开关单元的第二端与所述直流/直流隔离变换单元的第一端连接;
    当所述第一储能单元的电压值小于电压阈值时,则所述第一开关单元为导通状态,所述第二开关单元为断开状态,以使所述第一储能单元向所述第二储能单元充电;
    当所述第一储能单元的电压值大于或者等于所述电压阈值时,则所述第一开关单元为断开状态,所述第二开关单元为导通状态,以使所述第一储能单元向所述第二储能单元充电。
  5. 根据权利要求1-4任一项所述的充放电装置,其特征在于,所述双向交流/直流变换单元为无桥功率因数校正PFC电路。
  6. 根据权利要求1-5任一项所述的充放电装置,其特征在于,所述双向直流/直流隔离变换单元为双向谐振变换电路。
  7. 根据权利要求1-6任一项所述的充放电装置,其特征在于,所述直流/直流隔离变换 单元为LLC电路。
PCT/CN2017/105825 2016-11-15 2017-10-12 充放电装置 WO2018090768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17872769.9A EP3534484B1 (en) 2016-11-15 2017-10-12 Charge and discharge device
US16/411,635 US10847991B2 (en) 2016-11-15 2019-05-14 Multiple bidirectional converters for charging and discharging of energy storage units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611026863.1A CN108092371B (zh) 2016-11-15 2016-11-15 充放电装置
CN201611026863.1 2016-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/411,635 Continuation US10847991B2 (en) 2016-11-15 2019-05-14 Multiple bidirectional converters for charging and discharging of energy storage units

Publications (1)

Publication Number Publication Date
WO2018090768A1 true WO2018090768A1 (zh) 2018-05-24

Family

ID=62145932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105825 WO2018090768A1 (zh) 2016-11-15 2017-10-12 充放电装置

Country Status (4)

Country Link
US (1) US10847991B2 (zh)
EP (1) EP3534484B1 (zh)
CN (1) CN108092371B (zh)
WO (1) WO2018090768A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791739B2 (en) * 2018-01-25 2023-10-17 Auckland Uniservices Limited AC-AC converter
JP6969505B2 (ja) * 2018-06-13 2021-11-24 株式会社オートネットワーク技術研究所 車載用の電源制御装置および車載用電源システム
US10483862B1 (en) * 2018-10-25 2019-11-19 Vanner, Inc. Bi-directional isolated DC-DC converter for the electrification of transportation
KR20200115785A (ko) * 2019-03-26 2020-10-08 현대자동차주식회사 양방향 완속 충전기 및 그 제어 방법
CN112039173B (zh) * 2019-06-03 2022-11-11 北京新能源汽车股份有限公司 电动汽车的双向充电电路及其控制方法、控制设备及汽车
US20200395774A1 (en) * 2019-06-17 2020-12-17 Renesas Electronics America Inc. Single inductor multiple output charger for multiple battery applications
CN112398329B (zh) * 2019-08-14 2021-08-31 台达电子工业股份有限公司 双向功率因数校正模块
CN111682615A (zh) * 2020-06-18 2020-09-18 格力博(江苏)股份有限公司 充电控制电路、充电装置及充电系统
FR3124905A1 (fr) * 2021-06-30 2023-01-06 Valeo Systemes De Controle Moteur Système de conversion de tension et véhicule automobile comportant un tel système
CN113752885B (zh) * 2021-07-05 2023-05-02 深圳市誉娇诚科技有限公司 一种可支持直流充电国标的电动汽车充电宝

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746419A (zh) * 2013-12-30 2014-04-23 联合汽车电子有限公司 车载充电器电路
CN104734312A (zh) * 2013-12-20 2015-06-24 Ls产电株式会社 电力转换设备
CN105226989A (zh) * 2014-06-27 2016-01-06 联合汽车电子有限公司 新能源汽车的电力电子集成系统及其工作方法
CN105799529A (zh) * 2016-03-10 2016-07-27 北京航空航天大学 一种电动汽车车载充电机和dcdc集成装置

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2356322A1 (de) * 1973-11-10 1975-05-15 Henkel & Cie Gmbh Schmiermittel fuer die kaltbearbeitung von aluminium und aluminiumlegierungen
JPH05137267A (ja) * 1991-11-12 1993-06-01 Dia Semikon Syst Kk 電源装置
US6043629A (en) * 1998-11-03 2000-03-28 Hughes Electronics Corporation Modular control electronics for batteries
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
JP4096430B2 (ja) * 1998-12-10 2008-06-04 松下電器産業株式会社 燃料電池装置
US6370050B1 (en) * 1999-09-20 2002-04-09 Ut-Batelle, Llc Isolated and soft-switched power converter
US6700802B2 (en) * 2000-02-14 2004-03-02 Aura Systems, Inc. Bi-directional power supply circuit
JP4550363B2 (ja) * 2001-02-16 2010-09-22 シーメンス アクチエンゲゼルシヤフト 自動車用電気システム
US7137344B2 (en) * 2001-03-27 2006-11-21 General Electric Company Hybrid energy off highway vehicle load control system and method
US6906933B2 (en) * 2002-11-01 2005-06-14 Powerware Corporation Power supply apparatus and methods with power-factor correcting bypass mode
JP2004282827A (ja) * 2003-03-13 2004-10-07 Honda Motor Co Ltd 発電装置
JP4164050B2 (ja) * 2004-07-29 2008-10-08 株式会社日立製作所 系統連系装置
JP2008517582A (ja) * 2004-10-20 2008-05-22 シーメンス ヴィディーオー オートモーティヴ コーポレイション 電力システム、方法および装置
JP4628142B2 (ja) * 2005-03-03 2011-02-09 パナソニック株式会社 ポーラ変調送信装置、無線通信機及び電源電圧制御方法
JP4719567B2 (ja) * 2005-12-21 2011-07-06 日立オートモティブシステムズ株式会社 双方向dc−dcコンバータおよびその制御方法
JP2007236064A (ja) * 2006-02-28 2007-09-13 Daikin Ind Ltd 蓄電装置
JP4431119B2 (ja) * 2006-03-28 2010-03-10 パナソニック株式会社 充電器
JP4861040B2 (ja) * 2006-04-06 2012-01-25 株式会社日立製作所 単方向dc−dcコンバータ
JP5208374B2 (ja) * 2006-04-18 2013-06-12 シャープ株式会社 系統連系パワーコンディショナおよび系統連系電源システム
US7832513B2 (en) * 2006-07-14 2010-11-16 Gm Global Technology Operations, Inc. Vehicular electrical system and control method therefor
CA2657758C (en) * 2006-08-09 2013-03-26 Mitsubishi Electric Corporation Power converter and controller using such converter for electric rolling stock
JP4263736B2 (ja) * 2006-10-31 2009-05-13 Tdk株式会社 スイッチング電源装置
CN101364741B (zh) * 2007-08-09 2012-03-28 鸿富锦精密工业(深圳)有限公司 手机充电器
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
US8188692B2 (en) * 2008-11-21 2012-05-29 General Electric Company Propulsion system
US7960857B2 (en) * 2008-12-02 2011-06-14 General Electric Company System and method for vehicle based uninterruptable power supply
JP3176361U (ja) * 2009-06-15 2012-06-21 ホン チャウ,ハク フォールトトレラントモジュール電池管理システム
WO2011049732A2 (en) * 2009-10-21 2011-04-28 Morningstar Corporation Maximum power point tracking bidirectional charge controllers for photovoltaic systems
US20110100735A1 (en) * 2009-11-05 2011-05-05 Ise Corporation Propulsion Energy Storage Control System and Method of Control
KR101084214B1 (ko) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
DE112011102229T5 (de) * 2010-06-29 2013-06-06 Honda Motor Co., Ltd. Elektrisches Automobil
JP5459408B2 (ja) * 2010-10-21 2014-04-02 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法ならびに電動車両
US8963482B2 (en) * 2010-12-16 2015-02-24 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for electrically powered vehicle and method for controlling the same
CN102593878B (zh) 2011-01-12 2014-03-19 台达电子工业股份有限公司 具有交流与直流充电功能的移动载具充电装置
JP5726555B2 (ja) * 2011-02-01 2015-06-03 田淵電機株式会社 太陽光発電システム
JP5621633B2 (ja) * 2011-02-02 2014-11-12 トヨタ自動車株式会社 電源装置
US9350265B2 (en) * 2011-03-29 2016-05-24 Sony Corporation AC tied inverter, system and method
CN103492222B (zh) * 2011-04-22 2016-01-20 三菱电机株式会社 充电装置
US8829826B2 (en) * 2011-08-25 2014-09-09 Hamilton Sundstrand Corporation Regenerative load electric power management systems and methods
CN104024030B (zh) * 2011-11-04 2017-04-12 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及电源系统的控制方法
DE102012203467A1 (de) * 2012-03-06 2013-09-12 Continental Automotive Gmbh Bordnetz für ein Fahrzeug
EP2823987B1 (en) * 2012-03-07 2019-06-19 Toyota Jidosha Kabushiki Kaisha Electric-powered vehicle and method for controlling same
JP5433819B1 (ja) * 2012-05-25 2014-03-05 パナソニック株式会社 車載用電源装置及び太陽光発電装置
JP5673633B2 (ja) * 2012-06-01 2015-02-18 株式会社デンソー 車載充電制御装置
JP6111536B2 (ja) * 2012-06-01 2017-04-12 マツダ株式会社 車両用電源制御方法及び装置
WO2014011706A1 (en) * 2012-07-09 2014-01-16 Inertech Ip Llc Transformerless multi-level medium-voltage uninterruptible power supply (ups) systems and methods
US9711962B2 (en) * 2012-07-09 2017-07-18 Davide Andrea System and method for isolated DC to DC converter
US20140197681A1 (en) * 2012-07-30 2014-07-17 The Boeing Company Electric system stabilizing system for aircraft
US9878635B1 (en) * 2013-02-13 2018-01-30 University Of Maryland Powertrain system in plug-in electric vehicles
AT514357B1 (de) * 2013-05-23 2015-03-15 Fronius Int Gmbh Verfahren zum Steuern eines akkubetriebenen Schweißgeräts
WO2014196121A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 充放電装置
EP3021474B1 (en) * 2013-07-11 2018-10-24 Fuji Electric Co., Ltd. Bidirectional dc-to-dc converter
EP2833531B1 (en) * 2013-07-31 2016-09-21 ABB Schweiz AG Bi-directional battery converter and balancer for an electric energy storage of a power supply system
US9527401B2 (en) * 2014-01-23 2016-12-27 Johnson Controls Technology Company Semi-active architectures for batteries having two different chemistries
DE102013225493A1 (de) * 2013-08-12 2015-02-12 Hyundai Motor Company Umwandlervorrichtung und -verfahren eines Elektrofahrzeugs
JP6456386B2 (ja) * 2013-08-23 2019-01-23 アーベーベー テクノロジー アクチエンゲゼルシャフトABB Technology AG 重要鉄道設備用電源
US20160268834A1 (en) * 2014-01-08 2016-09-15 Mediatek Inc. Wireless power receiver with dynamically configurable power path
JP6511224B2 (ja) * 2014-04-23 2019-05-15 日立オートモティブシステムズ株式会社 電源装置
WO2015192133A2 (en) * 2014-06-13 2015-12-17 University Of Maryland An integrated dual-output grid-to-vehicle (g2v) and vehicle-to-grid (v2g) onboard charger for plug-in electric vehicles
ES2851675T3 (es) * 2014-07-21 2021-09-08 Huawei Tech Co Ltd Convertidor CC-CC bidireccional
US9889752B2 (en) * 2014-08-19 2018-02-13 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US10079496B2 (en) * 2014-09-03 2018-09-18 Mophie Inc. Systems for managing charging devices based on battery health information
KR101637720B1 (ko) * 2014-11-07 2016-07-08 현대자동차주식회사 연료전지 시스템의 제어 방법
JP6397757B2 (ja) * 2014-12-26 2018-09-26 日立オートモティブシステムズ株式会社 電源装置
US9758047B2 (en) * 2015-02-13 2017-09-12 Mcmaster University Dual voltage charging system with an integrated active filter auxiliary power module
CN104682430B (zh) * 2015-02-16 2016-08-17 东北大学 一种应用于能源互联网的能源路由器装置
US10097017B2 (en) * 2015-06-24 2018-10-09 Apple Inc. Systems and methods for bidirectional two-port battery charging with boost functionality
US10333398B2 (en) * 2015-08-06 2019-06-25 Hitachi Automotive Systems, Ltd. Charging apparatus
US10277029B2 (en) * 2015-09-30 2019-04-30 Tesla Motors, Inc. Energy storage system with dual-active-bridge converter
KR20170126053A (ko) * 2016-05-04 2017-11-16 현대자동차주식회사 양방향 파워링이 가능한 차량용 충전기, 이를 포함하는 차량 전력 공급 시스템 및 그 제어방법
US10608291B2 (en) * 2016-05-20 2020-03-31 Spiers New Technologies, Inc. Battery pack having a supplemental power supply
US10291052B2 (en) * 2016-05-25 2019-05-14 Fairchild Semiconductor Corporation Bypass charging circuit and method
DE102016006549A1 (de) * 2016-05-25 2017-11-30 Leopold Kostal Gmbh & Co. Kg Bidirektionale Gleichspannungswandleranordnung
JP6372528B2 (ja) * 2016-07-15 2018-08-15 トヨタ自動車株式会社 メインバッテリユニット
CN106374559B (zh) * 2016-09-14 2021-08-20 华为技术有限公司 串联电池组的快速充电方法及相关设备
CN106374560B (zh) * 2016-09-14 2020-01-10 华为技术有限公司 并联电池组的快速充电方法及相关设备
CN107867186B (zh) * 2016-09-27 2021-02-23 华为技术有限公司 电动汽车以及电动汽车之间充电的方法
US9979291B2 (en) * 2016-10-26 2018-05-22 Futurewei Technologies, Inc. Inverter apparatus
CN108808754B (zh) * 2017-05-03 2020-10-16 华为技术有限公司 分布式电池、电池控制方法与电动汽车
JP6527906B2 (ja) * 2017-05-18 2019-06-05 矢崎総業株式会社 電力分配システム
JP6546617B2 (ja) * 2017-05-18 2019-07-17 矢崎総業株式会社 電力分配システム
FR3066655B1 (fr) * 2017-05-19 2019-07-19 Valeo Siemens Eautomotive France Sas Systeme de chargeur electrique pour vehicule electrique ou hybride
CN108973703B (zh) * 2017-06-01 2020-09-08 杭州富特科技股份有限公司 车载充电系统
DK3483106T3 (da) * 2017-11-08 2020-08-31 Kone Corp Elevator automatisk og manuel redningsoperation
KR102022705B1 (ko) * 2017-11-13 2019-09-18 주식회사 이진스 전기자동차용 충전 및 저전압 변환 복합회로
US10946756B2 (en) * 2017-11-14 2021-03-16 Ford Global Technologies, Llc Bidirectional integrated charger for a vehicle battery
US10148124B1 (en) * 2018-01-05 2018-12-04 Channel Well Technology Co., Ltd. Uninterrupted power bank capable of supplying high DC voltage during interruption of main supply and providing AC voltage as normal supply of the main supply
US10747284B2 (en) * 2018-03-27 2020-08-18 Intel Corporation Supplemental power reception by bypassing voltage regulator
CN108565959B (zh) * 2018-04-17 2020-08-21 厦门拓宝科技有限公司 一种用于房车供电的服务电池充电管理装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734312A (zh) * 2013-12-20 2015-06-24 Ls产电株式会社 电力转换设备
CN103746419A (zh) * 2013-12-30 2014-04-23 联合汽车电子有限公司 车载充电器电路
CN105226989A (zh) * 2014-06-27 2016-01-06 联合汽车电子有限公司 新能源汽车的电力电子集成系统及其工作方法
CN105799529A (zh) * 2016-03-10 2016-07-27 北京航空航天大学 一种电动汽车车载充电机和dcdc集成装置

Also Published As

Publication number Publication date
CN108092371B (zh) 2020-04-03
US20190267827A1 (en) 2019-08-29
US10847991B2 (en) 2020-11-24
EP3534484A1 (en) 2019-09-04
EP3534484A4 (en) 2019-09-04
EP3534484B1 (en) 2020-12-09
CN108092371A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2018090768A1 (zh) 充放电装置
CN107650729B (zh) 新能源汽车的高压电器的预充电装置
US9499060B2 (en) Power conversion device
WO2019062086A1 (zh) 一种带逆变功能的三端口充电机
CN109728624A (zh) 车载充放电系统
JP2016019463A (ja) パルス幅変調共振コンバータおよびこれを利用した車両用充電器
US10574144B1 (en) System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle
CN103872728A (zh) 一种多功能一体化电动汽车车载充电机
TW201822428A (zh) 一種雙向車載充放電系統及其方法
CN203774850U (zh) 具有模式切换功能的多功能一体化电动汽车车载充电机
EP3255771A1 (en) Bidirectional dc-dc convertor
WO2022083219A1 (zh) 一种电驱动系统、动力总成以及电动汽车
CN108964469A (zh) 一种并串联结构的全桥双llc谐振变换器
KR20220029522A (ko) 단일단 교류 직류 변환기
CN112350607A (zh) 具双向功率转换的三相电源装置
CN212289535U (zh) 一种双向车载充电机及电动汽车
CN203840038U (zh) 基于全控型器件的多功能一体化车载充电机
CN105763065A (zh) 一种可适用不同输入电压的车载逆变装置
CN110190656A (zh) 串联电池组均衡充放电系统
CN107612352A (zh) 一种分段高效率的移相电源
WO2021062788A1 (zh) 一种车载充、放电装置及其充放电系统和新能源汽车
CN210350838U (zh) 车载充放电系统
CN210327121U (zh) 车载充放电系统
CN114228520A (zh) 一种用于无线充电的组合供电系统
CN109494841B (zh) 一种蓄电池充电装置主电路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872769

Country of ref document: EP

Effective date: 20190529