WO2018090653A1 - 生理监测传感带的封装方法 - Google Patents

生理监测传感带的封装方法 Download PDF

Info

Publication number
WO2018090653A1
WO2018090653A1 PCT/CN2017/092780 CN2017092780W WO2018090653A1 WO 2018090653 A1 WO2018090653 A1 WO 2018090653A1 CN 2017092780 W CN2017092780 W CN 2017092780W WO 2018090653 A1 WO2018090653 A1 WO 2018090653A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
hot melt
melt
physiological monitoring
regions
Prior art date
Application number
PCT/CN2017/092780
Other languages
English (en)
French (fr)
Inventor
郎佳星
王珊
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2018090653A1 publication Critical patent/WO2018090653A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components

Definitions

  • the invention belongs to the technical field of monitoring equipment, and particularly relates to a packaging method for a physiological monitoring sensor belt.
  • the first packaging method uses double-sided tape to bond two flexible package sheets on both sides of the physiological monitoring sensor strip.
  • the main problem is that the double-sided tape is easy to gradually reduce the bonding strength due to aging, resulting in a flexible package.
  • the film gradually separated from the physiological monitoring sensor band over time.
  • the second packaging method uses an integral hot-melt method to bond two flexible encapsulating sheets on both sides of the physiological monitoring sensor strip.
  • the main problem is that the whole hot-melt package will discharge the gas in the physiological monitoring sensor strip.
  • the performance of the physiological monitoring sensor strip after packaging is significantly reduced.
  • the present invention provides a method for packaging a physiological monitoring sensor strip, which not only improves the service life of the connection between the flexible encapsulating sheet and the physiological monitoring sensor strip, but The flexible encapsulating sheet is prevented from gradually separating from the physiological monitoring sensor belt over time, and the physiological monitoring of the gas in the sensing strip is prevented from being discharged in the hot melting step, thereby improving the performance of the physiological monitoring sensor strip after packaging. .
  • the invention provides a method for packaging a physiological monitoring sensor strip, the steps comprising: a laminating step of the first flexible encapsulating sheet, the first hot melt adhesive film, the physiological monitoring sensing strip, the second hot melt adhesive film and the first
  • the two flexible encapsulating sheets are sequentially laminated to form a group to be hot-melted to be heat-melted; and the hot-melting step sequentially divides the group to be hot-melted into a plurality of hot-melt regions along the length direction of the group to be thermally fusible Heat-melting each of the hot melt regions to make the first flexible encapsulating sheet, the first hot melt adhesive film, the physiological monitoring sensor strip, and the second hot melt adhesive film in each of the hot melt regions And the second flexible encapsulating sheet is sequentially joined.
  • the number of times of heat fusion is the same as the number of the hot melt regions.
  • each of the hot-melt regions is sequentially melted along the length direction of the group to be hot-melt.
  • the number of hot melts is less than the number of the hot melt regions.
  • the odd-numbered times of the hot-melt is a heat fusion of the hot-melt regions at two odd-numbered positions
  • the even-numbered times of the hot-melt is the said two even-numbered positions
  • the hot melt is performed by the hot melt zone, and another hot melt zone is spaced between the hot melt zones of the two odd or even positions that are hot melted each time.
  • the number of times of hot-melting is two, wherein one-time of the hot-melt is hot-melting of the hot-melt regions of all even-numbered positions, and the other heat-melting is for all Hot melt of the hot melt region at odd locations.
  • each of the hot melt regions is identical.
  • first and second hot melt adhesive films are respectively selected from one of a copolyester type hot melt adhesive film, a copolyamide type hot melt adhesive film or a polyurethane type hot melt adhesive film.
  • the hot melt region selects a hot melt temperature of 150 ° C to 300 ° C, and the hot melt pressure 0.01MPa ⁇ 0.2MPa, hot melt time 8 ⁇ 15s.
  • the flexible encapsulating sheet is selected to be a microfiber cloth, a PU (polyurethane) or a super fiber cloth.
  • the method for packaging the physiological monitoring sensor strip of the embodiment of the present invention mainly encapsulates the physiological monitoring sensor strip by a segmental hot melt method, so that it can not only inherit the advantages of the two existing packaging methods, but also overcome A disadvantage of the above two existing packaging methods, that is, the packaging method can not only improve the service life of the connection between the flexible encapsulating sheet (including the first flexible encapsulating sheet and the second flexible encapsulating sheet) and the physiological monitoring sensor strip, so that As far as possible, the flexible encapsulating sheet is prevented from gradually separating from the physiological monitoring sensor belt over time, and the overall hot melt method is prevented from causing the gas in the physiological monitoring sensor strip to be discharged in the hot melting step, thereby improving the physiological after packaging. Monitor the performance of the sensor strip.
  • the inventors of the present invention found that the gas in the physiological monitoring sensor belt is an important factor affecting its performance, and the proper amount of gas in the physiological monitoring sensor belt can ensure the friction interface of the physiological monitoring sensor belt under external force. There is good contact separation to output a stable electrical signal. In the prior art, the overall hot melt mode will cause the gas pressure in the physiological monitoring sensor belt to be excessively discharged, affecting the effect of contact and separation of the friction interface, thereby reducing the performance of the physiological monitoring sensor belt after packaging.
  • the hot melt mold thermally fuses one or more of the hot melt regions
  • the gas in the physiological monitoring sensor strip is discharged to the hot melt region which is not subjected to hot pressing, and then
  • the hot-melt zone that is not pressurized and melted is hot-melted
  • the internal gas will enter and remain in the hot-melt zone that has been pressed and melted, so that the gas in the physiological monitoring sensor belt can ensure good contact of the friction interface. And the effect of separation, thereby improving the performance of the physiological monitoring sensor strip after packaging.
  • the step of encapsulating the physiological monitoring sensor strip of the embodiment of the invention is simple, and is convenient for implementing an automated package, and is suitable for popularization and application.
  • FIG. 1 is a flow chart showing a method of packaging a physiological monitoring sensor strip according to a first embodiment of the present invention
  • FIG. 2 shows a hot-melt sheet set and a hot-melt mold in a hot-melt step of a method of packaging a physiological monitoring sensor strip according to a second embodiment of the present invention
  • FIG 3 shows a hot-melt sheet set and a hot-melt mold in a hot-melt step of a method of packaging a physiological monitoring sensor strip according to a third embodiment of the present invention.
  • FIG. 1 is a flow chart showing a method of packaging a physiological monitoring sensor strip according to a first embodiment of the present invention. As shown in FIG. 1, the encapsulation method includes the following steps:
  • Step S1 stacking the first flexible encapsulating sheet 1, the first hot melt adhesive film 2, the physiological monitoring sensor strip 3, the second hot melt adhesive film 4, and the second flexible encapsulating sheet 5 in order to form a heat to be melted Hot melt sheet set.
  • the first and second hot melt adhesive films 2, 4 can be selected as a copolyester hot melt adhesive film (such as PES series), a copolyamide hot melt adhesive film (such as PA series) or a polyurethane hot melt adhesive.
  • Membrane eg TPU series
  • Both the first and second flexible encapsulating sheets 1, 5 can be selected as heat-resistant fabrics, such as imitation super-fiber fabrics.
  • the first and second flexible encapsulating sheets 1, 5 may also be selected from other flexible materials such as PU (polyurethane), super fiber cloth, plastic or rubber.
  • Hot-melting step S2 sequentially dividing the group to be hot-melt into a plurality of hot-melt regions along the length direction of the group to be hot-melt, and heat-melting each of the hot-melt regions to make the first in each hot-melt region
  • the flexible encapsulating sheet 1, the first hot melt adhesive film 2, the physiological monitoring sensor strip 3, the second hot melt adhesive film 4, and the second flexible encapsulating sheet 5 are sequentially joined.
  • the control conditions used in the hot melt process are related to the hot melt adhesive film and affect the choice of flexible encapsulating material.
  • the first and second hot melt adhesive films each have a melting point of 50 to 80 ° C, and the hot melt region has a hot melt temperature of 150 ° C to 300 ° C, preferably 200 ° C, and a hot melt pressure of 0.01 MPa to 0.2 MPa, preferably 0.1. MPa, hot melt time 8 ⁇ 15s, preferably 10s.
  • Both the first and second flexible encapsulating sheets 1, 5 can be selected as temperature resistant fabrics, such as imitation super fiber fabrics.
  • the above-mentioned hot-melt process conditions can ensure that the physiological monitoring sensor strip has the best packaging effect and high firmness, and the physiological monitoring sensor under the above-mentioned hot melt process conditions
  • the belt 3 does not cause deformation or even deterioration of the physiological monitoring sensor strip 3 due to deformation of the internal material.
  • the method for packaging a physiological monitoring sensor strip mainly encapsulates the physiological monitoring sensor strip 3 by a segmental hot melt method, so that it can not only inherit the advantages of the two existing packaging methods, but also It is possible to overcome the disadvantages of the two existing packaging methods described above, namely, The packaging method can not only improve the service life of the connection between the flexible encapsulating sheet (including the first flexible encapsulating sheet 1 and the second flexible encapsulating sheet 5) and the physiological monitoring sensor strip 3, so as to prevent the flexible encapsulating sheet from being as long as possible.
  • the gradual release from the physiological monitoring sensor strip 3 is also prevented, and the overall heat fusion is prevented from causing the gas in the physiological monitoring sensor strip 3 to be discharged, thereby improving the performance of the physiological monitoring sensor strip 3.
  • the number of hot melts may be the same as the number of hot melt regions or the number of hot melt regions.
  • the hot melt zone can be square, rectangular or other shape. Among them, one hot melt may be hot melted only for one hot melt region, or two or more hot melt regions not adjacent to each other may be hot melted.
  • the order in which the respective hot-melt regions are thermally melted is not limited, but it is preferably selected in order along the length direction of the group to be thermally melted.
  • the number of hot melts in the hot melt step is the same as the number of hot melt regions.
  • the length of the hot melt mold 6 and the length of the hot melt zone are both set to 1/N times the length L of the physiological monitoring sensor strip, and the length L of the physiological monitoring sensor strip 3 is set according to the width of the human body, preferably 885 mm, and N represents The number of hot-melt regions is selected as a positive integer of ⁇ 2, and the package is completed after hot-melting N times during packaging.
  • the number of hot melt is 3 times, so that the hot melt mold 6 only needs to heat-melt the three hot melt regions in sequence to complete the package, and the first hot melt region L1 is not melted after the hot melt is completed.
  • the internal gas thereof will enter and remain in the first hot melt region L1 which has been subjected to the hot melt, and the third hot melt region L3 is pressed and melted.
  • the internal gas will enter and remain in the first and second hot-melt regions L1 and L2 which have been pressurized and melted, and the physiological monitoring sensor belt 3 completes the final packaging, and the proper amount of gas therein can ensure a good friction interface.
  • N is preferably 3, and at this time, the hot melt mold 6 is relatively small, the heating speed is also relatively fast, and the packaging effect is firm.
  • each of the hot-melt regions can be sequentially melted along the length direction of the group to be thermally melted, so that automation can be easily realized, thereby saving manufacturing costs.
  • each of the hot melt regions is identical, for example, the hot melt regions are rectangular regions having a length and width of 290 mm * 30 mm, so that one can use a hot melt mold to heat melt all the hot melt regions to avoid creating too much heat. Melt the mold and increase the cost of packaging.
  • the number of hot melts is two, wherein once the hot melt is hot melt to the hot melt regions of all even locations, and the other is hot melt. Hot melt of the hot melt zone at all odd locations.
  • the length of the hot melt zone is set to 1/N times the length L of the physiological monitoring sensor strip 3
  • N represents the number of hot melt zones, which is selected as an even number of ⁇ 4
  • the effective length of the hot melt die 7 ie, can be physiologically
  • the sum of the lengths of the areas where the sensor strips are in contact with each other is L/2
  • the package can be completed by hot melt 2 times during packaging. For example, N is selected as 4, so that the encapsulation is completed by splitting into two hot melts.
  • the first hot melt is completed for the first and third hot melt regions L1, L3, and the second hot melt is for the second hot melt.
  • the second and fourth hot melt regions L2, L4 are thermally fused, at which time the gases in the second and fourth hot melt regions L2, L4 are discharged to the first and third hot melt regions L1, L3 which have been hot melted. Internally, thereby preventing the overall hot melt package from causing physiological monitoring of gas discharge within the sensor strip, ultimately affecting the performance of the physiological monitoring sensor strip 3.
  • N is preferably 4, because if N selects an even number that is too large, the area of the corresponding hot-melt region is reduced, and the interval of the hot-melt region is reduced during the segmental hot-melt, thus the physiological monitoring sensor strip after packaging The performance improvement of 3 is not obvious enough.
  • the number of hot melts in the hot melt step is 1/2 times the number of hot melt regions.
  • the odd-numbered hot melt is a heat fusion of the hot-melt regions of the two odd-numbered locations
  • the even-numbered hot-melt is a heat-melting of the hot-melt regions of the two even-numbered locations. It is apparent that this hot melt method is more efficient than the one-by-one hot melt method of the foregoing embodiment. More preferably, in the hot-melting step, one other hot-melt region is spaced between the hot-melt regions of the two odd-numbered or even-numbered positions that are hot-melted each time.
  • the respective hot melt regions are preferably identical, such that one can hot melt all of the hot melt regions with a hot melt mold to reduce packaging costs.
  • the packaging method of the physiological monitoring sensor strip according to the embodiment of the present invention can not only improve the service life of the connection between the flexible encapsulating sheet (including the first flexible encapsulating sheet 1 and the second flexible encapsulating sheet 5) and the physiological monitoring sensor strip 3, In order to prevent the flexible encapsulating sheet from gradually separating from the physiological monitoring sensor strip 3 as time passes, and also preventing the overall heat fusion from causing the gas in the physiological monitoring sensor strip 3 to be discharged in the hot melting step, thereby improving the physiological condition. The performance of the sensor strip 3 is monitored.
  • the physiological monitoring sensor strip of the present application comprises: a first electrode layer, a first polymer insulating layer, a second polymer insulating layer and a second electrode layer, which are sequentially stacked, wherein the first polymer
  • the opposite surfaces of the polymer insulating layer and the second polymer insulating layer constitute a friction interface, and when an external force acts on the physiological monitoring sensor strip, the friction interfaces rub against each other and output an electrical signal;
  • the first electrode layer and the second electrode layer form an output end of the physiological monitoring sensor strip.
  • At least one of the two surfaces constituting the friction interface is provided with a convex array structure, wherein the convex array structure is formed by arranging a plurality of bumps in a rectangular or diamond shape, or geometrically arranging a plurality of strip structures Provided on both sides, four corners, peripheral edges or the entire surface of the at least one surface.
  • the shape of the bump may be cylindrical, quadrangular prism or quadrangular Conical or the like, which is not limited herein;
  • the strip structure may be arranged in an array of shapes of well characters, crosses, zebra lines, crosses or words, which are not limited herein.

Abstract

涉及一种生理监测传感带的封装方法,包括:层叠步骤,将第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次层叠,形成待热熔的待热熔片组;热熔步骤,沿着待热熔片组的长度方向将待热熔片组依次划分成多个热熔区域,对各个热熔区域进行热熔,以使每个热熔区域内的第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次接合。

Description

生理监测传感带的封装方法
相关申请的交叉参考
本申请要求于2016年11月18日提交中国专利局、申请号为201611026686.7、名称为“一种生理监测传感带的封装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于监测设备技术领域,具体涉及一种生理监测传感带的封装方法。
背景技术
随着社会的发展进步,人们对身体健康越来越关注,作为监测身体健康状况的监测设备越来越受人们的青睐。监测设备所用的传感器一般需要放入可穿戴物内,基于摩擦发电机的生理监测传感带凭借无需电源、检测精准和柔软舒适等优势已开始取代其他传感器。封装作为生理监测传感带的一个必要工序,不仅对生理监测传感带的外观,而且对生理监测传感带的性能有着相当重要的影响。
本申请发明人在实施本发明的过程中发现,现有两种生理监测传感带的封装方法都存在问题。第一种封装方法是采用双面胶将两个柔性封装片分别粘接在生理监测传感带的两侧上,其主要问题是双面胶容易因老化而逐渐降低粘接强度,导致柔性封装片随着时间推移而渐渐脱离生理监测传感带。第二种封装方法是采用整体热熔方式将两个柔性封装片粘接在生理监测传感带的两侧上,其主要问题是整体热熔封装会使生理监测传感带内的气体排出,导致封装后的生理监测传感带的性能显著下降。
发明内容
基于上述问题,本发明提供一种生理监测传感带的封装方法,该封装方法不仅能够提高柔性封装片与生理监测传感带之间连接的使用寿命,尽可能 地防止柔性封装片随着时间推移而渐渐脱离生理监测传感带,而且还能够防止生理监测传感带内的气体在热熔步骤中的排出,从而提高封装后的生理监测传感带的性能。
本发明提供了一种生理监测传感带的封装方法,其步骤包括:层叠步骤,将第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次层叠,形成待热熔的待热熔片组;热熔步骤,沿着所述待热熔片组的长度方向将所述待热熔片组依次划分成多个热熔区域,对各个所述热熔区域进行热熔,以使每个所述热熔区域内的所述第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次接合。
进一步地,在所述热熔步骤中,所述热熔的次数与所述热熔区域的数量相同。
更进一步地,在所述热熔步骤中,沿着所述待热熔片组的长度方向依次对各个所述热熔区域进行热熔。
进一步地,在所述热熔步骤中,所述热熔的次数小于所述热熔区域的数量。
更进一步地,在热熔步骤中,第奇数次所述热熔是对两个奇数位置的所述热熔区域进行的热熔,第偶数次所述热熔是对两个偶数位置的所述热熔区域进行的热熔,每次被热熔的两个奇数位置或偶数位置的所述热熔区域之间都间隔一个其它热熔区域。
更进一步地,在热熔步骤中,所述热熔的次数是两次,其中一次所述热熔是对所有偶数位置的所述热熔区域的热熔,另一次所述热熔是对所有奇数位置的所述热熔区域的热熔。
进一步地,各个所述热熔区域完全相同。
进一步地,所述第一和第二热熔胶膜分别选自共聚酯型热熔胶膜、共聚酰胺型热熔胶膜或聚氨酯型热熔胶膜中的一种。
更进一步地,在热熔步骤中,当所述第一和第二热熔胶膜的熔点皆为50~80℃时,所述热熔区域选择热熔温度150℃~300℃,热熔压力0.01MPa~0.2MPa,热熔时间8~15s。
更进一步地,所述柔性封装片选为仿超纤维布料、PU(聚氨酯)或超纤维布料。
本发明实施例的生理监测传感带的封装方法主要通过分段热熔方式来对生理监测传感带进行封装,使得其不仅可以继承上述两种现有封装方法中的优点,而且还能够克服上述两种现有封装方法中的缺点,即,该封装方法不仅能够提高柔性封装片(包含第一柔性封装片和第二柔性封装片)与生理监测传感带之间连接的使用寿命,以便尽可能地防止柔性封装片随着时间推移而渐渐脱离生理监测传感带,而且还能够防止整体热熔方式导致生理监测传感带内的气体在热熔步骤中排出,从而提高封装后的生理监测传感带的性能。
本申请发明人在实施本发明过程中发现,生理监测传感带内的气体是影响其性能的重要因素,生理监测传感带内的适量气体能保证生理监测传感带在外力作用下摩擦界面有良好的接触分离,以输出稳定的电信号。在现有技术中,整体热熔方式将导致生理监测传感带内的气体气压过大而排出,影响其摩擦界面接触和分离的效果,进而降低封装后的生理监测传感带的性能。但在本申请中,当热熔模具对一个或其中多个所述热熔区域进行热熔时,生理监测传感带内的气体会被排到未被施压热熔的热熔区域,然后未被施压热熔的热熔区域被热熔时,其内部气体将进入并保持在原已被施压热熔的热熔区域内,使得生理监测传感带内气体能够保证摩擦界面良好的接触和分离的效果,进而提高封装后的生理监测传感带的性能。
本发明实施例的生理监测传感带的封装方法的步骤简单,便于实施自动化的封装,适合推广应用。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1示出了根据本发明实施例一的生理监测传感带的封装方法的流程图;
图2示出了根据本发明实施例二的生理监测传感带的封装方法的热熔步骤中的待热熔片组和热熔模具;以及
图3示出了根据本发明实施例三的生理监测传感带的封装方法的热熔步骤中的待热熔片组和热熔模具。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
图1示出了根据本发明实施例一的生理监测传感带的封装方法的流程图。如图1所示,该封装方法包括以下步骤:
层叠步骤S1:将第一柔性封装片1、第一热熔胶膜2、生理监测传感带3、第二热熔胶膜4和第二柔性封装片5依次层叠,形成待热熔的待热熔片组。其中,第一和第二热熔胶膜2、4皆可选为共聚酯型热熔胶膜(例如PES系列)、共聚酰胺型热熔胶膜(例如PA系列)或聚氨酯型热熔胶膜(例如TPU系列)。第一和第二柔性封装片1、5皆可选为耐热的布料,如仿超纤维布料。当然第一和第二柔性封装片1、5也可选其他的柔性材料,如PU(聚氨酯)、超纤维布料、塑料或橡胶。
热熔步骤S2:沿着待热熔片组的长度方向将待热熔片组依次划分成多个热熔区域,对各个热熔区域进行热熔,以使每个热熔区域内的第一柔性封装片1、第一热熔胶膜2、生理监测传感带3、第二热熔胶膜4和第二柔性封装片5依次接合。其中,热熔过程所用的控制条件与热熔胶膜相关,并影响柔性封装片材料的选择。例如,第一和第二热熔胶膜的熔点皆为50~80℃,所述热熔区域选择热熔温度150℃~300℃,优选200℃,热熔压力0.01MPa~0.2MPa,优选0.1MPa,热熔时间8~15s,优选10s。第一和第二柔性封装片1、5皆可选为耐温布料,如仿超纤维布料。采用上述热熔工艺条件,尤其是热熔温度、热熔压力及热熔时间的参数选择能够保证生理监测传感带封装效果最好,牢固性高,并且上述热熔工艺条件下生理监测传感带3不会因为内部材料变形导致生理监测传感带3变形甚至性能变差。
根据本发明实施例的生理监测传感带的封装方法主要通过分段热熔方式来对生理监测传感带3进行封装,使得其不仅可以继承上述两种现有封装方法中的优点,而且还能够克服上述两种现有封装方法中的缺点,即, 该封装方法不仅能够提高柔性封装片(包含第一柔性封装片1和第二柔性封装片5)与生理监测传感带3之间连接的使用寿命,以便尽可能地防止柔性封装片随着时间推移而渐渐脱离生理监测传感带3,而且还能够防止整体热熔使生理监测传感带3内气体排出,从而提高生理监测传感带3的性能。
在热熔步骤中,热熔的次数既可以与热熔区域的数量相同,也可与热熔区域的数量不同。热熔区域既可以是正方形、长方形或其他形状。其中,一次热熔可以只对一个热熔区域进行热熔,也可对两个以上互不相邻的热熔区域进行热熔。各个热熔区域被热熔的先后顺序不限,但优先选择沿着待热熔片组的长度方向依次进行。
在图2所示的优选实施例中,热熔步骤中的热熔的次数与热熔区域的数量相同。其中,热熔模具6长度和热熔区域长度均设置为生理监测传感带长度L的1/N倍,生理监测传感带3的长度L根据人身体宽度设定,优选为885mm,N代表热熔区域的数量,其选为≥2的正整数,封装时热熔N次后,完成封装。在热熔步骤中,例如热熔次数是3次,这样热熔模具6只需对三个热熔区域依次热熔便可完成封装,第一热熔区域L1完成热熔后,当未被施压热熔的第二热熔区域L2被热熔时,其内部气体将进入并保持在原已被施压热熔的第一热熔区域L1内,同理第三热熔区域L3施压热熔时,其内部气体将进入并保持在原已被施压热熔的第一、第二热熔区域L1、L2内,生理监测传感带3完成最终封装,其内适量气体能够保证摩擦界面良好的接触和分离的效果,进而提高封装后的生理监测传感带3的性能。N优选为3,此时热熔模具6比较小,加热速度也比较快,封装效果牢固。在热熔步骤中,可沿着待热熔片组的长度方向依次对各个热熔区域进行热熔,以易于实现自动化,进而节约制造成本。优选地,各个热熔区域完全相同,例如热熔区域均为长宽为290mm*30mm的矩形区域,使得人们可以用一个热熔模具对所有热熔区域进行热熔,以避免制造过多的热熔模具而增加封装成本。
在图3所示的优选实施例中,所述热熔的次数是两次,其中一次所述热熔是对所有偶数位置的所述热熔区域的热熔,另一次所述热熔是对所有奇数位置的所述热熔区域的热熔。其中,热熔区域长度设置为生理监测传感带3长度L的1/N倍,N代表热熔区域的数量,其选为≥4的偶数,热熔模具7的有效长度(即能够与生理监测传感带3相接触的区域长度之和)为L/2, 封装时热熔2次即可完成封装。例如,N选为4,这样共分成两次热熔即可完成封装,第一次所述热熔针对第一和第三热熔区域L1、L3完成热熔,第二次热熔时,针对第二和第四热熔区域L2、L4进行热熔,此时第二和第四热熔区域L2、L4内部气体会被排到已经完成热熔的第一和第三热熔区域L1、L3内,从而防止整体热熔封装导致生理监测传感带内气体排出,最终影响生理监测传感带3的性能。本实施例中N优选为4,原因为若N选择太大的偶数,则相应热熔区域面积减小,分段热熔时热熔区域间隔减小,因而对封装后的生理监测传感带3的性能提升不够明显。
在未示出的优选实施例中,热熔步骤中的热熔的次数是热熔区域的数量的1/2倍。优选地,在热熔步骤中,第奇数次热熔是对两个奇数位置的热熔区域进行的热熔,第偶数次热熔是对两个偶数位置的热熔区域进行的热熔。显然这种热熔方式要比前述实施例的逐个热熔方式的效率高。更优选地,在热熔步骤中,每次被热熔的两个奇数位置或偶数位置的热熔区域之间都间隔一个其它热熔区域。
在上述任一个实施例中,各个热熔区域优选完全相同,使得人们可以用一个热熔模具对所有热熔区域进行热熔,以降低封装成本。
根据本发明实施例的生理监测传感带的封装方法不仅能够提高柔性封装片(包含第一柔性封装片1和第二柔性封装片5)与生理监测传感带3之间连接的使用寿命,以便尽可能地防止柔性封装片随着时间推移而渐渐脱离生理监测传感带3,而且还能够防止整体热熔导致生理监测传感带3内的气体在热熔步骤中排出,从而提高该生理监测传感带3的性能。
本申请中生理监测传感带包括:依次层叠设置的第一电极层,第一高分子聚合物绝缘层,第二高分子聚合物绝缘层以及第二电极层;其中,所述第一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对的两个表面构成摩擦界面,当外力作用于所述生理监测传感带上时,所述摩擦界面相互摩擦,并输出电信号;所述第一电极层和所述第二电极层构成所述生理监测传感带的输出端。构成所述摩擦界面的两个表面中的至少一个面上设有凸起阵列结构,所述凸起阵列结构为多个凸点按照矩形或菱形排列构成,或者为多个带状结构按照几何排列设置在所述至少一个表面的两侧、四角、四周边缘或整个表面上。其中,凸点形状可以为圆柱形、四棱柱形或四棱 锥形等,此处不作限定;带状结构可以按照井字、叉字、斑马线型、十字或口字的形状阵列排列,此处不作限定。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

  1. 一种生理监测传感带的封装方法,其特征在于,其步骤包括:
    层叠步骤,将第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次层叠,形成待热熔的待热熔片组;
    热熔步骤,沿着所述待热熔片组的长度方向将所述待热熔片组依次划分成多个热熔区域,对各个所述热熔区域进行热熔,以使每个所述热熔区域内的所述第一柔性封装片、第一热熔胶膜、生理监测传感带、第二热熔胶膜和第二柔性封装片依次接合。
  2. 根据权利要求1所述的封装方法,其特征在于,在所述热熔步骤中,所述热熔的次数与所述热熔区域的数量相同。
  3. 根据权利要求2所述的封装方法,其特征在于,在所述热熔步骤中,沿着所述待热熔片组的长度方向依次对各个所述热熔区域进行热熔。
  4. 根据权利要求1所述的封装方法,其特征在于,在所述热熔步骤中,所述热熔的次数小于所述热熔区域的数量。
  5. 根据权利要求4所述的封装方法,其特征在于,在热熔步骤中,第奇数次所述热熔是对两个奇数位置的所述热熔区域进行的热熔,第偶数次所述热熔是对两个偶数位置的所述热熔区域进行的热熔,每次被热熔的两个奇数位置或偶数位置的所述热熔区域之间都间隔一个其它热熔区域。
  6. 根据权利要求4所述的封装方法,其特征在于,在热熔步骤中,所述热熔的次数是两次,其中一次所述热熔是对所有偶数位置的所述热熔区域的热熔,另一次所述热熔是对所有奇数位置的所述热熔区域的热熔。
  7. 根据权利要求1到6中任一项所述的封装方法,其特征在于,各个所述热熔区域完全相同。
  8. 根据权利要求1到6中任一项所述的封装方法,其特征在于,所述第一和第二热熔胶膜分别选自共聚酯型热熔胶膜、共聚酰胺型热熔胶膜或聚氨酯型热熔胶膜中的一种。
  9. 根据权利要求8所述的封装方法,其特征在于,在热熔步骤中,所述第一和第二热熔胶膜的熔点皆为50~80℃,所述热熔区域选择热熔温度 150℃~300℃,热熔压力0.01MPa~0.2MPa,热熔时间8~15s。
  10. 根据权利要求9所述的封装方法,其特征在于,所述柔性封装片选为仿超纤维布料、PU或超纤维布料。
PCT/CN2017/092780 2016-11-18 2017-07-13 生理监测传感带的封装方法 WO2018090653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611026686.7 2016-11-18
CN201611026686.7A CN108093616B (zh) 2016-11-18 2016-11-18 一种生理监测传感带的封装方法

Publications (1)

Publication Number Publication Date
WO2018090653A1 true WO2018090653A1 (zh) 2018-05-24

Family

ID=62146099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092780 WO2018090653A1 (zh) 2016-11-18 2017-07-13 生理监测传感带的封装方法

Country Status (2)

Country Link
CN (1) CN108093616B (zh)
WO (1) WO2018090653A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589631A (zh) * 2013-11-19 2014-02-19 苏州晶方半导体科技股份有限公司 生物芯片封装结构及其封装方法
CN104840183A (zh) * 2015-04-21 2015-08-19 深圳市世瓴科技有限公司 生理信号采集垫的制作工艺
CN105553323A (zh) * 2015-11-23 2016-05-04 纳智源科技(唐山)有限责任公司 生理监测传感带及其制作方法、生理监测床垫、监测系统
WO2016101778A1 (zh) * 2014-12-22 2016-06-30 清华大学 一种基于生物兼容薄膜的柔性可延展电子器件及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860483B2 (ja) * 2002-02-14 2006-12-20 トッパン・フォームズ株式会社 Rf−idメディアの製造方法
KR101076787B1 (ko) * 2010-03-02 2011-10-25 주식회사 에스에프씨 태양전지모듈용 이면 보호시트의 제조방법
DE102013003456A1 (de) * 2013-03-01 2014-09-04 Daimler Ag Faserkunststoff-Verbundbauteil mit zwei Class-A-Sichtoberflächen und Herstellverfahren
CN104112827A (zh) * 2013-04-19 2014-10-22 藤森工业株式会社 密封部件、密封部件的制造方法以及蓄电装置用容器
CN105796095B (zh) * 2016-01-22 2018-12-25 纳智源科技(唐山)有限责任公司 胎心胎动监测带、胎心胎动监测装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589631A (zh) * 2013-11-19 2014-02-19 苏州晶方半导体科技股份有限公司 生物芯片封装结构及其封装方法
WO2016101778A1 (zh) * 2014-12-22 2016-06-30 清华大学 一种基于生物兼容薄膜的柔性可延展电子器件及制备方法
CN104840183A (zh) * 2015-04-21 2015-08-19 深圳市世瓴科技有限公司 生理信号采集垫的制作工艺
CN105553323A (zh) * 2015-11-23 2016-05-04 纳智源科技(唐山)有限责任公司 生理监测传感带及其制作方法、生理监测床垫、监测系统

Also Published As

Publication number Publication date
CN108093616B (zh) 2019-09-10
CN108093616A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
JP2019508158A5 (zh)
ATE358998T1 (de) Verfahren zum thermoformen von balgstrukturen
WO2019205459A1 (zh) 一种太阳能电池封装工艺及太阳能电池装置
WO2018090653A1 (zh) 生理监测传感带的封装方法
CN109860713A (zh) 电芯、电化学装置及其制造方法
CN201867557U (zh) 多膜拼接式电致液晶雾化玻璃
JPH06293067A (ja) 複合体シート
KR101321067B1 (ko) 부분점착 테이프 제조방법
US20100162462A1 (en) Fishing Trousers
CN213413211U (zh) 耐高温易揭共挤膜
WO2020063486A1 (zh) 触控膜及其制作方法和触控模组
TWM363338U (en) Heat-melting glue film with gas exhausting structure
CN110539529A (zh) 一种保温泡棉及其制备方法
CN206586924U (zh) 用于生理监测传感带封装的封装设备和传感带组件
CN113451631A (zh) 电池结构及应用所述电池结构的电子装置
KR102221441B1 (ko) 무봉제 벨트가 구비된 방수가방
JP4238250B2 (ja) 発熱体封入物及びその製造方法
CN104840183B (zh) 生理信号采集垫的制作工艺
KR101262203B1 (ko) 막 구조물
CN213124541U (zh) 一种抗形变折叠电芯
JP5351656B2 (ja) プリーッフィルターのエンドレス部の融着方法
CN114284581A (zh) 一种抗形变折叠电芯及其制作方法
JP2002025754A (ja) 面状ヒータの構造およびその製造方法
CN210390378U (zh) 一种无胶水复合羽绒面料
CN216822502U (zh) 拉带及具有拉带的充气产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871624

Country of ref document: EP

Kind code of ref document: A1