WO2018090477A1 - 一种定位方法、装置及计算机存储介质 - Google Patents

一种定位方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2018090477A1
WO2018090477A1 PCT/CN2017/070615 CN2017070615W WO2018090477A1 WO 2018090477 A1 WO2018090477 A1 WO 2018090477A1 CN 2017070615 W CN2017070615 W CN 2017070615W WO 2018090477 A1 WO2018090477 A1 WO 2018090477A1
Authority
WO
WIPO (PCT)
Prior art keywords
orientation
suspected
antennas
phase differences
beacon device
Prior art date
Application number
PCT/CN2017/070615
Other languages
English (en)
French (fr)
Inventor
任冠佼
王旭辉
钟印成
蒲立
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Priority to US16/326,402 priority Critical patent/US20210286038A1/en
Priority to EP17872130.4A priority patent/EP3489708A4/en
Priority to KR1020197007291A priority patent/KR20190038908A/ko
Priority to JP2019513410A priority patent/JP6709330B2/ja
Publication of WO2018090477A1 publication Critical patent/WO2018090477A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a positioning method, device, and computer storage medium.
  • Relative positioning means that at least one of the two terminals measures the relative distance and relative direction (or angle) between the two.
  • an anchor is installed in one of the terminals, and two antennas are set on the anchor; the other terminal installs a tag and an antenna is placed on the tag.
  • the anchor calculates the distance and direction by receiving the signal sent by the tag and then based on the principles of TOF (Time of Flight) or AOA (Agle of Arrival).
  • the above relative positioning method obtains the same phase difference for the tag signal transmitted from the front side of the anchor and the tag signal transmitted from the opposite side of the anchor, and thus cannot locate the tag within the range of anchor 360°.
  • Embodiments of the present invention provide a positioning method, apparatus, and computer storage medium for implementing an anchor node device to locate a beacon device in a 360° range.
  • an embodiment of the present invention provides an anchor node device, where the anchor node device includes at least three first antennas, wherein at least one of the first antennas is disposed at a position that is different from the remaining first antennas.
  • the method includes:
  • An orientation of the beacon device is determined based on the at least three phase differences.
  • determining the orientation of the beacon device based on the at least three phase differences comprises:
  • determining a suspected orientation of the beacon device based on the at least three phase differences comprises:
  • determining whether the confidence level of the suspected orientation reaches a first threshold according to a historical orientation of the beacon device includes:
  • a confidence level indicating the suspected orientation reaches the first threshold; when the ratio is less than the first threshold, a confidence level indicating the suspected orientation does not reach The first threshold.
  • the at least three first antennas are disposed at a vertices of the polygon, and the longest side of the polygon is less than a half wavelength of the signal.
  • the at least three first antennas satisfy a vertical linear polarization condition and the linear polarization purity is higher than a second threshold.
  • the second antenna satisfies a circular polarization condition.
  • the embodiment of the present invention further provides a positioning apparatus, which is applied to an anchor node device, where the anchor node device includes at least three first antennas, wherein at least one of the first antennas is disposed at a position other than the remaining first antennas.
  • the set positions are not collinear, and the device includes:
  • a receiving module configured to receive, by each of the first antennas, a signal sent by a second antenna of the beacon device
  • a calculating module configured to receive a phase difference of the signal received by each of the two first antennas according to the phase of the signal received by each of the first antennas;
  • An extraction module configured to extract at least three phase differences that are closest to the orientation pointed to;
  • a determining module configured to determine an orientation of the beacon device based on the at least three phase differences.
  • the determining module is configured to determine a suspected orientation of the beacon device based on the at least three phase differences; determine a confidence level of the suspected orientation according to a historical orientation of the beacon device Whether the first threshold is reached; when the confidence of the suspected orientation reaches the first threshold, determining that the suspected orientation is the orientation of the beacon device; wherein, when the confidence of the suspected orientation does not reach the stated
  • the first threshold determines that the suspected orientation is not the orientation of the beacon device and determines the orientation of the beacon device based on the historical orientation of the beacon device.
  • the determining module is configured to determine that the at least three phase differences are directed Whether the orientations are the same; determining that the orientation pointed by any one of the at least three phase differences is the suspected orientation when the orientations pointed by the at least three phase differences are the same; or when the at least three When the orientations pointed by the phase differences are not completely the same, it is determined that the mean orientation of the orientation pointed by the at least three phase differences is the suspected orientation.
  • the at least three first antennas are disposed at a vertices of the polygon, and the longest side of the polygon is less than a half wavelength of the signal.
  • the at least three first antennas satisfy a vertical linear polarization condition and the linear polarization purity is higher than a second threshold.
  • the second antenna satisfies a circular polarization condition.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are configured to perform the positioning method according to the embodiment of the present invention.
  • the anchor node device has at least three first antennas, and at least one first antenna is not collinear with the remaining first antenna setting positions, and the anchor node device receives the beacon through each of the first antennas.
  • the signal transmitted by the second antenna of the device is then obtained according to the phase of the received signal of each of the first antennas to obtain the phase difference of the received signals of each of the two first antennas.
  • the orientation pointed by all the phase differences there is at least three phase differences in which the orientations pointed to are close, and the at least three phase differences are The mirrored orientation pointed by the corresponding mirror phase difference, and the orientation pointed by the other phase differences do not converge to the same orientation, so the at least three phase differences closest to the pointed orientation are extracted, and determined based on at least three phase differences.
  • the orientation of the beacon device It can be seen that the signal of the second antenna is received by the at least three first antennas described above, so that the phase difference filters out the singular solution, and finally the beacon is determined from the range of 360° by using the three phase differences closest to the true azimuth. Device side Bit, thereby achieving the technical effect of positioning the anchor node device in the 360° range.
  • FIG. 1a-1b are schematic diagrams showing a position of a first antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an orientation pointed by a phase difference according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an exemplary historical orientation and an estimated orientation in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a possible data packet transmission and reception according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a positioning device according to an embodiment of the present invention.
  • Embodiments of the present invention provide a positioning method and apparatus, which can implement an anchor node device to locate a beacon device in a 360° range.
  • the anchor node device has at least three first antennas, and at least one first antenna is not collinear with the remaining first antenna setting positions, and the anchor node device receives the beacon through each of the first antennas.
  • the signal transmitted by the second antenna of the device is then obtained according to the phase of the received signal of each of the first antennas to obtain the phase difference of the received signals of each of the two first antennas.
  • the orientation pointed by all the phase differences there is at least three phase differences in which the orientations pointed to are close, and the at least three phase differences are The mirrored orientation pointed by the corresponding mirror phase difference, and the orientation pointed by the other phase differences do not converge to the same orientation, so the at least three phase differences closest to the pointed orientation are extracted, and determined based on at least three phase differences.
  • the orientation of the beacon device It can be seen that the signal of the second antenna is received by the at least three first antennas described above, so that the phase difference filters out the singular solution, and finally the beacon is determined from the range of 360° by using the three phase differences closest to the true azimuth. The orientation of the device, thereby achieving the technical effect of positioning the anchor node device in the 360° range.
  • a first aspect of the embodiments of the present invention provides a positioning method, which is applied to an electronic device that is provided with an anchor node, that is, an anchor node device.
  • the anchor node device in the embodiment of the present invention includes at least three first antennas.
  • the number of the first antennas may be 3, 4, or 10, etc., and those skilled in the art may select according to actual conditions.
  • the invention is not specifically limited.
  • at least one of the at least one first antenna is disposed at a position that is not collinear with the positions of the remaining first antennas.
  • the first antenna is vertically disposed on the antenna installation surface, and the contact position of the first antenna and the antenna installation surface is a set position. As shown in FIG.
  • the first antenna is disposed at a position.
  • the first antenna has three (including ANT_11, ANT_12, and ANT_13), and the three setting positions are collinear, but the three setting positions are not collinear, and the setting position is Form a triangle.
  • the first antenna is disposed at a position, and the set positions of the four first antennas are collinear with the set positions of the three first antennas, and the set positions of the other first antennas and the remaining three set positions are Not collinear.
  • FIG. 1 is a flowchart of a positioning method in an embodiment of the invention.
  • the method includes:
  • S101 Receive, by each of the first antennas, a signal sent by a second antenna of the beacon device;
  • S102 Receive a phase of the signal according to each of the first antennas, and obtain each of the first two The antenna receives a phase difference of the signal;
  • S103 extract at least three phase differences that are closest to the orientation pointed by;
  • S104 Determine an orientation of the beacon device based on the at least three phase differences.
  • the beacon device in the embodiment of the present invention that is, the electronic device provided with the beacon has at least one second antenna, transmits a signal to the first antenna through the second antenna, and receives the signal sent by the first antenna, In turn, interact with the anchor node device.
  • the anchor node device receives the signal transmitted by the second antenna through each of the first antennas.
  • a phase difference of the received signals of each of the two first antennas is calculated according to the phase of the received signal of each of the first antennas. Taking the three first antennas shown in FIG. 1a as an example, the phase of the first first antenna ANT_11 receiving signal is P1, the phase of the second first antenna ANT_12 receiving signal is P2, and the third first antenna ANT_13 The phase of the received signal is P3.
  • phase difference between ANT_11 and ANT_12 is P12A and P12B
  • the phase difference between ANT_11 and ANT_13 is P13A and P13B
  • the phase difference between ANT_12 and ANT_13 is P23A and P23B.
  • Each phase difference points to an orientation.
  • the phase of the received signal of each of the two antennas can calculate two phase differences, and the orientations pointed by the two phase differences are mirror-symmetrical with respect to the extension lines of the two antennas or the extension lines of the wires.
  • the orientation pointed by P12A and P12B is mirror-symmetrical with respect to the extension of the line or connection of ANT_11 and ANT_12.
  • the orientation pointed by the two phase differences one is a regular solution, that is, the true orientation of the beacon device, and the other is a singular solution, that is, the beacon device is a non-real orientation, and is a mirror orientation.
  • the anchor node device in the prior art can only locate the beacon device in the range of 180° on the front side or 180° on the reverse side, and cannot locate the beacon device from the range of 360°.
  • the lines are not collinear, so the connection between at least two first antennas and the remaining antennas are not parallel, so the orientation of all phase differences will not converge to two straight lines.
  • the orientation Y12A pointed by P12A and the orientation Y12B pointed by P12B are mirror-symmetrical with respect to the extension line of the connection or connection of ANT_11 and ANT_12, and P13A points.
  • the orientation Y13A and the orientation pointed by Y13B are mirror-symmetric with respect to the extension of the line or connection of ANT_11 and ANT_13, and the orientation of Y23A and P23B pointed by P23A or the extension of the connection line with respect to ANT_12 and ANT_13 Line mirror symmetry.
  • the dashed line in Figure 3 indicates the extension of the two first antenna connections.
  • connection of at least two first antennas is not parallel to the remaining antenna lines, and there is a true orientation in each of the two mirror-symmetrical orientations, there are at least three phase differences in the orientation pointed by all the phase differences.
  • the orientation pointed to is converging in the same orientation. In other words, at least three phase differences point to the same or close proximity.
  • Y12A, Y13A and Y23B The orientation pointed by the remaining phase differences does not converge to the same orientation.
  • Y12B, Y13B and Y23A The orientation pointed by the remaining phase differences does not converge to the same orientation.
  • the anchor node device calculates the distance between the orientations pointed by each of the two phase differences, and then extracts the phase differences corresponding to the three orientations with the smallest distance.
  • the orientation of the beacon device is determined based on the at least three phase differences.
  • the orientation of the beacon device may be determined by the following process:
  • the beacon device first determines the suspected orientation of the beacon device based on the phase difference closest to the three pointed orientations.
  • the manner in which the embodiment of the present invention determines the suspected orientation is:
  • the embodiment of the present invention calculates the mean value of the orientation pointed by the at least three phase differences. And the mean is taken as the suspected position.
  • the anchor node device reads the historical orientation of the beacon device, and further determines whether the suspected orientation determined by the current positioning is the orientation of the beacon device.
  • the historical orientation in the embodiment of the present invention is specifically the orientation of the beacon device within the preset duration before the positioning, and the preset duration is, for example, 3 minutes or 1 minute, and the like, and the present invention is not specifically limited. Determining whether the suspected orientation is the orientation of the beacon device is achieved by determining whether the confidence level of the located suspected location reaches the first threshold. The determining whether the confidence level of the suspected orientation reaches the first threshold according to the historical orientation may be implemented as follows:
  • a confidence level indicating the suspected orientation reaches the first threshold; when the ratio is less than the first threshold, a confidence level indicating the suspected orientation does not reach The first threshold.
  • the anchor node device estimates based on the historical orientation according to the statistical principle.
  • An estimated position is made.
  • Figure 4 shows an exemplary historical orientation and estimated orientation map.
  • the curve in Fig. 4 represents the historical orientation. It can be seen that the change in the historical orientation changes approximately linearly, so the estimated orientation represented by the dot in Fig. 4 is estimated according to the linear variation law of the curve.
  • the difference between the suspected orientation and the estimated orientation is further calculated.
  • the difference between the suspected azimuth and the estimated azimuth may be calculated, and the estimated azimuth may be subtracted from the estimated azimuth, or the estimated azimuth may be subtracted from the estimated azimuth, and the present invention is not specifically limited.
  • the ratio of the difference between the suspected orientation and the estimated orientation to the estimated orientation is obtained, and the ratio is used as the confidence of the suspected orientation.
  • the ratio of the difference between the suspected azimuth and the estimated azimuth and the estimated azimuth may be specifically “the difference between the estimated azimuth/suspected azimuth and the estimated azimuth”, or “the difference/estimation between the suspected azimuth and the estimated azimuth”
  • the orientation is not specifically limited in the present invention.
  • the difference between the suspected orientation and the estimated orientation is smaller, and the confidence of the suspected orientation is higher. Conversely, when the suspected orientation and the estimated orientation are farther apart, the suspected orientation and the estimated orientation are The greater the difference, the lower the confidence of the suspected orientation.
  • the ratio of the above ratio to the first threshold is compared.
  • the ratio is greater than or equal to the first threshold, indicating that the confidence level reaches the first threshold, thereby indicating that the degree of confidence of the suspected orientation is relatively high, so the suspected orientation is determined as the orientation of the beacon device that is positioned this time; when the ratio is smaller than the first
  • the threshold it indicates that the confidence level has not reached the first threshold, and thus the degree of confidence of the suspected mode is low, so the suspect orientation is not determined as the orientation of the beacon device that is positioned this time.
  • the orientation of the beacon device is determined according to the historical orientation.
  • the estimated orientation may be determined as the orientation of the beacon device of the current positioning, or the mean value of the historical orientation may be determined, and the orientation of the beacon device of the current positioning may be determined by a person skilled in the art according to the present invention.
  • the actual setting is not specifically limited in the present invention.
  • the signals of the second antenna are received by the at least three first antennas that are not collinear, so that the orientation pointed by at least three phase differences in the positioning result is close, and the orientations pointed by the other phase differences are dispersed, thereby making the anchor node
  • the device can filter out the singular solution and obtain the orientation of the beacon device, so that the beacon device can be located in the range of 360°.
  • the setting positions of the at least three first antennas of the anchor node device are specifically located on the vertices of the polygon, in other words There are only two of the first antennas on the extension line of each of the two first antennas and the extension line of the connection, as shown in FIG. 1a.
  • the polygons formed by the position may be equilateral or unequal, for example, an equilateral triangle, an isosceles triangle, a square, a rectangle, or an equilateral hexagon, etc., which are not specifically limited in the embodiment of the present invention.
  • the plane is not flat and/or the first antenna is not equal, but the transceiver ends of all the first antennas are coplanar.
  • the signal wave communicated between the first antenna and the second antenna in the embodiment of the present invention is a high-frequency radio frequency wave, such as a UWB (Ultra Wideband) wave, a Bluetooth wave or a Zifeng ZigBee protocol wave, etc., and the present invention does not Specific restrictions. Further, in order to ensure that the signal received by each of the two first antennas is within one communication cycle, the longest side length of the polygon formed by the set position should be smaller than the half wavelength of the signal.
  • the signal wave has a wavelength of 46.1 mm and a half wavelength of 23.1 mm. Considering that a margin of 10% and a half wavelength is left for the error signal, the orientation value is prevented from exceeding one communication cycle when the measurement signal has an error, and finally the longest polygon is determined.
  • the side length is 90% of the half wavelength, which is 20.8 mm.
  • At least three first antennas in the embodiment of the present invention satisfy a vertical linear polarization condition, and the linear polarization purity is higher than the second threshold.
  • the linear polarization purity is determined by the ratio of the primary polarization and the cross polarization
  • the second threshold may be in the range of 6 dB or more, for example, 10 dB, 12 dB, or 13 dB, thereby making the line of the first antenna High purity.
  • the beacon device is disposed on an electronic device whose posture can be changed, such as a balance car, a robot, a remote controller, etc., in order to prevent the second antenna transmitting and receiving signals from being affected by the posture change, the second antenna in the embodiment of the present invention is satisfied.
  • the axial ratio can be selected to be less than 4.5 dB, for example, any value from 1 dB to 4.5 dB.
  • FIG. 5 it is a schematic diagram of a possible data packet transmission and reception.
  • the anchor node device and the beacon device adopt TWR (Two-Way Ranging) method for ranging.
  • TWR Tro-Way Ranging
  • each ranging needs to be based on 3 communications.
  • the beacon device sends the first data packet to the anchor node device.
  • the timestamp of the first data packet is recorded.
  • the time stamp of the first data packet is recorded as tt1.
  • the anchor node device receives the first data packet and records the timestamp of receiving the first data packet.
  • the timestamp of receiving the first data packet is recorded as ta1.
  • the anchor node device then feeds back the second data packet to the beacon device to inform the beacon device that the first data packet has been received.
  • the timestamp of transmitting the second data packet is recorded while the second data packet is being sent, and the embodiment of the present invention sends the The timestamp of the second packet is ta1.
  • the beacon device receives the second data packet and records the timestamp of receiving the second data packet.
  • the timestamp of receiving the second data packet is recorded as tt2.
  • the beacon device further calculates the time tt3 at which the third data packet is transmitted, and includes the recorded tt1, tt2, and tt3 in the third data packet.
  • the beacon device clock reaches tt3
  • the third data packet is sent to the anchor node device to notify the anchor node device to successfully receive the second data packet.
  • the anchor node device receives the third data packet, and records the timestamp of receiving the third data packet, which is recorded as ta3.
  • Treply1 Ta2-ta1
  • Tround1 indicates the time from the transmission of the first data packet to the receipt of the feedback
  • Treply1 indicates the time when the anchor node device feeds back the second data packet
  • Tround2 indicates the time from the transmission of the second data packet to the reception of the feedback
  • Treply2 indicates the beacon device.
  • Feedback of the third packet takes time;
  • Tprop in Figure 5 indicates the transit time of the packet from being sent to being received.
  • each of the first antennas of the at least three first antennas receives the first data packet, the second data packet, and the third data packet. Therefore, in a TWR process, the anchor node device can simultaneously locate the azimuth and distance of the beacon device, or can be in the TWR twice, and the present invention does not specifically limit the present invention.
  • the anchor node device when locating the orientation of the beacon device, arbitrarily selects to receive the first The signal of the data packet or the signal of the second data packet locates the orientation of the beacon device.
  • the signals may be located according to signals with stronger signal strength.
  • the anchor node device locates the beacon device by combining the orientation and distance.
  • the first data packet, the second data packet, and the third data packet may further include various information that the beacon device and the anchor node interact with each other.
  • Data such as a control command sent by the anchor node to the beacon, a request command of the beacon, a polarization direction of the second antenna, a pose of the beacon device, and the like.
  • a person of ordinary skill in the art to which the present invention pertains may make selections according to actual conditions, and the present invention is not specifically limited.
  • the second aspect of the present invention further provides a positioning device, as shown in FIG. 6, comprising:
  • the receiving module 101 is configured to receive, by each of the first antennas, a signal sent by a second antenna of the beacon device;
  • the calculating module 102 is configured to receive a phase difference of the signal received by each of the two first antennas according to the phase of the signal received by each of the first antennas;
  • the extracting module 103 is configured to extract at least three phase differences that are closest to the pointed orientation
  • the determining module 104 is configured to determine an orientation of the beacon device based on the at least three phase differences.
  • the determining module 104 is configured to determine a suspected orientation of the beacon device based on the at least three phase differences; and determine, according to a historical orientation of the beacon device, whether a confidence level of the suspected orientation reaches a first level a threshold value; when the confidence level of the suspected orientation reaches the first threshold, determining that the suspected orientation is an orientation of the beacon device; wherein, when the confidence level of the suspected orientation does not reach the first threshold And determining that the suspected orientation is not the orientation of the beacon device, and determining the orientation of the beacon device according to the historical orientation of the beacon device.
  • the determining module 104 is configured to determine that the at least three phase differences are directed Whether the orientations are the same; determining that the orientation pointed by any one of the at least three phase differences is the suspect orientation when the orientations pointed by the at least three phase differences are the same; or when the at least three phases When the directions pointed by the differences are not completely the same, it is determined that the mean orientation of the orientation pointed by the at least three phase differences is the suspected orientation.
  • the at least three first antennas are disposed at a vertices of the polygon, and the longest side of the polygon is less than a half wavelength of the signal.
  • At least three of the first antennas satisfy a vertical linear polarization condition, and the linear polarization purity is higher than a second threshold.
  • the second antenna satisfies the circular polarization condition.
  • the anchor node device has at least three first antennas, and at least one first antenna is not collinear with the remaining first antenna setting positions, and the anchor node device receives the beacon through each of the first antennas.
  • the signal transmitted by the second antenna of the device is then obtained according to the phase of the received signal of each of the first antennas to obtain the phase difference of the received signals of each of the two first antennas.
  • the orientation pointed by all the phase differences there is at least three phase differences in which the orientations pointed to are close, and the at least three phase differences are The mirrored orientation pointed by the corresponding mirror phase difference, and the orientation pointed by the other phase differences do not converge to the same orientation, so the at least three phase differences closest to the pointed orientation are extracted, and determined based on at least three phase differences.
  • the orientation of the beacon device since at least one of the first antennas is not collinear with the remaining first antennas, in the orientation pointed by all the phase differences, there is at least three phase differences in which the orientations pointed to are close, and the at least three phase differences are The mirrored orientation pointed by the corresponding mirror phase difference, and the orientation pointed by the other phase differences do not converge to the same orientation, so the at least three phase differences closest to the pointed orientation are extracted, and determined based on at least three phase differences.
  • the orientation of the beacon device Since at least one of the first antennas is not collinear with the remaining first antennas, in the orientation pointed by all the phase differences, there is at least
  • the signal of the second antenna is received by the at least three first antennas, so that the phase difference filters out the singular solution, and finally
  • the orientation of the beacon device is determined from the range of 360° using three phase differences closest to the true orientation, thereby achieving the technical effect of positioning the anchor node device in the 360° range.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the technical solution of the embodiment of the present invention receives the signal of the second antenna by using at least three first antennas, wherein the set position of the at least one first antenna is not collinear with the set positions of the remaining first antennas, thereby filtering out the phase difference.
  • the singular solution finally determines the orientation of the beacon device from the range of 360° using the three phase differences closest to the true azimuth, thereby achieving the technical effect of positioning the anchor node device in the 360° range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种定位方法、装置和计算机存储介质,用于实现锚节点设备在360°范围中定位信标设备。所述方法应用于锚节点设备,所述锚节点设备包括至少三根第一天线,其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线,所述方法包括:通过每根所述第一天线接收信标设备的第二天线发送的信号;根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接收所述信号的相位差;提取所指向的方位最为接近的至少三个相位差;基于所述至少三个相位差,确定所述信标设备的方位。

Description

一种定位方法、装置及计算机存储介质 技术领域
本发明涉及电子技术领域,尤其涉及一种定位方法、装置及计算机存储介质。
背景技术
相对定位是指两个终端中的至少一个终端测量两者之间的相对距离和相对方向(或角度)。为进行相对定位,在其中一个终端安装锚节点(anchor),并在anchor上设置两根天线;另一个终端安装信标(tag),并在tag上设置一根天线。anchor通过接收tag发送的信号,再基于TOF(到达时间,Time of Flight)或AOA(达到角度,Angle ofArrival)等原理来计算出距离和方向。
然而,上述相对定位的方法对于从anchor正面发送来的tag信号与从anchor反面发送来的tag信号会得到相同的相位差,因此无法在anchor360°的范围内定位tag。
发明内容
本发明实施例提供了一种定位方法、装置和计算机存储介质,用于实现锚节点设备在360°范围中定位信标设备。
第一方面,本发明实施例提供了一种应用于锚节点设备,所述锚节点设备包括至少三根第一天线,其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线,所述方法包括:
通过每根所述第一天线接收信标设备的第二天线发送的信号;
根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接 收所述信号的相位差;
提取所指向的方位最为接近的至少三个相位差;
基于所述至少三个相位差,确定所述信标设备的方位。
在一实施例中,基于所述至少三个相位差,确定所述信标设备的方位,包括:
基于所述至少三个相位差,确定出所述信标设备的疑似方位;
根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;
当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备的历史方位确定所述信标设备的方位。
在一实施例中,基于所述至少三个相位差,确定出所述信标设备的疑似方位,包括:
判断所述至少三个相位差所指向的方位是否相同;
当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或
当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
在一实施例中,根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值,包括:
根据所述历史方位获得一估计方位;
计算所述疑似方位与所述估计方位的差值与所述估计方位的比值,并将所述比值作为所述置信度;
判断所述比值是否大于等于所述第一阈值;
当所述比值大于等于所述第一阈值时,表示所述疑似方位的置信度达到所述第一阈值;当所述比值小于所述第一阈值时,表示所述疑似方位的置信度未达到所述第一阈值。
在一实施例中,所述至少三根第一天线的设置位置位于多边形顶点上,且所述多边形的最长边长小于所述信号的半波长。
在一实施例中,所述至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。
在一实施例中,所述第二天线满足圆极化条件。
第二方面,本发明实施例还提供了一种定位装置,应用于锚节点设备,所述锚节点设备包括至少三根第一天线,其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线,所述装置包括:
接收模块,配置为通过每根所述第一天线接收信标设备的第二天线发送的信号;
计算模块,配置为根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接收所述信号的相位差;
提取模块,配置为提取所指向的方位最为接近的至少三个相位差;
确定模块,配置为基于所述至少三个相位差,确定所述信标设备的方位。
在一实施例中,所述确定模块配置为基于所述至少三个相位差,确定出所述信标设备的疑似方位;根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备的历史方位确定所述信标设备的方位。
在一实施例中,所述确定模块配置为判断所述至少三个相位差所指向 的方位是否相同;当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
在一实施例中,所述至少三根第一天线的设置位置位于多边形顶点上,且所述多边形的最长边长小于所述信号的半波长。
在一实施例中,所述至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。
在一实施例中,所述第二天线满足圆极化条件。
第三方面,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为执行本发明实施例所述的定位方法。
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
在本发明实施例的技术方案中,锚节点设备有至少三根第一天线,并且至少一根第一天线与其余第一天线设置位置不共线,锚节点设备通过每根第一天线接收信标设备的第二天线发送的信号,然后根据每根第一天线接收信号的相位,获得每两根第一天线接收信号的相位差。由于至少一根第一天线与其余第一天线不共线,所以在所有相位差所指向的方位中,就会存在至少三个相位差所指向的方位是接近的,而该至少三个相位差对应的镜像相位差所指向的镜像方位,以及其他相位差所指向的方位不收敛于同一个方位,因此提取所指向的方位最为接近的至少三个相位差,并基于至少三个相位差,确定信标设备的方位。由此可见,通过上述通过至少三根第一天线来接收第二天线的信号,进而使得相位差过滤掉奇异解,最终利用最接近真实方位的三个相位差从360°的范围中确定出信标设备的方 位,由此实现了锚节点设备在360°范围中定位的技术效果。
附图说明
图1a-图1b为本发明实施例中第一天线设置位置示意图;
图2为本发明实施例中定位方法的流程图;
图3为本发明实施例中相位差所指向的方位示意图;
图4为本发明实施例中一示例性历史方位和估计方位示意图;
图5为本发明实施例中一种可能的数据包收发示意图;
图6为本发明实施例中定位装置的结构示意图。
具体实施方式
本发明实施例提供了一种定位方法和装置,能够实现锚节点设备在360°范围中定位信标设备。
为了解决上述技术问题,本发明实施例提供的技术方案总体思路如下:
在本发明实施例的技术方案中,锚节点设备有至少三根第一天线,并且至少一根第一天线与其余第一天线设置位置不共线,锚节点设备通过每根第一天线接收信标设备的第二天线发送的信号,然后根据每根第一天线接收信号的相位,获得每两根第一天线接收信号的相位差。由于至少一根第一天线与其余第一天线不共线,所以在所有相位差所指向的方位中,就会存在至少三个相位差所指向的方位是接近的,而该至少三个相位差对应的镜像相位差所指向的镜像方位,以及其他相位差所指向的方位不收敛于同一个方位,因此提取所指向的方位最为接近的至少三个相位差,并基于至少三个相位差,确定信标设备的方位。由此可见,通过上述通过至少三根第一天线来接收第二天线的信号,进而使得相位差过滤掉奇异解,最终利用最接近真实方位的三个相位差从360°的范围中确定出信标设备的方位,由此实现了锚节点设备在360°范围中定位的技术效果。
下面通过附图以及具体实施例对本发明技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明实施例第一方面提供了一种定位方法,应用于设置有锚节点的电子设备,即锚节点设备。本发明实施例中的锚节点设备包括至少三根第一天线,在具体实现过程中,第一天线的数量可以为3、4或10等,本发明所属领域的普通技术人员可以根据实际进行选择,本发明不做具体限制。其中,在至少三根第一天线中,至少一根第一天线的设置位置与其余第一天线的设置位置不共线。具体来讲,第一天线垂直设置于天线设置面上,第一天线与天线设置面的接触位置为设置位置。如图1a示出的第一天线设置位置示意图,图1a中第一天线共有三根(包括ANT_11、ANT_12和ANT_13),三个设置位置两两共线,但三个设置位置不共线,设置位置构成三角形。或者,如图1b示出的第一天线设置位置示意图,四根第一天线的设置位置中有三根第一天线的设置位置共线,另一根第一天线的设置位置与其余三个设置位置不共线。
当至少一根第一天线的设置位置与其余第一天线的设置位置不共线时,每两根第一天线之间的连线及连线的延长线将会有所交叉。
下面请参考图1,为发明实施例中定位方法的流程图。该方法包括:
S101:通过每根所述第一天线接收信标设备的第二天线发送的信号;
S102:根据所述每根第一天线接收所述信号的相位,获得每两根第一 天线接收所述信号的相位差;
S103:提取所指向的方位最为接近的至少三个相位差;
S104:基于所述至少三个相位差,确定所述信标设备的方位。
具体来讲,本发明实施例中的信标设备,即设置有信标的电子设备上具有至少一根第二天线,通过第二天线向第一天线发送信号,以及接收第一天线发送的信号,进而与锚节点设备交互。在S101中,锚节点设备通过每根第一天线接收第二天线发送的信号。
由于每根第一天线与第二天线之间的相对位置有所不同,所以每根第一天线接收第二天线的信号的相位就有所不同。在S102中,根据每根第一天线接收信号的相位,计算出每两根第一天线接收信号的相位差。以图1a示出的三根第一天线为例来说,第一根第一天线ANT_11接收信号的相位为P1,第二根第一天线ANT_12接收信号的相位为P2,第三根第一天线ANT_13接收信号的相位为P3。则ANT_11与ANT_12的相位差为P12A和P12B,ANT_11与ANT_13的相位差为P13A和P13B,ANT_12与ANT_13的相位差就是P23A和P23B。每个相位差指向一个方位。
根据几何原理可知,每两根天线接收信号的相位能够计算出两个相位差,那么这两个相位差所指向的方位是关于这两根天线的连线或连线的延长线镜像对称的。例如P12A和P12B所指向的方位关于ANT_11和ANT_12的连线或连线的延长线镜像对称。并且,两个相位差所指向的方位,一个为正则解,即信标设备的真实方位,另一个为奇异解,即信标设备为非真实方位,而为镜像方位。
进一步,正是由于镜像对称,所以现有技术中锚节点设备仅能在正面180°的范围或者反面180°的范围内定位信标设备,而无法从360°的范围中定位出信标设备。
在本发明实施例中,由于至少一根第一天线与其余第一天线的设置位 置不共线,所以至少两根第一天线的连线与其余天线的连线是不平行的,所以所有相位差指向的方位就不会收敛于两条直线。沿用图1a示出的第一天线设置位置来说明,如图3所示,P12A指向的方位Y12A和P12B所指向的方位Y12B关于ANT_11和ANT_12的连线或连线的延长线镜像对称,P13A指向的方位Y13A和P13B所指向的方位Y13B关于ANT_11和ANT_13的连线或连线的延长线镜像对称,P23A指向的方位Y23A和P23B所指向的方位Y或连线的延长线关于ANT_12和ANT_13的连线镜像对称。图3中的虚线表示两根第一天线连线的延长线。
由于至少两根第一天线的连线与其余天线连线不平行,且每两个镜像对称的方位中有一个真实方位,所以在所有相位差所指向的方位中,就至少有三个相位差所指向的方位是收敛于同一方位的。换言之,至少有三个相位差所指向的方位相同,或者接近。如图3中的Y12A、Y13A和Y23B。而其余相位差所指向的方位则不会收敛与同一方位。如图3中的Y12B、Y13B和Y23A。
所以,S103中,将所指向方位最为接近的三个相位差提取出来。具体来讲,锚节点设备计算出每两个相位差所指向的方位之间的距离,然后将距离最小的三个方位对应的相位差提取出来。
最后,S104中,基于该至少三个相位差确定信标设备的方位。具体来讲,在本发明实施例中,可以通过如下过程确定信标设备的方位:
基于所述至少三个相位差,确定出所述信标设备的疑似方位;
根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;
当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备 的历史方位确定所述信标设备的方位。
具体来讲,信标设备首先基于上述三个指向方位最接近的相位差,确定出信标设备的疑似方位。其中,本发明实施例确定疑似方位的方式为:
判断所述至少三个相位差所指向的方位是否相同;
当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或
当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
首先,判断该至少三个相位差所指向的方位是否相同。如果至少三个相位差所指向的方位相同,表示该至少三个相位差恰好均指向了同一方位,所以确定其中任一相位差所指向的方位为疑似方位。而如果至少三个相位差所指向的方位不完全相同,表示该至少三个相位差并没有指向同一方位,所以本发明实施例此时计算出该至少三个相位差所指向的方位的均值,并将均值作为疑似方位。
接下来,锚节点设备读取信标设备的历史方位,进而判断本次定位确定出的疑似方位是否为信标设备的方位。具体来讲,本发明实施例中的历史方位具体为本次定位之前预设时长内的信标设备方位,预设时长例如为3分钟或1分钟等,本发明不做具体限制。判断疑似方位是否为信标设备的方位,通过判断本次定位出的疑似方位的置信度是否达到第一阈值来实现。其中,根据历史方位判断疑似方位的置信度是否达到第一阈值,可以通过如下方式实现:
根据所述历史方位获得一估计方位;
计算所述疑似方位与所述估计方位的差值与所述估计方位的比值,并将所述比值作为所述置信度;
判断所述比值是否大于等于所述第一阈值;
当所述比值大于等于所述第一阈值时,表示所述疑似方位的置信度达到所述第一阈值;当所述比值小于所述第一阈值时,表示所述疑似方位的置信度未达到所述第一阈值。
具体来讲,通常情况下,信标设备的方位会按照一定规律变化,瞬间发生较大变化的几率较小,所以,在本发明实施例中,锚节点设备基于历史方位,按照统计学原理估计出一估计方位。举例来说,图4示出了一示例性历史方位和估计方位示意图。图4中的曲线表示历史方位,可以看出,历史方位的变化近似线性变化,因此根据该曲线的线性变化规律,估计出图4中圆点代表的估计方位。
然后,在获得疑似方位后,进一步计算出疑似方位与估计方位的差值。其中,在本发明实施例中,计算疑似方位与估计方位的差值,可以为疑似方位减去估计方位,也可以为估计方位减去疑似方位,本发明不做具体限制。接着,获得疑似方位与估计方位的差值与估计方位的比值,进而将该比值作为疑似方位的置信度。在具体实现过程中,疑似方位与估计方位的差值与估计方位的比值可以具体为“估计方位/疑似方位与估计方位的差值”,或者“1-疑似方位与估计方位的差值/估计方位”,本发明不做具体限制。
当疑似方位与估计方位越接近时,疑似方位与估计方位的差值就越小,进而疑似方位的置信度就越高;反之,当疑似方位与估计方位越远离时,疑似方位与估计方位的差值就越大,进而疑似方位的置信度就越低。
然后,比较上述比值与第一阈值的大小。当上述比值大于等于第一阈值时,表示置信度达到第一阈值,进而表示疑似方位的置信程度较高,所以将疑似方位确定为本次定位的信标设备的方位;当上述比值小于第一阈值时,表示置信度未达到第一阈值,进而表示疑似方式的置信程度较低,所以不会将疑似方位确定为本次定位的信标设备的方位。
进一步,在本发明实施例中,当疑似方位的置信度未达到第一阈值时,将根据历史方位来确定信标设备的方位。在具体实现过程中,可以将估计方位确定为本次定位的信标设备的方位,或者将历史方位的均值确定本次定位的信标设备的方位等,本发明所属领域的普通技术人员可以根据实际进行设置,本发明不做具体限制。
由上述描述可知,通过不共线的至少三根第一天线接收第二天线的信号,使得定位结果中至少有三个相位差所指向的方位接近,其他相位差所指向的方位分散,进而使得锚节点设备可以过滤掉奇异解,获得信标设备的方位,从而能够在360°的范围中定位到信标设备。
进一步,为了提高定位的准确性,同时提高每根第一天线对定位的贡献,在一种可选的实施例中,锚节点设备的至少三根第一天线的设置位置具体位于多边形顶点上,换言之,每两根第一天线的连线和连线的延长线上,有且仅有该两根第一天线,如图1a所示。在具体实现过程中,设置位置构成的多边形可以等边也可以不等边,例如等边三角形、等腰三角形、正方形、矩形或等边六边形等,本发明实施例中不做具体限制。
当然,本领域技术人员应当理解,在具体实现过程中,设置平面不平整和/或第一天线不等长,但是所有第一天线的收发端是共面的。
本发明实施例中的第一天线和第二天线之间通信的信号波为高频无线射频波,例如UWB(超带宽,Ultra Wideband)波、蓝牙波或紫峰ZigBee协议波等,本发明不做具体限制。进一步,为了保证每两根第一天线所接收到的信号在一个通信周期内,设置位置所构成的多边形的最长边长应小于信号的半波长。
举例来说,采用6.5GHz的UWB波来进行通信,则信号波的波长为46.1mm,半波长为23.1mm。考虑到为误差信号留下10%半波长的余量,防止测量信号有误差时定向值超过一个通信周期,最终确定多边形最长的 边长为半波长的90%,即20.8mm。
结合上述实施例,更进一步,本发明实施例中的至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。其中,线极化纯度用主极化和交叉极化的比值来确定,第二阈值的取值范围可以是大于等于6dB,例如为10dB、12dB或13dB等,由此使得第一天线的线极化纯度较高。由于信标设备发射信号时,由非主极化天线去接收,而是交叉极化方向的天线去接收,会导致测量的信号相位差不准确,进而会导致定位失败。所以,选择满足垂直极化条件且线极化纯度较高的第一天线,避免了定位失败。
更进一步,如果信标设备设置在姿态能够变化的电子设备上,例如平衡车、机器人和遥控器等,为了避免第二天线收发信号受到姿态变化的影响,本发明实施例中的第二天线满足圆极化条件,轴比可以选择小于4.5dB,例如在1dB~4.5dB中的取任意值。
另外,下面对锚节点设备对信标设备定位距离的方法进行简要介绍,请参考图5,为一种可能的数据包收发示意图。
锚节点设备与信标设备采用TWR(双向测距,Two-Way Ranging)的方法进行测距。在本发明实施例中,为了定位信标设备,每次测距需要基于3次通信。
第一,信标设备向锚节点设备发送第一数据包。信标设备发出第一数据包的同时,记录下发送第一数据包的时间戳,本发明实施例将发送第一数据包的时间戳记为tt1。
第二,锚节点设备接收第一数据包,并记录接收第一数据包的时间戳,本发明实施例将接收第一数据包的时间戳记为ta1。然后,锚节点设备向信标设备反馈第二数据包,以通知信标设备已接收第一数据包。在发出第二数据包的同时,记录下发送第二数据包的时间戳,本发明实施例将发送第 二数据包的时间戳记为ta1。
第三,信标设备接收第二数据包,并记录接收第二数据包的时间戳,本发明实施例中将接收第二数据包的时间戳记为tt2。信标设备进一步计算出发送第三数据包的时间tt3,并将记录到的tt1、tt2和tt3包含到第三数据包内。在信标设备时钟到达tt3时,将第三数据包发送给锚节点设备,以通知锚节点设备成功接收第二数据包。
第四,锚节点设备接收第三数据包,并记录接收第三数据包的时间戳,记为ta3。
接下来,由于信标设备和锚节点设备的时钟可能不同步,所以需计算:
Tround1(如图中的Trou1)=tt2-tt1,
Treply1(如图中的Trep1)=ta2-ta1,
Tround2(如图中的Trou2)=ta3-ta2,
Treply2(如图中的Trep2)=tt3-tt2。
其中,Tround1表示第一数据包从发送到接收到反馈的用时,Treply1表示锚节点设备反馈第二数据包的用时,Tround2表示第二数据包从发送到接收到反馈的用时,Treply2表示信标设备反馈第三数据包用时;图5中的Tprop表示数据包从发送到被接收的在途时间。
可见,T=(Tround1-Treply1)/2就为第一数据包从信标设备发送到锚节点设备的在途时间。因此,信标设备与锚节点设备的距离DIS就是DIS=T*V。其中,V为信号传播速度,为已知量。
在上述TWR过程中,至少三根第一天线的每根第一天线都会接收第一数据包、发送第二数据包和接收第三数据包。所以,在一次TWR过程中,锚节点设备可以同时定位信标设备的方位和距离,也可以分别在两次TWR中,本发明不做具体限制。
另外,在定位信标设备的方位时,锚节点设备任意选择按照接收第一 数据包的信号或者第二数据包的信号来定位信标设备的方位。或者,如果接收第一数据包和第二数据包时的信号强度有所不同,也可以按照信号强度较强的信号来定位。
最终,锚节点设备结合方位和距离,就定位出了信标设备。
另外,在具体实现过程中,为了节约设备资源,减少数据包发送频率,上述第一数据包、第二数据包和第三数据包中还可以包含信标设备和锚节点交互的各种信息和数据,例如锚节点向信标发送的控制指令、信标的请求指令、第二天线的极化方向、信标设备的姿态等。本发明所属领域的普通技术人员可以根据实际进行选择,本发明不做具体限制。
基于与前述实施例中定位方法同样的发明构思,本发明第二方面还提供一种定位装置,如图6所示,包括:
接收模块101,配置为通过每根所述第一天线接收信标设备的第二天线发送的信号;
计算模块102,配置为根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接收所述信号的相位差;
提取模块103,配置为提取所指向的方位最为接近的至少三个相位差;
确定模块104,配置为基于所述至少三个相位差,确定所述信标设备的方位。
其中,所述确定模块104配置为基于所述至少三个相位差,确定出所述信标设备的疑似方位;根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备的历史方位确定所述信标设备的方位。
进一步,所述确定模块104配置为判断所述至少三个相位差所指向的 方位是否相同;当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
作为一种实施方式,至少三根第一天线的设置位置位于多边形顶点上,且多边形的最长边长小于信号的半波长。
作为一种实施方式,至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。
作为一种实施方式,第二天线满足圆极化条件。
前述图1-图5实施例中的定位方法的各种变化方式和具体实例同样适用于本实施例的定位装置,通过前述对定位方法的详细描述,本领域技术人员可以清楚的知道本实施例中定位装置的实施方法,所以为了说明书的简洁,在此不再详述。
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
在本发明实施例的技术方案中,锚节点设备有至少三根第一天线,并且至少一根第一天线与其余第一天线设置位置不共线,锚节点设备通过每根第一天线接收信标设备的第二天线发送的信号,然后根据每根第一天线接收信号的相位,获得每两根第一天线接收信号的相位差。由于至少一根第一天线与其余第一天线不共线,所以在所有相位差所指向的方位中,就会存在至少三个相位差所指向的方位是接近的,而该至少三个相位差对应的镜像相位差所指向的镜像方位,以及其他相位差所指向的方位不收敛于同一个方位,因此提取所指向的方位最为接近的至少三个相位差,并基于至少三个相位差,确定信标设备的方位。由此可见,通过上述通过至少三根第一天线来接收第二天线的信号,进而使得相位差过滤掉奇异解,最终 利用最接近真实方位的三个相位差从360°的范围中确定出信标设备的方位,由此实现了锚节点设备在360°范围中定位的技术效果。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
工业实用性
本发明实施例的技术方案通过至少三根第一天线(其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线)来接收第二天线的信号,进而使得相位差过滤掉奇异解,最终利用最接近真实方位的三个相位差从360°的范围中确定出信标设备的方位,由此实现了锚节点设备在360°范围中定位的技术效果。

Claims (14)

  1. 一种定位方法,应用于锚节点设备,所述锚节点设备包括至少三根第一天线,其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线,所述方法包括:
    通过每根所述第一天线接收信标设备的第二天线发送的信号;
    根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接收所述信号的相位差;
    提取所指向的方位最为接近的至少三个相位差;
    基于所述至少三个相位差,确定所述信标设备的方位。
  2. 如权利要求1所述的方法,其中,所述基于所述至少三个相位差,确定所述信标设备的方位,包括:
    基于所述至少三个相位差,确定出所述信标设备的疑似方位;
    根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;
    当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备的历史方位确定所述信标设备的方位。
  3. 如权利要求2所述的方法,其中,所述基于所述至少三个相位差,确定出所述信标设备的疑似方位,包括:
    判断所述至少三个相位差所指向的方位是否相同;
    当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或
    当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
  4. 如权利要求2所述的方法,其中,所述根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值,包括:
    根据所述历史方位获得一估计方位;
    计算所述疑似方位与所述估计方位的差值与所述估计方位的比值,并将所述比值作为所述置信度;
    判断所述比值是否大于等于所述第一阈值;
    当所述比值大于等于所述第一阈值时,表示所述疑似方位的置信度达到所述第一阈值;当所述比值小于所述第一阈值时,表示所述疑似方位的置信度未达到所述第一阈值。
  5. 如权利要求1至4任一项所述的方法,其中,所述至少三根第一天线的设置位置位于多边形顶点上,且所述多边形的最长边长小于所述信号的半波长。
  6. 如权利要求5所述的方法,其中,所述至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。
  7. 如权利要求5所述的方法,其中,所述第二天线满足圆极化条件。
  8. 一种定位装置,应用于锚节点设备,所述锚节点设备包括至少三根第一天线,其中至少一根第一天线的设置位置与其余第一天线的设置位置不共线,所述装置包括:
    接收模块,配置为通过每根所述第一天线接收信标设备的第二天线发送的信号;
    计算模块,配置为根据所述每根第一天线接收所述信号的相位,获得每两根第一天线接收所述信号的相位差;
    提取模块,配置为提取所指向的方位最为接近的至少三个相位差;
    确定模块,配置为基于所述至少三个相位差,确定所述信标设备的方位。
  9. 如权利要求8所述的装置,其中,所述确定模块配置为基于所述至少三个相位差,确定出所述信标设备的疑似方位;根据所述信标设备的历史方位,判断所述疑似方位的置信度是否达到第一阈值;当所述疑似方位的置信度达到所述第一阈值时,确定所述疑似方位为所述信标设备的方位;其中,当所述疑似方位的置信度未达到所述第一阈值时,确定所述疑似方位不为所述信标设备的方位,并根据所述信标设备的历史方位确定所述信标设备的方位。
  10. 如权利要求9所述的装置,其中,所述确定模块配置为判断所述至少三个相位差所指向的方位是否相同;当所述至少三个相位差所指向的方位相同时,确定所述至少三个相位差中任一相位差所指向的方位为所述疑似方位;或当所述至少三个相位差所指向的方位不完全相同时,确定所述至少三个相位差所指向的方位的均值方位为所述疑似方位。
  11. 如权利要求8-10任一项所述的装置,其中,所述至少三根第一天线的设置位置位于多边形顶点上,且所述多边形的最长边长小于所述信号的半波长。
  12. 如权利要求11所述的装置,其中,所述至少三根第一天线满足垂直线极化条件,并且线极化纯度高于第二阈值。
  13. 如权利要求11所述的装置,其中,所述第二天线满足圆极化条件。
  14. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为执行权利要求1至7任一项所述的定位方法。
PCT/CN2017/070615 2016-11-18 2017-01-09 一种定位方法、装置及计算机存储介质 WO2018090477A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/326,402 US20210286038A1 (en) 2016-11-18 2017-01-09 Locating method and device, and computer storage medium
EP17872130.4A EP3489708A4 (en) 2016-11-18 2017-01-09 LOCATION METHOD AND DEVICE AND COMPUTER MEMORY MEDIUM
KR1020197007291A KR20190038908A (ko) 2016-11-18 2017-01-09 위치 결정 방법, 장치 및 컴퓨터 저장 매체
JP2019513410A JP6709330B2 (ja) 2016-11-18 2017-01-09 位置決め方法、装置及びコンピュータ記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611059005.7A CN106680763B (zh) 2016-11-18 2016-11-18 一种定位方法和装置
CN201611059005.7 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018090477A1 true WO2018090477A1 (zh) 2018-05-24

Family

ID=58866844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070615 WO2018090477A1 (zh) 2016-11-18 2017-01-09 一种定位方法、装置及计算机存储介质

Country Status (6)

Country Link
US (1) US20210286038A1 (zh)
EP (1) EP3489708A4 (zh)
JP (1) JP6709330B2 (zh)
KR (1) KR20190038908A (zh)
CN (1) CN106680763B (zh)
WO (1) WO2018090477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637951A (zh) * 2020-12-31 2021-04-09 Oppo广东移动通信有限公司 定位方法及装置、电子设备及计算机可读存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315164B (zh) * 2017-06-01 2020-12-08 大连海事大学 一种单ais参考点的船舶自主定位方法
CN107368066A (zh) * 2017-06-13 2017-11-21 纳恩博(北京)科技有限公司 一种控制方法、设备及系统
CN108627799B (zh) * 2018-04-28 2021-06-29 纳恩博(北京)科技有限公司 定位通信设备、定位方法及计算机存储介质
CN110726969B (zh) * 2018-07-16 2022-03-15 刘勉志 消防员定位系统
CN114095870A (zh) * 2020-08-05 2022-02-25 上海复旦微电子集团股份有限公司 一种识别系统
CN112858996B (zh) * 2020-12-31 2023-08-08 Oppo广东移动通信有限公司 终端、到达角度测量方法及相关装置
CN114697894A (zh) * 2020-12-31 2022-07-01 华为技术有限公司 一种室内定位方法、终端以及系统
CN114838701B (zh) * 2021-01-30 2023-08-22 华为技术有限公司 一种获取姿态信息的方法及电子设备
JP7329564B2 (ja) * 2021-07-07 2023-08-18 アンリツ株式会社 無線端末のアンテナ指向特性の測定システムおよび測定方法
CN113782984B (zh) * 2021-08-06 2022-10-21 北京航空航天大学 一种结合uwb测距与干涉仪测向的单站定位方法及天线阵列
FR3131147B1 (fr) * 2021-12-21 2024-04-26 Uwinloc Procédé et système d’aide à la configuration d’un système de localisation d’un dispositif radioélectrique.
JP2023102414A (ja) * 2022-01-12 2023-07-25 ソニーグループ株式会社 アンテナ装置、アンテナモジュール、及び、無線機
GB2622778A (en) * 2022-09-26 2024-04-03 Nokia Technologies Oy Orientation determination in telecommunication systems
CN115953864A (zh) * 2022-12-28 2023-04-11 北京神经元网络技术有限公司 共享车辆的锁车方法、装置、共享车辆、存储介质和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782643A (zh) * 2010-02-05 2010-07-21 东南大学 高精度局部无线定位系统
CN101801085A (zh) * 2010-02-11 2010-08-11 华为技术有限公司 一种定位方法、定位装置和基站
CN102193091A (zh) * 2010-03-10 2011-09-21 国民技术股份有限公司 一种近场距离判断装置和方法
CN102460202A (zh) * 2009-05-27 2012-05-16 首尔大学校产学协力团 基于包括多个天线的无线通信装置的定位系统和方法
CN104330769A (zh) * 2013-07-22 2015-02-04 深圳市金溢科技股份有限公司 定位方法、通信控制方法、装置及系统
US20150331086A1 (en) * 2014-05-15 2015-11-19 Delphi Technologies, Inc. Radar system with improved multi-target discrimination

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896803B2 (ja) * 1990-06-16 1999-05-31 株式会社光電製作所 干渉計式方向探知装置
US20040160364A1 (en) * 2002-10-29 2004-08-19 Zvi Regev Digital instantaneous direction finding system
JP2004333252A (ja) * 2003-05-06 2004-11-25 Nippon Telegr & Teleph Corp <Ntt> 位置推定装置および位置推定方法
US7213442B2 (en) * 2004-10-18 2007-05-08 The Boeing Company Methods of arranging transducers and transducer arrays having reduced phase ambiguity for determining direction of arrival of received signals
JP2008233017A (ja) * 2007-03-23 2008-10-02 Toyota Infotechnology Center Co Ltd 無線通信装置および路車間通信システム
JP2010096589A (ja) * 2008-10-15 2010-04-30 Fujitsu Ten Ltd 信号処理装置、レーダ装置、及び信号処理方法
CN103493293B (zh) * 2011-02-25 2015-08-26 霍尼韦尔国际公司 用于提供改进的tcas方位测量的系统和方法
KR101616377B1 (ko) * 2014-04-24 2016-05-11 국방과학연구소 방향탐지 정확도가 향상된 e.s.m. 위상 인터페로미터 방향탐지 시스템
CN103984971B (zh) * 2014-05-31 2017-09-12 范志广 基于天线阵列相位差测向射频识别的无线定位方法及系统
EP3073284A1 (en) * 2015-03-27 2016-09-28 Assa Abloy AB Method, device, computer program and computer program product for determining whether a portable key device is located in an active area in relation to a barrier
CN106093861A (zh) * 2016-07-31 2016-11-09 中国海洋大学 一种相位定位信标方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460202A (zh) * 2009-05-27 2012-05-16 首尔大学校产学协力团 基于包括多个天线的无线通信装置的定位系统和方法
CN101782643A (zh) * 2010-02-05 2010-07-21 东南大学 高精度局部无线定位系统
CN101801085A (zh) * 2010-02-11 2010-08-11 华为技术有限公司 一种定位方法、定位装置和基站
CN102193091A (zh) * 2010-03-10 2011-09-21 国民技术股份有限公司 一种近场距离判断装置和方法
CN104330769A (zh) * 2013-07-22 2015-02-04 深圳市金溢科技股份有限公司 定位方法、通信控制方法、装置及系统
US20150331086A1 (en) * 2014-05-15 2015-11-19 Delphi Technologies, Inc. Radar system with improved multi-target discrimination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489708A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637951A (zh) * 2020-12-31 2021-04-09 Oppo广东移动通信有限公司 定位方法及装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
KR20190038908A (ko) 2019-04-09
EP3489708A4 (en) 2019-09-18
US20210286038A1 (en) 2021-09-16
EP3489708A1 (en) 2019-05-29
CN106680763B (zh) 2020-07-03
CN106680763A (zh) 2017-05-17
JP6709330B2 (ja) 2020-06-10
JP2019532285A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018090477A1 (zh) 一种定位方法、装置及计算机存储介质
US9772396B2 (en) Relative orientation angle calculation method and device as well as relative positioning method
US8509809B2 (en) Third party device location estimation in wireless communication networks
US9332383B2 (en) Time of arrival based positioning system
US8457655B2 (en) Hybrid time of arrival based positioning system
US9807569B2 (en) Location based services provided via unmanned aerial vehicles (UAVs)
US8755304B2 (en) Time of arrival based positioning for wireless communication systems
CN103513230B (zh) 使用往返延迟和到达角的位置确定
US20180067189A1 (en) Location determination of a mobile device
US20130010617A1 (en) Relative position determination of wireless network devices
US8489114B2 (en) Time difference of arrival based positioning system
WO2018040573A1 (zh) 一种天线控制方法、装置及计算机存储介质
US8824325B2 (en) Positioning technique for wireless communication system
WO2018040572A1 (zh) 一种天线控制方法、装置及计算机存储介质
Van Haute et al. Optimizing time-of-arrival localization solutions for challenging industrial environments
KR102025089B1 (ko) Ir―uwb 측위 시스템 및 위치 측정 방법
WO2013159691A1 (zh) 测距报警的方法与装置
US20130072220A1 (en) Hybrid tdoa and toa based positioning system
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
US20160073372A1 (en) Determining an angle of direct path of a signal
Dong et al. A TOF and Kalman filtering joint algorithm for IEEE802. 15.4 a UWB Locating
TWI785145B (zh) 通信網路的定位方法和系統
JP2016517519A (ja) ビーコンローカルネットワークの性能向上
WO2017054673A1 (zh) 基于无线网络的定位方法和定位装置
US9869751B2 (en) Two way time of flight positioning and security using eavesdropping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017872130

Country of ref document: EP

Effective date: 20190225

Ref document number: 2019513410

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE