WO2013159691A1 - 测距报警的方法与装置 - Google Patents

测距报警的方法与装置 Download PDF

Info

Publication number
WO2013159691A1
WO2013159691A1 PCT/CN2013/074554 CN2013074554W WO2013159691A1 WO 2013159691 A1 WO2013159691 A1 WO 2013159691A1 CN 2013074554 W CN2013074554 W CN 2013074554W WO 2013159691 A1 WO2013159691 A1 WO 2013159691A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
terminal
receiving terminal
channel model
model equation
Prior art date
Application number
PCT/CN2013/074554
Other languages
English (en)
French (fr)
Inventor
赵磊
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2013159691A1 publication Critical patent/WO2013159691A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • H04W4/21Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel for social networking applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for ranging alarms. Background technique
  • the basic principle of the Global Positioning System is to measure the distance between a satellite at a known location and a user receiver, and then integrate the data of multiple satellites to know the specific location of the user. .
  • the distance from the user to the satellite is obtained by recording the satellite signal to the time elapsed by the user and multiplying it by the propagation of electromagnetic waves.
  • the navigation message When the GPS satellite is working normally, the navigation message is continuously transmitted with a pseudo-random code (abbreviated pseudo-code) consisting of 1 and 0 binary symbols.
  • the navigation message includes information such as satellite ephemeris, working conditions, clock correction, ionospheric delay correction, and atmospheric refraction correction. It is demodulated from the satellite signal and transmitted on the carrier frequency with 50b/s modulation.
  • the navigation message contains 5 sub-frames per main frame and is 6s long. 10 words in the first three frames; repeated every 30 seconds, updated every hour. The last two frames total 15000b.
  • the satellite time is extracted and compared with his own clock to know the distance between the satellite and the user, and then the satellite ephemeris data in the navigation message is used to calculate the position of the satellite when the message is transmitted.
  • the information such as the position and speed of the user in the geodetic coordinate system can be known.
  • the embodiment of the invention discloses a method and a device for ranging alarms, so as to solve the problem that the ranging accuracy between terminals is not high in the prior art.
  • an embodiment of the present invention provides a method for ranging alarm amount, where the method includes:
  • detecting a current distance from the receiving terminal After pairing with the receiving terminal, detecting a current distance from the receiving terminal; comparing the current distance with a preset distance threshold, and if the current distance exceeds a distance threshold, displaying a distance prompt information.
  • an embodiment of the present invention provides a device for ranging alarm, wherein the device includes:
  • a sending unit configured to send pairing request information for establishing a connection with the receiving terminal
  • a measuring unit configured to detect a current distance with the receiving terminal after pairing with the receiving terminal
  • the first execution unit is configured to compare the current distance with a preset distance threshold, and if the current distance exceeds the distance threshold, displaying the distance prompt information.
  • the channel model equation is selected according to the difference between the theoretical distance and the original distance, and the current distance is calculated by using the selected channel model equation, thereby reducing the error of the ranging.
  • FIG. 1 is a flowchart of a method for distance testing according to an embodiment of the present invention
  • FIG. 3 is a diagram of a device for distance testing according to an embodiment of the present invention. detailed description
  • Wi-Fi Direct Wireless Fidelity Direct
  • the Wi-Fi Direct technology is: The user terminals are allowed to connect to each other without using a wireless router, and tasks such as sharing, synchronization, and display are completed in a simpler and more convenient manner.
  • the Wi-Fi Direct technology establishes a connection through a grouping group (one-to-one or one-to-many topology), and the theoretical effective communication distance between multiple Wi-Fi Direct-enabled user terminals is within 300 m.
  • the Wi-Fi Direct technology is applied, and the technology is applied to an application scenario in which a child, a pet, an item, etc. are easily lost, and a distance alarm is required, and a low-cost, convenient-use distance measurement is proposed. Prompt warning method.
  • FIG. 1 is a flowchart of a method for distance testing according to an embodiment of the present invention.
  • the original distance exists between the transmitting terminal A (hereinafter referred to as terminal A) and the receiving terminal B (hereinafter referred to as terminal B), and both terminal A and terminal B are wirelessly compatible.
  • Sexual authentication is directly connected to Wi-Fi Direct standards, such as mobile phones and computers.
  • the terminal A sends the pairing request information for establishing a connection with the terminal B through the Wi-Fi Direct standard, and the terminal B verifies the pairing request information, and then responds. After receiving the response message, the terminal A sets the distance threshold for prompting the alarm, and the terminal A Determining whether the current distance between the terminal and the terminal B exceeds the distance threshold.
  • the alarm information is displayed on the terminal A to prompt the terminal A, and the terminal B.
  • the distance between the distance exceeds the preset distance threshold, and the user makes a corresponding judgment according to the distance prompt information displayed by the terminal A.
  • Step 1 10 Send pairing request information for establishing a connection with the receiving terminal; Specifically, there is a raw distance between the terminal A and the terminal B, and both the terminal A and the terminal B have a Wi-Fi Direct standard, such as a mobile phone, a computer, and the like.
  • the terminal A transmits the pairing request information for establishing a connection with the terminal B through the Wi-Fi Direct standard.
  • the Wi-Fi Direct standard allows terminals in a wireless network to be connected to each other without using a wireless router.
  • the terminal B verifies the pairing request information, and then responds. After receiving the response message, the terminal A pops up a prompt box for inputting the original distance in the terminal A, and the user inputs the specific value of the original distance according to the prompt box, and calculates the outdoor near-sight distance.
  • the theoretical distance is: the distance between the terminal A and the terminal B obtained in the environment where the signal strength between the terminal A and the terminal B is uniform, and there is no building blocking.
  • the original distance is: because there is a barrier between the terminal A and the terminal B, such as buildings, impurities, etc., the distance between the terminal A and the terminal B obtained in an environment with uneven signal strength, therefore, the theoretical distance and the original There is a certain gap between the distances. According to the difference between the theoretical distance and the original distance, the channel model equation is selected from a plurality of mathematical models in the database program.
  • Step 120 After pairing with the receiving terminal, calculate a current distance from the receiving terminal. Specifically, after receiving the response information, the terminal A selects a channel model equation from multiple mathematical models in the database program. The channel model equation is used to calculate the current distance between the terminal A and the terminal B; a list of selected channel model equations will be displayed in the terminal A, and the difference between the theoretical distance and the original distance is displayed in the list. A plurality of channel model equations selected by the terminal A, each of which can be used, but after each channel model equation, the calculation accuracy of the distance between the terminal A and the terminal B is calculated for each equation.
  • the calculation accuracy is the best, the error range is ⁇ 0.1%; the calculation accuracy is better, the error range is ⁇ 0.5%; the calculation accuracy is normal, the error range is ⁇ 1%;
  • the user selects the appropriate equation, therefore, the selected channel model equation is an equation with the best calculation accuracy, so as to reduce the calculation error and improve the calculation distance. .
  • the selected optimal channel model equation is a correlation function with spatial signal strength and bit error rate, and the specific form of the equation is:
  • PL K + 26 * log(d) + 20 * log(/ ) .
  • PL the path loss
  • f is the working frequency
  • K is a constant.
  • a prompt box for setting the distance of the prompt alarm is popped up in terminal A, and the user inputs the distance threshold according to the prompt box. Since the distance between the terminal A and the terminal B is constantly changing, the terminal A needs to periodically detect the spatial signal strength and the bit error rate, and calculate the current distance between the terminal A and the terminal B by using the channel model equation.
  • the selected PL channel model equation is taken as an example to illustrate the process of calculating the current distance.
  • the signal model equation is selected as appropriate.
  • Step 130 Compare the current distance with a preset distance threshold
  • terminal A compares the current distance between terminal A and terminal B calculated according to the channel model equation with the set distance threshold, and determines between terminal A and terminal B. If the current distance exceeds the distance threshold, if the current distance between the terminal A and the terminal B exceeds the distance threshold, step 140 is performed; otherwise, step 150 is performed to continue to periodically detect the spatial signal strength and the bit error rate, and pass the channel model.
  • the equation calculates the current distance between terminal A and terminal B.
  • Step 140 If the current distance between the receiving terminal and the receiving terminal exceeds a distance threshold, displaying an alarm message;
  • step 130 if the current distance between the terminal A and the terminal B exceeds the distance threshold, the distance prompt information is displayed in the terminal A to prompt the terminal A, and the distance between the terminal and the terminal B exceeds the pre-predetermined distance.
  • the distance is set to be wide, and the user makes a corresponding judgment according to the distance prompt information displayed by the terminal A.
  • Step 150 Continue to calculate the current distance.
  • the terminal A continues to calculate the current distance according to the channel model equation.
  • the distance prompt information may be alarm information. If the current distance exceeds the distance threshold, the terminal A displays the alarm information, and the alarm information may be sound information or vibration information.
  • the channel model equation is selected according to the difference between the theoretical distance and the original distance, and the current distance is calculated by using the selected channel model equation. Since each channel model equation calculates the error coefficient of the current distance is different, the user selects the optimal channel model. In the equation, the error of the ranging can be reduced, and the calculation accuracy of the current distance can be improved; when the front distance exceeds the distance threshold, the prompt information is displayed, which is convenient for the user to view; and the method can also be applied to the family, kindergarten or In agricultural production, at the same time, the purpose of preventing the loss of articles is achieved.
  • FIG. 2 is a flowchart of a specific implementation method for the ranging alarm according to the embodiment of the present invention.
  • the terminal A sends the pairing request information for establishing a connection with the terminal B through the Wi-Fi Direct standard, and the terminal B verifies the pairing request information, and then responds.
  • the terminal A sets the distance threshold for prompting the alarm, and the terminal A Determining whether the current distance between the terminal and the terminal B exceeds the distance threshold. If the current distance between the terminal A and the terminal B exceeds the distance threshold, the alarm information is displayed on the terminal A to prompt the terminal A, and the terminal B. The distance between the distance exceeds the preset distance threshold, and the user makes a corresponding judgment according to the distance prompt information displayed by the terminal A.
  • the specific implementation steps are as follows:
  • Step 210 Send pairing request information for establishing a connection
  • the original distance exists between the terminal A and the terminal B.
  • the original distance between the terminal A and the terminal B is 5 meters, and both the terminal A and the terminal B have wireless compatibility authentication.
  • Terminal A transmits pairing request information for establishing a connection with terminal B through the Wi-Fi Direct standard.
  • the Wi-Fi Direct standard allows terminals in a wireless network to be connected to each other without using a wireless router.
  • Step 220 Receive response information. Specifically, the terminal B verifies the pairing request information, and then responds, and the terminal A receives the response information.
  • Step 230 Select a channel model equation according to a difference between the theoretical distance and the original distance. Specifically, after receiving the response information, the terminal A pops up a dialog box to prompt the user to input the original distance from the terminal B, and obtain the original distance. The method is that before the user establishes pairing with the terminal B, the user can select a location with coordinate information, and estimate the distance from the terminal B according to the coordinate information.
  • the user invokes the calculation model of the outdoor near-sight distance in the terminal A, and calculates the theoretical distance between the terminal A and the terminal B by using the calculation model of the outdoor near-sight distance, the transmission power of the terminal A, and the receiving sensitivity of the terminal B; After the theoretical distance, terminal A will select the channel model equation according to the difference between the theoretical distance and the original distance;
  • the theoretical distance is: the terminal A obtained between the terminal A and the terminal B with uniform signal strength and no building blocking environment The distance between the terminals B; the original distance is: the distance between the terminal A and the terminal B in an environment where the signal strength is uneven due to the presence of a barrier such as a building or an impurity between the terminal A and the terminal B.
  • the terminal A calculates the difference between the theoretical distance and the original distance, according to the difference between the theoretical distance and the original distance, the gap is selected from a plurality of mathematical models in the database program. Match multiple channel model equations.
  • terminal A After terminal A calculates the difference between the theoretical distance and the original distance, terminal A will display a list of selected channel model equations, and display the difference between the theoretical distance and the original distance in the list, and multiple selected by terminal A.
  • Channel model equation each channel model equation can be used, but after each channel model equation, the calculation accuracy of the distance between terminal A and terminal B is calculated for each equation, for example, the calculation accuracy is the best.
  • the error range is ⁇ 0.1%; the calculation accuracy is better, the error range is ⁇ 0.5%; the calculation accuracy is normal, and the error range is ⁇ 1%; finally, the user selects the appropriate equation, therefore, in the embodiment of the present invention, the selection is
  • the channel model equation is the equation with the best calculation accuracy to reduce the calculation error and improve the accuracy of the calculation distance.
  • the original distance between terminal A and terminal B is 5 meters
  • the theoretical distance between terminal A and terminal B is 6 meters. Since the difference between the theoretical distance and the original distance is 1 meter, the selected channel model is selected.
  • the equation is a correlation function with spatial signal strength and bit error rate. The specific form of the equation is:
  • PL K + 26 * log( ) + 20 * log(/) .
  • PL is the path loss
  • K is a constant.
  • Step 240 setting a distance threshold
  • a prompt box for setting the distance threshold is popped up in the terminal A, and the user inputs the distance threshold according to the prompt box.
  • the distance of the prompt alarm is assumed to be 50.
  • the user enters the prompt data to indicate the distance of the warning value of the specific value of 50 meters.
  • Step 250 Timely detecting a spatial signal strength and a bit error rate parameter, and calculating a current distance.
  • the terminal A selects a channel model equation according to a difference between the theoretical distance and the original distance, and passes the channel model.
  • the equation calculates the current distance between the terminal A and the terminal B. Since the terminal A and the terminal B are not in a fixed relationship, the distance between the terminal A and the terminal B is constantly changing, and the terminal A needs to periodically detect the spatial signal.
  • the strength and bit error rate, and the current distance between terminal A and terminal B is calculated by the channel model equation.
  • the selected PL channel model equation is taken as an example to illustrate the process of calculating the current distance.
  • the signal model equation is selected as appropriate.
  • Step 260 Compare whether the current distance exceeds a distance threshold
  • the terminal A compares the current distance between the terminal A and the terminal B calculated according to the channel model equation with the set distance of 50 meters, and determines whether the current distance between the terminal B and the terminal B exceeds If the current distance between the terminal A and the terminal B exceeds the distance threshold by 50 meters, step 270 is performed; otherwise, step 250 is performed to continue the timing detection of the strong spatial signal. Degree and bit error rate, and calculate the current distance between terminal A and terminal B by channel model equation.
  • Step 270 Display distance prompt information
  • step 260 if the current distance between the terminal A and the terminal B exceeds the distance threshold by 50 meters, the distance prompt information is displayed in the terminal A to prompt the terminal A, the distance between the terminal A and the terminal B. Exceeding the preset distance threshold, the user makes a corresponding judgment according to the distance prompt information displayed by the terminal A.
  • the distance prompt information may be alarm information. If the current distance exceeds the distance limit, the terminal A displays the alarm information, and the alarm information may be sound information or vibration information.
  • the channel model equation is selected according to the difference between the theoretical distance and the original distance, and the current distance is calculated by using the selected channel model equation. Since each channel model equation calculates the error coefficient of the current distance is different, the user selects the optimal channel model. In the equation, the error of the ranging can be reduced, and the calculation accuracy of the current distance can be improved; when the front distance exceeds the distance threshold, the prompt information is displayed, which is convenient for the user to view; and the method can also be applied to the family, kindergarten or In agricultural production, at the same time, the purpose of preventing the loss of articles is achieved.
  • channel model equations in the embodiments of the present invention are selected from the database program by way of example only. In practical applications,
  • the above embodiment is a description of the ranging alarm method, and accordingly, it can also be implemented by a ranging alarm device.
  • 3 is a device diagram of a ranging alarm according to an embodiment of the present invention; as shown in FIG. 3, the apparatus for ranging alarm includes: a sending unit 310, a measuring unit 320, a first executing unit 330, a receiving unit 340, and a selection. Unit 350 and second execution unit 360.
  • the sending unit 310 is configured to send pairing request information for establishing a connection with the user terminal, where the sending unit is located in the terminal A, and the measuring unit 320 is configured to pair with the user terminal. Calculating a current distance from the user terminal; the first execution unit 330 is configured to compare the current distance with a preset distance threshold, and if the current distance exceeds a distance threshold, display the distance Prompt information;
  • the device further includes: a receiving unit 340, configured to receive the user The response information sent by the terminal, the response information is information that is successfully paired with the user terminal; the selecting unit 350 is configured to select a channel model equation according to the theoretical distance compared with the input original distance;
  • the measuring unit 320 is specifically configured to: periodically detect a spatial signal strength and a bit error rate between the receiving terminal and the receiving terminal, and calculate a current distance between the receiving terminal and the receiving terminal by using the channel model equation.
  • the theoretical distance is a distance between the signal strength and the receiving terminal, and there is no distance when the building is blocked; the original distance is a barrier between the building and the receiving terminal, such as buildings and impurities, so that the signal strength is uneven. distance.
  • the selecting unit 350 is specifically configured to: select a channel model equation from a plurality of mathematical models in the database program according to a difference between the theoretical distance and the original distance of the input.
  • the device further includes: a second executing unit 360, configured to continue to periodically detect a spatial signal strength and a bit error rate between the receiving terminal and the receiving terminal if the current distance does not exceed a distance threshold
  • the channel model equation calculates the current distance from the receiving terminal.
  • the pairing request information for establishing a connection with the terminal B is sent by the sending unit 310; the terminal B verifies the pairing request information, and then responds, and the receiving unit 340 receives the response information sent by the terminal B;
  • the response message pops up a prompt box for inputting the original distance, and enters the original distance from the terminal B according to the prompt box.
  • the selection unit 350 selects a channel model equation from a plurality of models in the database program according to the difference between the theoretical distance and the original distance. , the channel model equation is used to calculate the current distance;
  • the selecting unit 350 will display a list of selected channel model equations, and display a plurality of channel model equations selected according to the difference between the theoretical distance and the original distance, and each channel model equation can be used. However, after each channel model equation, the calculation accuracy of the distance between each equation calculation and terminal B is listed. For example, the calculation accuracy is the best, the error range is ⁇ 0.1%; the calculation accuracy is better, and the error range is ⁇ 0.5. %; The calculation accuracy is normal, and the error range is ⁇ 1%. Finally, the optimal equation is selected by the user. Therefore, in the embodiment of the present invention, the selected channel model equation is the equation with the best calculation accuracy to reduce the calculation error. , to improve the accuracy of the calculation distance.
  • the measuring unit 320 periodically detects the spatial signal strength and the bit error rate, and calculates the current distance from the terminal B according to the detected spatial signal strength and the bit error rate;
  • a prompt box for setting the distance threshold of the prompting alarm is popped up, and the distance is input according to the prompt box;
  • the first execution unit 330 compares the calculated current distance with the set distance threshold. If the current distance between the terminal B and the terminal B exceeds the distance threshold, the distance prompt information is displayed; because it is not fixed with the terminal B. Relationship, therefore, the distance between the terminal B and the terminal B is constantly changing. If the current distance between the terminal B and the terminal B does not exceed the distance threshold, the second execution unit 360 continues to periodically detect the spatial signal strength and the bit error rate. The channel model equation calculates the current distance from terminal B.
  • the distance prompt information may be alarm information. If the current distance exceeds the distance limit, the terminal A displays the alarm information, and the alarm information may be sound information or vibration information.
  • the processor in the terminal A executes a sending command, and sends a pairing request information for establishing a connection to the receiving terminal through the communication module of the terminal A, and passes the The communication module receives the response information sent by the terminal B, and the processor explicitly determines that the connection has been successfully established with the terminal B according to the response information;
  • the processor After successfully establishing a connection with the terminal B, the processor calls the internal calculation module to calculate the theoretical distance, receives the original distance input by the user according to its own coordinate position, and obtains the difference between the theoretical distance and the original distance, and selects multiple channels from the memory.
  • the model equation is displayed in the display for the user to select; the user touches the display screen, the processor receives the input information of the user through the display screen, and the processor calls the selected channel model equation according to the user information, and uses the equation and the calculation module. Calculate the current distance from the receiving terminal in real time, and transfer the current distance to the processor.
  • the processor calls the internal comparison module to compare the current distance with the threshold set by the user, and outputs the comparison result in the display for the user's reference. , waiting for the user's decision.
  • the channel model equation is selected according to the difference between the theoretical distance and the original distance, and the current distance is calculated by using the selected channel model equation. Since each channel model equation calculates the error coefficient of the current distance is different, the user selects the optimal channel model. When the equation is used, the error of ranging can be reduced. Poor, improve the calculation accuracy of the current distance; when the front distance exceeds the distance threshold, the prompt information is displayed, which is convenient for the user to view; Moreover, the method can also be applied in the family, kindergarten or agricultural production, and at the same time, the article is prevented. The purpose of the loss.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例涉及一种测距报警的方法与装置。所述方法包括:发送与接收终端建立连接的配对请求信息;与所述接收终端配对后,计算与所述接收终端之间的当前距离;将所述当前距离与预设的距离阈值相比较,如果所述当前距离超过距离阈值时,则显示距离提示信息。

Description

测距报警的方法与装置 技术领域 本发明涉及通讯领域, 尤其是涉及一种测距报警的方法与装置。 背景技术
目前, 许多应用场合需要提供方位或距离信息, 并将方位或距离信息用 于应急通讯、 公路测绘或一些军事任务中。
在现有技术中, 全球定位系统(Global Positioning System, GPS )的基 本原理是测量出已知位置的卫星到用户接收机之间的距离, 然后综合多颗卫 星的数据就可知道用户的具体位置。 用户到卫星的距离则通过记录卫星信号 传播到用户所经历的时间, 再将其乘以电磁波的传播得到。
当 GPS卫星正常工作时,会不断地用 1和 0二进制码元组成的伪随机码(简 称伪码)发射导航电文。 导航电文包括卫星星历、 工作状况、 时钟改正、 电 离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以 50b/s 调制在载频上发射的。 导航电文每个主帧中包含 5个子帧每帧长 6s。 前三帧各 10个字码; 每三十秒重复一次, 每小时更新一次。 后两帧共 15000b。 当用户 接受到导航电文时, 提取出卫星时间并将其与自己的时钟作对比便可得知卫 星与用户的距离, 再利用导航电文中的卫星星历数据推算出卫星发射电文时 所处位置, 用户在大地坐标系中的位置速度等信息便可得知。
但是, 在实际应用中民用的 GPS系统存在着一些问题。 如, 釆用 GPS技 术在计算已知位置的卫星到用户间的距离时, 时间确定之后, 速度按照电磁 波的传播速度, 但电磁波在大气层传播过程中, 信号要受到电力成和对流层 的重重干扰, GPS系统只能对此进行平均计算, 导致计算距离时精度不高。 发明内容 本发明实施例公开了一种测距报警的方法与装置, 以解决现有技术中终 端之间测距精度不高的问题。
在第一方面, 本发明实施例提供了一种测距报警量的方法, 其特征在于, 所述方法包括:
发送与接收终端建立连接的配对请求信息;
与所述接收终端配对后, 检测与所述接收终端之间的当前距离; 将所述当前距离与预设的距离阔值相比较, 如果所述当前距离超过距离 阔值时, 则显示距离提示信息。
在第二方面, 本发明实施例提供了一种测距报警的装置, 其特征在于, 所述装置包括:
发送单元, 用于发送与接收终端建立连接的配对请求信息;
测量单元, 用于与所述接收终端配对后, 检测与所述接收终端之间的当 前距离;
第一执行单元, 用于将所述当前距离与预设的距离阔值相比较, 如果所 述当前距离超过距离阔值时, 则显示距离提示信息。
通过应用本发明实施例公开的方法和装置, 根据理论距离与原始距离的 差距选择信道模型方程, 利用选择的信道模型方程计算当前距离, 从而降低 测距的误差。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的距离测试的方法流程图;
图 2为本发明实施例提供的距离测试的方法具体流程图;
图 3为本发明实施例提供的距离测试的装置图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
随着无线相容性认证直连(Wireless FidelityDirect , Wi-Fi Direct )技术 的普及和使用, 越来越多的用户终端具有 Wi-Fi Direct功能, 所述 Wi-Fi Direct 技术为: 在无线网络中, 允许用户终端无需通过无线路由器即可相互连接, 以更为简单而便捷的方式完成共享、 同步和显示等任务。 Wi-Fi Direct技术通 过组建小组 (以一对一或一对多的拓朴形式) 来建立连接, 多个具有 Wi-Fi Direct功能的用户终端之间的理论有效通信距离在 300m以内。
在本发明实施例中, 釆用 Wi-Fi Direct技术, 将该技术应用在小孩、 宠物、 物品等易丟失, 需要测量距离报警的应用场景中, 提出了一种低成本、 方便 使用的距离测量提示预警方法。
下面以图 1为例详细说明本发明实施例公开的距离测试的方法, 图 1为本 发明实施例提供的距离测试的方法流程图。
如图 1所示, 在本发明实施例中, 发送终端 A (以下简称终端 A )与接收终 端 B (以下简称终端 B )之间存在原始距离, 所述终端 A与终端 B均具有无线相 容性认证直连 Wi-Fi Direct标准, 如手机、 电脑等。 终端 A通过 Wi-Fi Direct标 准发送与终端 B建立连接的配对请求信息, 终端 B验证配对请求信息, 后并做 出应答, 终端 A接收到应答信息后, 设置提示报警的距离阔值, 终端 A判断其 与终端 B之间的当前距离是否超过距离阔值, 若终端 A与终端 B之间的当前距 离超过距离阔值, 则在终端 A上显示报警信息, 以提示终端 A, 其与终端 B之 间的距离超出预设的距离阔值, 用户根据终端 A显示的距离提示信息, 做出相 应的判断, 具体实施步骤如下:
步骤 1 10、 发送与接收终端建立连接的配对请求信息; 具体地, 终端 A与终端 B之间存在原始距离, 所述终端 A与终端 B均具有 Wi-Fi Direct标准, 如手机、 电脑等。 终端 A通过 Wi-Fi Direct标准发送与终端 B 建立连接的配对请求信息。
所述 Wi-Fi Direct标准为允许无线网络中的终端无需通过无线路由器即可 相互连接。
终端 B验证配对请求信息, 后并做出应答, 终端 A接收到应答信息后, 在 终端 A中弹出输入原始距离的提示框, 用户按照提示框输入原始距离的具体 值, 在室外近视距的计算模型中, 终端 A与终端 B之间存在理论距离, 所述理 论距离为: 终端 A与终端 B之间信号强度均匀, 且无建筑物阻挡的环境中得到 的终端 A与终端 B之间的距离; 所述原始距离为: 由于终端 A与终端 B之间存在 建筑物、 杂质等阻挡物, 使信号强度不均匀的环境中得到的终端 A与终端 B之 间的距离, 因此, 理论距离与原始距离存在一定的差距, 根据理论距离与原 始距离之间的差距, 从数据库程序中的多个数学模型中选取信道模型方程。
步骤 120、与所述接收终端配对后,计算与所述接收终端之间的当前距离; 具体地, 终端 A接收到应答信息后, 从数据库程序中的多个数学模型中选 取信道模型方程,所述信道模型方程用于计算终端 A与终端 B之间的当前距离; 在终端 A中将显示一个选取信道模型方程列表,在所述列表中显示出根据 理论距离与原始距离之间的差值, 由终端 A选择的多个信道模型方程, 所述每 个信道模型方程均可使用, 但在每个信道模型方程的后面, 列出每个方程计 算终端 A与终端 B之间距离的计算精度, 如, 计算精度最佳, 误差范围在士 0.1 %;计算精度较佳,误差范围在 ± 0.5%;计算精度普通,误差范围在 ± 1 %; 最后, 由用户选择出合适的方程, 因此, 在本发明实施例中, 选取的信道模 型方程为计算精度最佳的方程, 以降低计算误差, 提高计算距离的准确度。
在本发明实施例中, 选取的最佳信道模型方程是与空间信号强度和误码 率的相关函数, 该方程的具体形式为:
PL = K + 26 * log(d) + 20 * log(/ ) . 其中, PL为路径损耗;
f为工作频率;
d为当前巨离;
K为常数。
选取最佳的信道模型方程后,在终端 A中弹出设置提示报警的距离阔值的 提示框, 用户按照提示框输入距离阔值。 由于终端 A与终端 B之间的距离是不 断变化的, 终端 A需要定时检测空间信号强度和误码率, 并通过信道模型方程 计算终端 A与终端 B之间的当前距离。
在本发明实施例中, 以选取的 PL信道模型方程为例, 说明计算当前距离 的过程, 在实际应用中, 根据理论距离与原始距离之间的差距, 酌情选取信 号模型方程。
步骤 130、 将所述当前距离与预设的距离阔值相比较;
具体地, 根据步骤 1 10和步骤 120的描述, 终端 A将根据信道模型方程计 算的终端 A与终端 B之间的当前距离与设置的距离阔值相比较, 判断终端 A与 终端 B之间的当前距离是否超过距离阔值, 若终端 A与终端 B之间的当前距离 超过距离阔值, 则执行步骤 140; 否则, 执行步骤 150, 继续定时检测空间信 号强度和误码率, 并通过信道模型方程计算终端 A与终端 B之间的当前距离。
步骤 140、 若所述与所述接收终端之间的当前距离超过距离阔值, 则显示 报警信息;
具体地, 根据步骤 130的判断, 若终端 A与终端 B之间的当前距离超过距 离阔值, 则在终端 A中显示距离提示信息, 以提示终端 A, 其与终端 B之间的 距离超出预设的距离阔值, 用户根据终端 A显示的距离提示信息, 做出相应的 判断。
步骤 150、 继续计算当前距离。
具体地, 根据步骤 130的判断, 若终端 A与终端 B之间的当前距离不超过 距离阔值, 则在终端 A根据信道模型方程继续计算当前距离。 在本发明实施例中, 距离提示信息可以是报警信息, 如当前距离超过距 离阔值时,终端 A显示报警信息,所述报警信息可以为声音信息或者振动信息。
通过对上述方法的描述, 根据理论距离与原始距离的差距选择信道模型 方程, 利用选择的信道模型方程计算当前距离, 由于每个信道模型方程计算 当前距离的误差系数不同, 用户选取最佳信道模型方程时, 可降低测距的误 差, 提高当前距离的计算准确度; 在前距离超过距离阔值时, 显示提示信息, 方便用户的查看; 而且, 还可将所述方法应用在家庭、 幼儿园或者农业生产 中, 同时达到防止物品丟失的目的。
下面以图 2为例详细说明本发明实施例提供的测距报警的具体方法, 图 2 为本发明实施例提供的测距报警的方法具体实施流程图。
如图 2所示, 在本发明实施例中, 终端 A与终端 B之间存在原始距离, 所述 终端 A与终端 B均具有无线相容性认证直连 Wi-Fi Direct标准,如手机、电脑等。 终端 A通过 Wi-Fi Direct标准发送与终端 B建立连接的配对请求信息, 终端 B验 证配对请求信息, 后并做出应答, 终端 A接收到应答信息后, 设置提示报警的 距离阔值, 终端 A判断其与终端 B之间的当前距离是否超过距离阔值, 若终端 A与终端 B之间的当前距离超过距离阔值, 则在终端 A上显示报警信息, 以提 示终端 A, 其与终端 B之间的距离超出预设的距离阔值, 用户根据终端 A显示 的距离提示信息, 做出相应的判断, 具体实施步骤如下:
步骤 210、 发送建立连接的配对请求信息;
具体地, 终端 A与终端 B之间存在原始距离, 在本发明实施例中, 假设终 端 A与终端 B之间的原始距离为 5米, 所述终端 A与终端 B均具有无线相容性认 证直连 Wi-Fi Direct标准, 如手机、 电脑等。 终端 A通过 Wi-Fi Direct标准发送 与终端 B建立连接的配对请求信息。
所述 Wi-Fi Direct标准为允许无线网络中的终端无需通过无线路由器即可 相互连接。
步骤 220、 接收应答信息; 具体地, 终端 B验证配对请求信息, 后并做出应答, 终端 A接收到应答信 息。
步骤 230、 根据理论距离与原始距离的差值, 选择信道模型方程; 具体地, 终端 A接收到应答信息后, 终端 A弹出对话框提示用户输入与终 端 B的原始距离, 所述原始距离的获得方式为,用户在与终端 B建立配对之前, 可以选择一个有坐标信息的位置, 根据坐标信息估算与终端 B的距离。
用户调用终端 A中的室外近视距的计算模型,利用所述室外近视距的计算 模型, 终端 A的发射功率, 终端 B的接收灵敏度, 计算终端 A与终端 B之间的理 论距离; 终端 A计算出理论距离后, 终端 A将根据理论距离与原始距离的差值 选择信道模型方程;
在室外近视距的计算模型中, 终端 A与终端 B之间存在理论距离, 所述理 论距离为: 终端 A与终端 B之间信号强度均匀, 且无建筑物阻挡的环境中得到 的终端 A与终端 B之间的距离; 所述原始距离为: 由于终端 A与终端 B之间存在 建筑物、 杂质等阻挡物, 使信号强度不均匀的环境中的终端 A与终端 B之间的 距离。
因此, 理论距离与原始距离存在一定的差距, 终端 A计算出理论距离与原 始距离的差距后, 根据理论距离与原始距离之间的差距, 从数据库程序中的 多个数学模型中选取与该差距相匹配的多个信道模型方程。
终端 A计算出理论距离与原始距离差值后, 终端 A将显示一个选取信道模 型方程列表, 在所述列表中显示出根据理论距离与原始距离之间的差值, 由 终端 A选择的多个信道模型方程, 所述每个信道模型方程均可使用, 但在每个 信道模型方程的后面,列出每个方程计算终端 A与终端 B之间距离的计算精度, 如, 计算精度最佳, 误差范围在 ± 0.1 %; 计算精度较佳, 误差范围在 ± 0.5%; 计算精度普通, 误差范围在 ± 1 %; 最后, 由用户选择出合适的方程, 因此, 在本发明实施例中, 选取的信道模型方程为计算精度最佳的方程, 以降低计 算误差, 提高计算距离的准确度。 如, 终端 A与终端 B之间的原始距离为 5米, 终端 A与终端 B之间的理论距 离为 6米, 由于理论距离与原始距离之间的差距为 1米, 因此, 选取的信道模 型方程是与空间信号强度和误码率的相关函数, 该方程的具体形式为:
PL = K + 26 * log( ) + 20 * log(/) . 其中, PL为路径损耗;
f为工作频率 '
d为当前巨离;
K为常数。
步骤 240、 设置距离阔值;
具体地, 选取最佳的信道模型方程后, 在终端 A中弹出设置距离阔值的提 示框, 用户按照提示框输入距离阔值, 在本发明实施例中, 假设提示报警的 距离阔值为 50米,用户按照提示框输入提示预警的距离阔值的具体数据 50米。
步骤 250、 定时检测空间信号强度、 误码率参数, 计算当前距离; 具体地, 根据步骤 230的描述, 终端 A根据理论距离与原始距离之间的差 距, 选择的信道模型方程, 通过该信道模型方程计算终端 A与终端 B之间的当 前距离, 由于终端 A与终端 B之间不是固定的关系, 因此, 终端 A与终端 B之间 的距离是不断变化的, 终端 A还需定时检测空间信号强度和误码率, 并通过信 道模型方程计算终端 A与终端 B之间的当前距离。
在本发明实施例中, 以选取的 PL信道模型方程为例, 说明计算当前距离 的过程, 在实际应用中, 根据理论距离与原始距离之间的差距, 酌情选取信 号模型方程。
步骤 260、 比较当前距离是否超过距离阔值;
具体地, 根据步骤 250的描述, 终端 A将根据信道模型方程计算的终端 A 与终端 B之间的当前距离与设置的距离阔值 50米相比较, 判断与终端 B之间的 当前距离是否超过距离阔值 50米, 若终端 A与终端 B之间的当前距离超过距离 阔值 50米, 则执行步骤 270; 否则, 执行步骤 250, 继续定时检测空间信号强 度和误码率, 并通过信道模型方程计算终端 A与终端 B之间的当前距离。
步骤 270、 显示距离提示信息;
具体地, 根据步骤 260的比较, 若终端 A与终端 B之间的当前距离超过距 离阔值 50米, 则在终端 A中显示距离提示信息, 以提示终端 A, 其与终端 B之 间的距离超出预设的距离阔值, 用户根据终端 A显示的距离提示信息, 做出相 应的判断。
在本发明实施例中, 距离提示信息可以是报警信息, 如当前距离超过距 离阔值时,终端 A显示报警信息,所述报警信息可以为声音信息或者振动信息。
通过对上述方法的描述, 根据理论距离与原始距离的差距选择信道模型 方程, 利用选择的信道模型方程计算当前距离, 由于每个信道模型方程计算 当前距离的误差系数不同, 用户选取最佳信道模型方程时, 可降低测距的误 差, 提高当前距离的计算准确度; 在前距离超过距离阔值时, 显示提示信息, 方便用户的查看; 而且, 还可将所述方法应用在家庭、 幼儿园或者农业生产 中, 同时达到防止物品丟失的目的。
在本发明实施例中的信道模型方程仅以举例的形式从数据库程序中挑选 出, 在实际应用中,
上述实施例是对测距报警方法的描述, 相应地, 也可用测距报警的装置 实现。 图 3为本发明实施例提供的测距报警的装置图; 如图 3所示, 所述测距 报警的装置包括: 发送单元 310、 测量单元 320、 第一执行单元 330、 接收单 元 340、 选择单元 350和第二执行单元 360。
如图 3所示, 所述装置中发送单元 310, 用于发送与用户终端建立连接的 配对请求信息, 所述发送单元存在于终端 A中; 测量单元 320, 用于与所述用 户终端配对后, 计算与所述用户终端之间的当前距离; 第一执行单元 330, 用 于将所述当前距离与预设的距离阔值相比较, 如果所述当前距离超过距离阔 值时, 则显示距离提示信息;
在本发明实施例中, 所述装置还包括: 接收单元 340, 用于接收所述用户 终端发送的应答信息, 所述应答信息为与所述用户终端配对成功的信息; 选择单元 350, 用于根据理论距离与输入的原始距离相比较, 选择信道模 型方程;
其中, 测量单元 320具体用于, 定时检测与所述接收终端之间的空间信号 强度和误码率, 利用所述信道模型方程计算与所述接收终端之间的当前距离。
所述理论距离为与接收终端之间信号强度均勾, 且无建筑物阻挡时的距 离; 所述原始距离为与接收终端之间存在建筑物、 杂质等阻挡物, 使信号强 度不均勾的距离。
选择单元 350具体用于:根据所述理论距离与所述输入的原始距离之间的 差距, 从数据库程序中的多个数学模型中选取信道模型方程。
所述装置还包括: 第二执行单元 360, 用于如果所述当前距离不超过距 离阔值时, 则继续定时检测与所述接收终端之间的空间信号强度和误码率, 并通过所述信道模型方程计算与所述接收终端之间的当前距离。
在本发明实施例中, 由发送单元 310发送与终端 B建立连接的配对请求信 息; 终端 B验证配对请求信息, 后并做出应答, 由接收单元 340接收到终端 B 发送的应答信息; 根据接收的应答信息, 弹出输入原始距离的提示框, 按照 提示框输入与终端 B的原始距离, 选择单元 350根据理论距离与原始距离之间 的差距, 从数据库程序中的多个模型中选取信道模型方程, 信道模型方程用 于计算当前距离;
选择单元 350将显示一个选取信道模型方程列表,在所述列表中显示出根 据理论距离与原始距离之间的差值, 选择的多个信道模型方程, 所述每个信 道模型方程均可使用, 但在每个信道模型方程的后面, 列出每个方程计算与 终端 B之间距离的计算精度, 如, 计算精度最佳, 误差范围在 ± 0.1 %; 计算 精度较佳, 误差范围在 ± 0.5%; 计算精度普通, 误差范围在 ± 1 %; 最后, 由 用户选择出最佳的方程, 因此, 在本发明实施例中, 选取的信道模型方程为 计算精度最佳的方程, 以降低计算误差, 提高计算距离的准确度。 测量单元 320定时检测空间信号强度和误码率,根据检测空间信号强度和 误码率计算与终端 B之间的当前距离;
测量单元 320计算出与终端 B之间的当前距离后,弹出设置提示报警的距 离阔值的提示框, 按照提示框输入距离阔值;
第一执行单元 330将计算出的当前距离与设置的距离阔值相比较,若与终 端 B之间的当前距离超过距离阔值时, 则显示距离提示信息; 由于与终端 B之 间不是固定的关系, 因此, 与终端 B之间的距离是不断变化的, 若与终端 B之 间的当前距离不超过距离阔值时,则第二执行单元 360继续定时检测空间信号 强度和误码率, 利用信道模型方程计算与终端 B之间的当前距离。
在本发明实施例中, 距离提示信息可以是报警信息, 如当前距离超过距 离阔值时,终端 A显示报警信息,所述报警信息可以为声音信息或者振动信息。
上文所描述的装置均为与方法所对应的虚拟装置, 在实际应用中, 终端 A 中的处理器执行发送命令,通过终端 A的通信模块向接收终端发送建立连接的 配对请求信息, 而且通过通信模块接收终端 B发送的应答信息, 处理器根据应 答信息, 明确已与终端 B成功建立连接;
与终端 B成功建立连接后, 处理器调用内部的计算模块计算理论距离, 接 收用户根据自身的坐标位置输入的原始距离, 并求取理论距离与原始距离的 差值, 从存储器中选择多个信道模型方程, 显示在显示屏中, 供用户选择; 用户触摸显示屏, 处理器通过显示屏接收用户的输入信息, 处理器根据 用户的信息, 调用选择的信道模型方程, 利用该方程和计算模块, 实时计算 与接收终端的当前距离, 并将当前距离传送至处理器中, 处理器调用内部的 比较模块将当前距离与用户设置的阔值相比较, 并输出比较结果在显示屏中, 供用户参考, 等待用户的决策。
通过对上述装置的描述, 根据理论距离与原始距离的差距选择信道模型 方程, 利用选择的信道模型方程计算当前距离, 由于每个信道模型方程计算 当前距离的误差系数不同, 用户选取最佳信道模型方程时, 可降低测距的误 差, 提高当前距离的计算准确度; 在前距离超过距离阔值时, 显示提示信息, 方便用户的查看; 而且, 还可将所述方法应用在家庭、 幼儿园或者农业生产 中, 同时达到防止物品丟失的目的。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
本领域普通技术人员可以理解实现上述实施例装置中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各装置的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体( Random Access Memory, RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种测距报警的方法, 其特征在于, 所述方法包括:
发送与接收终端建立连接的配对请求信息;
与所述接收终端配对后, 计算与所述接收终端之间的当前距离;
将所述当前距离与预设的距离阔值相比较, 如果所述当前距离超过距离阔 值时, 则显示距离提示信息。
2、 根据权利要求 1所述的测距报警的方法, 其特征在于, 所述发送与接收 终端建立连接的配对请求信息后还包括:
接收所述接收终端发送的应答信息, 所述应答信息为与所述接收终端配对 成功的信息;
根据理论距离与输入的原始距离相比较, 选择信道模型方程;
利用所述信道模型方程计算与所述接收终端之间的当前距离;
所述理论距离为与接收终端之间信号强度均勾, 且无建筑物阻挡时的距离; 所述原始距离为与接收终端之间存在建筑物、 杂质等阻挡物, 使信号强度不均 匀的 巨离。
3、 根据权利要求 2所述的测距报警的方法, 其特征在于, 所述根据理论距 离与输入的原始距离相比较, 选择信道模型方程具体为:
根据所述理论距离与所述输入的原始距离之间的差距, 从数据库程序中的 多个数学模型中选取信道模型方程。
4、 根据权利要求 2所述的测距报警的方法, 其特征在于, 所述利用所述信 道模型方程计算与所述接收终端之间的当前距离具体为:
定时检测与所述接收终端之间的空间信号强度和误码率, 并通过所述信道 模型方程计算与所述接收终端之间的当前距离。
5、 根据权利要求 1所述的测距报警的方法, 其特征在于, 所述方法还包括: 如果所述当前距离不超过距离阔值时, 则继续定时检测与所述接收终端之 间的空间信号强度和误码率, 并通过所述信道模型方程计算与所述接收终端之 间的当前巨离。
6、 一种测距报警的装置, 其特征在于, 所述装置包括:
发送单元, 用于发送与接收终端建立连接的配对请求信息;
测量单元, 用于与所述接收终端配对后, 计算与所述接收终端之间的当前 距离;
第一执行单元, 用于将所述当前距离与预设的距离阔值相比较, 如果所述 当前距离超过距离阔值时, 则显示距离提示信息。
7、 根据权利要求 6所述的测距报警的装置, 其特征在于, 所述装置还包括: 接收单元, 用于接收所述接收终端发送的应答信息, 所述应答信息为与所 述接收终端配对成功的信息;
选择单元, 用于根据理论距离与输入的原始距离相比较, 选择信道模型方 程;
所述测量单元具体用于: 利用所述信道模型方程计算与所述接收终端之间 的当前巨离;
所述理论距离为与接收终端之间信号强度均勾, 且无建筑物阻挡时的距离; 所述原始距离为与接收终端之间存在建筑物、 杂质等阻挡物, 使信号强度不均 匀的 巨离。
8、 根据权利要求 7所述的测距报警的装置, 其特征在于, 所述选择单元具 体用于:
根据所述理论距离与所述输入的原始距离之间的差距, 从数据库程序中的 多个数学模型中选取信道模型方程。
9、 根据权利要求 7所述的测距报警的装置, 其特征在于, 所述测量单元进 一步具体用于: 定时检测与所述接收终端之间的空间信号强度和误码率, 并通 过所述信道模型方程计算与所述接收终端之间的当前距离。
10、根据权利要求 6所述的测距报警的装置,其特征在于,所述装置还包括: 第二执行单元, 用于如果所述当前距离不超过距离阈值时, 则继续定时检 测与所述接收终端之间的空间信号强度和误码率, 并通过所述信道模型方程计 算与所述接收终端之间的当前距离。
PCT/CN2013/074554 2012-04-27 2013-04-23 测距报警的方法与装置 WO2013159691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210128383.1 2012-04-27
CN201210128383.1A CN103379433B (zh) 2012-04-27 2012-04-27 测距报警的方法与装置

Publications (1)

Publication Number Publication Date
WO2013159691A1 true WO2013159691A1 (zh) 2013-10-31

Family

ID=48128067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074554 WO2013159691A1 (zh) 2012-04-27 2013-04-23 测距报警的方法与装置

Country Status (4)

Country Link
US (1) US9007948B2 (zh)
EP (1) EP2677778B1 (zh)
CN (1) CN103379433B (zh)
WO (1) WO2013159691A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698991B2 (en) 2013-03-15 2017-07-04 Ologn Technologies Ag Systems, methods and apparatuses for device attestation based on speed of computation
US10177915B2 (en) 2013-03-15 2019-01-08 Ologn Technologies Ag Systems, methods and apparatuses for device attestation based on speed of computation
US9456344B2 (en) 2013-03-15 2016-09-27 Ologn Technologies Ag Systems, methods and apparatuses for ensuring proximity of communication device
WO2014181313A1 (en) 2013-05-10 2014-11-13 Ologn Technologies Ag Ensuring proximity of wifi communication devices
US9455998B2 (en) 2013-09-17 2016-09-27 Ologn Technologies Ag Systems, methods and apparatuses for prevention of relay attacks
CN104680700A (zh) * 2013-11-28 2015-06-03 国民技术股份有限公司 一种监控方法、终端及监控系统
KR102184488B1 (ko) * 2014-01-09 2020-11-30 삼성전자주식회사 이동단말장치, 영상표시장치, 이동단말장치의 구동방법 및 영상표시장치의 구동방법
CN104066050A (zh) * 2014-06-12 2014-09-24 可牛网络技术(北京)有限公司 一种防止通信终端丢失的方法、通信终端及服务器
CN109191750A (zh) * 2014-12-19 2019-01-11 华为技术有限公司 一种防盗方法及装置
CN104599455B (zh) * 2014-12-31 2016-11-30 广东小天才科技有限公司 一种智能报警的方法和系统
CN105577907A (zh) * 2015-04-23 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种信息处理方法及装置
CN105115489A (zh) * 2015-06-26 2015-12-02 深圳市贝沃德克生物技术研究院有限公司 基于数据平台的交互式定位导航方法、第一终端及数据平台
WO2017049493A1 (zh) * 2015-09-23 2017-03-30 深圳还是威健康科技有限公司 一种防止走失的方法、智能手环及终端
CN105959480B (zh) * 2016-06-08 2020-01-31 联想(北京)有限公司 一种控制方法及电子设备
CN107121675B (zh) * 2017-05-04 2020-12-29 成都零点科技有限公司 具有杂波抑制功能的远程位移测量装置、系统及方法
CN108804627B (zh) * 2018-05-31 2021-04-06 科大讯飞股份有限公司 信息获取方法及装置
US11129042B2 (en) * 2019-09-16 2021-09-21 Nec Corporation Of America Path crossing detection based on wireless signals travel time
CN112533132B (zh) * 2020-10-29 2021-07-27 南京大学 一种基于蓝牙组网的标签测距和防撞报警方法
CN113490140B (zh) * 2021-07-05 2023-07-07 南京领创信息科技有限公司 一种检测群组成员异常位置的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188645A (zh) * 2006-11-17 2008-05-28 英华达(上海)电子有限公司 手持设备防盗报警装置及其方法
CN101212780A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 确定网络节点相对位置的方法及系统
CN101427543A (zh) * 2006-04-26 2009-05-06 高通股份有限公司 无线定位设备及方法
CN102388348A (zh) * 2008-12-01 2012-03-21 埃利亚胡·拉德 用于监测和定位物品的方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012554A2 (en) * 2004-07-23 2006-02-02 Wireless Valley Communications, Inc. System, method, and apparatus for determining and using the position of wireless devices or infrastructure for wireless network enhancements
US20090135730A1 (en) * 2005-10-24 2009-05-28 Seeker Wireless Pty. Limited Detection in Mobile Service Maintenance
US8059573B2 (en) * 2007-07-30 2011-11-15 Qualcomm Incorporated Method of pairing devices
US7974637B1 (en) * 2007-09-24 2011-07-05 Mikael Bror Taveniku Passive mode tracking through existing and future wireless networks
US7991896B2 (en) * 2008-04-21 2011-08-02 Microsoft Corporation Gesturing to select and configure device communication
US8775065B2 (en) * 2010-04-05 2014-07-08 Qualcomm Incorporated Radio model updating
US8660581B2 (en) * 2011-02-23 2014-02-25 Digimarc Corporation Mobile device indoor navigation
CN102186139A (zh) * 2011-04-18 2011-09-14 中兴通讯股份有限公司 一种利用移动终端实现看护和告警的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427543A (zh) * 2006-04-26 2009-05-06 高通股份有限公司 无线定位设备及方法
CN101188645A (zh) * 2006-11-17 2008-05-28 英华达(上海)电子有限公司 手持设备防盗报警装置及其方法
CN101212780A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 确定网络节点相对位置的方法及系统
CN102388348A (zh) * 2008-12-01 2012-03-21 埃利亚胡·拉德 用于监测和定位物品的方法和系统

Also Published As

Publication number Publication date
CN103379433B (zh) 2017-02-01
US9007948B2 (en) 2015-04-14
CN103379433A (zh) 2013-10-30
EP2677778A1 (en) 2013-12-25
EP2677778B1 (en) 2017-11-08
US20130287011A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2013159691A1 (zh) 测距报警的方法与装置
US8140016B2 (en) Wireless communication terminals and methods using acoustic ranging synchronized to RF communication signals
KR102252566B1 (ko) 로케이션 서비스를 개선하기 위해 3차원 로케이션 정보를 사용하기 위한 시스템 및 방법
US9807569B2 (en) Location based services provided via unmanned aerial vehicles (UAVs)
JP6162070B2 (ja) ラウンドトリップタイム測定のためのデバイス
US20180227061A1 (en) System and method for 3d tracking for ad-hoc cross-device interaction
CN105979479B (zh) 在拥挤室内环境中的设备位置的确定
US20210223355A1 (en) Distance-based positioning system and method using high-speed and low-speed wireless signals
JP2015531054A (ja) デバイスの位置確認のための方法、ノード及びコンピュータ・プログラム
WO2014100585A2 (en) Pairwise measurements for improved position determination
KR20150129818A (ko) 정확한 위치 정보의 디바이스-간 전달
KR20140133558A (ko) 추론된 tof(time­of­flight) 레인징
US20130335272A1 (en) Calculating a location
WO2013174338A2 (zh) 移动终端定位方法、装置及移动终端
TW201323911A (zh) 用於全球導航衛星系統的積體電路、系統及其方法
TW202011762A (zh) 無線定位校準系統及其方法
US20200174135A1 (en) Positioning Method, Device, and System
CN101360322B (zh) 一种基于测量网络的无线定位系统与方法
JP2016517519A (ja) ビーコンローカルネットワークの性能向上
CN114009106A (zh) 用于rat相关的定位的辅助数据
KR20220127282A (ko) 측위 방법 및 통신 장치
CN114731529A (zh) 用户设备位置信息上报的方法、用户设备及网络设备
WO2011112938A1 (en) System and method for monitoring signal quality
US20160373889A1 (en) Location accuracy improvement method and system using network elements relations and scaling methods
US20180199305A1 (en) Indoor positioning method, wireless receiving device, wireless transmission device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781776

Country of ref document: EP

Kind code of ref document: A1