WO2018088517A1 - 複合チタン酸化物の製造方法 - Google Patents

複合チタン酸化物の製造方法 Download PDF

Info

Publication number
WO2018088517A1
WO2018088517A1 PCT/JP2017/040576 JP2017040576W WO2018088517A1 WO 2018088517 A1 WO2018088517 A1 WO 2018088517A1 JP 2017040576 W JP2017040576 W JP 2017040576W WO 2018088517 A1 WO2018088517 A1 WO 2018088517A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
bismuth
titanium oxide
potassium
sodium
Prior art date
Application number
PCT/JP2017/040576
Other languages
English (en)
French (fr)
Inventor
田邉 信司
肇 國田
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2018088517A1 publication Critical patent/WO2018088517A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering

Definitions

  • the present invention relates to a composite titanium oxide used as a filler for a composite piezoelectric material of a raw material for sintering production of piezoelectric ceramics, or a composite piezoelectric material in which a filler for composite piezoelectric material is dispersed in a polymer matrix. It is related with the manufacturing method.
  • titanate-based piezoelectric ceramics other than lead zirconate titanate include ceramics of composite titanium oxides of alkali metals such as Na and K and bismuth.
  • Patent Document 1 discloses a bismuth sodium titanate piezoelectric ceramic material in which the proportion of oxygen vacancies is minimized.
  • Patent Document 2 raw materials of Na 2 CO 3 , TiO 2 , and Bi 2 O 3 are weighed by stoichiometry, pulverized, mixed, dried, molded, sintered at 1050 ° C., and bismuth sodium titanate. It is described that a piezoelectric ceramic was obtained.
  • Non-Patent Document 1 as a result of heating a mixture of K 2 CO 3 , TiO 2 , and Bi 2 O 3 at 500 to 1000 ° C. for 40 hours, bismuth potassium titanate (K 0.5 Bi 0.5 TiO 3 ) Is most produced at 500 to 600 ° C., and the reaction is completed at 900 ° C.
  • an object of the present invention is to provide a method for producing a composite titanium oxide in which a firing raw material is mixed in a dry process, and a method for producing a composite titanium oxide capable of precisely adjusting the molar ratio of bismuth, alkali metal and titanium. There is to do.
  • the present invention provides the following general formula (1): Bi x A (1-x) Ti y O 3 (1)
  • A is one or more alkali metal elements selected from K, Na and Li, x is 0.4 ⁇ x ⁇ 0.6, and y is 0.995 ⁇ y ⁇ . 1.005.
  • a second step of firing the first firing raw material at 500 to 700 ° C. to obtain a first fired product In the first baked product, either one or both of a bismuth compound and an alkali compound, in terms of atoms, a ratio of Bi and alkali metal element A to the total number of moles of Ti ((Bi + A) / Ti)
  • a method for producing a composite titanium oxide in which a calcined raw material is mixed in a dry manner and a method for producing a composite titanium oxide capable of precisely adjusting the molar ratio of bismuth, alkali metal and titanium. Can do.
  • FIG. 2 is an XRD chart of potassium bismuth titanate obtained in Example 1.
  • 2 is a SEM of potassium bismuth titanate obtained in Example 1.
  • 3 is an XRD chart of bismuth sodium titanate obtained in Example 2.
  • FIG. 2 is a SEM of bismuth sodium titanate obtained in Example 2.
  • the method for producing a composite titanium oxide according to the present invention includes the following general formula (1): Bi x A (1-x) Ti y O 3 (1) (In the formula, A is one or more alkali metal elements selected from K, Na and Li, x is 0.4 ⁇ x ⁇ 0.6, and y is 0.995 ⁇ y ⁇ . 1.005.) Is a method for producing a composite titanium oxide represented by: The ratio of the total number of moles of Bi and the alkali metal element A ((Bi + A) / Ti) in terms of atoms of the bismuth compound, the alkali compound, and the titanium compound is 0.990 to 1.000 in terms of atoms.
  • a second step of firing the first firing raw material at 500 to 700 ° C. to obtain a first fired product In the first baked product, either one or both of a bismuth compound and an alkali compound, in terms of atoms, a ratio of Bi and alkali metal element A to the total number of moles of Ti ((Bi + A) / Ti)
  • the first step is a step of preparing a first firing raw material by mixing a bismuth compound, an alkali compound, and a titanium compound in a dry manner.
  • the alkali compound according to the first step is either a potassium compound, a sodium compound or a lithium compound, or a combination of any two or three of a potassium compound, a sodium compound and a lithium compound. That is, as an alkali compound, only a potassium compound may be used, only a sodium compound may be used, only a lithium compound may be used, a potassium compound and a sodium compound, a potassium compound and a lithium compound, and a sodium compound. And lithium compound or potassium compound, sodium compound and lithium compound may be used in combination.
  • the potassium compound which concerns on a 1st process is a compound which has a potassium atom, and potassium carbonate, potassium hydrogencarbonate, potassium hydroxide, potassium oxalate, potassium tartrate etc. are mentioned.
  • the potassium compound may be one kind or a combination of two or more kinds.
  • potassium carbonate K 2 CO 3
  • the higher the purity of the potassium compound the better.
  • the average particle size (D50) of the potassium compound according to the first step is not particularly limited, but is preferably 1000 ⁇ m or less, particularly preferably 10 to 100 ⁇ m.
  • the BET specific surface area of the potassium compound according to the first step is not particularly limited, but is preferably 0.01 to 5 m 2 / g, particularly preferably 0.1 to 3 m 2 / g.
  • the miscibility with other raw materials is increased, the composition can be easily adjusted, and it can be reacted effectively in the firing described later.
  • the sodium compound which concerns on a 1st process is a compound which has a sodium atom, and sodium carbonate, sodium hydrogencarbonate, sodium hydroxide, sodium oxalate, sodium tartrate etc. are mentioned.
  • the sodium compound may be one type or a combination of two or more types.
  • sodium carbonate Na 2 CO 3
  • the purity of a sodium compound is so preferable that it is high.
  • the average particle diameter (D50) of the sodium compound according to the first step is not particularly limited, but is preferably 1000 ⁇ m or less, particularly preferably 10 to 100 ⁇ m.
  • the BET specific surface area of the sodium compound according to the first step is not particularly limited, but is preferably 0.01 to 5 m 2 / g, particularly preferably 0.1 to 3 m 2 / g.
  • the BET specific surface area of the sodium compound is in the above range, the miscibility with other raw materials is increased, the composition adjustment is facilitated, and the reaction can be effectively performed in the firing described later.
  • the lithium compound according to the first step is a compound having a lithium atom, and examples thereof include lithium carbonate, lithium hydrogen carbonate, lithium hydroxide, lithium oxalate, and lithium tartrate.
  • the lithium compound may be one type or a combination of two or more types.
  • lithium carbonate Li 2 CO 3
  • the purity of the lithium compound is preferably as high as possible.
  • the average particle diameter (D50) of the lithium compound according to the first step is not particularly limited, but is preferably 1000 ⁇ m or less, particularly preferably 10 to 100 ⁇ m.
  • the BET specific surface area of the lithium compound in the first step is not particularly limited, but is preferably 0.01 to 5 m 2 / g, particularly preferably 0.1 to 3 m 2 / g.
  • the BET specific surface area of the lithium compound is in the above range, the miscibility with other raw materials is increased, the composition adjustment is facilitated, and the reaction can be effectively carried out in the firing described later.
  • the bismuth compound according to the first step is a compound having a bismuth atom, and examples thereof include bismuth oxide and bismuth subcarbonate.
  • the bismuth compound may be one type or a combination of two or more types.
  • bismuth oxide (Bi 2 O 3 ) is preferable in terms of ease of handling and good precision composition control. Moreover, the higher the purity of the bismuth compound, the better.
  • the average particle diameter (D50) of the bismuth compound according to the first step is not particularly limited, but is preferably 0.1 to 5 ⁇ m, particularly preferably 0.2 to 3 ⁇ m.
  • the BET specific surface area of the bismuth compound according to the first step is not particularly limited, but is preferably 0.1 to 15 m 2 / g, particularly preferably 0.5 to 10 m 2 / g.
  • the BET specific surface area of the bismuth compound is in the above range, the miscibility with other raw materials is increased, the composition adjustment is facilitated, and the reaction can be effectively performed in the firing described later.
  • the titanium compound according to the first step is a compound having a titanium atom, and examples thereof include titanium dioxide (rutile, anatase) and metatitanic acid.
  • the titanium compound may be one kind or a combination of two or more kinds.
  • titanium dioxide TiO 2
  • the purity of a titanium compound is so preferable that it is high.
  • the average particle diameter (D50) of the titanium compound according to the first step is not particularly limited, but is preferably 0.1 to 5 ⁇ m, particularly preferably 0.2 to 3 ⁇ m.
  • the average particle diameter (D50) of the titanium compound is in the above range, the mixing property with other raw materials is increased, the composition adjustment is facilitated, and the reaction can be effectively performed in the firing described later.
  • the BET specific surface area of the titanium compound according to the first step is not particularly limited, but is preferably 0.1 to 20 m 2 / g, and particularly preferably 1.0 to 10 m 2 / g. When the BET specific surface area of the titanium compound is in the above range, it becomes possible to produce a composite titanium oxide having excellent dispersibility and good crystallinity even in the dry method.
  • the average particle size is an integrated particle size of 50% (D50) determined by volume frequency particle size distribution measurement by a laser light scattering method using MT3300EXII manufactured by Microtrack Bell.
  • the ratio of the total number of moles of Bi and the alkali metal element A to the number of moles of Ti ((Bi + A) / Ti) in terms of atoms of the bismuth compound, the alkali compound, and the titanium compound is Dry mixing is performed in an amount of 0.990 to 1.000, preferably 0.990 to 0.995. That is, in the first step, the total amount of Bi and alkali metal element A in the raw material is made equimolar with Ti or slightly less than Ti and equimolar. In the first step, the molar ratio of Bi and alkali metal element A in the raw material is made equal to the molar ratio of Bi and alkali metal element A in the composite titanium oxide to be manufactured.
  • the composite titanium oxide which is a production object is the general formula (1): Bi x A (1-x) Ti y O 3 (1)
  • A is one or more alkali metal elements selected from K, Na and Li
  • x is 0.4 ⁇ x ⁇ 0.6
  • y is 0.995 ⁇ y ⁇ . 1.005.
  • It is the composite titanium oxide represented by these, and is the composite titanium oxide which is going to be obtained by performing the manufacturing method of the composite titanium oxide of this invention.
  • the molar ratio of Bi of the composite titanium oxide represented by the general formula (1) to the alkali metal element A is such that 0.4 ⁇ x ⁇ 0.6. That is, in the first step, an amount of bismuth compound and alkali compound in which x is in this range is dry mixed. In the first step, when any two or three of a potassium compound, a sodium compound and a lithium compound are used in combination as the alkali compound, the number of moles of the alkali metal element A is either potassium, sodium or lithium. The total number of moles of 2 or 3 types.
  • the alkali metal element A of the composite titanium oxide represented by the general formula (1) is used in combination, that is, potassium and sodium, potassium and lithium, sodium and lithium, or potassium, sodium and lithium, potassium
  • the molar ratio of sodium and lithium is appropriately selected.
  • a potassium compound, a sodium compound, and a lithium compound as an alkali compound in the 1st process, it is set as the molar ratio of potassium, sodium, and lithium of the composite titanium oxide which is a manufacturing target object.
  • the mixing ratio of the potassium compound, sodium compound and lithium compound is adjusted.
  • a bismuth compound, an alkali compound, and a titanium compound are mixed in a dry process.
  • the method for dry mixing is not particularly limited, and examples thereof include a mixing method using a blender, ribbon mixer, Henschel mixer, food mixer, super mixer, nauter mixer, julia mixer, and the like.
  • the second step is a step of baking the first baking raw material obtained by performing the first step to obtain a first baking product.
  • the firing temperature when firing the first firing raw material is 500 to 700 ° C., preferably 550 to 700 ° C.
  • the firing time when firing the first firing raw material is appropriately selected, but is preferably 3 to 20 hours, particularly preferably 5 to 15 hours, and the firing atmosphere is oxygen It is an oxidizing atmosphere such as gas or air.
  • the obtained first fired product may be pulverized as necessary.
  • pulverizing means such as a jet mill, a ball mill, a bead mill, an optimizer, an atomizer, a nanomizer, a pulverizer, and a pin mill can be used.
  • the third step is a step of preparing a second firing raw material by mixing a bismuth compound and an alkali compound in a dry manner with the first fired product obtained by performing the second step.
  • the bismuth compound according to the third step is the same as the bismuth compound according to the first step.
  • the bismuth compound used in the third step may be the same as the bismuth compound used in the first step, or may be a bismuth compound different from the bismuth compound used in the first step.
  • the alkali compound according to the third step is the same as the alkali compound according to the first step.
  • the potassium compound used in the third step may be the same as the potassium compound used in the first step, or may be a potassium compound different from the potassium compound used in the first step.
  • the sodium compound used in the third step may be the same as the sodium compound used in the first step, or may be a sodium compound different from the sodium compound used in the first step.
  • the lithium compound used in the third step may be the same as the lithium compound used in the first step, or may be a lithium compound different from the lithium compound used in the first step.
  • the alkaline compound which concerns on a 3rd process is either a potassium compound, a sodium compound, and a lithium compound, when any 2 types or 3 types of a potassium compound, a sodium compound, and a lithium compound are used together in a 1st process. .
  • the first fired product is subjected to composition analysis, and the mol% of Bi, alkali metal element A, and Ti in the first fired product is determined.
  • the ratio of the total number of moles of Bi and alkali metal element A to Ti moles ((Bi + A) / Ti) is 0.995 to 1.005, preferably bismuth compound and alkali compound in one fired product Is dry mixed in an amount of 0.997 to 1.003 to obtain a second fired raw material. That is, in the third step, the total amount of Bi and the alkali metal element A in terms of atoms of the bismuth compound and the alkali compound in the first fired product is 1.000 ⁇ 0.005 in terms of a molar ratio with respect to Ti.
  • the composite titanium oxide which is a production object is the general formula (1): Bi x A (1-x) Ti y O 3 (1) (In the formula, A is one or more alkali metal elements selected from K, Na and Li, x is 0.4 ⁇ x ⁇ 0.6, and y is 0.995 ⁇ y ⁇ . 1.005.) It is the composite titanium oxide represented by these, and is the composite titanium oxide which is going to be obtained by performing the manufacturing method of the composite titanium oxide of this invention.
  • the molar ratio of Bi of the composite titanium oxide represented by the general formula (1) to the alkali metal element A is such that 0.4 ⁇ x ⁇ 0.6. That is, in the third step, an amount of bismuth compound and alkali compound in which x is in this range is added to the first fired product.
  • the number of moles of the alkali metal element A in the third step is potassium and sodium. The total number of moles of any two or three of lithium.
  • the third step potassium and sodium of the composite titanium oxide that is the production object
  • the mixing ratio of any two or three of the potassium compound, sodium compound and lithium compound is adjusted so that the molar ratio is any two or three of lithium and lithium.
  • the bismuth compound, the alkali compound, and the first fired product are mixed in a dry manner.
  • the method for dry mixing is not particularly limited, and examples thereof include a mixing method using a blender, ribbon mixer, Henschel mixer, food mixer, super mixer, nauter mixer, julia mixer, and the like.
  • the second firing raw material obtained by performing the third step is fired, and the ratio of the total number of moles of Bi and alkali metal element A to the number of moles of Ti in terms of atoms ((Bi + A) / Ti) is 0.995 to 1.005, and the following general formula (1): Bi x A (1-x) Ti y O 3 (1) (In the formula, A is one or more alkali metal elements selected from K, Na and Li, x is 0.4 ⁇ x ⁇ 0.6, and y is 0.995 ⁇ y ⁇ . 1.005.) To obtain a composite titanium oxide represented by
  • a in the formula (1) is at least one selected from potassium, sodium and lithium.
  • A is potassium alone, sodium alone, lithium alone, potassium and sodium, potassium and lithium, sodium and lithium, or any combination of potassium, sodium, and lithium. There may be.
  • the molar ratio of Bi to the alkali metal element A in terms of atoms is such that x is 0.4 ⁇ x ⁇ 0.6. Molar ratio.
  • the ratio of the total number of moles of Bi and the alkali metal element A ((Bi + A) / Ti) relative to the number of moles of Ti in terms of atoms is 0.995 to 1.005, preferably 0.997 to 1.003.
  • the firing temperature when firing the second firing raw material is 500 to 900 ° C., preferably 550 to 850 ° C.
  • the firing time when firing the second firing raw material is appropriately selected, but is preferably 3 to 20 hours, particularly preferably 5 to 15 hours, and the firing atmosphere is oxygen It is an oxidizing atmosphere such as gas or air.
  • the obtained fired product may be pulverized as necessary.
  • pulverizing means such as a jet mill, a ball mill, a bead mill, an optimizer, an atomizer, a nanomizer, a pulverizer, and a pin mill can be used.
  • the composite titanium oxide obtained by performing the fourth step may be further calcined at 500 to 1000 ° C., particularly preferably at 700 to 900 ° C. for the purpose of enhancing crystallinity.
  • the firing temperature at this time is appropriately selected, but is preferably 3 to 20 hours, particularly preferably 5 to 15 hours.
  • the firing atmosphere is an oxidizing atmosphere such as oxygen gas or air.
  • the composite titanium oxide obtained through calcination may be pulverized as necessary.
  • pulverizing means such as a jet mill, a ball mill, a bead mill, an optimizer, an atomizer, a nanomizer, a pulverizer, and a pin mill can be used.
  • the average particle diameter (D50) of the composite titanium oxide obtained by performing the method for producing the composite titanium oxide of the present invention is not particularly limited, but is preferably 0.1 to 5 ⁇ m, more preferably 0.1 -3 ⁇ m, particularly preferably 0.2-1 ⁇ m.
  • the BET specific surface area of the composite titanium oxide obtained by carrying out the method for producing the composite titanium oxide of the present invention is not particularly limited, but is preferably 0.2 to 15 m 2 / g, particularly preferably 1.0 to 10 m. 2 / g.
  • the composite titanium oxide obtained by performing the composite titanium oxide manufacturing method of the present invention is a piezoelectric ceramic manufacturing raw material manufactured by sintering a ceramic raw material, and a composite piezoelectric material filler is dispersed in a polymer matrix. It is suitably used as a filler of the composite piezoelectric material that has been used and as a filler of an electret material proposed for use as an electrostatic induction conversion element. And as these applications, it is suitably used for various sensors such as pressure sensors and pressure distribution sensors, vibration damping materials used in automobiles and buildings, and power generation elements that use environmental vibrations that occur when people walk or run cars. It is done.
  • the influence of a trace amount of impure components such as bismuth compounds, alkali compounds and titanium compounds as raw materials, and the alkali compounds are deliquescent and uniformly mixed during firing. Therefore, the molar ratio of bismuth and alkali metal element A in the obtained composite titanium oxide deviates from the desired molar ratio, and it is difficult to precisely adjust the molar ratio of alkali metal.
  • the molar ratio of bismuth and alkali metal element A is set to a desired molar ratio, and the number of moles of Ti. Firing and firing with the ratio of the total number of moles of Bi and alkali metal element A being 0.990 to 1.000 and the total amount of Bi and alkali metal element A being equivalent to Ti or slightly less than Ti. After obtaining the product, the molar ratio of bismuth, alkali metal element A and titanium is adjusted in the third step and the fourth step to obtain a fired product, so that precise composition adjustment of the composite titanium oxide is possible. .
  • the present inventors consider that such precise composition adjustment by multiple steps is possible due to the reaction mechanism between bismuth and alkali metal element A and titanium. That is, it is considered that bismuth and alkali metal element A are gradually compounded into titanium with respect to titanium, and bismuth and alkali metal element A gradually exist in a state where titanium is excessive. Thus, a composite titanium oxide having a desired molar ratio can be obtained. On the contrary, when bismuth and alkali metal element A are present in a state where titanium is insufficient, titanium for compounding is insufficient, and thus composition adjustment itself becomes difficult.
  • Example 1 ⁇ Production of bismuth potassium titanate> 2770 g of titanium oxide (TiO 2 , Showa Denko), 4073 g of bismuth oxide (Bi 2 O 3 , manufactured by Nippon Chemical Industry Co., Ltd.) and 1203 g of potassium carbonate (food additive fine powder K 2 CO 3 , manufactured by Nippon Soda Co., Ltd.) (Nippon Coke Industries, FM-20B).
  • TiO 2 titanium oxide
  • Showa Denko Showa Denko
  • 4073 g of bismuth oxide Bi 2 O 3 , manufactured by Nippon Chemical Industry Co., Ltd.
  • 1203 g of potassium carbonate food additive fine powder K 2 CO 3 , manufactured by Nippon Soda Co., Ltd.
  • the input titanium oxide, bismuth oxide and potassium carbonate were dry-mixed using a Henschel mixer at 2000 rpm for 2.5 minutes to obtain a first fired raw material.
  • the obtained first firing raw material was fired at 650 ° C. for 7 hours in an elevating electric furnace (manufactured by Motoyama, SLV-6060L-SP).
  • a first pulverized product was obtained by pulverizing with a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) under conditions of a processing speed of 6 kg / h, an introduction pressure of 0.6 MPa, and a pulverization pressure of 0.5 MPa.
  • the second pulverized product was fired at 825 ° C. for 15 hours in a lifting electric furnace, cooled to room temperature, treated with a jet mill at a processing rate of 5 kg / h, an introduction pressure of 0.30 MPa, and pulverized. By pulverizing under a pressure of 0.15 MPa, bismuth potassium titanate particles were obtained.
  • the obtained bismuth potassium titanate is a single phase.
  • the obtained bismuth potassium titanate was subjected to particle size distribution measurement using MT-3300EXII manufactured by Microtrac Bell. As a result, the average particle diameter D50 was 0.52 ⁇ m.
  • the BET specific surface area was measured with the Macsorb HM model-1208 by the mount tech company. As a result, the BET specific surface area was 5.24 m 2 / g.
  • the input titanium oxide, bismuth oxide and sodium carbonate were dry-mixed using a Henschel mixer at 2000 rpm for 2.5 minutes to obtain a first fired raw material.
  • the obtained first firing raw material was fired at 650 ° C. for 7 hours in an elevating electric furnace (manufactured by Motoyama, SLV-6060L-SP).
  • a first pulverized product was obtained by pulverizing with a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) under conditions of a processing speed of 6 kg / h, an introduction pressure of 0.6 MPa, and a pulverization pressure of 0.5 MPa.
  • the composition of the first pulverized product was analyzed by X-ray fluorescence. As a result, it was found that bismuth was 25.14 mol%, sodium was 24.77 mol%, titanium was 50.09 mol%, and the total molar ratio of bismuth and sodium to titanium. ((Bi + Na) / Ti) was 0.996. Bismuth was 25.00 mol%, sodium was 25.00 mol%, titanium was 50.00 mol%, and the ratio of the total mol of bismuth and sodium to titanium ((Bi + Na) / Ti) was 1.000.
  • the mixture was pulverized by a jet mill under conditions of a processing speed of 10 kg / h, an introduction pressure of 0.6 MPa, and a pulverization pressure of 0.5 MPa to obtain a second pulverized product.
  • the composition of the second pulverized product was analyzed by fluorescent X-ray.
  • the second pulverized product was fired at 825 ° C. for 15 hours in a lifting electric furnace, cooled to room temperature, treated with a jet mill at a processing rate of 5 kg / h, an introduction pressure of 0.30 MPa, and pulverized. By pulverizing under a pressure of 0.15 MPa, bismuth potassium titanate particles were obtained.
  • the obtained bismuth sodium titanate was a single phase.
  • the obtained bismuth sodium titanate was subjected to particle size distribution measurement using MT-3300EXII manufactured by Microtrac Bell. As a result, the average particle diameter D50 was 0.58 ⁇ m.
  • the BET specific surface area was measured by the Mactec HM model-1208 by the mount tech company. As a result, the BET specific surface area was 3.43 m 2 / g.
  • the charged titanium oxide, bismuth oxide and potassium carbonate were dry-mixed using a Henschel mixer under the conditions of 2000 rpm and 2.5 minutes to obtain a fired raw material.
  • the obtained fired raw material was fired at 900 ° C. for 15 hours in a lifting electric furnace (manufactured by Motoyama, SLV-6060L-SP).
  • a lifting electric furnace manufactured by Motoyama, SLV-6060L-SP.
  • bismuth potassium titanate was obtained by pulverization with a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) under conditions of a processing rate of 5 kg / h, an introduction pressure of 0.30 MPa, and a pulverization pressure of 0.15 MPa.
  • the composition of the obtained potassium bismuth titanate was analyzed by X-ray fluorescence. As a result, bismuth was 25.07 mol%, potassium was 24.73 mol%, and titanium was 50.20 mol%. The molar ratio ((Bi + K) / Ti) was 0.992.
  • the obtained bismuth potassium titanate was subjected to particle size distribution measurement using MT-3300EXII manufactured by Microtrac Bell. As a result, the average particle diameter D50 was 0.55 ⁇ m.
  • the BET specific surface area was measured with the Macsorb HM model-1208 by the mount tech company. As a result, the BET specific surface area was 5.14 m 2 / g.
  • the charged titanium oxide, bismuth oxide and sodium carbonate were dry-mixed using a Henschel mixer under the conditions of 2000 rpm and 2.5 minutes to obtain a calcined raw material.
  • the obtained fired raw material was fired at 900 ° C. for 15 hours in a lifting electric furnace (manufactured by Motoyama, SLV-6060L-SP).
  • a lifting electric furnace manufactured by Motoyama, SLV-6060L-SP.
  • bismuth sodium titanate was obtained by pulverization with a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) under conditions of a processing speed of 5 kg / h, an introduction pressure of 0.30 MPa, and a pulverization pressure of 0.15 MPa.
  • the composition of the obtained sodium bismuth titanate was analyzed by X-ray fluorescence. As a result, bismuth was 24.89 mol%, sodium was 24.85 mol%, and titanium was 50.25 mol%. The molar ratio ((Bi + Na) / Ti) was 0.990.
  • the obtained bismuth sodium titanate was subjected to particle size distribution measurement using MT-3300EXII manufactured by Microtrac Bell. As a result, the average particle diameter D50 was 0.70 ⁇ m.
  • the BET specific surface area was measured by the Mactec HM model-1208 by the mount tech company. As a result, the BET specific surface area was 2.68 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.990~1.000となる量で乾式混合して、第一焼成原料を調製する第一工程と、該第一焼成原料を、500~700℃で焼成して、第一焼成物を得る第二工程と、該第一焼成物に、ビスマス化合物及びアルカリ化合物のうちいずれか一方又は両方を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.995~1.005となる量で、乾式混合して、第二焼成原料を調製する第三工程と、該第二焼成原料を、500~900℃で焼成して、前記一般式(1)で表される複合チタン酸化物を得る第四工程と、を有する複合チタン酸化物の製造方法。

Description

複合チタン酸化物の製造方法
 本発明は、圧電セラミックの焼結製造用原料や、高分子マトリックス中に複合圧電体材料用のフィラーが分散配合されている複合圧電体材料の複合圧電体材料用フィラーとして用いられる複合チタン酸化物の製造方法に関するものである。
 圧電素子、センサ等に用いられる圧電セラミックスとしては、従来より、良好な圧電特性を示すチタン酸ジルコン酸鉛が多く利用されていた。しかし、近年、環境汚染に対する関心の高まりから、鉛を用いない非鉛材料の開発が求められている。
 チタン酸ジルコン酸鉛以外のチタン酸系の圧電セラミックとしては、Na、Kといったアルカリ金属とビスマスの複合チタン酸化物のセラミックがあげられる。例えば、特許文献1には、酸素空孔の割合が最小化されているチタン酸ビスマスナトリウム系の圧電セラミック材料が開示されている。
 アルカリ金属とビスマスの複合チタン酸化物の製造方法には、種々の方法があるなかで、コストが掛からず、工業的に有利な固相法の検討がなされている。例えば、特許文献2には、NaCO、TiO、Biの原料を化学量論により秤量し、粉砕混合、乾燥、成形後、1050℃で焼結させ、チタン酸ビスマスナトリウムの圧電セラミックを得たことが記載されている。また、非特許文献1では、KCO、TiO、Biの混合物を500~1000℃で40時間加熱した結果、チタン酸ビスマスカリウム(K0.5Bi0.5TiO)は、500~600℃で最も生成し、900℃で反応が終了することが記載されている。
国際公開第2013/004622号パンフレット 中国特許公開第103880416号明細書
Zeszyty Naukowe Politechniki Slaskiej, Chemia(1989), 1035(121), 127-144
 従来、複合チタン酸化物の製造においては、原料となるビスマス化合物、アルカリ化合物及びチタン化合物が有する水分などの微量の不純成分の影響や、焼成する際に、アルカリ化合物が潮解して均一な混合が困難になるため、得られる複合チタン酸化物中のビスマス、アルカリ金属及びチタンのモル比が、所望のモル比からずれてしまい、精密なアルカリ金属のモル比の調整が難しいという問題があった。
 従って、本発明の目的は、乾式で焼成原料を混合する複合チタン酸化物の製造方法であって、精密なビスマス、アルカリ金属及びチタンのモル比の調整ができる複合チタン酸化物の製造方法を提供することにある。
 すなわち、本発明は、 下記一般式(1):
   Bi(1-x)Ti   (1)
(式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)
で表される複合チタン酸化物の製造方法であり、
 ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.990~1.000となる量で乾式混合して、第一焼成原料を調製する第一工程と、
 該第一焼成原料を、500~700℃で焼成して、第一焼成物を得る第二工程と、
 該第一焼成物に、ビスマス化合物及びアルカリ化合物のうちいずれか一方又は両方を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.995~1.005となる量で、乾式混合して、第二焼成原料を調製する第三工程と、
 該第二焼成原料を、500~900℃で焼成して、前記一般式(1)で表される複合チタン酸化物を得る第四工程と、
を有する複合チタン酸化物の製造方法を提供するものである。
 本発明によれば、乾式で焼成原料を混合する複合チタン酸化物の製造方法であって、精密なビスマス、アルカリ金属及びチタンのモル比の調整ができる複合チタン酸化物の製造方法を提供することができる。
実施例1で得られたチタン酸ビスマスカリウムのXRDチャートである。 実施例1で得られたチタン酸ビスマスカリウムのSEMである。 実施例2で得られたチタン酸ビスマスナトリウムのXRDチャートである。 実施例2で得られたチタン酸ビスマスナトリウムのSEMである。
 本発明に係る複合チタン酸化物の製造方法は、下記一般式(1):
   Bi(1-x)Ti   (1)
(式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)
で表される複合チタン酸化物の製造方法であり、
 ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.990~1.000となる量で乾式混合して、第一焼成原料を調製する第一工程と、
 該第一焼成原料を、500~700℃で焼成して、第一焼成物を得る第二工程と、
 該第一焼成物に、ビスマス化合物及びアルカリ化合物のうちいずれか一方又は両方を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.995~1.005となる量で、乾式混合して、第二焼成原料を調製する第三工程と、
 該第二焼成原料を、500~900℃で焼成して、前記一般式(1)で表される複合チタン酸化物を得る第四工程と、
を有する複合チタン酸化物の製造方法である。
 第一工程は、ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、乾式で混合して、第一焼成原料を調製する工程である。第一工程に係るアルカリ化合物は、カリウム化合物、ナトリウム化合物又はリチウム化合物のいずれか、あるいは、カリウム化合物、ナトリウム化合物及びリチウム化合物のいずれか2種又は3種の組み合わせである。つまり、アルカリ化合物として、カリウム化合物のみを用いてもよいし、ナトリウム化合物のみを用いてもよいし、リチウム化合物のみを用いてもよいし、カリウム化合物とナトリウム化合物、カリウム化合物とリチウム化合物、ナトリウム化合物とリチウム化合物又はカリウム化合物とナトリウム化合物とリチウム化合物を併用してもよい。
 第一工程に係るカリウム化合物は、カリウム原子を有する化合物であり、炭酸カリウム、炭酸水素カリウム、水酸化カリウム、蓚酸カリウム、酒石酸カリウム等が挙げられる。カリウム化合物は、1種であっても2種以上の組み合わせであってもよい。カリウム化合物としては、配合から焼成におけるハンドリング性及び反応性が良好な点で、炭酸カリウム(KCO)が好ましい。また、カリウム化合物の純度は、高い程好ましい。
 第一工程に係るカリウム化合物の平均粒径(D50)は、特に制限されないが、好ましくは1000μm以下、特に好ましくは10~100μmである。カリウム化合物の平均粒径(D50)が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。また、第一工程に係るカリウム化合物のBET比表面積は、特に制限されないが、好ましくは0.01~5m/g、特に好ましくは0.1~3m/gである。カリウム化合物のBET比表面積が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。
 第一工程に係るナトリウム化合物は、ナトリウム原子を有する化合物であり、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、蓚酸ナトリウム、酒石酸ナトリウム等が挙げられる。ナトリウム化合物は、1種であっても2種以上の組み合わせであってもよい。ナトリウム化合物としては、ハンドリング性及び反応性が良好な点で、炭酸ナトリウム(NaCO)が好ましい。また、ナトリウム化合物の純度は、高い程好ましい。
 第一工程に係るナトリウム化合物の平均粒径(D50)は、特に制限されないが、好ましくは1000μm以下、特に好ましくは10~100μmである。ナトリウム化合物の平均粒径(D50)が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。また、第一工程に係るナトリウム化合物のBET比表面積は、特に制限されないが、好ましくは0.01~5m/g、特に好ましくは0.1~3m/gである。ナトリウム化合物のBET比表面積が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。
 第一工程に係るリチウム化合物は、リチウム原子を有する化合物であり、炭酸リチウム、炭酸水素リチウム、水酸化リチウム、蓚酸リチウム、酒石酸リチウム等が挙げられる。リチウム化合物は、1種であっても2種以上の組み合わせであってもよい。リチウム化合物としては、ハンドリング性及び反応性が良好な点で、炭酸リチウム(LiCO)が好ましい。また、リチウム化合物の純度は、高い程好ましい。
 第一工程に係るリチウム化合物の平均粒径(D50)は、特に制限されないが、好ましくは1000μm以下、特に好ましくは10~100μmである。リチウム化合物の平均粒径(D50)が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。また、第一工程に係るリチウム化合物のBET比表面積は、特に制限されないが、好ましくは0.01~5m/g、特に好ましくは0.1~3m/gである。リチウム化合物のBET比表面積が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。
 第一工程に係るビスマス化合物は、ビスマス原子を有する化合物であり、酸化ビスマス、次炭酸ビスマス等が挙げられる。ビスマス化合物は、1種であっても2種以上の組み合わせであってもよい。ビスマス化合物としては、ハンドリング性の容易さと精密組成制御が良好な点で、酸化ビスマス(Bi)が好ましい。また、ビスマス化合物の純度は、高い程好ましい。
 第一工程に係るビスマス化合物の平均粒径(D50)は、特に制限されないが、好ましくは0.1~5μm、特に好ましくは0.2~3μmである。ビスマス化合物の平均粒径(D50)が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。また、第一工程に係るビスマス化合物のBET比表面積は、特に制限されないが、好ましくは0.1~15m/g、特に好ましくは0.5~10m/gである。ビスマス化合物のBET比表面積が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。
 第一工程に係るチタン化合物は、チタン原子を有する化合物であり、二酸化チタン(ルチル、アナタース)、メタチタン酸等が挙げられる。チタン化合物は、1種であっても2種以上の組み合わせであってもよい。チタン化合物としては、ハンドリング性の容易さと精密組成制御が良好な点で、二酸化チタン(TiO)が好ましい。また、チタン化合物の純度は、高い程好ましい。
 第一工程に係るチタン化合物の平均粒径(D50)は、特に制限されないが、好ましくは0.1~5μm、特に好ましくは0.2~3μmである。チタン化合物の平均粒径(D50)が上記範囲にあることにより、他の原料との混合性が増し、組成調整が容易となり、後述する焼成において効果的に反応させることができる。また、第一工程に係るチタン化合物のBET比表面積は、特に制限されないが、好ましくは0.1~20m/g、特に好ましくは1.0~10m/gである。チタン化合物のBET比表面積が上記範囲にあることにより、乾式法においても分散性に優れ、結晶性の良好な複合チタン酸化物の製造が可能となる。なお、本発明において平均粒径は、マイクロトラック・ベル社製のMT3300EXIIを用いて、レーザー光散乱法により測定される体積頻度粒度分布測定により求められる積算50%(D50)の粒径である。
 そして、第一工程では、ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.990~1.000、好ましくは0.990~0.995となる量で乾式混合する。つまり、第一工程では、原料中のBi及びアルカリ金属元素Aの合計量を、Tiと等モルとするか、あるいは、Tiと等モルより少し少なくする。また、第一工程では、原料中のBiとアルカリ金属元素Aのモル比を、製造目的とする複合チタン酸化物中のBiとアルカリ金属元素Aのモル比と同等にする。なお、製造目的物である複合チタン酸化物とは、前記一般式(1):
   Bi(1-x)Ti   (1)
(式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)
で表される複合チタン酸化物であり、本発明の複合チタン酸化物の製造方法を行うことによって得ようとする複合チタン酸化物のことである。
 前記一般式(1)で表される複合チタン酸化物のBiとアルカリ金属元素Aのモル比であるが、式中、0.4<x<0.6となるモル比である。すなわち、第一工程では、xがこの範囲となる量のビスマス化合物及びアルカリ化合物を乾式混合する。なお、第一工程において、アルカリ化合物として、カリウム化合物とナトリウム化合物とリチウム化合物のいずれか2種又は3種を併用する場合は、アルカリ金属元素Aのモル数は、カリウムとナトリウムとリチウムのいずれか2種又は3種の合計モル数である。
 前記一般式(1)で表される複合チタン酸化物のアルカリ金属元素Aを組み合わせて使用する場合、すなわち、カリウム及びナトリウム、カリウム及びリチウム、ナトリウム及びリチウム、又はカリウム、ナトリウム及びリチウムの場合、カリウムとナトリウムとリチウムのモル比は、適宜選択される。そして、第一工程において、カリウム化合物、ナトリウム化合物及びリチウム化合物をアルカリ化合物として併用する場合、第一工程では、製造目的物である複合チタン酸化物のカリウムとナトリウムとリチウムのモル比となるように、カリウム化合物とナトリウム化合物とリチウム化合物との混合比を調節する。
 第一工程においては、ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、乾式で混合する。乾式混合する方法としては、特に制限されず、ブレンダー、リボンミキサー、ヘンシェルミキサー、フードミキサー、スーパーミキサー、ナウターミキサー、ジュリアミキサー等を用いる混合方法が挙げられる。
 第二工程は、第一工程を行い得られる第一焼成原料を焼成して、第一焼成物を得る工程である。
 第二工程において、第一焼成原料を焼成するときの焼成温度は、500~700℃、好ましくは550~700℃である。また、第二工程において、第一焼成原料を焼成するときの焼成時間は、適宜選択されるが、好ましくは3~20時間、特に好ましくは5~15時間であり、また、焼成雰囲気は、酸素ガス、空気等の酸化性雰囲気である。
 第二工程を行い第一焼成物を得た後、必要に応じて、得られた第一焼成物を粉砕してもよい。第一焼成物の粉砕には、ジェットミル、ボールミル、ビーズミル、アルティマイザー、アトマイザー、ナノマイザー、パルヴェライザー、ピンミル等の粉砕手段を用いることができる。
 第三工程は、第二工程を行い得られる第一焼成物に、ビスマス化合物及びアルカリ化合物を乾式で混合して、第二焼成原料を調製する工程である。
 第三工程に係るビスマス化合物は、第一工程に係るビスマス化合物と同様である。第三工程で用いるビスマス化合物は、第一工程で用いたビスマス化合物と同一であってもよいし、第一工程で用いたビスマス化合物と異なるビスマス化合物であってもよい。
 第三工程に係るアルカリ化合物は、第一工程に係るアルカリ化合物と同様である。第三工程で用いるカリウム化合物は、第一工程で用いたカリウム化合物と同一であってもよいし、第一工程で用いたカリウム化合物と異なるカリウム化合物であってもよい。第三工程で用いるナトリウム化合物は、第一工程で用いたナトリウム化合物と同一であってもよいし、第一工程で用いたナトリウム化合物と異なるナトリウム化合物であってもよい。また、第三工程で用いるリチウム化合物は、第一工程で用いたリチウム化合物と同一であってもよいし、第一工程で用いたリチウム化合物と異なるリチウム化合物であってもよい。また、第三工程に係るアルカリ化合物は、第一工程でカリウム化合物、ナトリウム化合物及びリチウム化合物のいずれか2種又は3種を併用した場合は、カリウム化合物、ナトリウム化合物及びリチウム化合物のいずれかである。
 そして、第三工程では、第一焼成物を組成分析して、第一焼成物のBi、アルカリ金属元素A及びTiのモル%を把握してから、得られた組成分析結果に基づいて、第一焼成物に、ビスマス化合物及びアルカリ化合物を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.995~1.005、好ましくは0.997~1.003となる量で、乾式混合して、第二焼成原料を得る。つまり、第三工程では、第一焼成物に、ビスマス化合物及びアルカリ化合物を、原子換算で、Bi及びアルカリ金属元素Aの合計量が、Tiに対するモル比で、1.000±0.005と、Tiとほぼ等モルとなる量で添加して、第二焼成原料とする。また、第三工程では、第一焼成物に、ビスマス化合物及びアルカリ化合物を、原子換算で、Biとアルカリ金属元素Aのモル比が、製造目的とする複合チタン酸化物中のBiとアルカリ金属元素Aのモル比と同等となる量で添加する。なお、製造目的物である複合チタン酸化物とは、前記一般式(1):
   Bi(1-x)Ti   (1)
(式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)
で表される複合チタン酸化物であり、本発明の複合チタン酸化物の製造方法を行うことによって得ようとする複合チタン酸化物のことである。
 前記一般式(1)で表される複合チタン酸化物のBiとアルカリ金属元素Aのモル比であるが、式中、0.4<x<0.6となるモル比である。すなわち、第三工程では、xがこの範囲となる量のビスマス化合物及びアルカリ化合物を第一焼成物に加える。なお、第一工程において、アルカリ化合物として、カリウム化合物とナトリウム化合物とリチウム化合物のいずれか2種又は3種を併用した場合は、第三工程におけるアルカリ金属元素Aのモル数は、カリウムとナトリウムとリチウムのいずれか2種又は3種の合計モル数である。そして、第一工程において、アルカリ化合物として、カリウム化合物とナトリウム化合物とリチウム化合物のいずれか2種又は3種を併用した場合、第三工程では、製造目的物である複合チタン酸化物のカリウムとナトリウムとリチウムのいずれか2種又は3種のモル比となるように、カリウム化合物とナトリウム化合物とリチウム化合物のいずれか2種又は3種の混合比を調節する。
 第三工程においては、ビスマス化合物と、アルカリ化合物と、第一焼成物と、を乾式で混合する。乾式混合する方法としては、特に制限されず、ブレンダー、リボンミキサー、ヘンシェルミキサー、フードミキサー、スーパーミキサー、ナウターミキサー、ジュリアミキサー等を用いる混合方法が挙げられる。
 第四工程は、第三工程を行い得られる第二焼成原料を焼成して、原子換算でTiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が、0.995~1.005であり、下記一般式(1):
   Bi(1-x)Ti   (1)
(式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)で表される複合チタン酸化物を得る工程である。
 第四工程を行い得られる一般式(1)で表される複合チタン酸化物において、式(1)中のAは、カリウム、ナトリウム及びリチウムから選ばれる少なくとも1種である。つまり、Aは、カリウムのみであっても、ナトリウムのみであっても、リチウムのみであっても、カリウム及びナトリウム、カリウム及びリチウム、ナトリウム及びリチウム、或いは、カリウム、ナトリウム及びリチウムのいずれの組み合わせであってもよい。第四工程を行い得られる一般式(1)で表される複合チタン酸化物において、原子換算で、Biとアルカリ金属元素Aのモル比は、xが0.4<x<0.6となるモル比である。第四工程を行い得られる一般式(1)で表される複合チタン酸化物において、原子換算でTiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)は、0.995~1.005、好ましくは0.997~1.003である。
 第四工程において、第二焼成原料を焼成するときの焼成温度は、500~900℃、好ましくは550~850℃である。また、第四工程において、第二焼成原料を焼成するときの焼成時間は、適宜選択されるが、好ましくは3~20時間、特に好ましくは5~15時間であり、また、焼成雰囲気は、酸素ガス、空気等の酸化性雰囲気である。
 第四工程を行い焼成物を得た後、必要に応じて、得られた焼成物を粉砕してもよい。焼成物の粉砕には、ジェットミル、ボールミル、ビーズミル、アルティマイザー、アトマイザー、ナノマイザー、パルヴェライザー、ピンミル等の粉砕手段を用いることができる。
 第四工程を行い得られた複合チタン酸化物は、結晶性を高める目的で、好ましくは500~1000℃、特に好ましくは700~900℃でさらに焼成を行ってもよい。また、このときの焼成温度は、適宜選択されるが、好ましくは3~20時間、特に好ましくは5~15時間である。焼成雰囲気は、酸素ガス、空気等の酸化性雰囲気である。
 焼成を経て得られた複合チタン酸化物を、必要に応じて、粉砕してもよい。複合チタン酸化物の粉砕には、ジェットミル、ボールミル、ビーズミル、アルティマイザー、アトマイザー、ナノマイザー、パルヴェライザー、ピンミル等の粉砕手段を用いることができる。
 このようにして本発明の複合チタン酸化物の製造方法を行い得られる複合チタン酸化物の平均粒径(D50)は、特に制限されないが、好ましくは0.1~5μm、更に好ましくは0.1~3μm、特に好ましくは0.2~1μmである。また、本発明の複合チタン酸化物の製造方法を行い得られる複合チタン酸化物のBET比表面積は、特に制限されないが、好ましくは0.2~15m/g、特に好ましくは1.0~10m/gである。
 本発明の複合チタン酸化物の製造方法を行い得られる複合チタン酸化物は、セラミックス原料を焼結させることにより製造される圧電セラミックスの製造原料、高分子マトリックス中に複合圧電体材料用フィラーが分散されている複合圧電体材料のフィラー、静電誘導型変換素子としての使用が提案されるエレクトレット材料のフィラーとして好適に用いられる。そして、これらのアプリケーションとして、圧力センサー、圧力分布センサー等の各種センサー、自動車や建築物に用いる制振材、人の歩行や自動車の走行などで生ずる環境振動を利用した発電素子等に好適に用いられる。
 従来の複合チタン酸化物の製造方法においては、原料となるビスマス化合物、アルカリ化合物及びチタン化合物が有する水分などの微量の不純成分の影響や、焼成する際に、アルカリ化合物が潮解して均一な混合が困難になるため、得られる複合チタン酸化物中のビスマス及びアルカリ金属元素Aのモル比が、所望のモル比からずれてしまい、精密なアルカリ金属のモル比の調整が難しかった。
 それに対して、本発明の複合チタン酸化物の製造方法は、先ず、第一工程及び第二工程で、ビスマスとアルカリ金属元素Aのモル比を所望のモル比とし、且つ、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比を、0.990~1.000と、Bi及びアルカリ金属元素Aの合計量を、Tiと当量または、少しTiより少なくして、焼成して焼成物を得た後、第三工程及び第四工程で、ビスマス、アルカリ金属元素A及びチタンのモル比を調整して、焼成物を得るので、複合チタン酸化物の精密な組成調整が可能である。このような多段階による精密な組成調整は、ビスマス及びアルカリ金属元素Aと、チタンとの反応機構に起因して可能になっているものと本発明者らは考えている。すなわち、チタンに対してビスマス及びアルカリ金属元素Aが少しずつチタンに入り込むかたちで複合化していくと考えられており、チタンが過剰な状態でビスマス及びアルカリ金属元素Aを徐々に存在させていくことにより、所望のモル比を有する複合チタン酸化物を得ることができる。逆に、チタンが不足した状態でビスマス及びアルカリ金属元素Aが存在していた場合、複合化するためのチタンが不足してしまうため、組成調整自体が困難なものとなる。
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<チタン酸ビスマスカリウムの製造>
 酸化チタン(TiO、昭和電工)2777g、酸化ビスマス(Bi、日本化学工業社製)4073g、及び炭酸カリウム(食添用微粉KCO、日本曹達社製)1203gを、ヘンシェルミキサー(日本コークス工業社製、FM-20B)に投入した。このとき、投入原料中、原子換算で、ビスマスは25.00モル%、カリウムは25.00モル%、チタンは50.00モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は1.000である。次いで、投入した酸化チタン、酸化ビスマス及び炭酸カリウムを、2000rpm、2.5分の条件でヘンシェルミキサーを用いて乾式混合して第一焼成原料を得た。
 得られた第一焼成原料を、昇降式電気炉(モトヤマ社製、SLV-6060L-SP)により650℃で7時間焼成した。室温まで冷却後、ジェットミル(セイシン企業社製、STJ-200)にて処理速度6kg/h、導入圧0.6MPa、粉砕圧0.5MPaの条件で粉砕し第一粉砕物を得た。
 第一粉砕物の組成を蛍光X線により分析したところ、ビスマスは25.00モル%、カリウムは24.91モル%、チタンは50.09モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は0.996であった。
 ビスマスは25.00モル%、カリウムは25.00モル%、チタンは50.00モル%、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)が1.000となるように微調整するために、第一粉砕物7239gに、酸化ビスマス9.2g、炭酸カリウム7.8gを加え、2000rpm、3分間の条件でヘンシェルミキサーを用いて乾式混合を行い、第二焼成原料を得た。
 得られた第二焼成原料を、昇降式電気炉により650℃で7時間焼成した。室温まで冷却後、ジェットミルにて処理速度10kg/h、導入圧0.6MPa、粉砕圧0.5MPaの条件で粉砕し第二粉砕物を得た。
 第二粉砕物の組成を蛍光X線により分析したところ、ビスマスは24.99モル%、カリウムは25.02モル%、チタンは49.98モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は1.001であった。
 さらに結晶性を高める目的で、この第二粉砕物を、昇降式電気炉により825℃で15時間焼成し、室温まで冷却後、ジェットミルにて処理速度5kg/h、導入圧0.30MPa、粉砕圧0.15MPaの条件で粉砕してチタン酸ビスマスカリウム粒子を得た。
<分析>
 得られたチタン酸ビスマスカリウムの組成分析を、リガク社製、ZSX100eにより蛍光X線分析を行ったところ、ビスマスは25.01モル%、カリウムは25.00モル%、チタンは49.99モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は1.000であった。
 また、得られたチタン酸ビスマスカリウムについて、リガク社製、UltimaIVでX線回折分析(XRD)を行い、日立ハイテクノロージーズ社製、S-4800で走査型電子顕微鏡観察(SEM)を行った。その結果を図1及び図2示す。
 図1のXRDチャートからは、得られたチタン酸ビスマスカリウムが単相であることが確認された。
 また、得られたチタン酸ビスマスカリウムについて、マイクロトラック・ベル社製 MT-3300EXIIで粒度分布測定を行った。その結果、平均粒径D50は0.52μmであった。
 また、得られたチタン酸ビスマスカリウムについて、マウンテック社製、Macsorb HM model-1208でBET比表面積を測定した。その結果、BET比表面積は5.24m/gであった。
(実施例2)
<チタン酸ビスマスナトリウムの製造>
 酸化チタン(TiO、昭和電工)2158g、酸化ビスマス(Bi、日本化学工業社製)3155g、及び炭酸ナトリウム(NaCO、トクヤマ社製)715gを、ヘンシェルミキサー(日本コークス工業社製、FM-20B)に投入した。このとき、投入原料中、原子換算で、ビスマスは25.00モル%、ナトリウム25.00モル%、チタンは50.00モル%、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は1.000である。次いで、投入した酸化チタン、酸化ビスマス及び炭酸ナトリウムを、2000rpm、2.5分の条件でヘンシェルミキサーを用いて乾式混合して第一焼成原料を得た。
 得られた第一焼成原料を、昇降式電気炉(モトヤマ社製、SLV-6060L-SP)により650℃で7時間焼成した。室温まで冷却後、ジェットミル(セイシン企業社製、STJ-200)にて処理速度6kg/h、導入圧0.6MPa、粉砕圧0.5MPaの条件で粉砕し第一粉砕物を得た。
 第一粉砕物の組成を蛍光X線により分析したところ、ビスマスは25.14モル%、ナトリウムは24.77モル%、チタンは50.09モル%となり、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は0.996であった。
 ビスマスは25.00モル%、ナトリウムは25.00モル%、チタンは50.00モル%、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)が1.000となるように微調整するために、第一粉砕物5200gに、炭酸ナトリウム8.0gを加え、2000rpm、3分間の条件でヘンシェルミキサーを用いて乾式混合を行い、第二焼成原料を得た。
 得られた第二焼成原料を、昇降式電気炉により650℃で7時間焼成した。室温まで冷却後、ジェットミルにて処理速度10kg/h、導入圧0.6MPa、粉砕圧0.5MPaの条件で粉砕し第二粉砕物を得た。
 第二粉砕物の組成を蛍光X線により分析したところ、ビスマスは24.97モル%、ナトリウムは25.07モル%、チタンは49.96モル%となり、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は1.002であった。
 さらに結晶性を高める目的で、この第二粉砕物を、昇降式電気炉により825℃で15時間焼成し、室温まで冷却後、ジェットミルにて処理速度5kg/h、導入圧0.30MPa、粉砕圧0.15MPaの条件で粉砕してチタン酸ビスマスカリウム粒子を得た。
<分析>
 得られたチタン酸ビスマスナトリウムの組成分析を、リガク社製、ZSX100eにより蛍光X線分析を行ったところ、ビスマスは24.98モル%、ナトリウムは25.04モル%、チタンは49.98モル%となり、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は1.001であった。
 また、得られたチタン酸ビスマスナトリウムについて、リガク社製、UltimaIVでX線回折分析(XRD)を行い、日立ハイテクノロージーズ社製、S-4800で走査型電子顕微鏡観察(SEM)を行った。その結果を図3及び図4示す。
 図3のXRDチャートからは、得られたチタン酸ビスマスナトリウムが単相であることが確認された。
 また、得られたチタン酸ビスマスナトリウムについて、マイクロトラック・ベル社製 MT-3300EXIIで粒度分布測定を行った。その結果、平均粒径D50は0.58μmであった。
 また、得られたチタン酸ビスマスナトリウムについて、マウンテック社製、Macsorb HM model-1208でBET比表面積を測定した。その結果、BET比表面積は3.43m/gであった。
(比較例1)
 酸化チタン(TiO、昭和電工)2777g、酸化ビスマス(Bi、日本化学工業社製)4073g、及び炭酸カリウム(食添用微粉KCO、日本曹達社製)1203gを、ヘンシェルミキサー(日本コークス工業社製、FM-20B)に投入した。このとき、投入原料中、原子換算で、ビスマスは25.00モル%、カリウムは25.00モル%、チタンは50.00モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は1.000である。次いで、投入した酸化チタン、酸化ビスマス及び炭酸カリウムを、2000rpm、2.5分の条件でヘンシェルミキサーを用いて乾式混合して焼成原料を得た。
 得られた焼成原料を、昇降式電気炉(モトヤマ社製、SLV-6060L-SP)により900℃で15時間焼成した。室温まで冷却後、ジェットミル(セイシン企業社製、STJ-200)にて処理速度5kg/h、導入圧0.30MPa、粉砕圧0.15MPaの条件で粉砕してチタン酸ビスマスカリウムを得た。
 得られたチタン酸ビスマスカリウムの組成を蛍光X線により分析したところ、ビスマスは25.07モル%、カリウムは24.73モル%、チタンは50.20モル%となり、チタンに対するビスマス及びカリウムの合計モルの比((Bi+K)/Ti)は0.992であった。
 また、得られたチタン酸ビスマスカリウムについて、マイクロトラック・ベル社製 MT-3300EXIIで粒度分布測定を行った。その結果、平均粒径D50は0.55μmであった。
 また、得られたチタン酸ビスマスカリウムについて、マウンテック社製、Macsorb HM model-1208でBET比表面積を測定した。その結果、BET比表面積は5.14m/gであった。
(比較例2)
 酸化チタン(TiO、昭和電工)2158g、酸化ビスマス(Bi、日本化学工業社製)3155g、及び炭酸ナトリウム(NaCO、トクヤマ社製)715gを、ヘンシェルミキサー(日本コークス工業社製、FM-20B)に投入した。このとき、投入原料中、原子換算で、ビスマスは25.00モル%、ナトリウム25.00モル%、チタンは50.00モル%、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は1.000である。次いで、投入した酸化チタン、酸化ビスマス及び炭酸ナトリウムを、2000rpm、2.5分の条件でヘンシェルミキサーを用いて乾式混合して焼成原料を得た。
 得られた焼成原料を、昇降式電気炉(モトヤマ社製、SLV-6060L-SP)により900℃で15時間焼成した。室温まで冷却後、ジェットミル(セイシン企業社製、STJ-200)にて処理速度5kg/h、導入圧0.30MPa、粉砕圧0.15MPaの条件で粉砕してチタン酸ビスマスナトリウムを得た。
 得られたチタン酸ビスマスナトリウムの組成を蛍光X線により分析したところ、ビスマスは24.89モル%、ナトリウムは24.85モル%、チタンは50.25モル%となり、チタンに対するビスマス及びナトリウムの合計モルの比((Bi+Na)/Ti)は0.990であった。
 また、得られたチタン酸ビスマスナトリウムについて、マイクロトラック・ベル社製 MT-3300EXIIで粒度分布測定を行った。その結果、平均粒径D50は0.70μmであった。
 また、得られたチタン酸ビスマスナトリウムについて、マウンテック社製、Macsorb HM model-1208でBET比表面積を測定した。その結果、BET比表面積は2.68m/gであった。

Claims (5)

  1.  下記一般式(1):
       Bi(1-x)Ti   (1)
    (式中、AはK、Na及びLiから選択される1種又は2種以上のアルカリ金属元素であり、xは0.4<x<0.6であり、yは0.995≦y≦1.005である。)
    で表される複合チタン酸化物の製造方法であり、
     ビスマス化合物と、アルカリ化合物と、チタン化合物と、を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.990~1.000となる量で乾式混合して、第一焼成原料を調製する第一工程と、
     該第一焼成原料を、500~700℃で焼成して、第一焼成物を得る第二工程と、
     該第一焼成物に、ビスマス化合物及びアルカリ化合物のうちいずれか一方又は両方を、原子換算で、Tiのモル数に対するBi及びアルカリ金属元素Aの合計モル数の比((Bi+A)/Ti)が0.995~1.005となる量で、乾式混合して、第二焼成原料を調製する第三工程と、
     該第二焼成原料を、500~900℃で焼成して、前記一般式(1)で表される複合チタン酸化物を得る第四工程と、
    を有する複合チタン酸化物の製造方法。
  2.  前記ビスマス化合物が、Biであり、前記アルカリ化合物が、KCO、NaCO又はLiCOのいずれか、あるいは、KCOとNaCOとLiCOのいずれか2種又は3種の組み合わせであり、前記チタン化合物がTiOであることを特徴とする請求項1記載の複合チタン酸化物の製造方法。
  3.  前記第二工程で得られた第一焼成物を粉砕して粉砕物を得ることを特徴とする請求項1又は2記載の複合チタン酸化物の製造方法。
  4.  前記第四工程で得られた複合チタン酸化物を粉砕して粉砕物を得ることを特徴とする請求項1~3いずれか1項記載の複合チタン酸化物の製造方法。
  5.  前記第四工程で得られた複合チタン酸化物を、さらに500~1000℃で焼成することを特徴とする請求項1~4いずれか1項記載の複合チタン酸化物の製造方法。
PCT/JP2017/040576 2016-11-14 2017-11-10 複合チタン酸化物の製造方法 WO2018088517A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-221323 2016-11-14
JP2016221323A JP6806535B2 (ja) 2016-11-14 2016-11-14 複合チタン酸化物の製造方法

Publications (1)

Publication Number Publication Date
WO2018088517A1 true WO2018088517A1 (ja) 2018-05-17

Family

ID=62109184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040576 WO2018088517A1 (ja) 2016-11-14 2017-11-10 複合チタン酸化物の製造方法

Country Status (2)

Country Link
JP (1) JP6806535B2 (ja)
WO (1) WO2018088517A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016260A (ja) * 2004-07-01 2006-01-19 Dainichiseika Color & Chem Mfg Co Ltd 非鉛系圧電性物質の製造方法及び非鉛系圧電性物質
CN102531576A (zh) * 2011-12-27 2012-07-04 福建火炬电子科技股份有限公司 一种正温度系数变化正电压特性电容器用介质材料及其制备方法
JP2013155079A (ja) * 2012-01-30 2013-08-15 Tdk Corp 圧電磁器組成物および圧電素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016260A (ja) * 2004-07-01 2006-01-19 Dainichiseika Color & Chem Mfg Co Ltd 非鉛系圧電性物質の製造方法及び非鉛系圧電性物質
CN102531576A (zh) * 2011-12-27 2012-07-04 福建火炬电子科技股份有限公司 一种正温度系数变化正电压特性电容器用介质材料及其制备方法
JP2013155079A (ja) * 2012-01-30 2013-08-15 Tdk Corp 圧電磁器組成物および圧電素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, D. ET AL.: "Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5 (Na1-x-yKxLiy) 0.5] TiO3 ceramics", MATERIALS LETTERS, vol. 58, no. 5, 14 August 2003 (2003-08-14), pages 615 - 618, XP004483151 *
SITTIKETKORN, P. ET AL.: "Influence of excess Bi2O3 and Na2CO3 on crystal structure and microstructure of bismuth sodium titanate ceramics", KEY ENGINEERING MATERIALS, vol. 474, no. 476, 19 April 2011 (2011-04-19), pages 1711 - 1714, XP055502141 *

Also Published As

Publication number Publication date
JP2018080067A (ja) 2018-05-24
JP6806535B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6660078B2 (ja) リン酸チタン粉体の製造方法、化粧料用白色顔料
JP4525788B2 (ja) 誘電体粒子の製造方法
JP2013224256A (ja) 赤外線反射材料及びその製造方法並びにそれを含有した塗料、樹脂組成物
WO2000035811A1 (fr) Oxyde composite de type perovskite renfermant du titane
WO2017061403A1 (ja) 負熱膨張材及びそれを含む複合材料
JP4658689B2 (ja) チタン酸バリウム粉末の製法およびチタン酸バリウム粉末、並びにチタン酸バリウム焼結体
CN101130462A (zh) 形状各向异性的粉末、相关的制造方法、及晶体取向的陶瓷的制造方法
JP2009051690A (ja) 複合酸化物粉末及びその製造方法、複合酸化物粉末を用いたセラミック組成物並びにそれを用いたセラミック電子部品
KR20210021574A (ko) 부열팽창재, 그의 제조 방법 및 복합 재료
JP6530785B2 (ja) ニオブ酸アルカリ化合物の製造方法
KR101904579B1 (ko) 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법
JP2007137759A (ja) チタン酸バリウム微粒子粉末及び分散体
JP6903387B2 (ja) リン酸チタンリチウムの製造方法
WO2018088517A1 (ja) 複合チタン酸化物の製造方法
JP2005289668A (ja) 正方晶系チタン酸バリウム微粒子粉末及びその製造法
JP6483466B2 (ja) チタン酸バリウムの製造方法
WO2014024710A1 (ja) フィラーおよびガラス組成物、ならびに、六方晶リン酸塩の製造方法
US11404720B2 (en) Method for producing lithium titanium phosphate
TW202132222A (zh) 被覆氧化鋯微粒子及其製造方法
JP6796103B2 (ja) タングステン酸ジルコニウム及びその製造方法
JP2012046398A (ja) 耐熱性セラミックスおよび断熱材
KR100483169B1 (ko) 다성분계 금속산화물 분말의 제조방법
JP5715279B1 (ja) チタン酸バリウム粉末の製造方法
JP7364418B2 (ja) 熱膨張抑制フィラー、その製造方法及びそれを含む複合材料
JPWO2005047206A1 (ja) 負又は低い熱膨張係数を示す材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869985

Country of ref document: EP

Kind code of ref document: A1