WO2018087916A1 - 回転機の制御装置及びそれを備えた電動パワーステアリング装置 - Google Patents

回転機の制御装置及びそれを備えた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018087916A1
WO2018087916A1 PCT/JP2016/083682 JP2016083682W WO2018087916A1 WO 2018087916 A1 WO2018087916 A1 WO 2018087916A1 JP 2016083682 W JP2016083682 W JP 2016083682W WO 2018087916 A1 WO2018087916 A1 WO 2018087916A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
rotating machine
axis
potential side
current
Prior art date
Application number
PCT/JP2016/083682
Other languages
English (en)
French (fr)
Inventor
古川 晃
辰也 森
山本 宗法
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680090722.8A priority Critical patent/CN109964402B/zh
Priority to PCT/JP2016/083682 priority patent/WO2018087916A1/ja
Priority to US16/341,981 priority patent/US11431273B2/en
Priority to JP2018549741A priority patent/JP6591089B2/ja
Priority to EP16921108.3A priority patent/EP3540935B1/en
Publication of WO2018087916A1 publication Critical patent/WO2018087916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a control device for a rotating machine and an electric power steering device including the same.
  • control device for a rotating machine and an electric power steering device that simplify the configuration required for confirming the switching function of the switching element are desired.
  • An apparatus for controlling a rotating machine includes an inverter having a plurality of switching elements that performs power conversion between a rotating machine having an m-phase winding (m is a natural number of 2 or more) and a DC power source, A control circuit for controlling on / off of the switching element,
  • a switching element on the high potential side connected to the positive electrode side of the DC power supply and a switching element on the low potential side connected to the negative electrode side of the DC power supply are connected in series, and the connection in series connection of each phase
  • a series circuit connected to the winding of the phase corresponding to the point is provided in m sets corresponding to each phase of the m phase
  • the control circuit includes a current command calculation unit that calculates a current command to be passed through the winding, a voltage command calculation unit that calculates a voltage command to be applied to the winding based on the current command, and a voltage command based on the voltage command.
  • a switching signal generation unit that generates a switching signal for turning on and off the switching element, an element blocking unit that forcibly switches each of the switching elements to a blocking state, a blocking failure determination unit that determines a failure of the element blocking unit,
  • the interruption failure determination unit determines one of the m phases as a diagnosis target phase, and when the switching element is not forcibly cut off, a current flowing through the winding of the diagnosis target phase is In the driving state that is positive in the direction of flow from the inverter to the winding, the high voltage side forced cutoff that instructs the element cutoff unit to forcibly cut off the high potential side switching element of the diagnosis target phase Or when the switching element is not forcibly cut off, in the driving state in which the current flowing through the winding of the diagnosis target phase is negative in the direction of flowing from the winding to the inverter Execute a low-potential side forced cutoff to command the unit to forcibly shut off the low-potential side switching element of the diagnosis target phase, Based on the detected value of the current or
  • An electric power steering apparatus includes a control device for the rotating machine, the rotating machine, And a driving force transmission mechanism that transmits the driving force of the rotating machine to a vehicle steering device.
  • the rotating machine control device and the electric power steering device of the present invention in the state where a positive current is passed through the winding of the diagnosis target phase, when the switching element on the high potential side of the diagnosis target phase is interrupted, Since a change occurs in the current or voltage, it is possible to determine the failure of the element cutoff unit based on the detected value of the current or voltage when the high potential side forced cutoff is executed.
  • a negative current is passed through the winding of the diagnosis target phase
  • the switching element on the low potential side of the diagnosis target phase is cut off, the current or voltage changes, so the low potential side forced cutoff is It is possible to determine the failure of the element interrupting unit based on the detected value of current or voltage when executed. Therefore, the configuration of the control circuit that outputs torque to the rotating machine can be used to determine the failure of the element cutoff unit, and the configuration required for confirming the switching function of the switching element can be simplified.
  • FIG. 1 is a schematic configuration diagram of an electric power steering device according to Embodiment 1 of the present invention. It is a hardware block diagram of the control circuit which concerns on Embodiment 1 of this invention. It is a time chart of the three-phase current in the drive state before interruption
  • FIG. 1 is a schematic configuration diagram of a rotating machine 3 and a control device 1 according to the present embodiment.
  • the control device 1 includes an inverter 17 including a plurality of switching elements that performs power conversion between the rotating machine 3 and the DC power source 2 and a control circuit 4 that controls on / off of the switching elements.
  • the first phase is referred to as the U phase
  • the second phase is referred to as the V phase
  • the third phase is referred to as the W phase.
  • the three-phase windings are star-connected.
  • the rotating machine 3 is a permanent magnet type synchronous rotating machine having a stator provided with three-phase windings and a rotor provided with permanent magnets.
  • the rotating machine 3 may be an induction machine in which a permanent magnet is not provided in the rotor, or a field winding type synchronous machine in which an electromagnet is provided in the rotor.
  • the three-phase windings may be delta-connected.
  • the rotor is provided with an angle detection sensor 24 for detecting the rotation angle of the rotor.
  • an angle detection sensor 24 a position detector such as a Hall element, a TMR element, a GMR element, or a resolver, a rotation detector such as an electromagnetic type, a magnetoelectric type, or a photoelectric type is used.
  • An output signal of the angle detection sensor 24 is input to the control circuit 4.
  • the rotating machine 3 and the control device 1 are incorporated in an electric power steering device 60. That is, the rotating machine 3 is a rotating machine for driving an electric power steering device that assists the steering torque of the vehicle steering device, and the control device 1 is a control device for the electric power steering device 60.
  • a steering shaft 62 is connected to the handle 61 operated by the driver.
  • a torque sensor 63 for detecting the steering force of the driver is attached to the steering shaft 62.
  • the steering shaft 62 is connected to a pinion gear 66 in the rack shaft 65 through an intermediate shaft 64.
  • the tie rods 69a and 69b connected to the rack shaft 65 are connected to the knuckle arms 68a and 68b of the front wheels 67a and 67b, which are steered wheels, and the movement of the rack shaft 65 is controlled by the tie rods 69a and 69b and the knuckle arm 68a,
  • the front wheels 67a and 67b are steered by being transmitted to the front wheels 67a and 67b via 68b.
  • the rotating machine 3 is connected to the rack shaft 65 through a gear, and the rotational driving force of the rotating machine 3 is a driving force for moving the rack shaft 65.
  • the inverter 17 is a DC / AC converter that performs power conversion between the DC power source 2 and the rotating machine 3. As shown in FIG. 1, in the inverter 17, a high-potential side switching element connected to the positive side of the DC power source 2 and a low-potential side switching element connected to the negative side of the DC power source 2 are connected in series. Three sets of series circuits (legs) are provided corresponding to each of the three phases. A connection point between the high-potential side switching element and the low-potential side switching element of each phase is connected to the corresponding phase winding.
  • the inverter 17 includes a U-phase series circuit in which a U-phase high-potential side switching element 20U and a U-phase low-potential side switching element 21U are connected in series, and a V-phase high-potential side switching element.
  • a V-phase series circuit in which a switching element 20V and a V-phase low-potential-side switching element 21V are connected in series, a W-phase high-potential-side switching element 20W, and a W-phase low-potential-side switching element 21W And a W-phase series circuit connected in series.
  • Each switching element uses a diode connected in reverse parallel.
  • an IGBT Insulated Gate Bipolar Transistor
  • bipolar transistor bipolar transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • shunt resistors 22U, 22V, and 22W as current sensors 22 are provided in each phase series circuit.
  • the potential difference between both ends of the shunt resistors 22U, 22V, and 22W of each phase is input to the control circuit 4.
  • the shunt resistors 22U, 22V, 22W of each phase are connected in series to the negative electrode side of the switching elements 21U, 21V, 21W on the low potential side of each phase.
  • the shunt resistors 22U, 22V, and 22W of each phase may be connected in series to the positive electrode side of the switching elements 20U, 20V, and 20W on the high potential side of each phase.
  • a current sensor that detects a current flowing through a connection wire between the winding of each phase and the inverter 17 may be provided.
  • a voltage sensor 23 for detecting a voltage applied to each winding is provided.
  • the DC power supply 2 outputs DC voltage Vdc to inverter 17.
  • the DC power supply 2 may be any device that outputs a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, and a PWM rectifier.
  • Control circuit 4 is a control circuit that controls the rotating machine 3 by controlling the inverter 17. As shown in FIG. 1, the control circuit 4 includes a torque command calculation unit 12, a current command calculation unit 5, a voltage command calculation unit 6, a switching signal generation unit 7, an element cutoff unit 8, a cutoff failure determination unit 9, and a rotation information calculation. Functional units such as the unit 10 and the current detection unit 11. The functional units 5 to 12 and the like included in the control circuit 4 are realized by a processing circuit included in the control circuit 4. Specifically, as illustrated in FIG.
  • the control circuit 4 includes, as a processing circuit, an arithmetic processing device 90 (computer) such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), the arithmetic processing device 90 and data.
  • a storage device 91 that exchanges data, an input circuit 92 that inputs an external signal to the arithmetic processing device 90, an output circuit 93 that outputs a signal from the arithmetic processing device 90 to the outside, and the like.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • the input circuit 92 is connected to various sensors and switches, and includes an A / D converter or the like that inputs output signals of these sensors and switches to the arithmetic processing unit 90.
  • the output circuit 93 is connected to an electrical load such as a switching element, and includes a drive circuit that outputs a control signal from the arithmetic processing unit 90 to these electrical loads.
  • the input circuit 92 is connected to the current sensor 22, the voltage sensor 23, the angle detection sensor 24, the torque sensor 63, and the like.
  • the output circuit 93 is connected to an inverter 17 (a switching element or a gate drive circuit for the switching element).
  • the arithmetic processing device 90 executes software (programs) stored in the storage device 91 such as a ROM for each function such as the functional units 5 to 12 included in the control circuit 4, and the storage device 91 and the input circuit 92. , And by cooperating with other hardware of the control circuit 4 such as the output circuit 93.
  • the setting data used by each of the function units 5 to 12 and the like is stored in a storage device 91 such as a ROM as part of software (program).
  • a storage device 91 such as a ROM as part of software (program).
  • the rotation information calculation unit 10 detects rotation information of the rotating machine 3.
  • the rotation information calculation unit 10 detects the electrical angle ⁇ and the electrical angular velocity of the rotor based on the output signal of the angle detection sensor 24 provided on the rotation shaft of the rotor.
  • the torque command calculation unit 12 calculates a torque command to be output from the rotating machine 3.
  • the torque command calculation unit 12 calculates an assist torque that assists the steering torque as a torque command based on the steering torque detected based on the output signal of the torque sensor 63.
  • the current command calculation unit 5 calculates a current command flowing through the three-phase winding.
  • the current command calculation unit 5 performs dq-axis current control for calculating a d-axis current command Id * and a q-axis current command Iq * in which the current flowing through the three-phase winding is expressed in the dq-axis rotation coordinate system.
  • the dq axis rotation coordinates are rotation coordinates including a d axis determined in the magnetic flux direction of the rotor of the rotating machine 3 and a q axis determined in a direction advanced by ⁇ / 2 by an electrical angle from the d axis.
  • the magnetic flux direction of the rotor is the direction of the N pole of the permanent magnet provided on the rotor.
  • the electrical angle ⁇ is a d-axis advance angle with respect to the U-phase (first phase) winding. That is, when the d-axis position coincides with the U-phase winding position, the electrical angle ⁇ becomes 0 deg.
  • the current command calculation unit 5 performs d-axis current commands Id * and q for causing the rotating machine 3 to output the torque of the torque command calculated by the torque command calculation unit 12 when performing normal control without performing the interruption failure determination described later.
  • the shaft current command Iq * is calculated.
  • the current command calculation unit 5 sets a d-axis current command Id * and a q-axis current command Iq * for determining a break failure when performing a break failure determination.
  • the dq-axis current commands Id * and Iq * for interrupting failure determination are configured to be instructed from the interrupting failure determining unit 9, but may be set by the current command calculating unit 5. .
  • the current detection unit 11 detects three-phase currents Iu, Iv, and Iw that flow from the inverter 17 to the windings of the respective phases of the rotating machine 3 based on the output signal of the current sensor 22.
  • the current detection unit 11 represents the three-phase currents Iu, Iv, and Iw flowing through the windings of each phase by performing a three-phase two-phase conversion and a rotation coordinate conversion based on the electrical angle ⁇ , and expressed in a dq axis rotation coordinate system. Conversion into d-axis current Id and q-axis current Iq.
  • the voltage command calculation unit 6 calculates a voltage command to be applied to the windings based on the current command.
  • the voltage command calculation unit 6 when performing the normal control without performing the interruption failure determination, causes the dq axis currents Id and Iq to approach the dq axis current commands Id * and Iq *.
  • Current feedback control is performed in which a d-axis voltage command Vd * and a q-axis voltage command Vq *, in which a voltage command signal applied to 3 is expressed in a dq-axis rotation coordinate system, are changed by PI control or the like.
  • the voltage command calculation unit 6 performs the interruption failure determination, when the switching element is forcibly interrupted, the voltage command calculation unit 6 stops the current feedback control, and does not use the detected current value.
  • An axis voltage command Vd * and a q-axis voltage command Vq * are set. According to this configuration, it is possible to prevent the output torque of the rotating machine 3 from fluctuating due to the current feedback control even if the winding current changes due to the switching element being interrupted, as will be described later.
  • the voltage command calculation unit 6 performs current feedback control before forcibly shutting off the switching element, and the dq-axis currents Id and Iq are shut off even when the cutoff failure determination is performed.
  • the dq axis voltage commands Vd * and Vq * are changed so as to approach the dq axis current commands Id * and Iq * for failure determination.
  • the voltage command calculation unit 6 holds the dq-axis voltage commands Vd * and Vq * calculated before forcibly shutting off the switching element, and when the switching element is forcibly shut off, the held value is dq.
  • the shaft voltage commands Vd * and Vq * are set.
  • the voltage command calculation unit 6 when performing the interruption failure determination, uses the d-axis current command Id * and q-axis current command Iq * for interruption failure determination, and the d-axis voltage commands Vd * and q for interruption failure determination. You may comprise so that it may convert into shaft voltage command Vq *.
  • the voltage command calculation unit 6 sets a value obtained by multiplying the d-axis current command Id * for interruption fault determination by the resistance R of the winding of each phase to the d-axis voltage instruction Vd * for interruption fault determination, A value obtained by multiplying the q-axis current command Iq * for interruption failure determination by the resistance R of the winding of each phase may be set in the q-axis voltage command Vq * for interruption failure determination.
  • the voltage command calculation unit 6 performs fixed coordinate conversion and two-phase three-phase conversion on the dq-axis voltage commands Vd * and Vq * based on the electrical angle ⁇ , and AC to the windings of the three-phase each phase.
  • the voltage command is converted into a three-phase voltage command Vu *, Vv *, Vw *.
  • the switching signal generator 7 generates a switching signal for turning on / off the switching element based on the voltage command.
  • the switching signal generator 7 performs pulse width modulation control (PWM (Pulse Width Modulation) control) based on the three-phase voltage commands Vu *, Vv *, and Vw *, and performs the three-phase voltage commands Vu *, Vv *, and Vw.
  • PWM Pulse Width Modulation
  • the switching signal generator 7 has a vibration width of each of the three-phase voltage commands Vu *, Vv *, Vw * and the DC voltage Vdc of the DC power supply 2,
  • the carrier wave C1 triangular wave
  • the switching signal generator 7 outputs the switching signals Qup to Qwn to the inverter 17 and turns on / off each switching element of the inverter 17.
  • a switching signal may be generated based on a three-phase voltage command modulated using a known modulation method such as space vector modulation or two-phase modulation with respect to the three-phase voltage commands Vu *, Vv *, and Vw *. .
  • the element blocking unit 8 is a fail-safe mechanism that forcibly switches each switching element to a blocking state.
  • the element cutoff unit 8 forcibly switches the switching element corresponding to the abnormality content to the cutoff state when an abnormality is detected from various input signals. For example, when the current flowing through the switching element becomes abnormal, the switching element in which the current becomes abnormal is forcibly switched to a cut-off state to prevent abnormal torque from being output from the rotating machine 3.
  • the element interruption unit 8 forcibly switches the switching element related to the failure diagnosis target to the interruption state in accordance with an instruction from the interruption failure determination unit 9.
  • the element blocking unit 8 includes, for example, a blocking circuit that forcibly blocks the switching signal input to the gate terminal and forcibly blocks the switching element for each switching element.
  • the cutoff circuit includes a cutoff switching element, and the element cutoff unit 8 forcibly switches the switching element to the cutoff state by turning on and off the cutoff switching element.
  • Blocking failure determination unit 9 The interruption failure determination unit 9 determines a failure of the element interruption unit 8. The interruption failure determination unit 9 determines one of the three phases as a diagnosis target phase and instructs the element interruption unit 8 to force the switching element on the high potential side or the low potential side of the diagnosis target phase. The interruption failure determination which determines the failure of the element interruption
  • the interruption failure determination unit 9 starts executing the interruption failure determination when a predetermined determination execution condition is satisfied.
  • the determination execution condition is satisfied when the absolute value of the torque of the rotating machine 3 during normal control (assist torque in this example) is small, such as an initial check period at startup.
  • the interruption failure determination unit 9 instructs the current command calculation unit 5 to receive the d-axis current command Id * and the q-axis current command Iq * for interruption failure determination after starting the execution of the interruption failure determination.
  • the dq-axis current commands Id * and Iq * for determining a breakage failure are set in advance to values that prevent the output torque of the rotating machine 3 from becoming excessively large (in this example, constant values).
  • the dq-axis current commands Id * and Iq * for determining a shut-off failure indicate that the output torque of the rotating machine 3 is less than the mechanical loss torque applied to the rotating shaft of the rotor before or after the switching element is shut off. Is set in advance to a value that also decreases or a value that causes minute rotation.
  • the shut-off failure determination unit 9 includes an element shut-off unit for a preset determination period after a preset waiting period has elapsed after the command of the dq-axis current commands Id * and Iq * for interrupting fault determination. 8 is forcibly cut off the switching element on the high potential side or low potential side of the diagnosis target phase. And the interruption
  • the interruption failure determination unit 9 determines that the element interruption unit 8 is out of order, it executes a fail process.
  • the fail process is a process of notifying the user of failure information such as lighting of a failure lamp, display of failure details on a display device such as a display, a process of stopping or reducing the output torque of the rotating machine 3 during normal control, and the like. .
  • shut-off failure determination unit 9 executes high-potential side forced shut-off that shuts off the high-potential side switching element of the diagnosis target phase.
  • the three-phase voltages Vu, Vv, and Vw before the cutoff are expressed by the following equation (1) based on the on-duty ratios Du, Dv, and Dw of the switching signal on the high potential side of each phase of the three phases and the DC voltage Vdc of the DC power supply 2. It can be expressed as Here, Du is the U-phase duty ratio, Dv is the V-phase duty ratio, and the W-phase duty ratio. Note that (1-Du), (1-Dv), and (1-Dv) are the on-duty ratios of the switch signals on the low potential side of each of the three phases. Therefore, the three-phase voltages Vu, Vv, and Vw before shutoff are voltages according to the three-phase voltage commands Vu *, Vv *, and Vw *.
  • the combination of on / off of 20U to 21W in the driving state before shut-off is the voltage vector V0 to V7 in FIG.
  • the voltage vector from time t1 to t2 is V7
  • the voltage vector from time t2 to t3 is V1
  • the voltage vector from time t3 to t4 is V0
  • the voltage vector from time t4 to t5 is V1.
  • the voltage vector from time t5 to t6 is V7.
  • Fig. 8 shows how the current flows in the voltage vector V7. Since the three-phase low potential side switching elements 21U, 21V, and 21W are off, there is no path to return to the DC power supply 2, so that the current that has passed through the U-phase high potential side switching element 20U has passed through the U-phase winding. Thereafter, the V-phase and W-phase windings pass through the V-phase and W-phase high-potential side switching elements 20V and 20W, and then return to the U-phase high-potential-side switching element 20U again.
  • Fig. 9 shows how the current flows in the voltage vector V1.
  • the current supplied from the DC power supply 2 flows to the U-phase winding through the switching element 20U on the U-phase high potential side, and then passes through the V-phase winding and the W-phase winding to the V-phase and W-phase. Through the switching elements 21V and 21W on the low potential side, and then returns to the DC power source 2.
  • Fig. 10 shows how the current flows in the voltage vector V0. Since the three-phase high-potential side switching elements 20U, 20V, and 20W are off, power is not supplied from the DC power supply 2, so that the current passing through the U-phase low-potential side switching element 21U passes through the U-phase winding. After that, the switching elements 21V and 21W on the low potential side of the V phase and the W phase pass through, and then return to the switching element 21U on the low potential side of the U phase again.
  • the on / off operation of the switching elements 20U to 21W in one PWM carrier cycle Tc is as shown in FIG.
  • the voltage vector is different from the driving state before the interruption.
  • the current flow from time t2 to time t3 and from time t4 to time t5 should be as shown in FIG. 12 in consideration of the flow direction, but the U-phase voltage Vu is the V-phase voltage Vv and the W-phase voltage. Since it is larger than Vw, current cannot flow through the parasitic diode of the U-phase low potential side switching element 21U, and current does not flow through the U-phase winding.
  • the current flow from time t1 to time t2 and from time t5 to time t6 should be as shown in FIG. 13 in consideration of the flow direction, but is opposite to the direction of the current that can flow through the parasitic diode. It cannot flow through the parasitic diode of the switching element 20U on the U-phase high potential side, and no current flows in the U-phase winding.
  • the switching element 20U on the high-potential side of the U-phase is switched from the driving state before the cutoff to the cutoff state.
  • the three-phase current and the three-phase voltage are shown in FIG.
  • the U-phase voltage Vu after the interruption is a neutral point voltage that is an average value of the V-phase voltage Vv and the W-phase voltage Vw when the interruption is not performed.
  • the U-phase voltage Vu is equal to the V-phase voltage Vv and the W-phase voltage Vw.
  • the electrical angle ⁇ is 30 deg in FIGS. 4 and 5
  • the three-phase current when the switching element 20 U on the high potential side of the U phase is switched to the cutoff state from the driving state before the cutoff
  • a three-phase voltage is shown in FIG.
  • the U-phase current Iu stops flowing, and the V-phase winding (V-phase current Iv) changes to the W-phase winding (W-phase current Iw).
  • the U-phase voltage Vu in the cutoff state is an intermediate voltage between the V-phase voltage Vv and the W-phase voltage Vw when the cutoff is not performed.
  • the U-phase current Iu that is the diagnosis target phase is positive when the electrical angle ⁇ is 0 deg in FIG. Therefore, when the switching element 20U on the high potential side of the U phase is switched to the cutoff state, the U phase current Iu does not flow. Therefore, when the U-phase current Iu, which is the diagnosis target phase, changes to 0 after the shutoff command, it can be determined that the switching element 20U on the high-potential side of the U phase has been shut off normally. When the U-phase current Iu does not change to 0, it can be determined that the U-phase high-potential-side switching element 20U of the U-phase high potential side switching element 20U has failed. Further, the failure of the element shut-off unit 8 can also be determined based on changes in the V-phase current Iv and the W-phase current Iw that are not diagnosis target phases after the shut-off command.
  • the U-phase voltage Vu is an intermediate voltage between the V-phase voltage Vv and the W-phase voltage Vw. Therefore, the three-phase voltages Vu, Vv, Vw when the U-phase high-potential side switching element 20U is cut off are the on-duty ratios Du, Dv, Dw of the high-potential-side switching signal of each of the three phases,
  • the DC voltage Vdc of 2 can be expressed as in equation (2).
  • the U-phase voltage Vu that is the diagnosis target phase changes from the formula (1) when the shut-off is not performed to the formula (2) at the shut-off.
  • U-phase voltage Vu does not change from the voltage corresponding to U-phase voltage command Vu *.
  • the V-phase voltage Vv and the W-phase voltage Vw that are not the diagnosis target phases do not change from the voltages corresponding to the voltage commands Vv * and Vw *, regardless of whether or not they are normally shut off.
  • the U-phase voltage Vu is diagnosed from the voltage according to the U-phase voltage command Vu * after the cutoff control.
  • the voltage changes to an intermediate voltage between the non-target V-phase voltage Vv and W-phase voltage Vw it can be determined that the switching element 20U on the U-phase high potential side has been normally cut off.
  • the voltage according to the U-phase voltage command Vu * remains unchanged and does not change to the intermediate voltage, the voltage is not normally cut off, and the element cutoff unit 8 of the switching element 20U on the U-phase high potential side fails. Can be determined.
  • the average value Vave of the three-phase voltages Vu, Vv, and Vw is an equation (3) that averages the three-phase voltages Vu, Vv, and Vw in the equation (1) when the shut-off is not performed.
  • Equation (4) obtained by averaging the three-phase voltages Vu, Vv, and Vw of Equation (2) at the time of interruption.
  • the switching element 20U on the high-potential side of the U phase has been normally cut off, and after the cutoff control, the sum or average value of the terminal voltages of the three-phase windings, or the three-phase
  • the voltage at the neutral point of the winding does not change, it can be determined that the coil is not normally cut off and the element cut-off portion 8 of the switching element 20U on the U-phase high potential side is broken.
  • FIG. 17 shows the on / off operation of 20U to 21W.
  • the voltage vector from time t1 to t2 is V7
  • the voltage vector from time t2 to t3 is V4
  • the voltage vector from time t3 to t4 is V0
  • the voltage vector from time t4 to t5 is V4. Yes, the voltage vector from time t5 to t6 is V7.
  • the current flow in the voltage vector V7 is as shown in FIG. Since the three-phase low potential side switching elements 21U, 21V, and 21W are off, there is no path to return to the DC power supply 2. Therefore, the current passing through the V-phase and W-phase high-potential side switching elements 20V, 20W After passing through the winding and the W-phase winding, the U-phase winding is passed through the U-phase high-potential side switching element 20U, and then again the V-phase and W-phase high-potential side switching elements 20V, Return to 20W.
  • the current flow in the voltage vector V4 is as shown in FIG.
  • the current supplied from the DC power supply 2 flows to the V-phase winding and the W-phase winding through the switching elements 20V and 20W on the high potential side of the V-phase and the W-phase, and then passes through the U-phase winding. It passes through the switching element 21U on the low potential side of the W phase and then returns to the DC power source 2.
  • the flow of current at the voltage vector V0 is as shown in FIG. Since the three-phase high-potential side switching elements 20U, 20V, and 20W are off, power is not supplied from the DC power supply 2. Therefore, the current that has passed through the V-phase and W-phase low-potential side switching elements 21V and 21W is V After passing through the phase winding and the W-phase winding, the U-phase winding is passed through the U-phase low potential side switching element 21U, and then again the V-phase and W-phase low potential side switching elements 21V. Return to 21W.
  • the on / off operation of the switching elements 20U to 21W in one PWM carrier cycle Tc is as shown in FIG. From time t1 to t2 and from time t5 to t6, the voltage vector is different from the driving state before the interruption.
  • the current flow from time t1 to time t2 and from time t5 to time t6 is as shown in FIG.
  • the switching elements 20U and 21U on the high-potential side and the low-potential side of the U phase are both off. However, considering the current flow direction, the current flows through the parasitic diode of the switching element 20U on the high potential side of the U phase. It is possible to flow. Since the V-phase voltage Vv and the W-phase voltage Vw are larger than the U-phase voltage Vu, the current passing through the switching elements 20V and 20W on the high-potential side of the V-phase and the W-phase passes through the V-phase winding and the W-phase winding.
  • the element cutoff unit 8 In order to determine the failure of the element cutoff unit 8 of the switching element 20U on the U-phase high potential side, in the driving state in which the U-phase current Iu is positive when the cutoff is not performed, the element cutoff unit 8 What is necessary is just to instruct
  • Blocking fault determination process of the blocking fault determination unit 9 Based on the principle of the blocking fault determination described above, the blocking fault determination unit 9 is configured as described below.
  • the cut-off failure determination unit 9 instructs the element cut-off unit 8 in a driving state in which the current flowing through the winding of the diagnosis target phase is positive.
  • the high-potential side forced shut-off is performed to forcibly shut off the switching element on the high-potential side of the diagnosis target phase.
  • the direction of the current flowing from the inverter 17 to the winding is positive.
  • the interruption failure determination unit 9 executes interruption failure determination for determining a failure of the element interruption unit 8 based on the detected value of current or voltage when the high potential side forced interruption is executed.
  • This embodiment is configured as follows when a failure is determined based on the current. That is, the interruption failure determination unit 9 performs the element interruption unit of the switching element on the high potential side of the diagnosis target phase when the current flowing through the winding of the diagnosis target phase changes to 0 after executing the high potential side forced interruption. If the current flowing through the winding of the diagnosis target phase does not change to 0 after determining that 8 is normal and executing the high-potential side forced cutoff, the element of the switching element on the high potential side of the diagnosis target phase It determines with the interruption
  • the cutoff failure determination unit 9 sets the voltage applied to the winding of the diagnosis target phase to the average value of the voltages applied to the windings of the phases other than the diagnosis target phase.
  • the change it is determined that the element cutoff unit 8 of the switching element on the high potential side of the diagnosis target phase is normal, and after executing the high potential side forced cutoff, the voltage applied to the winding of the diagnosis target phase is When the average value of the voltages applied to the windings of the phases other than the diagnosis target phase does not change, it is determined that the element blocking unit 8 of the switching element on the high potential side of the diagnosis target phase is abnormal.
  • the interruption failure determination unit 9 performs the case where the sum or average value of the terminal voltages of the three-phase windings or the neutral point voltage of the three-phase windings changes after executing the high-potential side forced interruption. After determining that the element cutoff unit 8 of the switching element on the high potential side of the diagnosis target phase is normal and executing the high potential side forced cutoff, the sum or average value of the terminal voltages of the three-phase windings, or 3 When the voltage at the neutral point of the phase winding does not change, it is determined that the element blocking unit 8 of the switching element on the high potential side of the diagnosis target phase is abnormal.
  • the relative direction of the potentials of the voltages Vu, Vv, and Vw applied to the three-phase windings determines the direction of current flowing through the windings of each phase.
  • the driving state in which the current flowing in the winding of the diagnosis target phase is positive when the cutoff is not performed is the voltage applied to the winding of the diagnosis target phase when the cutoff is not performed.
  • the driving state becomes larger than the average value (neutral point voltage) of the voltages Vu, Vv, and Vw applied to.
  • the shut-off failure determination unit 9 determines that the applied voltage of the winding of the diagnosis target phase is an average value of the applied voltages Vu, Vv, and Vw of the three-phase winding. Further, the high potential side forced cutoff may be executed in a driving state in which the current becomes larger.
  • the applied voltages Vu, Vv, and Vw of the three-phase windings three-phase voltage commands Vu *, Vv *, and Vw * that are applied voltage commands to the three-phase windings may be used.
  • the rotating machine 3 is a rotating machine for driving the electric power steering apparatus, and the output torque of the rotating machine 3 is transmitted to the steering shaft 62 via a gear or a chain, and the steering torque is transmitted.
  • Assist torque assisting The torque ripple or rotation torque of the rotating machine 3 may cause the driver to feel uncomfortable.
  • the amount of current flowing through the rotating machine 3 is abnormal, it is desired to stop the driving of the switching element.
  • the element interrupting unit 8 fails, the switching element is not switched to the shut-off state, and there is a possibility that the driver does not request torque.
  • the control device for the rotating machine 3 to the control device for the electric power steering, it is possible to determine the failure of the element shut-off unit 8 and to avoid the abnormal operation of the rotating machine 3 and safety. Can be improved.
  • Embodiment 2 A control device 1 according to Embodiment 2 will be described. The description of the same components as those in the first embodiment is omitted. Although the basic configuration of the rotating machine 3 and the control device 1 according to the present embodiment is the same as that of the first embodiment, the dq-axis current commands Id * and Iq for interrupting fault determination set by the current command calculation unit 5 are set. * Setting method is different.
  • the d-axis current Id and the q-axis current Iq can be expressed as in Expression (5) using the effective value Irms of the current vector and the phase angle ⁇ of the current vector.
  • the three-phase voltage of Expression (7) according to the three-phase voltage command is applied to the three-phase winding, but the switching element 20U on the high-potential side of the U phase that is the diagnosis target phase
  • the three-phase voltages Vu_off, Vv_off, and Vw_off applied to the three-phase winding when is switched to the cut-off state is expressed by Expression (8).
  • the output torque T of the rotating machine 3 in the drive state before being interrupted is given by Expression (11) by multiplying the q-axis current Iq of Expression (5) by the number of pole pairs P and the magnetic flux ⁇ .
  • the output torque Toff of the rotating machine 3 in the cutoff state of the switching element 20U on the high-potential side of the U phase is obtained by multiplying the q-axis current Iq_off of the equation (10) by the number of pole pairs P and the magnetic flux ⁇ . Given in.
  • the current command calculation unit 5 sets the q-axis current command Iq * for interrupting fault determination to 0 when performing the interrupting fault determination, and
  • the d-axis current command Id * is set to a value other than 0. According to this configuration, the absolute value of the output torque difference Tdiff between the driving state before the interruption and the interruption state can be minimized, and the output torque difference before and after the interruption can hardly appear in the behavior of the rotating machine 3.
  • FIG. 4 shows three-phase currents Iu, Iv, and Iw when the d-axis current Id is a constant value of 10 Arms and the q-axis current Iq is 0 Arms as in the first configuration.
  • the U-phase current Iu which is the phase to be diagnosed, becomes positive
  • the period during which the U-phase high potential side forced cutoff is executed is the period during which the electrical angle ⁇ is ⁇ / 2 to ⁇ / 2 (270 degrees).
  • the d-axis current command Id * and the q-axis current command Iq * may be set as shown in FIG.
  • the three-phase currents Iu, Iv, and Iw in the driving state before the cutoff are as shown in FIG. 25, and the three-phase currents Iu, Iv, and Iw in the cutoff state of the switching element on the U-phase high potential side are 26.
  • the U-phase current Iu is greater than 0 at an electrical angle ⁇ other than ⁇ ⁇ / 2 (90 deg, 270 deg), and the U-phase high-potential side forced at almost all angles. Blockade can be performed,
  • the current difference Iu_diff between the driving state before the cutoff and the U-phase current in the cutoff state and the current difference Iq_diff between the q-axis currents are as shown in FIG. 27, and the current difference Iq_diff of the q-axis current proportional to the output torque difference is , Are within the range of ⁇ 5 Arms, and the output torque difference can be suppressed.
  • the current command calculation unit 5 determines the i-th phase as the diagnosis target phase, and executes the high-potential-side forced cutoff with the d-axis advance angle with respect to the winding of the first phase as the electrical angle ⁇ .
  • the electrical angle ⁇ is between ⁇ / 2 + 2 ⁇ (i ⁇ 1) / m and ⁇ / 2 + 2 ⁇ (i ⁇ 1) / m
  • the d-axis current command Id * is set to a positive value. In other cases, the d-axis current command Id * is set to a negative value.
  • the current command calculation unit 5 sets the q-axis current command Iq * to 0.
  • the d axis is set when the electrical angle ⁇ is between ⁇ / 6 and 7 ⁇ / 6 (between 30 deg and 210 deg).
  • the current command Id * is set to a positive value, and otherwise, the d-axis current command Id * is set to a negative value.
  • the current command Id * is set to a positive value, and otherwise, the d-axis current command Id * is set to a negative value.
  • Embodiment 3 A control device 1 according to Embodiment 3 will be described. The description of the same components as those in the first embodiment is omitted. Although the basic configuration of the rotating machine 3 and the control device 1 according to the present embodiment is the same as that of the first embodiment, the dq-axis current commands Id * and Iq for interrupting fault determination set by the current command calculation unit 5 are set. * Setting method is different.
  • the current command calculation unit 5 sets the q-axis current command Iq * for interrupting failure determination to 0, and sets the d-axis current command Id * for interrupting failure determination to a value other than 0. Yes.
  • the U-phase current Iu which is the phase to be diagnosed, becomes 0 Arms when the electrical angle ⁇ becomes ⁇ ⁇ / 2 (90 deg, 270 deg), and the U-phase high potential side Even if forced shutdown is executed, the shutdown failure cannot be determined.
  • the U-phase current Iu is set to a constant positive value so that the interruption failure can be determined by the U-phase high potential side forced interruption.
  • the current command calculation unit 5 determines the i-th phase as the diagnosis target phase, and executes the high-potential-side forced cutoff with the d-axis advance angle with respect to the winding of the first phase as the electrical angle ⁇ .
  • the phase adjustment constant K set to a value between ⁇ and 0
  • the phase angle ⁇ with respect to the q-axis of the current vector obtained by combining the d-axis current command Id * and the q-axis current command Iq * is set.
  • the d-axis current command Id * and the q-axis current command Iq * for determining the interruption failure are set.
  • the current command calculation unit 5 sets the d-axis current command Id * and the q-axis current command Iq * for interruption failure determination as shown in the equation (14).
  • 30 shows the three-phase currents Iu, Iv, and Iw in the driving state before shut-off in the case of FIG. 29, and
  • FIG. 31 shows the U-phase in the case of FIG.
  • the three-phase currents Iu, Iv, and Iw when the switching element on the high potential side is cut off are shown.
  • the U-phase current Iu is a positive value of 10 Arms at all electrical angles ⁇ in the driving state before the interruption, and the interruption failure determination by the U-phase high potential side forced interruption can be executed.
  • the U-phase current Iu is 0 Arms, so that the failure of the element cut-off unit 8 can be easily determined from the current change.
  • the winding current of the failure diagnosis phase becomes a constant value, it is easy to design a threshold value for failure determination, and the failure determination accuracy can be improved.
  • the current vector is changed in a desired direction (in this example, the U-phase high frequency at each electrical angle ⁇ ).
  • a desired direction in this example, the U-phase high frequency at each electrical angle ⁇ .
  • the current difference Iu_diff of the U-phase current and the current difference Iq_diff of the q-axis current in the driving state before the cutoff and the cutoff state are as shown in FIG.
  • the absolute value of the current difference Iq_diff of the q-axis current proportional to the output torque difference becomes the largest when the electrical angle ⁇ is 90 deg and 270 deg.
  • the q-axis current Iq in the driving state before the cutoff becomes ⁇ 10 Arms which is the maximum absolute value
  • the q-axis current Iq in the cutoff state becomes 0 Arms.
  • the torque constant for converting the q-axis current Iq into the output torque of the rotating machine 3 is Kt
  • the output torque T in the driving state before the interruption is ⁇ 10 ⁇ 3 Kt
  • the output torque Toff in the interruption state is zero.
  • the mechanical loss torque Tloss is the mechanical loss torque of the torque transmission mechanism that transmits the output torque of the rotating machine 3 to the steering shaft 62.
  • the state where the rotating machine 3 does not rotate can be maintained by setting the output torque T in the driving state before the shut-off within the mechanical loss torque Tloss.
  • the current command calculation unit 5 is configured to set the absolute value of the q-axis current command Iq * for interrupting failure determination below the value obtained by dividing the absolute value of the mechanical loss torque Tloss by the torque constant Kt. .
  • the interruption failure determination can be executed in a state where the rotating machine 3 does not rotate.
  • the mechanical loss torque Tloss may be stored in the storage device 91 in advance, and may be read when calculating the q-axis current command Iq *.
  • the current command calculation unit 5 outputs the output torque T of the rotating machine 3 when the switching element is not forcibly cut off, and the output torque Toff of the rotating machine 3 when the switching element is forcibly cut off.
  • the q-axis current command Iq * is set so that the absolute value of the output torque difference Tdiff is equal to or less than the absolute value of the mechanical loss torque Tloss applied to the rotor rotation shaft. According to this structure, it can prevent that the rotary machine 3 rotates by the output torque change which arises before and behind interruption
  • the current command calculation unit 5 sets the effective value Irms of the current vector so that the maximum absolute value of the output torque difference Tdiff calculated by the equation (16) is equal to or less than the absolute value of the mechanical loss torque Tloss.
  • the q-axis current command Iq * is set based on the equation (5) using the set effective value Irms of the current vector.
  • the voltage command calculation unit 6 stops the current feedback control after the interruption in the interruption failure determination, and uses the detected current value for the interruption failure determination.
  • the d-axis voltage command Vd * and the q-axis voltage command Vq * are set. Therefore, it is possible to prevent the output torque of the rotating machine 3 from increasing due to the current feedback control after the interruption.
  • the voltage command calculation unit 6 holds the dq axis voltage commands Vd * and Vq * calculated before forcibly shutting off the switching element, and forcibly switches the switching element.
  • the held value is set to the dq axis voltage commands Vd * and Vq *.
  • Embodiment 4 A control device 1 according to Embodiment 4 will be described. The description of the same components as those in the first embodiment is omitted.
  • the basic configurations of the rotating machine 3 and the control device 1 according to the present embodiment are the same as those of the first embodiment, but the switching element on the low potential side of the diagnosis target phase is forcibly cut off in the cutoff failure determination. The difference is that the low potential side forced cutoff is executed.
  • the switching element 21 U on the low potential side of the U phase is switched to the cut-off state in the drive state before cut-off where the electrical angle ⁇ is 0 deg and the U-phase current Iu that is the diagnosis target phase becomes positive. Then, the ON / OFF operation of the switching elements 20U to 21W in the PWM carrier 1 cycle Tc is as shown in FIG. At time t3 to t4, the voltage vector is different from the driving state before the interruption shown in FIG.
  • the current flow from time t3 to t4 is as shown in FIG.
  • the switching elements 20U and 21U on the U-phase high potential side and the low potential side are both off, it is possible to pass through the parasitic diode of the switching element 21U on the U-phase low potential side in consideration of the current flow direction. It is. Since the U-phase voltage Vu is larger than the V-phase voltage Vv and the W-phase voltage Vw, the current passing through the parasitic diode of the U-phase low-potential side switching element 21U passes through the U-phase winding and then the V-phase winding.
  • the electrical angle ⁇ is 180 deg and the switching element 21U on the low-potential side of the U-phase is shut off in the driving state before the shut-off where the U-phase current Iu that is the diagnosis target phase becomes negative
  • the ON / OFF operation of the switching elements 20U to 21W in the PWM carrier 1 cycle Tc is as shown in FIG.
  • the voltage vector is different from the driving state before the interruption shown in FIG.
  • the current flow from time t2 to time t3 and from time t4 to time t5 should be as shown in FIG. 36 in consideration of the flow direction, but the V-phase voltage Vv and the W-phase voltage Vw are the U-phase voltage. Since it is larger than Vu, the current cannot flow through the parasitic diode of the switching element 20U on the U-phase high potential side, and no current flows in the U-phase winding.
  • the current flow from time t3 to t4 should be as shown in FIG. 37 in consideration of the flow direction. However, since it is opposite to the direction of the current that can flow through the parasitic diode, the low potential side of the U phase The switching element 21U cannot flow through the parasitic diode, and no current flows through the U-phase winding.
  • the switching element 21U on the low-potential side of the U-phase is switched from the driving state before the cutoff to the cutoff state.
  • the three-phase current and the three-phase voltage are shown in FIG.
  • the U-phase voltage Vu in the cut-off state is a neutral point voltage that is an average value of the V-phase voltage Vv and the W-phase voltage Vw when the cut-off is not performed.
  • the U-phase voltage Vu is equal to the V-phase voltage Vv and the W-phase voltage Vw.
  • the element cutoff unit 8 As described above, in the driving state in which the U-phase current Iu that is the diagnosis target phase is negative when the cutoff is not performed as in the case where the electrical angle ⁇ is 180 deg in FIGS. 4 and 5, the element cutoff unit 8.
  • the switching element 21U on the low potential side of the U phase is switched to the cut-off state, the U phase current Iu does not flow. Therefore, when the U-phase current Iu, which is the diagnosis target phase, changes to 0 after the shutoff command, it can be determined that the switching element 21U on the low-potential side of the U phase has been shut off normally.
  • the U-phase current Iu does not change to 0
  • the failure of the element shut-off unit 8 can also be determined based on changes in the V-phase current Iv and the W-phase current Iw that are not diagnosis target phases after the shut-off command.
  • the switching element 21U on the low-potential side of the U phase has been normally cut off, and after the cutoff control, the sum or average value of the terminal voltages of the three-phase windings, or the three-phase
  • the element shut-off unit 8 of the U-phase low-potential side switching element 21U has failed.
  • the command to the element cutoff unit 8 is made in a driving state in which the U-phase current Iu is negative when the cutoff is not performed. Then, the switching element 20U on the U-phase high potential side may be switched to the cutoff state.
  • the cutoff fault determination unit 9 when the switching element is not forcibly cut off by the element cutoff unit 8, the cutoff fault determination unit 9 is in a driving state in which the current flowing through the winding of the diagnosis target phase is negative. Then, a low-potential side forced cutoff is executed by commanding the element cutoff unit 8 to forcibly shut down the switching element on the low potential side of the diagnosis target phase.
  • the direction of the current flowing from the winding to the inverter 17 is negative.
  • the interruption failure determination unit 9 executes interruption failure determination for determining a failure of the element interruption unit 8 based on a detected value of current or voltage when the low potential side forced interruption is executed.
  • This embodiment is configured as follows when a failure is determined based on the current. That is, the interruption failure determination unit 9 performs the element interruption unit of the switching element on the low potential side of the diagnosis target phase when the current flowing through the winding of the diagnosis target phase changes to 0 after executing the low potential side forced interruption.
  • the interruption failure determination unit 9 performs the element interruption unit of the switching element on the low potential side of the diagnosis target phase when the current flowing through the winding of the diagnosis target phase changes to 0 after executing the low potential side forced interruption.
  • the cutoff failure determination unit 9 sets the voltage applied to the winding of the diagnosis target phase to the average value of the voltages applied to the windings of the phases other than the diagnosis target phase.
  • the change it is determined that the element cutoff unit 8 of the switching element on the low potential side of the diagnosis target phase is normal, and after the low potential side forced cutoff is executed, the voltage applied to the winding of the diagnosis target phase is When the average value of the voltages applied to the windings of the phases other than the diagnosis target phase does not change, it is determined that the element blocking unit 8 of the switching element on the low potential side of the diagnosis target phase is abnormal.
  • the interruption failure determination unit 9 executes the low potential side forced interruption when the sum or average value of the terminal voltages of the three-phase windings or the neutral point voltage of the three-phase windings changes. After determining that the element cutoff unit 8 of the switching element on the low potential side of the diagnosis target phase is normal and performing the low potential side forced cutoff, the sum or average value of the terminal voltages of the three-phase windings, or 3 When the voltage at the neutral point of the phase winding does not change, it is determined that the element blocking unit 8 of the switching element on the low potential side of the diagnosis target phase is abnormal.
  • the relative direction of the potentials of the voltages Vu, Vv, and Vw applied to the three-phase windings determines the direction of current flowing through the windings of each phase.
  • the driving state in which the current flowing in the winding of the diagnosis target phase is negative when the cutoff is not performed is the voltage applied to the winding of the diagnosis target phase when the cutoff is not performed.
  • the driving state becomes smaller than the average value (neutral point voltage) of the voltages Vu, Vv, and Vw applied to.
  • the shut-off failure determination unit 9 determines that the applied voltage of the winding of the diagnosis target phase is an average value of the applied voltages Vu, Vv, and Vw of the three-phase winding.
  • the low potential side forced cutoff may be executed in the driving state in which the value becomes smaller.
  • the applied voltages Vu, Vv, and Vw of the three-phase windings three-phase voltage commands Vu *, Vv *, and Vw * that are applied voltage commands to the three-phase windings may be used.
  • control device for the rotating machine 3 As in the first embodiment, by applying the control device for the rotating machine 3 to the control device for the electric power steering device, it is possible to determine the failure of the element blocking unit 8 and avoid abnormal operation of the rotating machine 3. Can improve safety.
  • Embodiment 5 A control device 1 according to Embodiment 5 will be described. The description of the same components as those in the first embodiment is omitted.
  • the basic configuration of the rotating machine 3 and the control device 1 according to the present embodiment is the same as that of the first embodiment, except that the switching element on the low potential side of the diagnosis target phase is cut off, and the current command calculation unit
  • the setting method of dq-axis current commands Id * and Iq * for interrupting failure determination set by 5 is different.
  • the current command calculation unit 5 uses the q-axis for determining the break fault when performing the break fault determination.
  • the current command Iq * is set to 0, and the d-axis current command Id * for interrupting failure determination is set to a value other than 0. According to this configuration, the absolute value of the output torque difference Tdiff between the driving state before the shut-off and the shut-off state can be minimized, and the output torque difference before and after the shut-off can be made difficult to appear in the behavior of the rotating machine 3.
  • FIG. 4 shows three-phase currents Iu, Iv, and Iw when the d-axis current Id is a constant value of 10 Arms and the q-axis current Iq is 0 Arms as in the first configuration.
  • the U-phase current Iu which is the phase to be diagnosed, becomes negative
  • the period during which the U-phase low potential side forced cutoff is executed is a period (from 90 deg) in which the electrical angle ⁇ is from ⁇ / 2 to 3 ⁇ / 2.
  • the d-axis current command Id * and the q-axis current command Iq * may be set as shown in FIG.
  • the three-phase currents Iu, Iv, and Iw in the drive state before the cutoff are as shown in FIG. 40, and the three-phase currents Iu, Iv, and Iw in the cutoff state of the U-phase low-potential side switching element are 41.
  • the U-phase current Iu is smaller than 0 at an electrical angle ⁇ other than ⁇ ⁇ / 2 (90 deg, 270 deg), and the U-phase low-potential side forced at almost all angles. Blockade can be performed,
  • the current difference Iu_diff between the driving state before the cutoff and the U-phase current in the cutoff state and the current difference Iq_diff between the q-axis currents are as shown in FIG. 42, and the current difference Iq_diff of the q-axis current proportional to the output torque difference is , Are within the range of ⁇ 5 Arms, and the output torque difference can be suppressed.
  • the current command calculation unit 5 determines the i-th phase as the diagnosis target phase, and executes the low-potential-side forced cutoff with the d-axis advance angle based on the winding of the first phase as an electrical angle.
  • the electrical angle ⁇ is between ⁇ / 2 + 2 ⁇ (i ⁇ 1) / m and ⁇ / 2 + 2 ⁇ (i ⁇ 1) / m
  • the d-axis current command Id * is set to a negative value. In other cases, the d-axis current command Id * is set to a positive value.
  • the current command calculation unit 5 sets the q-axis current command Iq * to 0.
  • the d axis is set when the electrical angle ⁇ is between ⁇ / 6 and 7 ⁇ / 6 (between 30 deg and 210 deg).
  • the current command Id * is set to a negative value, and otherwise, the d-axis current command Id * is set to a positive value.
  • Embodiment 6 A control apparatus 1 according to Embodiment 6 will be described. The description of the same components as those in the first embodiment is omitted.
  • the basic configuration of the rotating machine 3 and the control device 1 according to the present embodiment is the same as that of the first embodiment, except that the switching element on the low potential side of the diagnosis target phase is cut off, and the current command calculation unit
  • the setting method of dq-axis current commands Id * and Iq * for interrupting failure determination set by 5 is different.
  • the current command calculation unit 5 sets the q-axis current command Iq * for interrupting failure determination to 0, and sets the d-axis current command Id * for interrupting failure determination to a value other than 0. Yes.
  • the U-phase current Iu which is the diagnosis target phase, becomes 0 Arms when the electrical angle ⁇ becomes ⁇ ⁇ / 2 (90 deg, 270 deg), and the U-phase low potential side The forced shutdown cannot be executed.
  • the U-phase current Iu is set to a constant negative value so that the U-phase low potential side forced cutoff can be executed even at these electrical angles ⁇ .
  • the current command calculation unit 5 determines the i-th phase as the diagnosis target phase, and executes the low-potential-side forced cutoff with the d-axis advance angle with respect to the winding of the first phase as the electrical angle ⁇ .
  • the phase adjustment constant K set to a value between 0 and ⁇
  • the phase angle ⁇ with respect to the q-axis of the current vector obtained by combining the d-axis current command Id * and the q-axis current command Iq * is ,
  • the d-axis current command Id * and the q-axis current command Iq * for determining the interruption failure are set so that K + 2 ⁇ (i ⁇ 1) / m ⁇ .
  • the current command calculation unit 5 sets the d-axis current command Id * and the q-axis current command Iq * for interruption failure determination as shown in the above equation (14).
  • K + 2 ⁇ / 3 ⁇
  • K + 4 ⁇ / 3 ⁇ .
  • FIG. 45 shows the three-phase currents Iu, Iv, and Iw in the driving state before the interruption in the case of FIG. 44.
  • FIG. 46 shows the low U-phase in the case of FIG. The three-phase currents Iu, Iv, Iw when the potential side switching element is cut off are shown. As shown in FIG.
  • the U-phase current Iu in the driving state before the cutoff, the U-phase current Iu becomes a negative value of ⁇ 10 Arms at all electrical angles ⁇ , and the U-phase low potential side forced cutoff can be executed.
  • the U-phase current Iu in the cut-off state, the U-phase current Iu is 0 Arms, so that the failure of the element cut-off unit 8 can be easily determined from the current change.
  • the winding current of the failure diagnosis phase becomes a constant value, it is easy to design a threshold value for failure determination, and the failure determination accuracy can be improved.
  • the current vector is changed in a desired direction (in this example, the high potential of the U phase at each electrical angle ⁇ ). Side), a useless direction component can be eliminated and the absolute value of the current vector can be reduced.
  • the current difference Iu_diff of the U-phase current and the current difference Iq_diff of the q-axis current in the driving state before the cutoff and the cutoff state are as shown in FIG.
  • the absolute value of the current difference Iq_diff of the q-axis current proportional to the output torque difference becomes the largest when the electrical angle ⁇ is 90 deg and 270 deg.
  • the q-axis current Iq in the driving state before the cutoff becomes 10 Arms which is the maximum absolute value
  • the q-axis current Iq in the cutoff state becomes 0 Arms.
  • the torque constant for converting the q-axis current Iq into the output torque of the rotating machine 3 is Kt
  • the output torque T in the driving state before the interruption is 10 ⁇ 3 Kt
  • the output torque Toff in the interruption state is zero.
  • the mechanical loss torque Tloss is the mechanical loss torque of the torque transmission mechanism that transmits the output torque of the rotating machine 3 to the steering shaft 62.
  • the current command calculation unit 5 is configured to set the absolute value of the q-axis current command Iq * for interrupting failure determination below the value obtained by dividing the absolute value of the mechanical loss torque Tloss by the torque constant Kt. .
  • the interruption failure determination can be executed in a state where the rotating machine 3 does not rotate.
  • the mechanical loss torque Tloss may be stored in the storage device 91 in advance, and may be read when calculating the q-axis current command Iq *.
  • the current command calculation unit 5 outputs the output torque T of the rotating machine 3 when the switching element is not forcibly cut off, and the output torque Toff of the rotating machine 3 when the switching element is forcibly turned off.
  • the q-axis current command Iq * is set so that the absolute value of the output torque difference Tdiff is equal to or less than the absolute value of the mechanical loss torque Tloss applied to the rotor rotation shaft. According to this structure, it can prevent that the rotary machine 3 rotates by the output torque change which arises before and behind interruption
  • the current command calculation unit 5 sets and sets the effective value Irms of the current vector so that the maximum absolute value of the output torque difference Tdiff calculated by the equation (16) is equal to or less than the absolute value of the mechanical loss torque Tloss.
  • the q-axis current command Iq * is set based on the equation (5) using the effective value Irms of the current vector.
  • the voltage command calculation unit 6 stops the current feedback control after the interruption in the interruption failure determination, and uses the detected current value for the interruption failure determination.
  • the d-axis voltage command Vd * and the q-axis voltage command Vq * are set. Therefore, it is possible to prevent the output torque of the rotating machine 3 from increasing due to the current feedback control after the interruption.
  • the voltage command calculation unit 6 holds the dq axis voltage commands Vd * and Vq * calculated before forcibly shutting off the switching element, and forcibly switches the switching element.
  • the held value is set to the dq axis voltage commands Vd * and Vq *.
  • the rotating machine 3 is a rotating machine for driving the electric power steering device
  • the control device 1 is a control device for the electric power steering device 60.
  • the rotating machine 3 may be a driving force source of equipment other than the electric power steering device 60, such as a rotating machine that drives wheels, and the control device 1 supplies the requested driving force to the rotating machine 3.
  • the present invention can be freely combined with each other, or can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

スイッチング素子の遮断機能の確認に要する構成を簡素化した回転機の制御装置、及び電動パワーステアリング装置を提供する。診断対象相の巻線電流が正になる駆動状態において、前診断対象相の高電位側のスイッチング素子を強制的に遮断させる高電位側強制遮断、又は診断対象相の巻線電流が負になる駆動状態において、診断対象相の前記低電位側のスイッチング素子を強制的に遮断させる低電位側強制遮断を実行し、高電位側強制遮断又は低電位側強制遮断を実行したときの、電流又は電圧の検出値に基づいて、前記素子遮断部の故障を判定する回転機(3)の制御装置(1)。

Description

回転機の制御装置及びそれを備えた電動パワーステアリング装置
 本発明は、回転機の制御装置及びそれを備えた電動パワーステアリング装置に関するものである。
 下記の特許文献1に記載された電動パワーステアリング装置においては、起動時に、回転機を駆動するスイッチング素子を駆動し、チェック用にマイコンから出力された遮断信号により、スイッチング素子の駆動が停止することを、回転機の端子電圧を用いて確認するように構成されている。
特許第5496257号
 しかしながら、特許文献1に開示された電動パワーステアリング装置では、起動時の確認中に、モータが回転してハンドルが自転することのないように、ブリッジ回路のスイッチング素子を1個ずつ確認している。1個ずつ確認するので、スイッチング素子の遮断を判定するために回転機の端子電圧の検出手段を設ける必要があった。
 そこで、スイッチング素子の遮断機能の確認に要する構成を簡素化した回転機の制御装置、及び電動パワーステアリング装置が望まれる。
 本発明に係る回転機の制御装置は、m相の巻線(mは2以上の自然数)を有する回転機と直流電源との間で電力変換を行う、複数のスイッチング素子を備えたインバータと、前記スイッチング素子をオンオフ制御する制御回路と、を備え、
 前記インバータは、前記直流電源の正極側に接続される高電位側のスイッチング素子と前記直流電源の負極側に接続される低電位側のスイッチング素子とが直列接続され、各相の直列接続の接続点が対応する相の前記巻線に接続される直列回路を、前記m相の各相に対応してmセット設け、
 前記制御回路は、前記巻線に流す電流指令を演算する電流指令演算部と、前記電流指令に基づいて前記巻線に印加する電圧指令を演算する電圧指令演算部と、前記電圧指令に基づいて前記スイッチング素子をオンオフするスイッチング信号を生成するスイッチング信号生成部と、前記スイッチング素子のそれぞれを強制的に遮断状態に切り替える素子遮断部と、前記素子遮断部の故障を判定する遮断故障判定部と、を備え、
 前記遮断故障判定部は、前記m相の内の1つの相を診断対象相として決定し、前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線を流れる電流が、前記インバータから前記巻線に流れる方向である正になる駆動状態において、前記素子遮断部に指令して前記診断対象相の前記高電位側のスイッチング素子を強制的に遮断させる高電位側強制遮断、又は前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線を流れる電流が、前記巻線から前記インバータに流れる方向である負になる駆動状態において、前記素子遮断部に指令して前記診断対象相の前記低電位側のスイッチング素子を強制的に遮断させる低電位側強制遮断を実行し、
 前記高電位側強制遮断又は前記低電位側強制遮断を実行したときの、電流又は電圧の検出値に基づいて、前記素子遮断部の故障を判定するものである。
 本発明に係る電動パワーステアリング装置は、上記の回転機の制御装置と、前記回転機と、
 前記回転機の駆動力を車両の操舵装置に伝達する駆動力伝達機構と、を備えたものである。
 この発明の回転機の制御装置及び電動パワーステアリング装置によれば、診断対象相の巻線に正の電流を流した状態において、診断対象相の高電位側のスイッチング素子が遮断された場合に、電流又は電圧に変化が生じるため、高電位側強制遮断を実行したときの電流又は電圧の検出値に基づいて素子遮断部の故障を判定することができる。また、診断対象相の巻線に負の電流を流した状態において、診断対象相の低電位側のスイッチング素子が遮断された場合に、電流又は電圧に変化が生じるため、低電位側強制遮断を実行したときの電流又は電圧の検出値に基づいて素子遮断部の故障を判定することができる。よって、回転機にトルクを出力させる制御回路の構成を利用して、素子遮断部の故障を判定することができ、スイッチング素子の遮断機能の確認に要する構成を簡素化することができる。
本発明の実施の形態1に係る回転機及び回転機の制御装置の概略構成図である。 本発明の実施の形態1に係る電動パワーステアリング装置の概略構成図である。 本発明の実施の形態1に係る制御回路のハードウェア構成図である。 本発明の実施の形態1に係る遮断前の駆動状態における3相電流のタイムチャートである。 本発明の実施の形態1に係る遮断前の駆動状態における3相電圧のタイムチャートである。 本発明の実施の形態1に係る遮断前の駆動状態におけるスイッチング素子のオンオフの組み合わせ説明する図である。 本発明の実施の形態1に係る遮断前の駆動状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV7の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV1の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV0の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態1に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断状態に切り替えたときの3相電流及び3相電圧の変化を説明するタイムチャートである。 本発明の実施の形態1に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断状態に切り替えたときの3相電流及び3相電圧の変化を説明するタイムチャートである。 本発明の実施の形態1に係る遮断前の駆動状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV7の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV4の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断前の駆動状態における電圧ベクトルV0の場合の電流経路を説明する回路図である。 本発明の実施の形態1に係る遮断状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態1に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態2に係る電流ベクトルの位相角を説明する図である。 本発明の実施の形態2に係る遮断故障判定用のdq軸電流指令の設定を説明するタイムチャートである。 本発明の実施の形態2に係る遮断前の駆動状態における3相電流を説明するタイムチャートである。 本発明の実施の形態2に係る遮断状態における3相電流を説明するタイムチャートである。 本発明の実施の形態2に係る遮断前後の電流差を説明するタイムチャートである。 本発明の実施の形態2に係る遮断故障判定用のdq軸電流指令の設定を説明する図である。 本発明の実施の形態3に係る遮断故障判定用のdq軸電流指令の設定を説明するタイムチャートである。 本発明の実施の形態3に係る遮断前の駆動状態における3相電流を説明するタイムチャートである。 本発明の実施の形態3に係る遮断状態における3相電流を説明するタイムチャートである。 本発明の実施の形態3に係る遮断前後の電流差を説明するタイムチャートである。 本発明の実施の形態4に係る遮断状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態4に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態4に係る遮断状態におけるスイッチング素子のオンオフ動作を説明するタイムチャートである。 本発明の実施の形態4に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態4に係る遮断状態における電流経路を説明する回路図である。 本発明の実施の形態4に係る遮断状態に切り替えたときの3相電流及び3相電圧の変化を説明するタイムチャートである。 本発明の実施の形態5に係る遮断故障判定用のdq軸電流指令の設定を説明するタイムチャートである。 本発明の実施の形態5に係る遮断前の駆動状態における3相電流を説明するタイムチャートである。 本発明の実施の形態5に係る遮断状態における3相電流を説明するタイムチャートである。 本発明の実施の形態5に係る遮断前後の電流差を説明するタイムチャートである。 本発明の実施の形態5に係る遮断故障判定用のdq軸電流指令の設定を説明する図である。 本発明の実施の形態6に係る遮断故障判定用のdq軸電流指令の設定を説明するタイムチャートである。 本発明の実施の形態6に係る遮断前の駆動状態における3相電流を説明するタイムチャートである。 本発明の実施の形態6に係る遮断状態における3相電流を説明するタイムチャートである。 本発明の実施の形態6に係る遮断前後の電流差を説明するタイムチャートである。
1.実施の形態1
 実施の形態1に係る回転機3の制御装置1(以下、単に制御装置1と称す)について図面を参照して説明する。図1は、本実施の形態に係る回転機3及び制御装置1の概略構成図である。制御装置1は、回転機3と直流電源2との間で電力変換を行う、複数のスイッチング素子を備えたインバータ17と、スイッチング素子をオンオフ制御する制御回路4と、を備えている。
1-1.回転機3及びインバータ17
 回転機3は、m相の巻線(mは2以上の自然数)を有している。本実施の形態では、m=3とされており、1番目の相、2番目の相、3番目の相の巻線が設けられている。以下では、1番目の相をU相、2番目の相をV相、3番目の相をW相と称する。3相の巻線は、スター結線されている。
 回転機3は、3相の巻線を設けたステータ及び永久磁石を設けたロータを有する永久磁石式同期回転機とされている。なお、回転機3は、ロータに永久磁石が設けられていない誘導機、又はロータに電磁石が設けられている界磁巻線型同期機であってもよい。また、3相の巻線は、デルタ結線されてもよい。
 ロータには、ロータの回転角度を検出するための角度検出センサ24が備えられている。角度検出センサ24には、ホール素子、TMR素子、GMR素子、レゾルバなどの位置検出器、電磁式、磁電式、光電式などの回転検出器等が用いられる。角度検出センサ24の出力信号は、制御回路4に入力される。
 本実施の形態では、図2に示すように、回転機3及び制御装置1は、電動パワーステアリング装置60に組み込まれている。すなわち、回転機3は、車両の操舵装置の操舵トルクを補助する電動パワーステアリング装置の駆動用の回転機とされており、制御装置1は、電動パワーステアリング装置60の制御装置とされている。運転者が操作するハンドル61にはステアリングシャフト62が連結されている。ステアリングシャフト62には運転者の操舵力を検知するトルクセンサ63が取り付けられている。ステアリングシャフト62は、インターミディエートシャフト64を通して、ラック軸65内のピニオンギア66に連結されている。操向輪である前輪67a、67bのナックルアーム68a、68bにはラック軸65に連結されたタイロッド69a、69bが接続されており、ラック軸65の動きがタイロッド69a、69bと、ナックルアーム68a、68bを経て前輪67a、67bに伝わることにより、前輪67a、67bが操向される。ラック軸65にはギアを介して回転機3が連結されており、回転機3の回転駆動力がラック軸65を動かす駆動力となっている。
 インバータ17は、直流電源2と回転機3との間で電力変換を行う直流交流変換装置である。図1に示すように、インバータ17は、直流電源2の正極側に接続される高電位側のスイッチング素子と直流電源2の負極側に接続される低電位側のスイッチング素子とが直列接続された直列回路(レッグ)を、3相の各相に対応して3セット設けている。そして、各相の高電位側のスイッチング素子と低電位側のスイッチング素子との接続点が、対応する相の巻線に接続されている。具体的には、インバータ17は、U相の高電位側のスイッチング素子20UとU相の低電位側のスイッチング素子21Uとが直列接続されたU相の直列回路と、V相の高電位側のスイッチング素子20VとV相の低電位側のスイッチング素子21Vとが直列接続されたV相の直列回路と、W相の高電位側のスイッチング素子20WとW相の低電位側のスイッチング素子21Wとが直列接続されたW相の直列回路と、を備えている。
 各スイッチング素子は、ダイオードが逆並列接続されたものが用いられる。各スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタ、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。各スイッチ素子のゲート端子には、制御回路4から出力されたスイッチング信号Qup~Qwnが入力され、各スイッチング素子がオンオフされる。
 各相の直列回路には、それぞれ、電流センサ22としてのシャント抵抗22U、22V、22Wが設けられている。各相のシャント抵抗22U、22V、22Wの両端電位差が、制御回路4に入力される。各相のシャント抵抗22U、22V、22Wは、各相の低電位側のスイッチング素子21U、21V、21Wの負極側に直列接続されている。なお、各相のシャント抵抗22U、22V、22Wは、各相の高電位側のスイッチング素子20U、20V、20Wの正極側に直列接続されてもよい。或いは、電流センサ22として、各相の巻線とインバータ17との接続電線を流れる電流を検出する電流センサが設けられてもよい。各巻線に印加される電圧を検出する電圧センサ23が設けられている。
 直流電源2は、インバータ17に直流電圧Vdcを出力する。直流電源2として、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧を出力する機器であれば、どのような機器であってもよい。
1-2.制御回路4
 制御回路4は、インバータ17を制御することにより、回転機3の制御を行う制御回路である。図1に示すように、制御回路4は、トルク指令演算部12、電流指令演算部5、電圧指令演算部6、スイッチング信号生成部7、素子遮断部8、遮断故障判定部9、回転情報演算部10、電流検出部11等の機能部を備えている。制御回路4が備える各機能部5~12等は、制御回路4が備えた処理回路により実現される。具体的には、制御回路4は、図3に示すように、処理回路として、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)や、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、各種のセンサやスイッチが接続され、これらセンサやスイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。本実施の形態では、入力回路92には、電流センサ22、電圧センサ23、角度検出センサ24、トルクセンサ63等が接続されている。出力回路93には、インバータ17(スイッチング素子又はスイッチング素子のゲート駆動回路)等が接続されている。
 そして、制御回路4が備える各機能部5~12等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御回路4の他のハードウェアと協働することにより実現される。なお、各機能部5~12等が用いる設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御回路4の各機能について詳細に説明する。
1-2-1.制御回路4の基本構成
<回転情報演算部10>
 回転情報演算部10は、回転機3の回転情報を検出する。回転情報演算部10は、ロータの回転軸に設けられた角度検出センサ24の出力信号に基づいて、ロータの電気角θ及び電気角速度を検出する。
<トルク指令演算部12>
 トルク指令演算部12は、回転機3に出力させるトルク指令を演算する。本実施の形態では、トルク指令演算部12は、トルクセンサ63の出力信号に基づいて検出した操舵トルク等に基づいて、操舵トルクを補助するアシストトルクをトルク指令として演算する。
<電流指令演算部5>
 電流指令演算部5は、3相巻線に流す電流指令を演算する。本実施の形態では、電流指令演算部5は、3相巻線に流す電流をdq軸回転座標系で表したd軸電流指令Id*及びq軸電流指令Iq*を演算するdq軸電流制御を実行する。dq軸回転座標は、回転機3のロータの磁束方向に定めたd軸及びd軸より電気角でπ/2進んだ方向に定めたq軸からなる回転座標とされている。本実施の形態では、ロータの磁束方向は、ロータに設けられた永久磁石のN極の向きとされている。電気角θは、U相(1番目の相)の巻線を基準としたd軸の進み角とされている。すなわち、d軸位置が、U相の巻線位置に一致しているときに、電気角θが0degになる。
 電流指令演算部5は、後述する遮断故障判定を行わない通常制御を行う場合は、トルク指令演算部12により算出されたトルク指令のトルクを回転機3に出力させるd軸電流指令Id*及びq軸電流指令Iq*を演算する。電流指令演算部5は、通常制御時は、最大トルク電流制御、弱め磁束制御、Id=0制御、及び最大トルク磁束制御などの電流ベクトル制御方法に従って、dq軸電流指令Id*、Iq*を演算する。
 一方、電流指令演算部5は、遮断故障判定を行う場合は、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を設定する。本実施の形態では、遮断故障判定用のdq軸電流指令Id*、Iq*は、遮断故障判定部9から指令されるように構成されているが、電流指令演算部5が設定してもよい。
<電流検出部11>
 電流検出部11は、電流センサ22の出力信号に基づいて、インバータ17から回転機3の各相の巻線に流れる3相電流Iu、Iv、Iwを検出する。電流検出部11は、各相の巻線に流れる3相電流Iu、Iv、Iwを、電気角θに基づいて3相2相変換及び回転座標変換を行って、dq軸回転座標系で表したd軸電流Id及びq軸電流Iqに変換する。
<電圧指令演算部6>
 電圧指令演算部6は、電流指令に基づいて巻線に印加する電圧指令を演算する。本実施の形態では、電圧指令演算部6は、遮断故障判定を行わない通常制御を行う場合は、dq軸電流Id、Iqが、dq軸電流指令Id*、Iq*に近づくように、回転機3に印加する電圧の指令信号をdq軸回転座標系で表したd軸電圧指令Vd*及びq軸電圧指令Vq*を、PI制御等により変化させる電流フィードバック制御を行う。
 一方、電圧指令演算部6は、遮断故障判定を行う場合は、スイッチング素子を強制的に遮断したときに、電流フィードバック制御を停止し、電流の検出値を用いずに、遮断故障判定用のd軸電圧指令Vd*及びq軸電圧指令Vq*を設定する。この構成によれば、後述するようにスイッチング素子の遮断により巻線電流が変化しても、電流フィードバック制御により回転機3の出力トルクが変動することを防止できる。
 本実施の形態では、電圧指令演算部6は、遮断故障判定を行う場合であっても、スイッチング素子を強制的に遮断する前は、電流フィードバック制御を行い、dq軸電流Id、Iqが、遮断故障判定用のdq軸電流指令Id*、Iq*に近づくように、dq軸電圧指令Vd*、Vq*を変化させる。そして、電圧指令演算部6は、スイッチング素子を強制的に遮断する前に演算したdq軸電圧指令Vd*、Vq*を保持し、スイッチング素子を強制的に遮断したときに、保持した値をdq軸電圧指令Vd*、Vq*に設定するように構成されている。この構成によれば、遮断前の電圧指令を保持する簡単な方法で、遮断による電流変化の影響が、遮断後の電圧指令に出ないようにできる。なお、ここでは遮断故障判定を行わない通常制御を電流フィードバック制御とした場合について説明したが、フィードフォワード制御としても同様の効果が得られる。
 或いは、電圧指令演算部6は、遮断故障判定を行う場合は、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を、遮断故障判定用のd軸電圧指令Vd*及びq軸電圧指令Vq*に変換するように構成されてもよい。例えば、電圧指令演算部6は、遮断故障判定用のd軸電流指令Id*に各相の巻線の抵抗Rを乗算した値を、遮断故障判定用のd軸電圧指令Vd*に設定し、遮断故障判定用のq軸電流指令Iq*に各相の巻線の抵抗Rを乗算した値を、遮断故障判定用のq軸電圧指令Vq*に設定してもよい。
 そして、電圧指令演算部6は、dq軸電圧指令Vd*、Vq*を、電気角θに基づいて、固定座標変換及び2相3相変換を行って、3相各相の巻線への交流電圧指令である3相電圧指令Vu*、Vv*、Vw*に変換する。
<スイッチング信号生成部7>
 スイッチング信号生成部7は、電圧指令に基づいてスイッチング素子をオンオフするスイッチング信号を生成する。スイッチング信号生成部7は、3相電圧指令Vu*、Vv*、Vw*に基づいてパルス幅変調制御(PWM(Pulse Width Modulation)制御)を行って、3相電圧指令Vu*、Vv*、Vw*に応じたデューティ比のパルス幅を持つスイッチング信号Qup~Qwnを生成する。本実施の形態では、スイッチング信号生成部7は、図7に示すように、3相電圧指令Vu*、Vv*、Vw*のそれぞれと、直流電源2の直流電圧Vdcの振動幅を有し、キャリア周期Tcで振動するキャリア波C1(三角波)とを比較し、各相について、交流電圧指令がキャリア波C1を上回った場合は、高電位側のスイッチング素子をオンさせると共に低電位側のスイッチング素子をオフさせるスイッチング信号を生成する。スイッチング信号生成部7は、スイッチング信号Qup~Qwnをインバータ17に出力し、インバータ17の各スイッチング素子をオンオフさせる。なお、3相電圧指令Vu*、Vv*、Vw*に対して、空間ベクトル変調や2相変調など公知の変調方法を用いて変調した3相電圧指令に基づいてスイッチング信号が生成されてもよい。
<素子遮断部8>
 素子遮断部8は、各スイッチング素子を強制的に遮断状態に切り替えるフェールセーフ機構である。素子遮断部8は、各種入力信号から異常を検出したときなどに、異常内容に対応するスイッチング素子を強制的に遮断状態に切り替える。例えば、スイッチング素子を流れる電流が異常になった場合に、電流が異常になったスイッチング素子を強制的に遮断状態に切り替え、回転機3から異常なトルクが出力されるのを防止する。また、素子遮断部8は、後述する遮断故障判定を行う場合は、遮断故障判定部9の指令に従って、故障診断対象に係るスイッチング素子を強制的に遮断状態に切り替える。
 素子遮断部8は、例えば、各スイッチング素子について、ゲート端子に入力されるスイッチング信号を強制的に遮断し、スイッチング素子を強制的に遮断させる遮断回路を備えている。遮断回路は、遮断用のスイッチング素子を備えており、素子遮断部8は、遮断用のスイッチング素子をオンオフすることにより、スイッチング素子を強制的に遮断状態に切り替える。
1-2-2.遮断故障判定部9
 遮断故障判定部9は、素子遮断部8の故障を判定する。遮断故障判定部9は、3相の内の1つの相を診断対象相として決定し、素子遮断部8に指令して、診断対象相の高電位側又は低電位側のスイッチング素子を強制的に遮断させ、遮断させたときの電流又は電圧の検出値に基づいて素子遮断部8の故障を判定する遮断故障判定を実行する。
 遮断故障判定部9は、予め設定された判定実行条件が成立した場合に、遮断故障判定の実行を開始する。本実施の形態では、判定実行条件は、起動時の初期チェック期間等、通常制御時の回転機3のトルク(本例ではアシストトルク)の絶対値が微小な場合に、成立する。
 遮断故障判定部9は、遮断故障判定の実行開始後、電流指令演算部5に遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を指令する。遮断故障判定用のdq軸電流指令Id*、Iq*は、回転機3の出力トルクが大きくなり過ぎないような値(本例では、一定値)に予め設定されている。例えば、遮断故障判定用のdq軸電流指令Id*、Iq*は、スイッチング素子の遮断前及び遮断後の一方又は双方において、回転機3の出力トルクが、ロータの回転軸にかかる機械損失トルクよりも小さくなるような値、又は微小回転を生じるような値に予め設定されている。
 そして、遮断故障判定部9は、遮断故障判定用のdq軸電流指令Id*、Iq*の指令後、予め設定された待ち期間が経過した後に、予め設定された判定期間の間、素子遮断部8に指令して、診断対象相の高電位側又は低電位側のスイッチング素子を強制的に遮断させる。そして、遮断故障判定部9は、スイッチング素子の強制遮断の前後の電流又は電圧の変化に基づいて、素子遮断部8の故障を判定する。
 遮断故障判定部9は、素子遮断部8が故障していると判定した場合は、フェール処理を実行する。フェール処理は、故障ランプの点灯、ディスプレイ等の表示装置への故障内容の表示等の故障情報のユーザへの報知処理、通常制御時の回転機3の出力トルクの停止又は低下処理等とされる。
 本実施の形態では、遮断故障判定部9は、診断対象相の高電位側のスイッチング素子を遮断させる高電位側強制遮断を実行する場合について説明する。
1-2-2-1.遮断故障判定の原理
<診断対象相の巻線を流れる電流が正の場合>
 まず、診断対象相の巻線を流れる電流が、インバータ17から巻線に流れる方向である正になる駆動状態における、遮断故障判定の原理について説明する。遮断前に回転機3が回転している状態で、dq軸回転座標系においてd軸電流が10Arms、q軸電流が0Arms流れているとき、3相電流Iu、Iv、Iwは、図4のようになる。横軸は電気角θである。また、微小回転では電圧と電流の位相はほとんど差が無いため、3相電圧Vu、Vv、Vwは図5のようになる。ここで、rmsは、二乗平均平方根(root mean square)であり、実効値を表す。
 遮断前の3相電圧Vu、Vv、Vwは、3相各相の高電位側のスイッチング信号のオンデューティ比Du、Dv、Dwと、直流電源2の直流電圧Vdcにより、式(1)のように表せる。ここで、Duは、U相のデューティ比であり、Dvは、V相のデューティ比であり、W相のデューティ比である。なお、(1-Du)、(1-Dv)、(1-Dv)が、3相各相の低電位側のスイッチ信号のオンデューティ比となる。よって、遮断前の3相電圧Vu、Vv、Vwは、3相電圧指令Vu*、Vv*、Vw*に応じた電圧となる。
Figure JPOXMLDOC01-appb-M000001
 同一相の高電位側のスイッチング素子と低電位側のスイッチング素子が同時にオンすることは無いため、遮断前の駆動状態において20U~21Wのオン、オフの組合せは図6の電圧ベクトルV0からV7の8通りある。
 図4及び図5において電気角θが0degであり、診断対象相とされたU相電流Iuが正になる遮断前の駆動状態における、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作を図7に示す。時刻t1からt2までの電圧ベクトルはV7であり、時刻t2からt3までの電圧ベクトルはV1であり、時刻t3からt4までの電圧ベクトルはV0であり、時刻t4からt5までの電圧ベクトルはV1であり、時刻t5からt6までの電圧ベクトルはV7である。
 電圧ベクトルV7での電流の流れ方は図8のようになる。3相の低電位側のスイッチング素子21U、21V、21Wがオフなので直流電源2へ戻る経路は無いため、U相の高電位側のスイッチング素子20Uを通った電流は、U相巻線を通った後、V相巻線、W相巻線を経由してV相及びW相の高電位側のスイッチング素子20V、20Wを通り、その後、再びU相の高電位側のスイッチング素子20Uに戻る。
 電圧ベクトルV1での電流の流れ方は図9のようになる。直流電源2から供給された電流は、U相の高電位側のスイッチング素子20Uを通ってU相巻線へ流れた後、V相巻線、W相巻線を経由してV相及びW相の低電位側のスイッチング素子21V、21Wを通り、その後、直流電源2に戻る。
 電圧ベクトルV0での電流の流れ方は図10のようになる。3相の高電位側のスイッチング素子20U、20V、20Wがオフなので直流電源2からの電源供給はされないため、U相の低電位側のスイッチング素子21Uを通った電流は、U相巻線を通った後、V相及びW相の低電位側のスイッチング素子21V、21Wを通り、その後、再びU相の低電位側のスイッチング素子21Uに戻る。
 素子遮断部8によって、U相の高電位側のスイッチング素子20Uを、駆動状態から遮断状態へ切り替えると、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作は図11のようになる。時刻t3からt4以外の時刻では、遮断前の駆動状態とは異なる電圧ベクトルとなる。
 時刻t2からt3までと、時刻t4からt5までの電流の流れ方は、通流方向を考慮すると図12のようになるはずであるが、U相電圧Vuは、V相電圧Vv及びW相電圧Vwより大きいため、U相の低電位側のスイッチング素子21Uの寄生ダイオードを通って電流が流れることはできず、U相巻線に電流は流れない。
 時刻t1からt2までと時刻t5からt6までの電流の流れ方は、通流方向を考慮すると図13のようになるはずであるが、寄生ダイオードを通って流せる電流の方向とは逆のため、U相の高電位側のスイッチング素子20Uの寄生ダイオードを通って流れることはできず、U相巻線に電流は流れない。
 このように、図4及び図5において電気角θが0degであり、U相電流が正の状態では、遮断前の駆動状態から、U相の高電位側のスイッチング素子20Uを遮断状態に切り替えたときの3相電流及び3相電圧を図14に示す。時刻0.1sで、遮断前の駆動状態から遮断状態に切り替えたことで、3相電流Iu、Iv、Iwが流れなくなっている。遮断後のU相電圧Vuは、遮断を行っていない場合のV相電圧VvとW相電圧Vwの平均値である中性点電圧となる。本例では、V相電圧VvとW相電圧Vwが等しいため、U相電圧Vuは、V相電圧Vv及びW相電圧Vwに等しくなっている。
 なお、V相電圧VvとW相電圧Vwが等しい場合には、V相巻線およびW相巻線にも電流が流れないが、V相電圧VvとW相電圧Vwの間に電位差がある場合には高い方の相の巻線から低い方の相の巻線へ電流が流れる。一例として、V相電圧VvがW相電圧Vwより高電位である場合は、図15のように、V相の高電位側のスイッチング素子20Vを通った電流は、V相巻線からW相巻線を経由してW相の高電位側のスイッチング素子20Wを通った後、V相の高電位側のスイッチング素子20Vへ戻り、V相巻線からW相巻線に電流が流れる。
 この場合の例として、図4及び図5において電気角θが30degのときに、遮断前の駆動状態から、U相の高電位側のスイッチング素子20Uを遮断状態に切り替えたときの3相電流及び3相電圧を図16に示す。時刻0.1sで、遮断前の駆動状態から遮断状態に切り替えたことで、U相電流Iuが流れなくなり、V相巻線(V相電流Iv)からW相巻線(W相電流Iw)に電流が流れるようになっている。遮断状態時のU相電圧Vuは、遮断を行っていない場合のV相電圧Vv及びW相電圧Vwの中間の電圧になっている。
 以上で説明したように、図5において電気角θが0degのときのように、遮断を行っていない場合に診断対象相とされたU相電流Iuが正になる駆動状態では、素子遮断部8によってU相の高電位側のスイッチング素子20Uを遮断状態へ切り替えると、U相電流Iuが流れなくなる。よって、遮断指令後に、診断対象相とされたU相電流Iuが0に変化する場合は、U相の高電位側のスイッチング素子20Uが正常に遮断されたと判定することができ、遮断指令後に、U相電流Iuが0に変化しない場合は、正常に遮断されておらず、U相の高電位側のスイッチング素子20Uの素子遮断部8が故障していると判定することができる。また、遮断指令後の、診断対象相でないV相電流Iv、W相電流Iwの変化によっても、素子遮断部8の故障を判定することができる。
 また、上記のように、U相の高電位側のスイッチング素子20Uの遮断状態では、U相電圧Vuは、V相電圧Vv及びW相電圧Vwの中間の電圧になる。そのため、U相の高電位側のスイッチング素子20Uの遮断時の3相電圧Vu、Vv、Vwは、3相各相の高電位側のスイッチング信号のオンデューティ比Du、Dv、Dwと、直流電源2の直流電圧Vdcにより、式(2)のように表せる。
Figure JPOXMLDOC01-appb-M000002
 よって、正常に遮断された場合は、遮断を行っていない場合の式(1)から、遮断時の式(2)に、診断対象相とされたU相電圧Vuが変化する。一方、正常に遮断されなかった場合は、U相電圧Vuは、U相電圧指令Vu*に応じた電圧から変化しない。なお、正常に遮断されたか否かにかかわらず、診断対象相でないV相電圧Vv及びW相電圧Vwは、電圧指令Vv*、Vw*に応じた電圧から変化しない。よって、遮断を行っていない場合に診断対象相とされたU相電流Iuが正である駆動状態において、遮断制御後に、U相電圧Vuが、U相電圧指令Vu*に応じた電圧から、診断対象でないV相電圧Vv及びW相電圧Vwの中間電圧に変化する場合は、U相の高電位側のスイッチング素子20Uが正常に遮断されたと判定することができ、遮断制御後に、U相電圧Vuが、U相電圧指令Vu*に応じた電圧のままで、中間電圧に変化しない場合は、正常に遮断されておらず、U相の高電位側のスイッチング素子20Uの素子遮断部8が故障していると判定することができる。
 また、正常に遮断された場合は、3相電圧Vu、Vv、Vwの平均値Vaveは、遮断を行っていない場合の式(1)の3相電圧Vu、Vv、Vwを平均した式(3)から、遮断時の式(2)の3相電圧Vu、Vv、Vwを平均した式(4)に変化する。一方、正常に遮断されなかった場合は、遮断を行っていない場合の式(3)の3相電圧Vu、Vv、Vwの平均値Vaveから変化しない。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 よって、遮断を行っていない場合にU相電流Iuが正である駆動状態において、遮断制御後に、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化する場合は、U相の高電位側のスイッチング素子20Uが正常に遮断されたと判定することができ、遮断制御後に、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化しない場合は、正常に遮断されておらず、U相の高電位側のスイッチング素子20Uの素子遮断部8が故障していると判定することができる。
<診断対象相の巻線を流れる電流が負の場合>
 次に、診断対象相の巻線を流れる電流が、巻線からインバータ17に流れる方向である負になる駆動状態について説明する。図4及び図5において電気角θが180degであり、診断対象相とされたU相の巻線を流れるU相電流Iuが負になる遮断前の駆動状態の、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作を図17に示す。時刻t1からt2までの電圧ベクトルはV7であり、時刻t2からt3までの電圧ベクトルはV4であり、時刻t3からt4までの電圧ベクトルはV0であり、時刻t4からt5までの電圧ベクトルはV4であり、時刻t5からt6までの電圧ベクトルはV7である。
 電圧ベクトルV7での電流の流れ方は図18のようになる。3相の低電位側のスイッチング素子21U、21V、21Wがオフなので直流電源2へ戻る経路は無いため、V相及びW相の高電位側のスイッチング素子20V、20Wを通った電流は、V相巻線及びW相巻線を通った後、U相巻線を経由してU相の高電位側のスイッチング素子20Uを通り、その後、再びV相及びW相の高電位側のスイッチング素子20V、20Wに戻る。
 電圧ベクトルV4での電流の流れ方は図19のようになる。直流電源2から供給された電流は、V相及びW相の高電位側のスイッチング素子20V、20Wを通ってV相巻線及びW相巻線へ流れた後、U相巻線を経由してW相の低電位側のスイッチング素子21Uを通り、その後、直流電源2に戻る。
 電圧ベクトルV0での電流の流れ方は図20のようになる。3相の高電位側のスイッチング素子20U、20V、20Wがオフなので直流電源2からの電源供給はされないため、V相及びW相の低電位側のスイッチング素子21V、21Wを通った電流は、V相巻線及びW相巻線を通った後、U相巻線を経由してU相の低電位側のスイッチング素子21Uを通り、その後、再びV相及びW相の低電位側のスイッチング素子21V、21Wに戻る。
 素子遮断部8によって、U相の高電位側のスイッチング素子20Uを、駆動状態から遮断状態へ切り替えると、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作は図21のようになる。時刻t1からt2までと、時刻t5からt6までにおいて、遮断前の駆動状態とは異なる電圧ベクトルとなる。
 この時刻t1からt2までと、時刻t5からt6までの電流の流れ方は図22のようになる。U相の高電位側及び低電位側のスイッチング素子20U、21Uがともにオフであるが、電流の通流方向を考えると、U相の高電位側のスイッチング素子20Uの寄生ダイオードを通って電流が流れることは可能である。V相電圧Vv及びW相電圧Vwは、U相電圧Vuより大きいため、V相及びW相の高電位側のスイッチング素子20V、20Wを通った電流は、V相巻線及びW相巻線を通った後、U相巻線を経由してU相の高電位側のスイッチング素子20Uの寄生ダイオードを通り、その後、再びV相及びW相の高電位側のスイッチング素子20V、20Wに戻る。つまり、U相の高電位側のスイッチング素子20Uの寄生ダイオードを通るかどうかの違いはあるが、図18と同様の回路を実現できる。
 このように、図4及び図5において電気角θが180degであり、U相電流Iuが負の状態では、素子遮断部8によってU相の高電位側のスイッチング素子20Uを、遮断前の駆動状態から遮断状態へ切り替えても、U相電流Iuは、遮断前の駆動状態からほとんど変化無く流れる。状態変化が無いため、素子遮断部8の故障を判定することが困難である。
 したがって、U相の高電位側のスイッチング素子20Uの素子遮断部8の故障を判定するためには、遮断を行っていない場合にU相電流Iuが正になる駆動状態において、素子遮断部8に指令してU相の高電位側のスイッチング素子20Uを遮断状態に切り替えればよい。
1-2-2-2.遮断故障判定部9の遮断故障判定処理
 以上で説明した遮断故障判定の原理に基づいて、遮断故障判定部9が以下で説明するように構成されている。遮断故障判定部9は、素子遮断部8によりスイッチング素子が強制的に遮断されていない場合に、診断対象相の巻線を流れる電流が、正になる駆動状態において、素子遮断部8に指令して診断対象相の高電位側のスイッチング素子を強制的に遮断させる高電位側強制遮断を実行する。ここで、インバータ17から巻線に流れる電流の方向を正としている。遮断故障判定部9は、高電位側強制遮断を実行したときの、電流又は電圧の検出値に基づいて素子遮断部8の故障を判定する遮断故障判定を実行する。
 本実施の形態では、電流に基づいて故障を判定する場合は、以下のように構成される。すなわち、遮断故障判定部9は、高電位側強制遮断を実行した後、診断対象相の巻線を流れる電流が0に変化した場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が正常であると判定し、高電位側強制遮断を実行した後、診断対象相の巻線を流れる電流が0に変化しなかった場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 一方、電圧に基づいて故障を判定する場合は、以下のように構成される。すなわち、遮断故障判定部9は、高電位側強制遮断を実行した後、診断対象相の巻線に印加される電圧が、診断対象相以外の相の巻線に印加される電圧の平均値に変化した場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が正常であると判定し、高電位側強制遮断を実行した後、診断対象相の巻線に印加される電圧が、診断対象相以外の相の巻線に印加される電圧の平均値に変化しなかった場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 或いは、遮断故障判定部9は、高電位側強制遮断を実行した後、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化した場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が正常であると判定し、高電位側強制遮断を実行した後、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化しなかった場合に、診断対象相の高電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 3相巻線に印加する電圧Vu、Vv、Vwの電位の相対関係によって、各相の巻線を流れる電流の流れる方向が決まる。遮断が行われていない場合において診断対象相の巻線に流れる電流が正になる駆動状態は、遮断が行われていない場合において、診断対象相の巻線に印加する電圧が、3相巻線に印加する電圧Vu、Vv、Vwの平均値(中性点電圧)よりも大きくなる駆動状態となる。
 そこで、遮断故障判定部9は、スイッチング素子が強制的に遮断されていない場合に、診断対象相の巻線の印加電圧が、3相の巻線の印加電圧Vu、Vv、Vwの平均値よりも大きくなる駆動状態において、高電位側強制遮断を実行するように構成されてもよい。ここで、3相の巻線の印加電圧Vu、Vv、Vwとして、3相の巻線への印加電圧指令である3相電圧指令Vu*、Vv*、Vw*が用いられてもよい。
 本実施の形態では、回転機3は、電動パワーステアリング装置の駆動用の回転機とされており、回転機3の出力トルクは、ギアあるいはチェーンなどを介してステアリングシャフト62に伝達され、操舵トルクを補助するアシストトルクとなる。回転機3のトルクリプルあるいは自転トルクなどは、運転者に不快感を与えるおそれがある。回転機3に流れる電流量が異常な場合にはスイッチング素子の駆動を停止したいが、素子遮断部8が故障の場合には遮断状態に切り替わらず、運転者が要求しないトルクを出す可能性がある。本実施の形態のように、回転機3の制御装置を電動パワーステアリングの制御装置に適用することで、素子遮断部8の故障の判定が可能となり回転機3の異常動作を回避して安全性を向上できる。
2.実施の形態2
 実施の形態2に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機3及び制御装置1の基本的な構成は実施の形態1と同様であるが、電流指令演算部5が設定する遮断故障判定用のdq軸電流指令Id*、Iq*の設定方法が異なる。
<遮断故障判定用のdq軸電流指令Id*、Iq*の設定原理>
 まず、本実施の形態に係る遮断故障判定用のdq軸電流指令Id*、Iq*の設定原理について説明する。図23に示すように、d軸電流Id及びq軸電流Iqを合成した電流ベクトルIの、q軸に対する位相角をβとする。なお、d軸電流指令Id*及びq軸電流指令Iq*についても、同様である。
 d軸電流Id及びq軸電流Iqは、電流ベクトルの実効値Irms、及び電流ベクトルの位相角βを用いて、式(5)のように表せる。
Figure JPOXMLDOC01-appb-M000005
 式(5)のdq軸電流Id、Iqに対して、電気角θに基づく2相3相変換及び固定座標変換を行うと、式(6)に示す3相電流Iu、Iv、Iwが得られる。
Figure JPOXMLDOC01-appb-M000006
 各相の巻線の抵抗をRとすると、式(6)の3相電流Iu、Iv、Iwを得るための3相電圧Vu、Vv、Vwは、式(7)に示すようになる。
Figure JPOXMLDOC01-appb-M000007
 遮断前の駆動状態では、3相電圧指令に応じた、式(7)の3相電圧が3相巻線に印加されるが、診断対象相とされたU相の高電位側のスイッチング素子20Uを遮断状態に切り替えたときに、3相巻線に印加される3相電圧Vu_off、Vv_off、Vw_offは、式(8)のようになる。
Figure JPOXMLDOC01-appb-M000008
 その結果、U相の高電位側のスイッチング素子20Uを遮断状態に切り替えたときの3相電流Iu_off、Iv_off、Iw_offは、式(9)で与えられ、式(9)の3相電流に対して、電気角θに基づく3相2相変換及び回転座標変換を行った、遮断状態のd軸電流Id_off、q軸電流Iq_offは、式(10)のようになる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 遮断前の駆動状態の回転機3の出力トルクTは、式(5)のq軸電流Iqに、極対数P、及び磁束φを乗算して、式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 U相の高電位側のスイッチング素子20Uの遮断状態の回転機3の出力トルクToffは、式(10)のq軸電流Iq_offに、極対数P、及び磁束φを乗算して、式(12)で与えられる。
Figure JPOXMLDOC01-appb-M000012
 遮断前の駆動状態の出力トルクTと、遮断状態の出力トルクToffとの出力トルク差Tdiffは、式(13)で与えられる。
Figure JPOXMLDOC01-appb-M000013
<第1の構成>
 まず、本実施の形態に係る、dq軸電流指令Id*、Iq*を設定する第1の構成について説明する。振動する出力トルク差Tdiffの絶対値が大きい場合、遮断状態となったときに回転機3が回転する可能性があるので、振動する出力トルク差Tdiffの絶対値が、小さいほど回転機3の挙動に表れ難い。式(13)において、位相角βが±π/2のときにcosβが0になり、出力トルク差Tdiffが0を中心に正負均等に振動し、出力トルク差Tdiffの絶対値が最小となる。したがって、電流ベクトルIの位相角βが±π/2になるとき、すなわち、遮断前のq軸電流Iqが0になり、d軸電流Idが0以外の値になるとき、出力トルク差Tdiffが最小になる。
 そこで、本実施の形態の第1の構成では、電流指令演算部5は、遮断故障判定を行う場合は、遮断故障判定用のq軸電流指令Iq*を0に設定し、遮断故障判定用のd軸電流指令Id*を0以外の値に設定する。この構成によれば、遮断前の駆動状態と遮断状態の出力トルク差Tdiffの絶対値を最小にすることができ、遮断前後の出力トルク差が、回転機3の挙動に表れ難くできる。
<第2の構成>
 次に、本実施の形態に係る、dq軸電流指令Id*、Iq*を設定する第2の構成について説明する。図4には、第1の構成のように、d軸電流Idが10Armsの一定値であり、q軸電流Iqが0Armsである場合の3相電流Iu、Iv、Iwが示されている。この場合は、診断対象相であるU相電流Iuが正になり、U相の高電位側強制遮断が実行される期間は、電気角θが-π/2からπ/2になる期間(270degから360deg及び0degから90degの間)だけであり、U相の高電位側強制遮断を実行できる期間が限定される。このことは、式(6)において、位相角βを±π/2に設定した場合の、U相電流Iuの算出式からも理解できる。
 そこで、U相電流Iuが正になる間隔を拡大するためには、図24のようにd軸電流指令Id*、q軸電流指令Iq*を設定すればよい。このとき、遮断前の駆動状態における3相電流Iu、Iv、Iwは、図25のようになり、U相の高電位側のスイッチング素子の遮断状態における3相電流Iu、Iv、Iwは、図26のようになる。図25に示されているように、U相電流Iuは、±π/2(90deg、270deg)以外の電気角θで、0より大きくなっており、ほぼ全角度でU相の高電位側強制遮断を実行することができる、
 このとき、遮断前の駆動状態と遮断状態のU相電流の電流差Iu_diff、q軸電流の電流差Iq_diffは、図27のようになり、出力トルク差に比例するq軸電流の電流差Iq_diffは、±5Armsの範囲内に収まっており、出力トルク差を抑制できる。
 そこで、電流指令演算部5は、i番目の相が診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角θとして、高電位側強制遮断を実行するときは、電気角θが、-π/2+2π(i-1)/mからπ/2+2π(i-1)/mの間にある場合は、d軸電流指令Id*を正の値に設定し、それ以外の場合は、d軸電流指令Id*を負の値に設定するように構成されている。なお、電流指令演算部5は、q軸電流指令Iq*を0に設定する。
 本実施の形態では、上述したように、m=3の3相の巻線が設けられており、i=1の1番目の相はU相とされており、i=2の2番目の相はV相とされており、i=3の3番目の相はW相とされている。電流指令演算部5は、図28に示されているように、i=1のU相を診断対象相に決定した場合は、電気角θが-π/2からπ/2の間(270degから360deg及び0degから90degの間)にあるときに、d軸電流指令Id*を正の値に設定し、それ以外のときに、d軸電流指令Id*を負の値に設定する。電流指令演算部5は、i=2のV相を診断対象相に決定した場合は、電気角θがπ/6から7π/6の間(30degから210degの間)にあるときに、d軸電流指令Id*を正の値に設定し、それ以外のときに、d軸電流指令Id*を負の値に設定する。電流指令演算部5は、i=3のW相を診断対象相に決定した場合は、電気角θが5π/6から11π/6の間(150degから330degの間)にあるときに、d軸電流指令Id*を正の値に設定し、それ以外のときに、d軸電流指令Id*を負の値に設定する。
3.実施の形態3
 実施の形態3に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機3及び制御装置1の基本的な構成は実施の形態1と同様であるが、電流指令演算部5が設定する遮断故障判定用のdq軸電流指令Id*、Iq*の設定方法が異なる。
 実施の形態2では、電流指令演算部5が、遮断故障判定用のq軸電流指令Iq*を0に設定し、遮断故障判定用のd軸電流指令Id*を0以外の値に設定している。しかし、図25に示しているように、診断対象相とされたU相電流Iuは、電気角θが±π/2(90deg、270deg)になる場合に0Armsになり、U相の高電位側強制遮断を実行しても遮断故障判定ができない。本実施の形態では、これらの電気角θでも、U相の高電位側強制遮断によって遮断故障判定できるように、U相電流Iuを正の一定値にする。
 そこで、電流指令演算部5は、i番目の相が診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角θとして、高電位側強制遮断を実行するときは、-πから0の間の値に設定された位相調整定数Kを用いて、d軸電流指令Id*及びq軸電流指令Iq*を合成した電流ベクトルの、q軸に対する位相角βが、K+2π(i-1)/m-θになるように、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を設定する。この場合は、電流指令演算部5は、式(14)に示すように、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を設定する。
Figure JPOXMLDOC01-appb-M000014
 上述したように、m=3の3相の巻線が設けられており、診断対象相がi=1の1番目の相であるU相に決定された場合は、β=K-θとなり、診断対象相がi=2の2番目の相であるV相に決定された場合は、β=K+2π/3-θとなり、診断対象相がi=3の3番目の相であるW相に決定された場合は、β=K+4π/3-θとなる。各相について、位相角βを、式(6)に代入すると、U相が診断対象相とされたときのU相電流Iu_t、V相が診断対象相とされたときのV相電流Iv_t、W相が診断対象相とされたときのW相電流Iw_tを表す式(15)を得る。位相調整定数Kは、-πから0の間の値に設定されるので、各診断対象相の電流Iu_t、Iv_t、Iw_tは正の値になる。
Figure JPOXMLDOC01-appb-M000015
 図29に、診断対象相がi=1の1番目の相であるU相に決定され、位相調整定数Kが-π/2に設定されている場合の、遮断故障判定用のdq軸電流指令Id*、Iq*を示し、図30に、図29の場合において、遮断前の駆動状態のときの3相電流Iu、Iv、Iwを示し、図31に、図29の場合において、U相の高電位側のスイッチング素子を遮断したときの3相電流Iu、Iv、Iwを示す。図30に示すように、遮断前の駆動状態では、全ての電気角θにおいて、U相電流Iuは10Armsの正の値になり、U相の高電位側強制遮断による遮断故障判定を実行可能である。図31に示すように、遮断状態では、U相電流Iuは0Armsとなるため、電流変化から、素子遮断部8の故障を容易に判定できる。また、故障診断相の巻線電流が一定値となるため、故障判定のしきい値の設計が容易になり、故障判定精度を向上させることができる。
 図29から図31に、位相調整定数Kが-π/2に設定されている場合について示したように、それぞれの電気角θにおいて、電流ベクトルを所望の方向(本例では、U相の高電位側)にすることにより、無駄な方向成分を無くすることができ、電流ベクトルの絶対値を低減できる。
 図29から図31の場合において、遮断前の駆動状態と遮断状態のU相電流の電流差Iu_diff、q軸電流の電流差Iq_diffは、図32に示すようになる。出力トルク差に比例するq軸電流の電流差Iq_diffの絶対値は、電気角θが90deg及び270degであるときに最も大きくなる。
 例えば、電気角θが90degであるときに、遮断前の駆動状態でのq軸電流Iqは、最大の絶対値となる-10Armsになり、遮断状態でのq軸電流Iqは0Armsになる。q軸電流Iqを回転機3の出力トルクに換算するトルク定数をKtとすると、遮断前の駆動状態の出力トルクTは-10√3Ktになり、遮断状態の出力トルクToffは0になる。
 一方、回転機3、及び回転機3の出力軸にギア及びチェーンなどで取り付けられたトルク伝達機構には機械損失トルクTlossが存在する。本実施の形態では、機械損失トルクTlossは、回転機3の出力トルクをステアリングシャフト62に伝達するトルク伝達機構の機械損失トルクとされる。遮断前の駆動状態の出力トルクTを、機械損失トルクTloss以内とすることで回転機3が回転しない状態を維持できる。
 そこで、電流指令演算部5は、機械損失トルクTlossの絶対値をトルク定数Ktで除算した値以下に、遮断故障判定用のq軸電流指令Iq*の絶対値を設定するように構成されている。この構成によれば、回転機3が回転しない状態で、遮断故障判定を実行することができる。なお、機械損失トルクTlossを、予め記憶装置91に記憶させておき、q軸電流指令Iq*を演算する際に読み出すようにされてもよい。
 また、電流指令演算部5は、スイッチング素子が強制的に遮断されていない場合の回転機3の出力トルクTと、スイッチング素子が強制的に遮断されている場合の回転機3の出力トルクToffとの出力トルク差Tdiffの絶対値が、ロータの回転軸にかかる機械損失トルクTlossの絶対値以下になるように、q軸電流指令Iq*を設定するように構成されている。この構成によれば、遮断前後に生じる出力トルク変化によって回転機3が回転することを防止できる。
 式(13)から遮断前の駆動状態と遮断状態の出力トルク差Tdiffの絶対値の最大値は式(16)で与えられる。よって、電流指令演算部5は、式(16)により算出される出力トルク差Tdiffの絶対値の最大値が、機械損失トルクTlossの絶対値以下になるように電流ベクトルの実効値Irmsを設定し、設定した電流ベクトルの実効値Irmsを用い、式(5)に基づいてq軸電流指令Iq*を設定する。
Figure JPOXMLDOC01-appb-M000016
 なお、遮断状態での3相電流は図31のようになるため、電圧指令演算部6において検出電流値をフィードバックして電圧指令を演算すると、電流指令との偏差が大きいため、電圧指令が最大値まで変化する懸念がある。上記の実施の形態1で説明したように、電圧指令演算部6は、遮断故障判定において、遮断を行った後に、電流フィードバック制御を停止し、電流の検出値を用いずに、遮断故障判定用のd軸電圧指令Vd*及びq軸電圧指令Vq*を設定するように構成されている。よって、遮断後に電流フィードバック制御により回転機3の出力トルクが増加することを防止できる。
 また、上記の実施の形態1で説明したように、電圧指令演算部6は、スイッチング素子を強制的に遮断する前に演算したdq軸電圧指令Vd*、Vq*を保持し、スイッチング素子を強制的に遮断したときに、保持した値をdq軸電圧指令Vd*、Vq*に設定するように構成されている。この構成によれば、遮断する前の電圧指令を保持する簡単な方法で、遮断による電流変化の影響が、遮断後の電圧指令に出ないようにできる。
4.実施の形態4
 実施の形態4に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機3及び制御装置1の基本的な構成は実施の形態1と同様であるが、遮断故障判定において、診断対象相の低電位側のスイッチング素子を強制的に遮断させる低電位側強制遮断が実行される点が異なる。
 まず、低電位側強制遮断を実行する場合の遮断故障判定の原理について説明する。診断対象相がU相に設定されている場合を例に説明する。実施の形態1と同様に、遮断前に回転機3が回転している状態で、d軸電流が10Arms、q軸電流が0Arms流れているとき、3相電流Iu、Iv、Iwは、図4のようになる。また、微小回転では電圧と電流の位相はほとんど差が無いため、3相電圧Vu、Vv、Vwは図5のようになる。
 図4及び図5において電気角θが0degであり、診断対象相とされたU相電流Iuが正になる遮断前の駆動状態において、U相の低電位側のスイッチング素子21Uを遮断状態に切り替えると、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作は図33に示すようになる。時刻t3からt4の時刻では、図7に示した遮断前の駆動状態とは異なる電圧ベクトルとなる。
 この時刻t3からt4までの電流の流れ方は図34のようになる。U相の高電位側及び低電位側のスイッチング素子20U、21Uがともにオフであるが、電流の通流方向を考えると、U相の低電位側のスイッチング素子21Uの寄生ダイオードを通ることは可能である。U相電圧Vuは、V相電圧Vv及びW相電圧Vwより大きいため、U相の低電位側のスイッチング素子21Uの寄生ダイオードを通った電流は、U相巻線を通った後、V相巻線及びW相巻線を経由してV相及びW相の低電位側のスイッチング素子21V、21Wを通り、その後、再びU相の低電位側のスイッチング素子21Uに戻る。つまり、U相の低電位側のスイッチング素子21Uの寄生ダイオードを通るかどうかの違いはあるが、図10と同様の回路を実現できる。
 このように、図4及び図5において電気角θが0degであり、U相電流Iuが正の状態では、素子遮断部8によってU相の低電位側のスイッチング素子21Uを、遮断前の駆動状態から遮断状態へ切り替えても、U相電流Iuは、遮断前の駆動状態からほとんど変化無く流れる。状態変化が無いため、素子遮断部8の故障を判定することが困難である。
 一方、図4及び図5において電気角θが180degであり、診断対象相とされたU相電流Iuが負になる遮断前の駆動状態において、U相の低電位側のスイッチング素子21Uを遮断状態に切り替えると、PWMキャリア1周期Tcのスイッチング素子20U~21Wのオンオフ動作は図35に示すようになる。時刻t2からt5の時刻では、図17に示した遮断前の駆動状態とは異なる電圧ベクトルとなる。
 時刻t2からt3までと、時刻t4からt5までの電流の流れ方は、通流方向を考慮すると図36のようになるはずであるが、V相電圧Vv及びW相電圧Vwは、U相電圧Vuより大きいため、U相の高電位側のスイッチング素子20Uの寄生ダイオードを通って電流が流れることはできず、U相巻線に電流は流れない。
 時刻t3からt4までの電流の流れ方は、通流方向を考慮すると図37のようになるはずであるが、寄生ダイオードを通って流せる電流の方向とは逆のため、U相の低電位側のスイッチング素子21Uの寄生ダイオードを通って流れることはできず、U相巻線に電流は流れない。
 このように、図4及び図5において電気角θが180degであり、U相電流が負の状態において、遮断前の駆動状態から、U相の低電位側のスイッチング素子21Uを遮断状態に切り替えたときの3相電流及び3相電圧を図38に示す。時刻0.1sで、遮断前の駆動状態から遮断状態に切り替えたことで、3相電流Iu、Iv、Iwが流れなくなっている。遮断状態時のU相電圧Vuは、遮断を行っていない場合のV相電圧VvとW相電圧Vwの平均値である中性点電圧となる。本例では、V相電圧VvとW相電圧Vwが等しいため、U相電圧Vuは、V相電圧Vv及びW相電圧Vwに等しくなっている。
 なお、V相電圧VvとW相電圧Vwが等しい場合には、V相巻線およびW相巻線にも電流が流れないが、V相電圧VvとW相電圧Vwの間に電位差がある場合には高い方の相の巻線から低い方の相の巻線へ電流が流れる。V相電圧VvがW相電圧Vwより高電位である場合は、V相の高電位側のスイッチング素子20Vを通った電流は、V相巻線からW相巻線を経由してW相の高電位側のスイッチング素子20Wを通った後、V相の高電位側のスイッチング素子20Vへ戻り、V相巻線からW相巻線に電流が流れる。
 このように、図4及び図5において電気角θが180degのときのように、遮断を行っていない場合に診断対象相とされたU相電流Iuが負になる駆動状態では、素子遮断部8によってU相の低電位側のスイッチング素子21Uを遮断状態へ切り替えると、U相電流Iuが流れなくなる。よって、遮断指令後に、診断対象相とされたU相電流Iuが0に変化する場合は、U相の低電位側のスイッチング素子21Uが正常に遮断されたと判定することができ、遮断指令後に、U相電流Iuが0に変化しない場合は、正常に遮断されておらず、U相の低電位側のスイッチング素子21Uの素子遮断部8が故障していると判定することができる。また、遮断指令後の、診断対象相でないV相電流Iv、W相電流Iwの変化によっても、素子遮断部8の故障を判定することができる。
 また、遮断を行っていない場合にU相電流Iuが負である駆動状態において、遮断制御後に、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化する場合は、U相の低電位側のスイッチング素子21Uが正常に遮断されたと判定することができ、遮断制御後に、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化しない場合は、正常に遮断されておらず、U相の低電位側のスイッチング素子21Uの素子遮断部8が故障していると判定することができる。
 したがって、U相の低電位側のスイッチング素子21Uの素子遮断部8の故障を判定するには、遮断を行っていない場合にU相電流Iuが負になる駆動状態において、素子遮断部8に指令してU相の高電位側のスイッチング素子20Uを遮断状態に切り替えればよい。
 そこで、本実施の形態では、遮断故障判定部9は、素子遮断部8によりスイッチング素子が強制的に遮断されていない場合に、診断対象相の巻線を流れる電流が、負になる駆動状態において、素子遮断部8に指令して診断対象相の低電位側のスイッチング素子を強制的に遮断させる低電位側強制遮断を実行する。ここで、巻線からインバータ17に流れる電流の方向を負としている。遮断故障判定部9は、低電位側強制遮断を実行したときの、電流又は電圧の検出値に基づいて素子遮断部8の故障を判定する遮断故障判定を実行する。
 本実施の形態では、電流に基づいて故障を判定する場合は、以下のように構成される。すなわち、遮断故障判定部9は、低電位側強制遮断を実行した後、診断対象相の巻線を流れる電流が0に変化した場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が正常であると判定し、低電位側強制遮断を実行した後、診断対象相の巻線を流れる電流が0に変化しなかった場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 一方、電圧に基づいて故障を判定する場合は、以下のように構成される。すなわち、遮断故障判定部9は、低電位側強制遮断を実行した後、診断対象相の巻線に印加される電圧が、診断対象相以外の相の巻線に印加される電圧の平均値に変化した場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が正常であると判定し、低電位側強制遮断を実行した後、診断対象相の巻線に印加される電圧が、診断対象相以外の相の巻線に印加される電圧の平均値に変化しなかった場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 或いは、遮断故障判定部9は、低電位側強制遮断を実行した後、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化した場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が正常であると判定し、低電位側強制遮断を実行した後、3相巻線の端子電圧の和又は平均値、或いは、3相巻線の中性点の電圧が、変化しなかった場合に、診断対象相の低電位側のスイッチング素子の素子遮断部8が異常であると判定する。
 3相巻線に印加する電圧Vu、Vv、Vwの電位の相対関係によって、各相の巻線を流れる電流の流れる方向が決まる。遮断が行われていない場合において診断対象相の巻線に流れる電流が負になる駆動状態は、遮断が行われていない場合において、診断対象相の巻線に印加する電圧が、3相巻線に印加する電圧Vu、Vv、Vwの平均値(中性点電圧)よりも小さくなる駆動状態となる。
 そこで、遮断故障判定部9は、スイッチング素子が強制的に遮断されていない場合に、診断対象相の巻線の印加電圧が、3相の巻線の印加電圧Vu、Vv、Vwの平均値よりも小さくなる駆動状態において、低電位側強制遮断を実行するように構成されてもよい。ここで、3相の巻線の印加電圧Vu、Vv、Vwとして、3相の巻線への印加電圧指令である3相電圧指令Vu*、Vv*、Vw*が用いられてもよい。
 上記の実施の形態1と同様に、回転機3の制御装置を電動パワーステアリング装置の制御装置に適用することで、素子遮断部8の故障の判定が可能となり回転機3の異常動作を回避して安全性を向上できる。
5.実施の形態5
 実施の形態5に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機3及び制御装置1の基本的な構成は実施の形態1と同様であるが、診断対象相の低電位側のスイッチング素子が遮断される点と、電流指令演算部5が設定する遮断故障判定用のdq軸電流指令Id*、Iq*の設定方法が異なる。
<第1の構成>
 まず、本実施の形態に係る、dq軸電流指令Id*、Iq*を設定する第1の構成について説明する。式(13)に示した、遮断前の駆動状態の出力トルクTと遮断状態の出力トルクToffとの出力トルク差Tdiffの絶対値が大きい場合、遮断状態となったときに回転機が回転する可能性があるので、振動する出力トルク差Tdiffの絶対値が、小さいほど回転機3の挙動に表れ難い。式(13)より、位相角βが±π/2のときに出力トルク差Tdiffの絶対値が最小となる。したがって、電流ベクトルIの位相角βが±π/2になるとき、すなわち、遮断前のq軸電流Iqが0になり、d軸電流Idが0以外の値になるとき、出力トルク差Tdiffが最小になる。
 そこで、本実施の形態の第1の構成では、上記の実施の形態2の第1の構成と同様に、電流指令演算部5は、遮断故障判定を行う場合は、遮断故障判定用のq軸電流指令Iq*を0に設定し、遮断故障判定用のd軸電流指令Id*を0以外の値に設定する。この構成によれば、遮断前の駆動状態と遮断状態の出力トルク差Tdiffの絶対値を最小にすることができ、遮断前後の出力トルク差を、回転機3の挙動に表れ難くできる。
<第2の構成>
 次に、本実施の形態に係る、dq軸電流指令Id*、Iq*を設定する第2の構成について説明する。図4には、第1の構成のように、d軸電流Idが10Armsの一定値であり、q軸電流Iqが0Armsである場合の3相電流Iu、Iv、Iwが示されている。この場合は、診断対象相であるU相電流Iuが負になり、U相の低電位側強制遮断が実行される期間は、電気角θがπ/2から3π/2になる期間(90degから270degの間)だけであり、U相の低電位側強制遮断を実行できる期間が限定される。このことは、式(6)において、位相角βを±π/2に設定した場合の、U相電流Iuの算出式からも理解できる。
 そこで、U相電流Iuが負になる間隔を拡大するためには、図39のようにd軸電流指令Id*、q軸電流指令Iq*を設定すればよい。このとき、遮断前の駆動状態における3相電流Iu、Iv、Iwは、図40のようになり、U相の低電位側のスイッチング素子の遮断状態における3相電流Iu、Iv、Iwは、図41のようになる。図40に示されているように、U相電流Iuは、±π/2(90deg、270deg)以外の電気角θで、0より小さくなっており、ほぼ全角度でU相の低電位側強制遮断を実行することができる、
 このとき、遮断前の駆動状態と遮断状態のU相電流の電流差Iu_diff、q軸電流の電流差Iq_diffは、図42のようになり、出力トルク差に比例するq軸電流の電流差Iq_diffは、±5Armsの範囲内に収まっており、出力トルク差を抑制できる。
 そこで、電流指令演算部5は、i番目の相が診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角として、低電位側強制遮断を実行するときは、電気角θが、-π/2+2π(i-1)/mからπ/2+2π(i-1)/mの間にある場合は、d軸電流指令Id*を負の値に設定し、それ以外の場合は、d軸電流指令Id*を正の値に設定するように構成されている。なお、電流指令演算部5は、q軸電流指令Iq*を0に設定する。
 本実施の形態では、上述したように、m=3の3相の巻線が設けられており、i=1の1番目の相はU相とされており、i=2の2番目の相はV相とされており、i=3の3番目の相はW相とされている。電流指令演算部5は、図43に示されているように、i=1のU相を診断対象相に決定した場合は、電気角θが-π/2からπ/2の間(270degから360deg及び0degから90degの間)にあるときに、d軸電流指令Id*を負の値に設定し、それ以外のときに、d軸電流指令Id*を正の値に設定する。電流指令演算部5は、i=2のV相を診断対象相に決定した場合は、電気角θがπ/6から7π/6の間(30degから210degの間)にあるときに、d軸電流指令Id*を負の値に設定し、それ以外のときに、d軸電流指令Id*を正の値に設定する。電流指令演算部5は、i=3のW相を診断対象相に決定した場合は、電気角θが5π/6から11π/6の間(150degから330degの間)にあるときに、d軸電流指令Id*を負の値に設定し、それ以外のときに、d軸電流指令Id*を正の値に設定する。
6.実施の形態6
 実施の形態6に係る制御装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転機3及び制御装置1の基本的な構成は実施の形態1と同様であるが、診断対象相の低電位側のスイッチング素子が遮断される点と、電流指令演算部5が設定する遮断故障判定用のdq軸電流指令Id*、Iq*の設定方法が異なる。
 実施の形態5では、電流指令演算部5が、遮断故障判定用のq軸電流指令Iq*を0に設定し、遮断故障判定用のd軸電流指令Id*を0以外の値に設定している。しかし、図40に示しているように、診断対象相とされたU相電流Iuは、電気角θが±π/2(90deg、270deg)になる場合に0Armsになり、U相の低電位側強制遮断を実行できない。本実施の形態では、これらの電気角θでも、U相の低電位側強制遮断を実行できるように、U相電流Iuを負の一定値にする。
 そこで、電流指令演算部5は、i番目の相が診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角θとして、低電位側強制遮断を実行するときは、0からπの間の値に設定された位相調整定数Kを用いて、d軸電流指令Id*及びq軸電流指令Iq*を合成した電流ベクトルの、q軸に対する位相角βが、K+2π(i-1)/m-θになるように、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を設定する。この場合は、電流指令演算部5は、上記の式(14)に示すように、遮断故障判定用のd軸電流指令Id*及びq軸電流指令Iq*を設定する。
 上述したように、m=3の3相の巻線が設けられており、診断対象相がi=1の1番目の相であるU相に決定された場合は、β=K-θとなり、診断対象相がi=2の2番目の相であるV相に決定された場合は、β=K+2π/3-θとなり、診断対象相がi=3の3番目の相であるW相に決定された場合は、β=K+4π/3-θとなる。上記の式(15)のように、U相が診断対象相とされたときのU相電流Iu*、V相が診断対象相とされたときのV相電流Iv*、W相が診断対象相とされたときのW相電流Iw*が表せる。位相調整定数Kは、0からπの間の値に設定されるので、各診断対象相の電流Iu*、Iv*、Iw*は負の値になる。
 図44に、診断対象相がi=1の1番目の相であるU相に決定され、位相調整定数Kがπ/2に設定されている場合の、遮断故障判定用のdq軸電流指令Id*、Iq*を示し、図45に、図44の場合において、遮断前の駆動状態のときの3相電流Iu、Iv、Iwを示し、図46に、図44の場合において、U相の低電位側のスイッチング素子を遮断したときの3相電流Iu、Iv、Iwを示す。図45に示すように、遮断前の駆動状態では、全ての電気角θにおいて、U相電流Iuは-10Armsの負の値になり、U相の低電位側強制遮断を実行可能である。図46に示すように、遮断状態では、U相電流Iuは0Armsとなるため、電流変化から、素子遮断部8の故障を容易に判定できる。また、故障診断相の巻線電流が一定値となるため、故障判定のしきい値の設計が容易になり、故障判定精度を向上させることができる。
 図44から図46に、位相調整定数Kがπ/2に設定されている場合について示したように、それぞれの電気角θにおいて、電流ベクトルを所望の方向(本例では、U相の高電位側)にすることにより、無駄な方向成分を無くすることができ、電流ベクトルの絶対値を低減できる。
 図44から図46の場合において、遮断前の駆動状態と遮断状態のU相電流の電流差Iu_diff、q軸電流の電流差Iq_diffは、図47に示すようになる。出力トルク差に比例するq軸電流の電流差Iq_diffの絶対値は、電気角θが90deg及び270degであるときに、最も大きくなる。
 例えば、電気角θが90degであるときに、遮断前の駆動状態でのq軸電流Iqは、最大の絶対値となる10Armsになり、遮断状態でのq軸電流Iqは0Armsになる。q軸電流Iqを回転機3の出力トルクに換算するトルク定数をKtとすると、遮断前の駆動状態の出力トルクTは10√3Ktになり、遮断状態の出力トルクToffは0になる。
 一方、回転機3、及び回転機3の出力軸にギア及びチェーンなどで取り付けられたトルク伝達機構には機械損失トルクTlossが存在する。本実施の形態では、機械損失トルクTlossは、回転機3の出力トルクをステアリングシャフト62に伝達するトルク伝達機構の機械損失トルクとされる。遮断前の駆動状態の出力トルクTを、機械損失トルクTloss以内とすることで回転機3が回転しない状態を保持できる。
 そこで、電流指令演算部5は、機械損失トルクTlossの絶対値をトルク定数Ktで除算した値以下に、遮断故障判定用のq軸電流指令Iq*の絶対値を設定するように構成されている。この構成によれば、回転機3が回転しない状態で、遮断故障判定を実行することができる。なお、機械損失トルクTlossを、予め記憶装置91に記憶させておき、q軸電流指令Iq*を演算する際に読み出すようにされてもよい。
 また、電流指令演算部5は、スイッチング素子が強制的に遮断されていない場合の回転機3の出力トルクTと、スイッチング素子が強制的にオフされている場合の回転機3の出力トルクToffとの出力トルク差Tdiffの絶対値が、ロータの回転軸にかかる機械損失トルクTlossの絶対値以下になるように、q軸電流指令Iq*を設定するように構成されている。この構成によれば、遮断前後に生じる出力トルク変化によって回転機3が回転することを防止できる。
 電流指令演算部5は、式(16)により算出される出力トルク差Tdiffの絶対値の最大値が、機械損失トルクTlossの絶対値以下になるように電流ベクトルの実効値Irmsを設定し、設定した電流ベクトルの実効値Irmsを用い、式(5)に基づいてq軸電流指令Iq*を設定する。
 なお、遮断状態での3相電流は図46のようになるため、電圧指令演算部6において検出電流値をフィードバックして電圧指令を演算すると、電流指令との偏差が大きいため、電圧指令が最大値まで変化する懸念がある。上記の実施の形態1で説明したように、電圧指令演算部6は、遮断故障判定において、遮断を行った後に、電流フィードバック制御を停止し、電流の検出値を用いずに、遮断故障判定用のd軸電圧指令Vd*及びq軸電圧指令Vq*を設定するように構成されている。よって、遮断後に電流フィードバック制御により回転機3の出力トルクが増加することを防止できる。
 また、上記の実施の形態1で説明したように、電圧指令演算部6は、スイッチング素子を強制的に遮断する前に演算したdq軸電圧指令Vd*、Vq*を保持し、スイッチング素子を強制的に遮断したときに、保持した値をdq軸電圧指令Vd*、Vq*に設定するように構成されている。この構成によれば、遮断する前の電圧指令を保持する簡単な方法で、遮断による電流変化の影響が、遮断後の電圧指令に出ないようにできる。
 なお、上記の実施の形態1から6では、回転機3は、電動パワーステアリング装置の駆動用の回転機とされ、制御装置1は、電動パワーステアリング装置60の制御装置とされている場合を例として説明した。しかし、回転機3は、車輪を駆動する回転機とされるなど、電動パワーステアリング装置60以外の機器の駆動力源とされてもよく、制御装置1は、要求された駆動力を回転機3に出力させる回転機3の制御装置とされてもよく、或いは、電動パワーステアリング装置60以外の機器の制御装置とされてもよい。
 また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1 回転機の制御装置、2 直流電源、3 回転機、4 制御回路、5 電流指令演算部、6 電圧指令演算部、7 スイッチング信号生成部、8 素子遮断部、9 遮断故障判定部、10 回転情報演算部、11 電流検出部、12 トルク指令演算部、17 インバータ、60 電動パワーステアリング装置、Id* d軸電流指令、Iq* q軸電流指令、Kt トルク定数、Tloss 機械損失トルク、β 位相角、θ 電気角

Claims (15)

  1.  m相の巻線(mは2以上の自然数)を有する回転機と直流電源との間で電力変換を行う、複数のスイッチング素子を備えたインバータと、
     前記スイッチング素子をオンオフ制御する制御回路と、を備え、
     前記インバータは、前記直流電源の正極側に接続される高電位側のスイッチング素子と前記直流電源の負極側に接続される低電位側のスイッチング素子とが直列接続され、各相の直列接続の接続点が対応する相の前記巻線に接続される直列回路を、前記m相の各相に対応してmセット設け、
     前記制御回路は、
     前記巻線に流す電流指令を演算する電流指令演算部と、
     前記電流指令に基づいて前記巻線に印加する電圧指令を演算する電圧指令演算部と、
     前記電圧指令に基づいて前記スイッチング素子をオンオフするスイッチング信号を生成するスイッチング信号生成部と、
     前記スイッチング素子のそれぞれを強制的に遮断状態に切り替える素子遮断部と、
     前記素子遮断部の故障を判定する遮断故障判定部と、を備え、
     前記遮断故障判定部は、前記m相の内の1つの相を診断対象相として決定し、
     前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線を流れる電流が、前記インバータから前記巻線に流れる方向である正になる駆動状態において、前記素子遮断部に指令して前記診断対象相の前記高電位側のスイッチング素子を強制的に遮断させる高電位側強制遮断、又は前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線を流れる電流が、前記巻線から前記インバータに流れる方向である負になる駆動状態において、前記素子遮断部に指令して前記診断対象相の前記低電位側のスイッチング素子を強制的に遮断させる低電位側強制遮断を実行し、
     前記高電位側強制遮断又は前記低電位側強制遮断を実行したときの、電流又は電圧の検出値に基づいて、前記素子遮断部の故障を判定する回転機の制御装置。
  2.  前記遮断故障判定部は、前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線の印加電圧が、前記m相の巻線の印加電圧の平均値よりも大きくなる駆動状態において、前記高電位側強制遮断を実行し、又は前記スイッチング素子が強制的に遮断されていない場合に、前記診断対象相の前記巻線の印加電圧が、前記m相の巻線の印加電圧の平均値よりも小さくなる駆動状態において、前記低電位側強制遮断を実行する請求項1に記載の回転機の制御装置。
  3.  前記電流指令演算部は、前記回転機のロータの磁束方向に定めたd軸及び前記d軸よりπ/2進んだ方向に定めたq軸からなるdq軸回転座標系上で、d軸電流指令及びq軸電流指令を演算するdq軸電流制御を実行し、
     前記高電位側強制遮断又は前記低電位側強制遮断を実行するときは、前記q軸電流指令を0に設定し、前記d軸電流指令を0以外の値に設定する請求項1又は2に記載の回転機の制御装置。
  4.  前記電流指令演算部は、i番目の相が前記診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角として、
     前記高電位側強制遮断を実行するときは、前記電気角が、-π/2+2π(i-1)/mからπ/2+2π(i-1)/mの間にある場合は、前記d軸電流指令を正の値に設定し、それ以外の場合は、前記d軸電流指令を負の値に設定し、
     前記低電位側強制遮断を実行するときは、前記電気角が、-π/2+2π(i-1)/mからπ/2+2π(i-1)/mの間にある場合は、前記d軸電流指令を負の値に設定し、それ以外の場合は、前記d軸電流指令を正の値に設定する請求項3に記載の回転機の制御装置。
  5.  前記電流指令演算部は、前記回転機のロータの磁束方向に定めたd軸及び前記d軸よりπ/2進んだ方向に定めたq軸からなるdq軸回転座標系上で、d軸電流指令及びq軸電流指令を演算するdq軸電流制御を実行し、
     i番目の相が前記診断対象相に決定され、1番目の相の巻線を基準としたd軸の進み角を電気角θとして、
     前記高電位側強制遮断を実行するときは、-πから0の間の値に設定された位相調整定数Kを用いて、前記d軸電流指令及び前記q軸電流指令を合成した電流ベクトルの、前記q軸に対する位相角が、K+2π(i-1)/m-θになるように、前記d軸電流指令及び前記q軸電流指令を設定し、
     前記低電位側強制遮断を実行するときは、0からπの間の値に設定された位相調整定数Kを用いて、前記電流ベクトルの前記q軸に対する位相角が、K+2π(i-1)/m-θになるように、前記d軸電流指令及び前記q軸電流指令を設定する請求項1又は2に記載の回転機の制御装置。
  6.  前記電流指令演算部は、前記高電位側強制遮断を実行するときは、-π/2に設定されている前記位相調整定数Kを用い、
     前記低電位側強制遮断を実行するときは、π/2に設定されている前記位相調整定数Kを用いる請求項5に記載の回転機の制御装置。
  7.  前記電流指令演算部は、前記回転機のロータの磁束方向に定めたd軸及び前記d軸よりπ/2進んだ方向に定めたq軸からなるdq軸回転座標系上で、d軸電流指令及びq軸電流指令を演算するdq軸電流制御を実行し、
     前記高電位側強制遮断又は前記低電位側強制遮断を実行するときは、前記回転機のロータの回転軸にかかる機械損失トルクの絶対値を、前記q軸電流指令を前記回転機の出力トルクに換算するトルク定数で除算した値以下に、前記q軸電流指令の絶対値を設定する請求項1から6のいずれか一項に記載の回転機の制御装置。
  8.  前記電流指令演算部は、前記回転機のロータの磁束方向に定めたd軸及び前記d軸よりπ/2進んだ方向に定めたq軸からなるdq軸回転座標系上で、d軸電流指令及びq軸電流指令を演算するdq軸電流制御を実行し、
     前記スイッチング素子が強制的に遮断されていない場合の前記回転機の出力トルクと、前記スイッチング素子が強制的に遮断されている場合の前記回転機の出力トルクとの出力トルク差の絶対値が、前記回転機のロータの回転軸にかかる機械損失トルクの絶対値以下になるように、前記q軸電流指令を設定する請求項1から7のいずれか一項に記載の回転機の制御装置。
  9.  前記遮断故障判定部は、前記高電位側強制遮断又は前記低電位側強制遮断を実行したときの、前記巻線に印加される電圧の検出値に基づいて、前記素子遮断部の故障を判定する請求項1から8のいずれか一項に記載の回転機の制御装置。
  10.  前記遮断故障判定部は、前記高電位側強制遮断又は前記低電位側強制遮断を実行したときの、前記高電位側のスイッチング素子を流れる電流の検出値、又は前記低電位側のスイッチング素子を流れる電流の検出値に基づいて、前記素子遮断部の故障を判定する請求項1から8のいずれか一項に記載の回転機の制御装置。
  11.  前記遮断故障判定部は、前記高電位側強制遮断又は前記低電位側強制遮断を実行したときの、前記巻線に流れる電流の検出値に基づいて、前記素子遮断部の故障を判定する請求項1から8のいずれか一項に記載の回転機の制御装置。
  12.  前記電圧指令演算部は、前記スイッチング素子を強制的に遮断した後に、電流の検出値を用いずに、前記電圧指令を演算する請求項1から11のいずれか一項に記載の回転機の制御装置。
  13.  前記電圧指令演算部は、前記スイッチング素子を強制的に遮断する前に演算した前記電圧指令を保持し、前記スイッチング素子を強制的に遮断したときに、保持した値を前記電圧指令に設定する請求項1から12のいずれか一項に記載の回転機の制御装置。
  14.  前記回転機は、車両の操舵装置の操舵トルクを補助する電動パワーステアリング装置の駆動用の回転機とされ、
     前記制御回路は、通常制御の実行時に、車両の操舵装置の操舵トルクを補助するトルクを前記回転機に出力させる請求項1から13のいずれか一項に記載の回転機の制御装置。
  15.  請求項1から14のいずれか一項に記載の回転機の制御装置と、
     前記回転機と、
     前記回転機の駆動力を車両の操舵装置に伝達する駆動力伝達機構と、
    を備えた電動パワーステアリング装置。
PCT/JP2016/083682 2016-11-14 2016-11-14 回転機の制御装置及びそれを備えた電動パワーステアリング装置 WO2018087916A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680090722.8A CN109964402B (zh) 2016-11-14 2016-11-14 旋转电机控制装置及具备该旋转电机控制装置的电动助力转向装置
PCT/JP2016/083682 WO2018087916A1 (ja) 2016-11-14 2016-11-14 回転機の制御装置及びそれを備えた電動パワーステアリング装置
US16/341,981 US11431273B2 (en) 2016-11-14 2016-11-14 Controller for rotary machine and electric power steering apparatus
JP2018549741A JP6591089B2 (ja) 2016-11-14 2016-11-14 回転機の制御装置及びそれを備えた電動パワーステアリング装置
EP16921108.3A EP3540935B1 (en) 2016-11-14 2016-11-14 Device for controlling rotating machine, and electric power steering device provided with said device for controlling rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083682 WO2018087916A1 (ja) 2016-11-14 2016-11-14 回転機の制御装置及びそれを備えた電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2018087916A1 true WO2018087916A1 (ja) 2018-05-17

Family

ID=62109656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083682 WO2018087916A1 (ja) 2016-11-14 2016-11-14 回転機の制御装置及びそれを備えた電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US11431273B2 (ja)
EP (1) EP3540935B1 (ja)
JP (1) JP6591089B2 (ja)
CN (1) CN109964402B (ja)
WO (1) WO2018087916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463989B2 (ja) 2021-03-15 2024-04-09 株式会社豊田中央研究所 モータ制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431273B2 (en) * 2016-11-14 2022-08-30 Mitsubishi Electric Corporation Controller for rotary machine and electric power steering apparatus
CN112389347A (zh) * 2019-08-12 2021-02-23 西安合众思壮导航技术有限公司 一种电控方向盘安全保护控制方法及系统
US11581832B2 (en) * 2021-02-22 2023-02-14 Infineon Technologies Austria Ag Motor winding monitoring and switching control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138676A1 (ja) * 2006-05-30 2007-12-06 Mitsubishi Electric Corporation ステアリング制御装置
WO2013105225A1 (ja) * 2012-01-11 2013-07-18 三菱電機株式会社 電動パワーステアリング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348756B2 (en) * 2004-11-30 2008-03-25 Honeywell International Inc. Advanced current control method and apparatus for a motor drive system
JP2011205838A (ja) * 2010-03-26 2011-10-13 Omron Automotive Electronics Co Ltd モータ駆動装置
JP2013079027A (ja) * 2011-10-05 2013-05-02 Denso Corp 電動パワーステアリング装置
JP5496257B2 (ja) 2012-06-11 2014-05-21 三菱電機株式会社 電動パワーステアリング制御装置
GB201310193D0 (en) * 2013-06-07 2013-07-24 Trw Ltd Motor control circuit
JP5839011B2 (ja) * 2013-09-18 2016-01-06 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP6358104B2 (ja) * 2015-01-14 2018-07-18 株式会社デンソー 回転電機制御装置
US11431273B2 (en) * 2016-11-14 2022-08-30 Mitsubishi Electric Corporation Controller for rotary machine and electric power steering apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138676A1 (ja) * 2006-05-30 2007-12-06 Mitsubishi Electric Corporation ステアリング制御装置
WO2013105225A1 (ja) * 2012-01-11 2013-07-18 三菱電機株式会社 電動パワーステアリング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463989B2 (ja) 2021-03-15 2024-04-09 株式会社豊田中央研究所 モータ制御装置

Also Published As

Publication number Publication date
EP3540935A1 (en) 2019-09-18
CN109964402B (zh) 2022-06-07
US20190260327A1 (en) 2019-08-22
JPWO2018087916A1 (ja) 2019-02-14
US11431273B2 (en) 2022-08-30
EP3540935A4 (en) 2019-10-30
JP6591089B2 (ja) 2019-10-16
CN109964402A (zh) 2019-07-02
EP3540935B1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP5826292B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5502126B2 (ja) 多重巻線回転機の駆動装置
JP6591089B2 (ja) 回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP5664928B2 (ja) 回転電機制御装置
US10432129B2 (en) AC rotary machine control device and electric power steering device
JP5402403B2 (ja) 電動機制御システム
WO2014097804A1 (ja) インバータ装置
JP5414893B2 (ja) ブラシレスモータの駆動装置
JPWO2017158680A1 (ja) 電動パワーステアリング装置用の3相2重化モータ装置
EP2882095A1 (en) Motor controller
JPWO2018092210A1 (ja) 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
JP2011004538A (ja) インバータ装置
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP5888148B2 (ja) 回転機の制御装置
JP6394885B2 (ja) 電動パワーステアリング装置
JP7351004B2 (ja) 交流回転機の制御装置
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device
JP5902532B2 (ja) 電力変換装置
JP6681266B2 (ja) 電動機の制御装置及びそれを備えた電動車両
JP2011142752A (ja) ゲートドライブ回路
JP2014207765A (ja) 電動機の駆動制御装置
US20190181782A1 (en) Magnetic pole position detection device and motor control device
JP2011004539A (ja) インバータ装置
JP2004289971A (ja) 電動機の制御装置
JP6520111B2 (ja) ロック検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018549741

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016921108

Country of ref document: EP