WO2018087867A1 - 熱媒体循環システム - Google Patents

熱媒体循環システム Download PDF

Info

Publication number
WO2018087867A1
WO2018087867A1 PCT/JP2016/083414 JP2016083414W WO2018087867A1 WO 2018087867 A1 WO2018087867 A1 WO 2018087867A1 JP 2016083414 W JP2016083414 W JP 2016083414W WO 2018087867 A1 WO2018087867 A1 WO 2018087867A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
storage tank
heat storage
circulation
Prior art date
Application number
PCT/JP2016/083414
Other languages
English (en)
French (fr)
Inventor
直紀 柴崎
謙介 松尾
▲泰▼成 松村
修平 内藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083414 priority Critical patent/WO2018087867A1/ja
Priority to EP16921139.8A priority patent/EP3540324B1/en
Publication of WO2018087867A1 publication Critical patent/WO2018087867A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/087Tap water heat exchangers specially adapted therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/025Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user

Definitions

  • the present invention relates to a heat medium circulation system.
  • the heat storage hot water supply air conditioner disclosed in Patent Document 1 below includes a heat storage tank that stores a heat medium heated or cooled by a heat pump device, and an air conditioning heat exchanger. This heat storage hot water supply air conditioner can circulate the heat medium from the heat pump device or the heat storage tank to the air conditioning heat exchanger.
  • the present invention was made in order to solve the above-described problems, and an operation of flowing a heat medium from a heat storage tank into a supply path to a heat demand unit, and a heat medium heated by a heating unit,
  • An object of the present invention is to provide a heat medium circulation system that can achieve an operation of flowing into the supply path without passing through a heat storage tank with a simple device configuration.
  • the heat medium circulation system of the present invention includes a heating means for heating the heat medium, a heat storage tank for storing the heat medium heated by the heating means, a supply path through which the heat medium supplied to the heat demand section passes, and a heating means.
  • the first flow path for flowing the heat medium flowing out from the heat storage tank into the supply path without passing through the heat storage tank, the second flow path for flowing the heat medium flowing out from the heating means into the heat storage tank, the first flow path and the second flow path A flow path switching means for switching between, a third flow path for allowing the heat medium flowing out from the heat storage tank to flow into the supply path, and a check valve disposed in the third flow path.
  • the operation of causing the heat medium to flow from the heat storage tank to the supply path to the heat demand section and the heat medium heated by the heating means are supplied without passing through the heat storage tank. It is possible to achieve the operation of flowing into the road with a simple device configuration.
  • FIG. 1 is a diagram showing a heat medium circulation system according to Embodiment 1.
  • FIG. It is a figure which shows the example of the circulation path
  • FIG. 1 is a diagram showing a heat medium circulation system 35 according to the first embodiment.
  • the heat medium circulation system 35 includes a heat pump device 7 and a tank unit 33.
  • the heat pump device 7 is an example of a heating unit that heats the heat medium.
  • a heat storage tank 8 is installed inside a housing provided in the tank unit 33.
  • the heat storage tank 8 stores the heat medium heated by the heat pump device 7.
  • the heat medium in the present invention may be water.
  • the heat medium in the present invention may be a liquid heat medium other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or an alcohol.
  • a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature can be formed due to the density difference of the heat medium due to the temperature difference.
  • the heat pump device 7 and the tank unit 33 are connected via a fourth flow path 14, a fifth flow path 15a, and electrical wiring (not shown).
  • the tank unit 33 may be installed outdoors or indoors.
  • the heat pump device 7 may be installed outdoors.
  • the heat medium circulation system 35 of the present embodiment has a configuration in which the heat pump device 7 and the tank unit 33 are separated. Instead of such a configuration, the tank unit 33 and the heat pump device 7 may be integrated.
  • the heat pump device 7 includes a refrigerant circuit in which the compressor 1, the first heat exchanger 3, the decompression device 4, and the second heat exchanger 6 are annularly connected by a refrigerant pipe 5.
  • the refrigerant sealed in the refrigerant circuit may be CO 2 , for example.
  • the heat pump device 7 operates the heat pump cycle using this refrigerant circuit.
  • heat is exchanged between the high-temperature and high-pressure refrigerant compressed by the compressor 1 and the heat medium flowing in from the fourth flow path 14.
  • the decompression device 4 expands the high-pressure refrigerant after passing through the first heat exchanger 3 into a low-pressure refrigerant.
  • the decompression device 4 may be an expansion valve.
  • the second heat exchanger 6 exchanges heat between the low-pressure refrigerant and the fluid.
  • the fluid may be, for example, outside air, groundwater, drainage, or solar hot water.
  • the heat pump device 7 may include a blower, a pump, or the like (not shown) that sends the fluid to the second heat exchanger 6.
  • the heat pump device 7 in the present embodiment includes an outside air temperature sensor 2 that detects the outside air temperature.
  • the heating means in the present invention is not limited to the heat pump device 7.
  • the heating means may be a combustion heating device that heats with the combustion heat of a fuel such as gas, kerosene, heavy oil, or coal.
  • the heating means may be a device that heats the heat medium by solar heat.
  • the control device 36 is built in the tank unit 33.
  • the valves, pumps, actuators such as the compressor 1, and sensors included in the tank unit 33 and the heat pump device 7 are electrically connected to the control device 36.
  • the control device 36 controls various operations described later.
  • the terminal device 37 has a function of accepting a user's operation relating to a change in driving operation command and set value.
  • the terminal device 37 is an example of an operation terminal or a user interface.
  • the control device 36 and the terminal device 37 are connected so as to be able to perform data communication in both directions by wire or wireless.
  • the terminal device 37 includes a display unit that displays information such as the state of the heat medium circulation system 35, an operation unit such as a switch operated by a user, a speaker, a microphone, and the like.
  • the terminal device 37 may be installed indoors.
  • the heat medium circulation system 35 may include a plurality of terminal devices 37 installed at different locations.
  • the tank unit 33 is further provided with various components and piping described below.
  • a plurality of tank temperature sensors 42 and 43 are attached to the surface of the heat storage tank 8 at different heights.
  • the control device 36 can calculate the amount of heat stored in the heat storage tank 8 and the amount of the high-temperature heat medium by detecting the temperature distribution of the heat medium in the heat storage tank 8 using these tank temperature sensors 42 and 43. In the illustrated configuration, two tank temperature sensors 42 and 43 are attached, but three or more tank temperature sensors may be attached to the heat storage tank 8.
  • the control device 36 may control the start timing and stop timing of the heat storage operation based on the heat storage amount in the heat storage tank 8.
  • the heat storage operation is an operation in which the heat medium heated by the heat pump device 7 flows into the heat storage tank 8.
  • the heat storage tank 8 includes a first outlet 8a, an inlet 8b, a second outlet 8c, a third outlet 8d, a first return port 8e, and a second return port 8f.
  • the first outlet 8 a, the first return port 8 e, and the second return port 8 f are located in the lower part of the heat storage tank 8.
  • the inlet 8b, the second outlet 8c, and the third outlet 8d are located in the upper part of the heat storage tank 8.
  • the fourth flow path 14 has a first end connected to the first outlet 8 a of the heat storage tank 8 and a second end connected to the inlet of the heat medium of the first heat exchanger 3 of the heat pump device 7.
  • a first circulation pump 12 capable of circulating a heat medium to the heat pump device 7 is connected in the middle of the fourth flow path 14.
  • the first circulation pump 12 is disposed inside the tank unit 33. Instead of this configuration, the first circulation pump 12 may be disposed inside the heat pump device 7.
  • a temperature sensor 41 that detects the heat pump inlet temperature, which is the temperature of the heat medium flowing into the heat pump device 7, is attached to the fourth flow path 14.
  • the three-way valve 18 includes an inlet 181, a first outlet 182, and a second outlet 183.
  • the three-way valve 18 has a flow path between a state where the inlet 181 is communicated with the first outlet 182 and the second outlet 183 is blocked, and a state where the inlet 181 is communicated with the second outlet 183 and the first outlet 182 is blocked. Can be switched.
  • the three-way valve 18 is an example of a flow path switching unit.
  • the fifth flow path 15 a has a first end connected to the outlet of the heat medium of the first heat exchanger 3 of the heat pump device 7 and a second end connected to the inlet 181 of the three-way valve 18.
  • a temperature sensor 40 that detects the heat pump outlet temperature, which is the temperature of the heat medium flowing out from the heat pump device 7, is attached to the fifth flow path 15a.
  • the second flow path 15 b has a first end connected to the second outlet 183 of the three-way valve 18 and a second end connected to the inlet 8 b of the heat storage tank 8.
  • the mixing valve 19 includes a first inlet 191, a second inlet 192, and an outlet 193.
  • the mixing valve 19 can cause the heat medium mixed with the heat medium flowing in from the first inlet 191 and the heat medium flowing in from the second inlet 192 to flow out from the outlet 193.
  • the mixing valve 19 can adjust the mixing ratio between the heat medium flowing from the first inlet 191 and the heat medium flowing from the second inlet 192.
  • the mixing valve 19 can make the mixing ratio of the heat medium flowing from the second inlet 192 substantially zero.
  • the mixing valve 19 may be one that can substantially reduce the mixing ratio of the heat medium flowing from the first inlet 191 to zero.
  • the mixing valve 19 is disposed outside the tank unit 33. Instead of this configuration, the mixing valve 19 may be disposed inside the tank unit 33.
  • the heating terminal 100 warms the room 200 by releasing the heat of the heat medium to the room 200.
  • the heating terminal 100 may include, for example, at least one type of heating appliance among a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector.
  • the connection method may be any of a combination of series, parallel, series and parallel.
  • the heating terminal 100 is an example of a heat demand unit that requires heat.
  • the heat medium circulation system 35 of the present embodiment includes a room temperature sensor 101 that detects the room temperature of the room 200.
  • the supply path 16b and the supply path 16c are flow paths through which the heat medium supplied to the heating terminal 100 passes.
  • the upstream end of the supply path 16 b is located inside the tank unit 33.
  • the downstream end of the supply path 16 b is connected to the first inlet 191 of the mixing valve 19.
  • the upstream end of the supply path 16 c is connected to the outlet 193 of the mixing valve 19.
  • the downstream end of the supply path 16 c is connected to the heat medium inlet of the heating terminal 100.
  • a second circulation pump 13 that can circulate the heat medium to the heating terminal 100 is connected in the middle of the supply path 16c.
  • the temperature of the heat medium supplied to the heating terminal 100 that is, the temperature of the heat medium flowing into the heating terminal 100 is referred to as “supply temperature”.
  • the supply temperature can be detected by the temperature sensor 44 installed in the supply path 16c.
  • the first flow path 16a has a first end connected to the first outlet 182 of the three-way valve 18 and a second end communicating with the upstream end of the supply path 16b.
  • the third flow path 10b has a first end connected to the third outlet 8d of the heat storage tank 8, and a second end communicating with the upstream end of the supply path 16b.
  • the junction between the second end of the first flow path 16a, the second end of the third flow path 10b, and the upstream end of the supply path 16b is trifurcated.
  • the first flow path 16 a is a flow path for allowing the heat medium flowing out from the heat pump device 7 to flow into the supply path 16 b without passing through the heat storage tank 8.
  • the second flow path 15 b is a flow path for allowing the heat medium flowing out from the heat pump device 7 to flow into the heat storage tank 8.
  • a first state in which the heat medium can flow through the first flow path 16a and the second flow path 15b is blocked, and a second state in which the heat medium can flow through the second flow path 15b and the first flow path 16a is blocked Can be switched by the three-way valve 18.
  • the third flow path 10b is a flow path for allowing the heat medium flowing out from the heat storage tank 8 to flow into the supply path 16b.
  • a first check valve 60 that prevents backflow is disposed in the third flow path 10b. By providing the first check valve 60, it is possible to reliably prevent the heat medium from flowing into the heat storage tank 8 from the first flow path 16a through the third flow path 10b.
  • the return path 17a is a flow path through which the heat medium that has passed through the heating terminal 100 passes.
  • the upstream end of the return path 17 a is connected to the heat medium outlet of the heating terminal 100.
  • the downstream end of the return path 17 a is connected to the second return port 8 f of the heat storage tank 8.
  • the return path 17a allows the heat medium that has passed through the heating terminal 100 to flow into the heat storage tank 8 from the second return port 8f.
  • a branch portion 17c is formed in the middle of the return path 17a.
  • the upstream end of the bypass passage 17b communicates with the return passage 17a at the branch portion 17c.
  • the downstream end of the bypass passage 17 b is connected to the second inlet 192 of the mixing valve 19.
  • the bypass path 17b is a flow path for allowing the heat medium that has passed through the heating terminal 100 to flow again into the supply path 16c without passing through the heat pump device 7 and the heat storage tank 8. At least a part of the flow of the heat medium flowing out from the outlet of the heating terminal 100 can be returned to the inlet of the heating terminal 100 through the bypass path 17b.
  • the flow rate of the heat medium passing through the bypass 17b can be adjusted by the mixing valve 19.
  • the mixing valve 19 is an example of a flow rate adjusting unit that adjusts the flow rate of the heat medium passing through the bypass passage 17b.
  • a second check valve 61 that prevents backflow is disposed in the bypass passage 17b.
  • the second check valve 61 reliably prevents the heat medium in the bypass passage 17b from flowing in the direction from the mixing valve 19 toward the branch portion 17c.
  • a reservoir tank 90 capable of temporarily storing a heat medium is connected in the middle of the return path 17a.
  • an excess heat medium can be stored in the reservoir tank 90.
  • the tank unit 33 has a water heat exchanger 52.
  • the water heat exchanger 52 has a primary side channel through which a heat medium flows and a secondary side channel through which water flows.
  • the conduit 10 a has a first end connected to the second outlet 8 c of the heat storage tank 8 and a second end connected to the primary side inlet of the water heat exchanger 52.
  • the conduit 9 has a first end connected to the primary outlet of the water heat exchanger 52 and a second end connected to the first return port 8 e of the heat storage tank 8.
  • a third circulation pump 11 that can circulate the heat medium to the water heat exchanger 52 is connected in the middle of the conduit 9.
  • a flow rate sensor 71 for detecting the flow rate of the heat medium passing through the water heat exchanger 52 is disposed in the middle of the conduit 9.
  • the downstream end of the water supply pipe 20 is connected to the secondary side inlet of the water heat exchanger 52.
  • the upstream side of the water supply pipe 20 is connected to a water source such as water.
  • a flow rate sensor 70 that detects the flow rate of water passing through the water heat exchanger 52 is disposed in the middle of the water supply pipe 20.
  • the upstream end of the hot water supply pipe 21 is connected to the secondary side outlet of the water heat exchanger 52.
  • the downstream side of the hot water supply pipe 21 is connected to a hot water supply end (not shown).
  • the hot water supply end may include at least one of a faucet, a bathtub, and a bath shower, for example.
  • the water heat exchanger 52 exchanges heat between the high-temperature heat medium supplied from the heat storage tank 8 and the water supplied from the water supply pipe 20.
  • the operation is as follows.
  • the control device 36 can detect the presence or absence of hot water supply by the flow rate sensor 70 installed in the water supply pipe 20.
  • the control device 36 operates the third circulation pump 11 so that a high-temperature heat medium is supplied from the upper part of the heat storage tank 8 to the water heat exchanger 52.
  • Hot water heated by the water heat exchanger 52 is supplied to the hot water supply end through the hot water supply pipe 21.
  • the heat medium whose temperature has decreased while passing through the water heat exchanger 52 flows through the conduit 9 into the heat storage tank 8 from the first return port 8e.
  • At least one of the first circulation pump 12, the second circulation pump 13, and the third circulation pump 11 may have a variable output or rotational speed. At least one of the first circulation pump 12, the second circulation pump 13, and the third circulation pump 11 is a pulse width modulation control type DC motor whose output or rotation speed can be changed by a speed command voltage from the control device 36. May be provided.
  • control device 36 may control the operation of the third circulation pump 11 so that the flow rate detected by the flow rate sensor 71 becomes equal to the predetermined flow rate. In the hot water supply operation, the control device 36 may control the operation of the third circulation pump 11 so that the temperature of the hot water flowing through the hot water supply pipe 21 becomes equal to the target value.
  • the three-way valve 18 is switched so that the heat medium can flow through the second flow path 15b.
  • the heat pump device 7 and the first circulation pump 12 are operated.
  • the heat medium flowing out from the first outlet 8 a of the heat storage tank 8 flows into the heat pump device 7 through the fourth flow path 14.
  • the heat medium heated by the heat pump device 7 passes through the fifth flow path 15a and the second flow path 15b and flows into the heat storage tank 8 from the inlet 8b.
  • the heat medium circulates in the order of the heat storage tank 8, the fourth flow path 14, the heat pump device 7, the fifth flow path 15a, the second flow path 15b, and the heat storage tank 8.
  • the control device 36 can control the heat pump outlet temperature by controlling the operation of at least one of the heat pump device 7 and the first circulation pump 12.
  • the user can set the hot water supply temperature by operating the terminal device 37.
  • the control device 36 controls the operation of at least one of the heat pump device 7 and the first circulation pump 12 so that the heat pump outlet temperature detected by the temperature sensor 40 is equal to or higher than the hot water supply temperature set by the user. May be. Thereby, the temperature of the heat medium stored in the heat storage tank 8 can be set to an appropriate temperature according to the hot water supply temperature set by the user.
  • the heat storage operation it is possible to raise the temperature of the low-temperature heat medium in the lower part of the heat storage tank 8 to the target temperature once passing through the heat pump device 7.
  • Such a heat storage operation is hereinafter referred to as “one-time heat storage operation”.
  • the temperature of the heat medium rises from, for example, 20 ° C. to 60 ° C. while passing through the heat pump device 7 once.
  • the heated high-temperature heat medium layer and the low-temperature heat medium layer before heating can be stacked in the heat storage tank 8.
  • COP Coefficient Of Performance
  • the heat medium circulation system 35 of the present embodiment can execute two types of first circulation operation and second circulation operation as the heating operation for heating the room 200.
  • FIG. 2 is a diagram illustrating an example of a heat medium circulation path in the first circulation operation of the heat medium circulation system 35 illustrated in FIG. 1.
  • FIG. 3 is a diagram illustrating an example of a heat medium circulation path in the second circulation operation of the heat medium circulation system 35 illustrated in FIG. 1.
  • the three-way valve 18 is switched so that the heat medium can flow through the first flow path 16a.
  • the heat pump device 7 and the first circulation pump 12 are operated.
  • the heat medium flowing out from the first outlet 8 a of the heat storage tank 8 flows into the heat pump device 7 through the fourth flow path 14.
  • the heat medium heated by the heat pump device 7 is supplied to the heating terminal 100 through the fifth flow path 15a, the first flow path 16a, the supply path 16b, and the supply path 16c.
  • the heat medium that has passed through the heating terminal 100 flows into the heat storage tank 8 from the second return port 8f through the return path 17a.
  • the heat storage tank 8 the fourth flow path 14, the heat pump device 7, the fifth flow path 15a, the first flow path 16a, the supply path 16b, the supply path 16c, the heating terminal 100, and the return path 17a.
  • the heat medium circulates in the order of the heat storage tank 8.
  • the first circulation operation may be as follows.
  • the control device 36 may control the supply temperature to the heating terminal 100 by controlling the operation of at least one of the heat pump device 7 and the first circulation pump 12.
  • the control device 36 may control the operation of at least one of the heat pump device 7 and the first circulation pump 12 so that the supply temperature detected by the temperature sensor 44 becomes equal to the target value.
  • the user may set the target value of the supply temperature by operating the terminal device 37.
  • the control device 36 may determine a target value for the supply temperature in accordance with the outside air temperature detected by the outside air temperature sensor 2.
  • the control device 36 may determine a target value for the supply temperature in accordance with the outside air temperature detected by the room temperature sensor 101.
  • the mixing valve 19 is in a state where the heat medium does not flow into the bypass passage 17b, that is, in a state where the mixing ratio of the heat medium flowing from the second inlet 192 is substantially zero.
  • the flow rate of the heat medium passing through the first heat exchanger 3 of the heat pump device 7 is equal to the flow rate of the heat medium passing through the heating terminal 100.
  • an upper limit may be set for the flow rate of the heat medium passing through the first heat exchanger 3.
  • the upper limit is, for example, a value such as 8L per minute.
  • the flow rate of the heat medium passing through the heating terminal 100 is equal to the flow rate of the heat medium passing through the first heat exchanger 3. Therefore, the upper limit of the flow rate of the heat medium passing through the heating terminal 100 is equal to the upper limit of the flow rate of the heat medium passing through the first heat exchanger 3.
  • the appropriate supply temperature to the heating terminal 100 may differ depending on the type of heating appliance provided in the heating terminal 100. For example, when the heating terminal 100 includes a radiator, a relatively high supply temperature is preferable. Even under the restriction of the upper limit of the flow rate of the heat medium passing through the heating terminal 100, it is possible to output the heating capacity requested by the user by supplying the heating medium with a relatively high temperature heat medium. Become.
  • the three-way valve 18 is switched so that the first outlet 182 to which the first flow path 16a is connected is shut off. That is, the three-way valve 18 is switched so that the heat medium can flow through the second flow path 15b.
  • the second circulation pump 13 is operated.
  • the heat medium flowing out from the third outlet 8d of the heat storage tank 8 is supplied to the heating terminal 100 through the third flow path 10b, the supply path 16b, and the supply path 16c.
  • the heat medium that has passed through the heating terminal 100 flows through the return path 17a.
  • At least a part of the heat medium that has passed through the heating terminal 100 flows into the bypass passage 17b from the branch portion 17c, and again flows into the heating terminal 100 through the mixing valve 19 and the supply passage 16c.
  • the heat medium that has not flowed into the bypass passage 17b at the branch portion 17c passes through the return passage 17a as it is and flows into the heat storage tank 8 from the second return port 8f.
  • the heat medium flows in the order of the heat storage tank 8, the third flow path 10b, the supply path 16b, the supply path 16c, and the heating terminal 100.
  • FIG. 3 shows a state in which the heat storage operation and the second circulation operation are performed in parallel.
  • the heat pump device 7 and the first circulation pump 12 are operated in order to perform the heat storage operation.
  • the control device 36 may control the flow rate of the heat medium passing through the heating terminal 100 by controlling the operation of the second circulation pump 13.
  • the control device 36 may control the supply temperature to the heating terminal 100 by controlling the mixing ratio in the mixing valve 19.
  • the control device 36 may control the mixing valve 19 so that the supply temperature detected by the temperature sensor 44 becomes equal to the target value.
  • the user may set the target value of the supply temperature by operating the terminal device 37.
  • the control device 36 may determine a target value for the supply temperature in accordance with the outside air temperature detected by the outside air temperature sensor 2.
  • the control device 36 may determine a target value for the supply temperature in accordance with the outside air temperature detected by the room temperature sensor 101.
  • the flow rate of the heat medium passing through the heating terminal 100 is not restricted by the upper limit of the flow rate of the heat medium passing through the first heat exchanger 3. For this reason, in the second circulation operation, the flow rate of the heat medium passing through the heating terminal 100 can be made higher than that in the first circulation operation. For example, when the upper limit of the flow rate of the heat medium passing through the first heat exchanger 3 is 8 L / min, the flow rate of the heat medium passing through the heating terminal 100 during the second circulation operation is set to 9 L / min or more. It is possible.
  • a relatively low supply temperature is preferable.
  • the relatively low supply temperature is, for example, about 35 ° C.
  • the heating capacity required by the user may not be output unless the flow rate of the heat medium passing through the heating terminal 100 is increased compared to the case where the supply temperature is relatively high.
  • the second circulation operation since the flow rate of the heat medium passing through the heating terminal 100 can be increased, the heating capacity required by the user can be output even under a relatively low supply temperature. Become.
  • the control device 36 may control as follows.
  • the controller 36 controls the first circulation pump 12 and the second circulation so that the flow rate of the heat medium passing through the heat pump device 7 in the heat storage operation is equal to or less than the flow rate of the heat medium passing through the heating terminal 100 in the second circulation operation.
  • the operation of the pump 13 may be controlled.
  • the control device 36 has at least one of the heat pump device 7, the first circulation pump 12, and the mixing valve 19 so that the heat pump outlet temperature detected by the temperature sensor 40 is equal to or higher than the supply temperature to the heating terminal 100. The operation may be controlled.
  • control device 36 may perform the control as described above.
  • control device 36 may control as described above.
  • the user may operate the terminal device 37 to configure in advance which of the first circulation operation and the second circulation operation is performed during the heating operation.
  • control device 36 may perform only the second circulation operation without performing the heat storage operation.
  • the following effects can be obtained by providing the first check valve 60 in the third flow path 10b.
  • the second circulation operation which is an operation of flowing the heat medium from the heat storage tank 8 into the supply path 16b to the heating terminal 100, and the heat medium heated by the heat pump device 7 without passing through the heat storage tank 8, the supply path 16b.
  • the first circulation operation which is an operation to be introduced into the tank, with a simple device configuration.
  • the first check valve 60 is less expensive than the flow path switching valve. Since the first check valve 60 operates automatically, the controller 36 does not need to control the first check valve 60.
  • the heat medium circulation system 35 of the present embodiment may execute a circulation heat storage operation instead of the above-described one-time heat storage operation.
  • the total volume of the heat medium passing through the heat pump device 7 in one heat storage operation is equal to or greater than the capacity of the heat storage tank 8.
  • the total volume of the heat medium passing through the heat pump device 7 in one heat storage operation may be several times to 10 times the capacity of the heat storage tank 8.
  • the temperature increase width of the heat medium while passing through the heat pump device once is small.
  • the temperature increase width for one time may be 5 ° C.
  • the heat medium in the heat storage tank 8 is repeatedly heated by the heat pump device 7 a plurality of times, raised in steps, and reaches a target temperature.
  • COP can be made better by performing the circulating heat storage operation.
  • the heat pump device 7 includes R410A as a refrigerant
  • COP can be improved by reducing the temperature rise width at one time by circulating heat storage operation.
  • the control device 36 may control as follows.
  • the control device 36 includes the first circulation pump 12 and the second circulation pump 12 so that the flow rate of the heat medium passing through the heat pump device 7 in the circulation heat storage operation is equal to or less than the flow rate of the heat medium passing through the heating terminal 100 in the second circulation operation.
  • the operation of the circulation pump 13 may be controlled. As a result, it is possible to make both COP of the circulating heat storage operation good and to make the supply temperature to the heating terminal 100 an appropriate temperature.
  • the controller 36 may perform control as described above when the circulation heat storage operation and the second circulation operation are performed simultaneously in parallel. When each of the circulation heat storage operation and the second circulation operation is executed independently on separate occasions, the control device 36 may control as described above.
  • Each function of the control device 36 may be realized by a processing circuit.
  • the processing circuit of the control device 36 may include at least one processor 361 and at least one memory 362.
  • each function of the control device 36 may be realized by software, firmware, or a combination of software and firmware.
  • At least one of software and firmware may be described as a program.
  • At least one of software and firmware may be stored in at least one memory 362.
  • the at least one processor 361 may realize each function of the control device 36 by reading and executing a program stored in the at least one memory 362.
  • the at least one memory 362 may include a nonvolatile or volatile semiconductor memory, a magnetic disk, or the like.
  • the processing circuit of the control device 36 may include at least one dedicated hardware.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field- Programmable Gate Array) or a combination thereof.
  • the function of each part of the control device 36 may be realized by a processing circuit. Further, the functions of the respective units of the control device 36 may be collectively realized by a processing circuit. Some of the functions of the control device 36 may be realized by dedicated hardware, and the other part may be realized by software or firmware.
  • the processing circuit may realize each function of the control device 36 by hardware, software, firmware, or a combination thereof.
  • the configuration is not limited to the configuration in which the operation of the heat medium circulation system 35 is controlled by a single control device, and the operation of the heat medium circulation system 35 may be controlled by cooperation of a plurality of control devices. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

熱媒体循環システム35は、熱媒体を加熱するヒートポンプ装置7、加熱された熱媒体を貯留する蓄熱槽8、暖房端末100へ供給される熱媒体が通る供給路16b、16c、ヒートポンプ装置7から流出した熱媒体を、蓄熱槽8を通さずに供給路16bに流入させる第一流路16a、ヒートポンプ装置7から流出した熱媒体を蓄熱槽8に流入させる第二流路15b、第一流路16aと第二流路15bとを切り換える三方弁18、蓄熱槽8から流出した熱媒体を供給路16bに流入させる第三流路10b、及び、第三流路10bに配置された第一逆止弁60を備える。

Description

熱媒体循環システム
 本発明は、熱媒体循環システムに関する。
 下記特許文献1に開示された蓄熱給湯空調機は、ヒートポンプ装置により加熱または冷却された熱媒体を貯留する蓄熱槽と、空調熱交換器とを備える。この蓄熱給湯空調機は、ヒートポンプ装置または蓄熱槽から熱媒体を空調熱交換器へ循環させることができる。
日本特許第5253582号公報
 上述した従来のシステムは、ヒートポンプ装置から熱媒体を空調熱交換器へ供給する運転と、蓄熱槽から熱媒体を空調熱交換器へ供給する運転とを、二つの三方弁(蓄熱切換弁(19)及び排熱切換弁(20))によって切り換えている。このため、装置構成が複雑になるという課題がある。
 本発明は、上述のような課題を解決するためになされたもので、熱需要部への供給路に対して蓄熱槽から熱媒体を流入させる運転と、加熱手段で加熱された熱媒体を、蓄熱槽を通さずに当該供給路に流入させる運転とを、簡単な装置構成で達成できる熱媒体循環システムを提供することを目的とする。
 本発明の熱媒体循環システムは、熱媒体を加熱する加熱手段と、加熱手段により加熱された熱媒体を貯留する蓄熱槽と、熱需要部へ供給される熱媒体が通る供給路と、加熱手段から流出した熱媒体を、蓄熱槽を通さずに供給路に流入させる第一流路と、加熱手段から流出した熱媒体を蓄熱槽に流入させる第二流路と、第一流路と第二流路とを切り換える流路切換手段と、蓄熱槽から流出した熱媒体を供給路に流入させる第三流路と、第三流路に配置された逆止弁と、を備えるものである。
 本発明の熱媒体循環システムによれば、熱需要部への供給路に対して蓄熱槽から熱媒体を流入させる運転と、加熱手段で加熱された熱媒体を、蓄熱槽を通さずに当該供給路に流入させる運転とを、簡単な装置構成で達成することが可能となる。
実施の形態1による熱媒体循環システムを示す図である。 図1に示す熱媒体循環システムの第一循環運転における熱媒体の循環経路の例を示す図である。 図1に示す熱媒体循環システムの第二循環運転における熱媒体の循環経路の例を示す図である。
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。
実施の形態1.
 図1は、実施の形態1による熱媒体循環システム35を示す図である。図1に示すように、熱媒体循環システム35は、ヒートポンプ装置7及びタンクユニット33を備える。ヒートポンプ装置7は、熱媒体を加熱する加熱手段の例である。タンクユニット33が備える筐体の内部に、蓄熱槽8が設置されている。蓄熱槽8は、ヒートポンプ装置7により加熱された熱媒体を貯留する。本発明における熱媒体は、水でもよい。本発明における熱媒体は、例えば、塩化カルシウム水溶液、エチレングリコール水溶液、アルコール、などの、水以外の液状熱媒体でもよい。蓄熱槽8内には、温度の違いによる熱媒体の密度の差により、上側が高温で下側が低温になる温度成層が形成可能である。
 ヒートポンプ装置7とタンクユニット33との間は、第四流路14、第五流路15a、及び電気配線(図示省略)を介して接続されている。タンクユニット33は、屋外に設置されてもよいし、屋内に設置されてもよい。ヒートポンプ装置7は、屋外に設置されてもよい。本実施の形態の熱媒体循環システム35は、ヒートポンプ装置7とタンクユニット33とが分かれた構成を有する。このような構成に代えて、タンクユニット33とヒートポンプ装置7とが一体化していてもよい。
 ヒートポンプ装置7は、圧縮機1、第一熱交換器3、減圧装置4、及び第二熱交換器6を冷媒配管5により環状に接続した冷媒回路を備える。この冷媒回路に封入される冷媒は、例えば、COでもよい。ヒートポンプ装置7は、この冷媒回路によりヒートポンプサイクルの運転を行う。第一熱交換器3内では、圧縮機1で圧縮された高温高圧の冷媒と、第四流路14から流入した熱媒体との間で熱を交換する。減圧装置4は、第一熱交換器3を通過した後の高圧冷媒を膨張させて低圧冷媒にする。減圧装置4は、膨張弁でもよい。第二熱交換器6は、低圧冷媒と流体との間で熱を交換させる。当該流体は、例えば、外気、地下水、排水、太陽熱温水のいずれかでもよい。ヒートポンプ装置7は、当該流体を第二熱交換器6へ送る送風機、ポンプ等(図示省略)を備えてもよい。本実施の形態におけるヒートポンプ装置7は、外気温度を検出する外気温度センサ2を備える。
 本発明における加熱手段は、ヒートポンプ装置7に限定されない。加熱手段は、ガス、灯油、重油、石炭のような燃料の燃焼熱で加熱する燃焼式加熱装置でもよい。加熱手段は、太陽熱によって熱媒体を加熱する装置でもよい。
 タンクユニット33の内部に制御装置36が内蔵されている。タンクユニット33及びヒートポンプ装置7が備える弁類、ポンプ類、圧縮機1等のアクチュエータ、及びセンサ類は、制御装置36に対して電気的に接続されている。制御装置36は、後述する各種の運転を制御する。
 端末装置37は、運転動作指令及び設定値の変更に関する使用者の操作を受け付ける機能を有する。端末装置37は、操作端末またはユーザーインターフェースの例である。制御装置36と端末装置37の間は、有線または無線により、双方向にデータ通信可能に接続されている。端末装置37には、図示を省略するが、熱媒体循環システム35の状態等の情報を表示する表示部、使用者が操作するスイッチ等の操作部、スピーカ、マイク等が搭載されている。端末装置37は、室内に設置されてもよい。熱媒体循環システム35は、異なる場所に設置される複数台の端末装置37を備えてもよい。
 タンクユニット33には、蓄熱槽8及び制御装置36に加えて、以下に説明する各種部品及び配管などがさらに備えられている。蓄熱槽8の表面には、複数のタンク温度センサ42,43が、相異なる高さの位置に取り付けられている。制御装置36は、これらのタンク温度センサ42,43により蓄熱槽8内の熱媒体の温度分布を検出することにより、蓄熱槽8内の蓄熱量及び高温熱媒体の量などを計算できる。図示の構成では、2個のタンク温度センサ42,43が取り付けられているが、3個以上のタンク温度センサを蓄熱槽8に取り付けてもよい。
 制御装置36は、蓄熱槽8内の蓄熱量に基づいて、蓄熱運転の開始タイミング及び停止タイミングを制御してもよい。蓄熱運転は、ヒートポンプ装置7により加熱された熱媒体を蓄熱槽8内に流入させる運転である。
 蓄熱槽8は、第一出口8a、入口8b、第二出口8c、第三出口8d、第一戻り口8e、及び第二戻り口8fを備える。第一出口8a、第一戻り口8e、及び第二戻り口8fは、蓄熱槽8の下部に位置する。入口8b、第二出口8c、及び第三出口8dは、蓄熱槽8の上部に位置する。
 第四流路14は、蓄熱槽8の第一出口8aに接続された第一端と、ヒートポンプ装置7の第一熱交換器3の熱媒体の入口に接続された第二端とを有する。ヒートポンプ装置7へ熱媒体を循環させることのできる第一循環ポンプ12が第四流路14の途中に接続されている。図示の構成では、タンクユニット33の内部に第一循環ポンプ12が配置されている。この構成に代えて、ヒートポンプ装置7の内部に第一循環ポンプ12を配置してもよい。ヒートポンプ装置7に流入する熱媒体の温度であるヒートポンプ入口温度を検出する温度センサ41が第四流路14に取り付けられている。
 三方弁18は、入口181、第一出口182、及び第二出口183を備える。三方弁18は、入口181を第一出口182に連通させて第二出口183を遮断する状態と、入口181を第二出口183に連通させて第一出口182を遮断する状態とに、流路を切り替え可能である。三方弁18は、流路切換手段の例である。
 第五流路15aは、ヒートポンプ装置7の第一熱交換器3の熱媒体の出口に接続された第一端と、三方弁18の入口181に接続された第二端とを有する。ヒートポンプ装置7から流出する熱媒体の温度であるヒートポンプ出口温度を検出する温度センサ40が第五流路15aに取り付けられている。第二流路15bは、三方弁18の第二出口183に接続された第一端と、蓄熱槽8の入口8bに接続された第二端とを有する。
 混合弁19は、第一入口191、第二入口192、及び出口193を備える。混合弁19は、第一入口191から流入した熱媒体と、第二入口192から流入した熱媒体とが混合した熱媒体を出口193から流出させることができる。混合弁19は、第一入口191から流入する熱媒体と、第二入口192から流入する熱媒体との混合比を調整可能である。混合弁19は、第二入口192から流入する熱媒体の混合比を実質的にゼロにもできる。混合弁19は、第一入口191から流入する熱媒体の混合比を実質的にゼロにできるものでもよい。図示の構成では、タンクユニット33の外部に混合弁19が配置されている。この構成に代えて、タンクユニット33の内部に混合弁19を配置してもよい。
 暖房端末100は、熱媒体の熱を部屋200に対して放出することで部屋200を暖める。暖房端末100は、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータまたはパネルヒーター、及び、ファンコンベクターのうち、少なくとも一種の暖房器具を備えてもよい。暖房端末100が複数の暖房器具を備える場合、その接続方法は、直列、並列、直列及び並列の組み合わせ、のいずれでもよい。暖房端末100は、熱を必要とする熱需要部の例である。本実施の形態の熱媒体循環システム35は、部屋200の室温を検出する室温センサ101を備える。
 供給路16b及び供給路16cは、暖房端末100へ供給される熱媒体が通る流路である。供給路16bの上流端は、タンクユニット33の内部に位置する。供給路16bの下流端は、混合弁19の第一入口191に接続されている。供給路16cの上流端は、混合弁19の出口193に接続されている。供給路16cの下流端は、暖房端末100の熱媒体の入口に接続されている。熱媒体を暖房端末100へ循環させることのできる第二循環ポンプ13が供給路16cの途中に接続されている。
 以下の説明では、暖房端末100に供給される熱媒体の温度、すなわち暖房端末100に流入する熱媒体の温度を、「供給温度」と称する。本実施の形態では、供給路16cに設置された温度センサ44により、供給温度を検出できる。
 第一流路16aは、三方弁18の第一出口182に接続された第一端と、供給路16bの上流端に連通する第二端とを有する。第三流路10bは、蓄熱槽8の第三出口8dに接続された第一端と、供給路16bの上流端に連通する第二端とを有する。第一流路16aの第二端と、第三流路10bの第二端と、供給路16bの上流端との合流部は、三叉になっている。
 第一流路16aは、ヒートポンプ装置7から流出した熱媒体を、蓄熱槽8を通さずに供給路16bに流入させるための流路である。第二流路15bは、ヒートポンプ装置7から流出した熱媒体を蓄熱槽8に流入させるための流路である。第一流路16aに熱媒体が流通可能かつ第二流路15bが遮断される第一の状態と、第二流路15bに熱媒体が流通可能かつ第一流路16aが遮断される第二の状態とを、三方弁18により切り換えることができる。
 第三流路10bは、蓄熱槽8から流出した熱媒体を供給路16bに流入させるための流路である。第三流路10bには、逆流を防止する第一逆止弁60が配置されている。第一逆止弁60を備えたことで、第一流路16aから第三流路10bを通って熱媒体が蓄熱槽8に流入することを確実に防止できる。
 戻り路17aは、暖房端末100を通過した熱媒体が通る流路である。戻り路17aの上流端は、暖房端末100の熱媒体の出口に接続されている。戻り路17aの下流端は、蓄熱槽8の第二戻り口8fに接続されている。戻り路17aは、暖房端末100を通過した熱媒体を第二戻り口8fから蓄熱槽8に流入させる。
 戻り路17aの途中に分岐部17cが形成されている。バイパス路17bの上流端は、分岐部17cにて戻り路17aに連通している。バイパス路17bの下流端は、混合弁19の第二入口192に接続されている。バイパス路17bは、暖房端末100を通過した熱媒体を、ヒートポンプ装置7及び蓄熱槽8を通さずに、供給路16cに再び流入させるための流路である。暖房端末100の出口から流出した熱媒体の流れの少なくとも一部を、バイパス路17bを通して、暖房端末100の入口へ還流させることができる。
 混合弁19により、バイパス路17bを通る熱媒体の流量を調整できる。混合弁19は、バイパス路17bを通る熱媒体の流量を調整する流量調整手段の例である。
 バイパス路17bには、逆流を防止する第二逆止弁61が配置されている。バイパス路17b内の熱媒体が、混合弁19から分岐部17cに向かう方向に流れることが第二逆止弁61により確実に防止される。
 本実施の形態では、熱媒体を一時的に貯留可能なリザーバータンク90が戻り路17aの途中に接続されている。熱媒体循環システム35の回路内の熱媒体が温度によって膨張した場合に、余剰の熱媒体をリザーバータンク90に貯留することができる。
 タンクユニット33は、水熱交換器52を有する。水熱交換器52は、熱媒体が流れる一次側流路と、水が流れる二次側流路とを有する。導管10aは、蓄熱槽8の第二出口8cに接続された第一端と、水熱交換器52の一次側入口に接続された第二端とを有する。導管9は、水熱交換器52の一次側出口に接続された第一端と、蓄熱槽8の第一戻り口8eに接続された第二端とを有する。熱媒体を水熱交換器52へ循環させることのできる第三循環ポンプ11が導管9の途中に接続されている。水熱交換器52を通る熱媒体の流量を検出する流量センサ71が導管9の途中に配置されている。
 水熱交換器52の二次側入口には、給水管20の下流端が接続されている。給水管20の上流側は、例えば水道のような水源に接続される。水熱交換器52を通る水の流量を検出する流量センサ70が給水管20の途中に配置されている。水熱交換器52の二次側出口には、給湯管21の上流端が接続されている。給湯管21の下流側は、給湯端(図示省略)に接続される。給湯端は、例えば、蛇口、浴槽、風呂のシャワーのうちの少なくとも一つを含んでもよい。
 水熱交換器52は、蓄熱槽8から供給される高温の熱媒体と、給水管20から供給される水との間で熱を交換する。給湯管21へ給湯する給湯運転のときには、以下のようになる。給湯管21の下流側の給湯端が開かれると、水源の水圧により、水が給水管20、水熱交換器52、及び給湯管21内を流れる。給水管20に設置された流量センサ70により、制御装置36は、給湯の有無を検出できる。給湯の開始が検出されると、制御装置36が第三循環ポンプ11を運転することで、蓄熱槽8の上部から高温の熱媒体が水熱交換器52へ供給される。水熱交換器52で加熱された湯が給湯管21を通って給湯端へ供給される。水熱交換器52を通る間に温度低下した熱媒体は、導管9を通って第一戻り口8eから蓄熱槽8に流入する。
 第一循環ポンプ12、第二循環ポンプ13、及び第三循環ポンプ11のうちの少なくとも一つは、その出力あるいは回転速度が可変のものでもよい。第一循環ポンプ12、第二循環ポンプ13、及び第三循環ポンプ11のうちの少なくとも一つは、制御装置36からの速度指令電圧により出力あるいは回転速度を変えられるパルス幅変調制御型の直流モータを備えたものでもよい。
 給湯運転において、制御装置36は、流量センサ71で検出される流量が所定流量に等しくなるように第三循環ポンプ11の運転を制御してもよい。給湯運転において、制御装置36は、給湯管21を流れる湯の温度が目標値に等しくなるように第三循環ポンプ11の運転を制御してもよい。
 蓄熱運転のときには、以下のようになる。第二流路15bに熱媒体が流通可能になるように三方弁18が切り換えられる。ヒートポンプ装置7及び第一循環ポンプ12が運転される。蓄熱槽8の第一出口8aから流出した熱媒体が、第四流路14を通って、ヒートポンプ装置7に流入する。ヒートポンプ装置7により加熱された熱媒体は、第五流路15a及び第二流路15bを通り、入口8bから蓄熱槽8内に流入する。このように、蓄熱運転では、蓄熱槽8、第四流路14、ヒートポンプ装置7、第五流路15a、第二流路15b、蓄熱槽8の順に熱媒体が循環する。
 制御装置36は、ヒートポンプ装置7及び第一循環ポンプ12の少なくとも一方の動作を制御することで、ヒートポンプ出口温度を制御できる。使用者は、端末装置37を操作することで、給湯温度を設定できる。蓄熱運転において、制御装置36は、温度センサ40により検出されるヒートポンプ出口温度が、使用者が設定した給湯温度以上になるように、ヒートポンプ装置7及び第一循環ポンプ12の少なくとも一方の動作を制御してもよい。これにより、蓄熱槽8に貯留される熱媒体の温度を、使用者が設定した給湯温度に応じた、適切な温度にすることができる。
 蓄熱運転において、蓄熱槽8内の下部にある低温の熱媒体を、ヒートポンプ装置7を一度通過する間に、目標温度まで昇温させることが可能である。このような蓄熱運転を以下「一過蓄熱運転」と称する。熱媒体を比較的低い流量で循環させることで、一過蓄熱運転が可能になる。一過蓄熱運転では、熱媒体は、ヒートポンプ装置7を一回通過する間に、例えば、20℃から60℃まで昇温する。一過蓄熱運転を行うことで、蓄熱槽8内に、加熱された高温の熱媒体の層と、加熱前の低温の熱媒体の層とを積層させることができる。
 ヒートポンプ装置7がCO冷媒を備えるものである場合には、一過蓄熱運転を行うことで、COP(Coefficient Of Performance)すなわちエネルギー効率がより良好になる。
 本実施の形態の熱媒体循環システム35は、部屋200を暖房する暖房運転として、第一循環運転及び第二循環運転の2種類を実行可能である。図2は、図1に示す熱媒体循環システム35の第一循環運転における熱媒体の循環経路の例を示す図である。図3は、図1に示す熱媒体循環システム35の第二循環運転における熱媒体の循環経路の例を示す図である。
 まず、第一循環運転について説明する。図2に示す例の第一循環運転においては、以下のようになる。第一流路16aに熱媒体が流通可能になるように三方弁18が切り換えられる。ヒートポンプ装置7及び第一循環ポンプ12が運転される。蓄熱槽8の第一出口8aから流出した熱媒体が、第四流路14を通って、ヒートポンプ装置7に流入する。ヒートポンプ装置7により加熱された熱媒体は、第五流路15a、第一流路16a、供給路16b、及び供給路16cを通り、暖房端末100に供給される。暖房端末100を通過した熱媒体は、戻り路17aを通って、第二戻り口8fから蓄熱槽8に流入する。このように、第一循環運転では、蓄熱槽8、第四流路14、ヒートポンプ装置7、第五流路15a、第一流路16a、供給路16b、供給路16c、暖房端末100、戻り路17a、蓄熱槽8の順に熱媒体が循環する。
 第一循環運転に関しては、以下のようにしてもよい。制御装置36は、ヒートポンプ装置7及び第一循環ポンプ12の少なくとも一方の動作を制御することで、暖房端末100への供給温度を制御してもよい。制御装置36は、温度センサ44により検出される供給温度が目標値に等しくなるように、ヒートポンプ装置7及び第一循環ポンプ12の少なくとも一方の動作を制御してもよい。使用者が端末装置37を操作することで、供給温度の目標値を設定してもよい。制御装置36は、外気温度センサ2により検出される外気温度に応じて、供給温度の目標値を決定してもよい。制御装置36は、室温センサ101により検出される外気温度に応じて、供給温度の目標値を決定してもよい。
 図2に示す例の第一循環運転では、以下のようになっている。混合弁19は、バイパス路17bに熱媒体が流れない状態、すなわち第二入口192から流入する熱媒体の混合比を実質的にゼロにする状態、になっている。ヒートポンプ装置7の第一熱交換器3を通過する熱媒体の流量と、暖房端末100を通過する熱媒体の流量とは、等しい。
 第一熱交換器3内を流れる熱媒体の流速が、ある閾値を超えると、第一熱交換器3を腐食する可能性が生じる。第一熱交換器3の腐食を確実に防止するために、第一熱交換器3を通過する熱媒体の流量に対して上限が設定される場合がある。当該上限は、例えば、毎分8L、のような値である。
 図2に示す例では、暖房端末100を通過する熱媒体の流量は、第一熱交換器3を通過する熱媒体の流量に等しい。よって、暖房端末100を通過する熱媒体の流量の上限は、第一熱交換器3を通過する熱媒体の流量の上限に等しい。
 暖房端末100への適切な供給温度は、暖房端末100が備える暖房器具の種類によって、異なる場合がある。例えば、暖房端末100がラジエータを備える場合には、比較的高い供給温度が好ましい。暖房端末100を通過する熱媒体の流量の上限の制約のもとでも、比較的高い温度の熱媒体を暖房端末100に供給することで、使用者が要求する暖房能力を出力することが可能となる。
 次に、第二循環運転について説明する。図3に示す例の第二循環運転においては、以下のようになる。第一流路16aが接続された第一出口182が遮断されるように三方弁18が切り換えられる。すなわち、第二流路15bに熱媒体が流通可能になるように三方弁18が切り換えられる。第二循環ポンプ13が運転される。蓄熱槽8の第三出口8dから流出した熱媒体が、第三流路10b、供給路16b、及び供給路16cを通り、暖房端末100に供給される。暖房端末100を通過した熱媒体は、戻り路17aを流れる。暖房端末100を通過した熱媒体の少なくとも一部は、分岐部17cからバイパス路17bに流入し、混合弁19及び供給路16cを通って、暖房端末100に再び流入する。分岐部17cでバイパス路17bに流入しなかった熱媒体は、そのまま戻り路17aを通って、第二戻り口8fから蓄熱槽8に流入する。このように、第二循環運転では、蓄熱槽8、第三流路10b、供給路16b、供給路16c、暖房端末100の順に熱媒体が流れる。
 本実施の形態では、前述した蓄熱運転と、第二循環運転とを並行して同時に実行可能である。これにより、蓄熱槽8内の蓄熱量が不十分である場合においても第二循環運転を実行可能であるという利点がある。図3は、蓄熱運転及び第二循環運転を並行して実行している状態を示している。図3では、蓄熱運転を行うために、ヒートポンプ装置7及び第一循環ポンプ12が運転されている。
 第二循環運転に関しては、以下のようにしてもよい。制御装置36は、第二循環ポンプ13の動作を制御することで、暖房端末100を通過する熱媒体の流量を制御してもよい。制御装置36は、混合弁19における混合比を制御することで、暖房端末100への供給温度を制御してもよい。制御装置36は、温度センサ44により検出される供給温度が目標値に等しくなるように混合弁19を制御してもよい。使用者が端末装置37を操作することで、供給温度の目標値を設定してもよい。制御装置36は、外気温度センサ2により検出される外気温度に応じて、供給温度の目標値を決定してもよい。制御装置36は、室温センサ101により検出される外気温度に応じて、供給温度の目標値を決定してもよい。
 第二循環運転であれば、暖房端末100を通過する熱媒体の流量は、第一熱交換器3を通過する熱媒体の流量の上限による制約を受けない。このため、第二循環運転おいては、暖房端末100を通過する熱媒体の流量を、第一循環運転より高くすることが可能である。例えば、第一熱交換器3を通過する熱媒体の流量の上限が毎分8Lである場合において、第二循環運転のときに暖房端末100を通過する熱媒体の流量を毎分9L以上にすることが可能である。
 例えば、暖房端末100が床暖房用器具を備える場合には、比較的低い供給温度が好ましい。比較的低い供給温度とは、例えば、35℃程度である。供給温度が比較的低い場合には、供給温度が比較的高い場合に比べて、暖房端末100を通過する熱媒体の流量を高くしないと、使用者が要求する暖房能力を出力できない可能性がある。第二循環運転によれば、暖房端末100を通過する熱媒体の流量を高くすることができるので、比較的低い供給温度のもとでも、使用者が要求する暖房能力を出力することが可能となる。
 蓄熱運転及び第二循環運転に関して、制御装置36は、以下のように制御してもよい。制御装置36は、蓄熱運転においてヒートポンプ装置7を通過する熱媒体の流量が、第二循環運転において暖房端末100を通過する熱媒体の流量以下になるように、第一循環ポンプ12及び第二循環ポンプ13の動作を制御してもよい。これにより、ヒートポンプ装置7から蓄熱槽8に流入する熱媒体の温度、及び暖房端末100への供給温度を、それぞれ適切な温度にすることができる。制御装置36は、温度センサ40により検出されるヒートポンプ出口温度が、暖房端末100への供給温度以上になるように、ヒートポンプ装置7、第一循環ポンプ12、及び混合弁19のうちの少なくとも一つの動作を制御してもよい。これにより、暖房端末100への供給温度に満たない温度の熱媒体がヒートポンプ装置7から蓄熱槽8に流入することを確実に防止できる。蓄熱運転及び第二循環運転を並行して同時に実行する場合に制御装置36が上記のように制御してもよい。蓄熱運転及び第二循環運転の各々を別々の機会に単独で実行する場合に制御装置36が上記のように制御してもよい。
 暖房端末100の種類などに応じて、使用者が第一循環運転及び第二循環運転を選択することができるように構成してもよい。例えば、使用者が端末装置37を操作することで、暖房運転のときに第一循環運転及び第二循環運転のいずれが実行されるかを予め設定できるように構成してもよい。
 例えば、蓄熱槽8内の蓄熱量が十分に多い場合などにおいては、制御装置36は、蓄熱運転を実行せずに、第二循環運転だけを実行してもよい。
 本実施の形態であれば、第三流路10bに第一逆止弁60を備えたことで、以下の効果が得られる。暖房端末100への供給路16bに対して蓄熱槽8から熱媒体を流入させる運転である第二循環運転と、ヒートポンプ装置7で加熱された熱媒体を、蓄熱槽8を通さずに供給路16bに流入させる運転である第一循環運転とを、簡単な装置構成で達成できる。第一逆止弁60は、流路切換弁に比べて低コストである。第一逆止弁60は自動的に作動するので、制御装置36が第一逆止弁60を制御する必要がない。
 本実施の形態の熱媒体循環システム35は、前述した一過蓄熱運転に代えて、循環蓄熱運転を実行してもよい。循環蓄熱運転の場合には、以下のようになる。一度の蓄熱運転においてヒートポンプ装置7を通過する熱媒体の総体積が蓄熱槽8の容量以上になる。例えば、一度の蓄熱運転においてヒートポンプ装置7を通過する熱媒体の総体積が、蓄熱槽8の容量の数倍から10倍程度でもよい。ヒートポンプ装置7を一回通過する間の熱媒体の昇温幅が小さい。例えば、一回の昇温幅は、5℃でもよい。蓄熱槽8内の熱媒体は、ヒートポンプ装置7により複数回繰り返し加熱され、段階的に昇温し、目標温度に到達する。
 ヒートポンプ装置7が備える冷媒の種類によっては、循環蓄熱運転を行うことで、COPをより良好にできる。例えば、ヒートポンプ装置7がR410Aを冷媒として備える場合には、循環蓄熱運転により、一回の昇温幅を小さくすることで、COPをより良好にできる。
 循環蓄熱運転及び第二循環運転に関して、制御装置36は、以下のように制御してもよい。制御装置36は、循環蓄熱運転においてヒートポンプ装置7を通過する熱媒体の流量が、第二循環運転において暖房端末100を通過する熱媒体の流量以下になるように、第一循環ポンプ12及び第二循環ポンプ13の動作を制御してもよい。これにより、循環蓄熱運転のCOPを良好にすることと、暖房端末100への供給温度を適切な温度にすることとを両立できる。循環蓄熱運転及び第二循環運転を並行して同時に実行する場合に制御装置36が上記のように制御してもよい。循環蓄熱運転及び第二循環運転の各々を別々の機会に単独で実行する場合に制御装置36が上記のように制御してもよい。
 制御装置36の各機能は、処理回路により実現されてもよい。制御装置36の処理回路は、少なくとも1つのプロセッサ361と少なくとも1つのメモリ362とを備えてもよい。処理回路が少なくとも1つのプロセッサ361と少なくとも1つのメモリ362とを備える場合、制御装置36の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現されてもよい。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述されてもよい。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ362に格納されてもよい。少なくとも1つのプロセッサ361は、少なくとも1つのメモリ362に記憶されたプログラムを読み出して実行することにより、制御装置36の各機能を実現してもよい。少なくとも1つのメモリ362は、不揮発性または揮発性の半導体メモリ、磁気ディスク等を含んでもよい。
 制御装置36の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。処理回路が少なくとも1つの専用のハードウェアを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものでもよい。制御装置36の各部の機能がそれぞれ処理回路で実現されても良い。また、制御装置36の各部の機能がまとめて処理回路で実現されても良い。制御装置36の各機能について、一部を専用のハードウェアで実現し、他の一部をソフトウェアまたはファームウェアで実現してもよい。処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御装置36の各機能を実現しても良い。
 単一の制御装置により熱媒体循環システム35の動作が制御される構成に限定されるものではなく、複数の制御装置が連携することで熱媒体循環システム35の動作を制御する構成にしてもよい。
1 圧縮機、 2 外気温度センサ、 3 第一熱交換器、 4 減圧装置、 5 冷媒配管、 6 第二熱交換器、 7 ヒートポンプ装置、 8 蓄熱槽、 10b 第三流路、 11 第三循環ポンプ、 12 第一循環ポンプ、 13 第二循環ポンプ、 14 第四流路、 15a 第五流路、 15b 第二流路、 16a 第一流路、 16b,16c 供給路、 17a 戻り路、 17b バイパス路、 18 三方弁、 19 混合弁、 33 タンクユニット、 35 熱媒体循環システム、 36 制御装置、 37 端末装置、 60 第一逆止弁、 61 第二逆止弁、 100 暖房端末、 101 室温センサ

Claims (9)

  1.  熱媒体を加熱する加熱手段と、
     前記加熱手段により加熱された前記熱媒体を貯留する蓄熱槽と、
     熱需要部へ供給される前記熱媒体が通る供給路と、
     前記加熱手段から流出した前記熱媒体を、前記蓄熱槽を通さずに前記供給路に流入させる第一流路と、
     前記加熱手段から流出した前記熱媒体を前記蓄熱槽に流入させる第二流路と、
     前記第一流路と前記第二流路とを切り換える流路切換手段と、
     前記蓄熱槽から流出した前記熱媒体を前記供給路に流入させる第三流路と、
     前記第三流路に配置された逆止弁と、
     を備える熱媒体循環システム。
  2.  前記加熱手段、前記第一流路、及び前記供給路の順に前記熱媒体が流れる第一循環運転と、前記蓄熱槽、前記第三流路、及び前記供給路の順に前記熱媒体が流れる第二循環運転とを制御する手段を備える請求項1に記載の熱媒体循環システム。
  3.  前記第一循環運転において、前記流路切換手段が前記第一流路に切り換えられ、前記加熱手段により加熱された前記熱媒体が前記蓄熱槽を通らずに前記供給路に流入する請求項2に記載の熱媒体循環システム。
  4.  前記熱需要部を通過した前記熱媒体を、前記加熱手段及び前記蓄熱槽を通さずに、前記供給路に流入させるバイパス路と、
     前記バイパス路を通る前記熱媒体の流量を調整する流量調整手段と、
     を備える請求項2または請求項3に記載の熱媒体循環システム。
  5.  前記蓄熱槽から流出した前記熱媒体を前記加熱手段に流入させる第四流路と、
     前記熱需要部を通過した前記熱媒体を前記蓄熱槽に流入させる戻り路と、
     を備え、
     前記第二循環運転では、前記蓄熱槽、前記第三流路、前記供給路、前記熱需要部、前記戻り路、及び前記蓄熱槽の順に前記熱媒体が循環し、
     前記蓄熱槽、前記第四流路、前記加熱手段、前記第二流路、及び前記蓄熱槽の順に前記熱媒体が循環する蓄熱運転と、前記第二循環運転とを並行して実行可能である請求項2から請求項4のいずれか一項に記載の熱媒体循環システム。
  6.  前記加熱手段により加熱された前記熱媒体を前記蓄熱槽に流入させる蓄熱運転において前記加熱手段から流出する前記熱媒体の温度が、使用者が設定した給湯温度以上になるように制御する手段を備える請求項2から請求項5のいずれか一項に記載の熱媒体循環システム。
  7.  前記加熱手段により加熱された前記熱媒体を前記蓄熱槽に流入させる蓄熱運転において前記加熱手段から流出する前記熱媒体の温度が、前記第二循環運転において前記熱需要部に供給される前記熱媒体の温度以上になるように制御する手段を備える請求項2から請求項6のいずれか一項に記載の熱媒体循環システム。
  8.  前記加熱手段により加熱された前記熱媒体を前記蓄熱槽に流入させる蓄熱運転において前記加熱手段を通過する前記熱媒体の流量が、前記第二循環運転において前記熱需要部を通過する前記熱媒体の流量以下になるように制御する手段を備える請求項2から請求項7のいずれか一項に記載の熱媒体循環システム。
  9.  一度の蓄熱運転において前記加熱手段を通過した前記熱媒体の総体積が前記蓄熱槽の容量以上になる循環蓄熱運転において前記加熱手段を通過する前記熱媒体の流量が、前記第二循環運転において前記熱需要部を通過する前記熱媒体の流量以上になるように制御する手段を備える請求項2から請求項7のいずれか一項に記載の熱媒体循環システム。
PCT/JP2016/083414 2016-11-10 2016-11-10 熱媒体循環システム WO2018087867A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083414 WO2018087867A1 (ja) 2016-11-10 2016-11-10 熱媒体循環システム
EP16921139.8A EP3540324B1 (en) 2016-11-10 2016-11-10 Heating medium circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083414 WO2018087867A1 (ja) 2016-11-10 2016-11-10 熱媒体循環システム

Publications (1)

Publication Number Publication Date
WO2018087867A1 true WO2018087867A1 (ja) 2018-05-17

Family

ID=62109456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083414 WO2018087867A1 (ja) 2016-11-10 2016-11-10 熱媒体循環システム

Country Status (2)

Country Link
EP (1) EP3540324B1 (ja)
WO (1) WO2018087867A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3110217B1 (fr) * 2020-05-13 2022-05-06 Commissariat Energie Atomique Système de production et de distribution de chaleur et de froid et son procédé de gestion
CN112855293B (zh) * 2021-01-19 2022-03-22 西安交通大学 集成储热的工业供汽热电联产调峰调频系统及运行方法
NL2033833B1 (en) * 2022-12-23 2024-07-05 Vincent Harrie Droste Tom System for transporting and controlling liquid flow in a heating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256346A (ja) * 2007-03-14 2008-10-23 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2011257105A (ja) * 2010-06-11 2011-12-22 Tokyo Electric Power Co Inc:The 貯湯式給湯装置
JP2012237492A (ja) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp 貯湯式給湯機
JP5253582B2 (ja) * 2009-09-29 2013-07-31 三菱電機株式会社 蓄熱給湯空調機
JP2014062714A (ja) * 2012-09-24 2014-04-10 Rinnai Corp 暖房装置および給湯装置
JP2016183838A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 貯湯式ヒートポンプ給湯機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077423A1 (en) * 2008-01-02 2009-07-08 Esbe Ab Regulation of flow temperature of a liquid in a heating circuit
JP5838914B2 (ja) * 2012-05-29 2016-01-06 三菱電機株式会社 貯湯式給湯機
EP3220061B1 (en) * 2014-11-10 2020-07-08 Mitsubishi Electric Corporation Fluid circulation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256346A (ja) * 2007-03-14 2008-10-23 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP5253582B2 (ja) * 2009-09-29 2013-07-31 三菱電機株式会社 蓄熱給湯空調機
JP2011257105A (ja) * 2010-06-11 2011-12-22 Tokyo Electric Power Co Inc:The 貯湯式給湯装置
JP2012237492A (ja) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp 貯湯式給湯機
JP2014062714A (ja) * 2012-09-24 2014-04-10 Rinnai Corp 暖房装置および給湯装置
JP2016183838A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 貯湯式ヒートポンプ給湯機

Also Published As

Publication number Publication date
EP3540324A1 (en) 2019-09-18
EP3540324A4 (en) 2019-11-13
EP3540324B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US20200088336A1 (en) Controller, Method of Operating a Water Source Heat Pump and a Water Source Heat Pump
US10401038B2 (en) Heat pump system
JP6515859B2 (ja) 貯湯式給湯システム
WO2018087867A1 (ja) 熱媒体循環システム
EP3199884B1 (en) Hot-water supply and heating system
JP6520802B2 (ja) 蓄熱システム
JP2020070898A (ja) 流路切替弁及び貯湯式給湯機
JP6645593B2 (ja) 熱媒体循環システム
JP6012530B2 (ja) 貯湯式給湯装置
JP2015152263A (ja) ヒートポンプ式暖房給湯装置
JP6888738B2 (ja) 暖房システム
JP6152312B2 (ja) 暖房機
WO2017163305A1 (ja) 熱媒体循環システム
KR20150035012A (ko) 축열식 히트펌프 보일러 시스템
JP6687156B2 (ja) 熱媒体供給システム
JP6747608B2 (ja) ヒートポンプ給湯機
JP5160141B2 (ja) 給湯システム
JP5854854B2 (ja) 給湯システム
JP2009109061A (ja) 暖房パネルを備えたヒートポンプ式空調装置
JP6834494B2 (ja) 貯湯式給湯機
JP6119672B2 (ja) 貯湯式給湯機
JP2017067327A (ja) 温水暖房装置
JP6102793B2 (ja) ヒートポンプ式暖房給湯装置
JP2023168782A (ja) 貯湯式給湯機
CN105333645A (zh) 热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921139

Country of ref document: EP

Effective date: 20190611

NENP Non-entry into the national phase

Ref country code: JP