WO2018083812A1 - 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 - Google Patents

被覆電線、端子付き電線、銅合金線、及び銅合金撚線 Download PDF

Info

Publication number
WO2018083812A1
WO2018083812A1 PCT/JP2016/089161 JP2016089161W WO2018083812A1 WO 2018083812 A1 WO2018083812 A1 WO 2018083812A1 JP 2016089161 W JP2016089161 W JP 2016089161W WO 2018083812 A1 WO2018083812 A1 WO 2018083812A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
copper alloy
terminal
electric wire
conductor
Prior art date
Application number
PCT/JP2016/089161
Other languages
English (en)
French (fr)
Inventor
坂本 慧
明子 井上
鉄也 桑原
中本 稔
佑典 大島
中井 由弘
和弘 南条
西川 太一郎
清高 宇都宮
大塚 保之
田口 欣司
啓之 小林
Original Assignee
住友電気工業株式会社
株式会社オートネットワーク技術研究所
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 株式会社オートネットワーク技術研究所, 住友電装株式会社 filed Critical 住友電気工業株式会社
Priority to US16/348,020 priority Critical patent/US11315702B2/en
Priority to DE112016007415.8T priority patent/DE112016007415T5/de
Priority to CN201680090676.1A priority patent/CN109983141B/zh
Priority to CN202110879448.5A priority patent/CN113611439A/zh
Priority to DE112017005596.2T priority patent/DE112017005596T5/de
Priority to JP2017560338A priority patent/JP6338133B1/ja
Priority to PCT/JP2017/022928 priority patent/WO2018083836A1/ja
Priority to CN201780068904.XA priority patent/CN110012676B/zh
Priority to US16/347,867 priority patent/US11315701B2/en
Priority to JP2018092130A priority patent/JP6872175B2/ja
Publication of WO2018083812A1 publication Critical patent/WO2018083812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/183Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section
    • H01R4/184Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion
    • H01R4/185Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion combined with a U-shaped insulation-receiving portion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations

Definitions

  • the present invention relates to a covered electric wire, an electric wire with a terminal, a copper alloy wire, and a copper alloy twisted wire.
  • a wire harness in which a plurality of electric wires with terminals are bundled in a wiring structure of an automobile or an industrial robot has been used.
  • An electric wire with a terminal is obtained by attaching a terminal such as a crimp terminal to a conductor exposed from an insulating coating layer at an end of the electric wire.
  • each terminal is inserted into a plurality of terminal holes provided in the connector housing and mechanically connected to the connector housing.
  • An electric wire is connected to the device main body through the connector housing.
  • Connector housings may be connected to each other, and electric wires may be connected to each other.
  • a copper-based material such as copper is mainly used as a constituent material of the conductor (for example, Patent Document 1).
  • the covered wire of the present disclosure is A covered electric wire comprising a conductor and an insulating coating layer provided outside the conductor,
  • the conductor is Fe is 0.2 mass% or more and 1.6 mass% or less
  • P is 0.05 mass% or more and 0.4 mass% or less, Containing 0.05 mass% or more and 0.7 mass% or less of Sn
  • the balance consists of Cu and impurities, It is composed of a copper alloy having a mass ratio of Fe / P of 4.0 or more, It is a stranded wire formed by twisting a plurality of copper alloy wires having a wire diameter of 0.5 mm or less.
  • the electric wire with terminal of the present disclosure is The above-described covered electric wire of the present disclosure and a terminal attached to an end of the covered electric wire are provided.
  • the copper alloy wire of the present disclosure is A copper alloy wire used for a conductor, Fe is 0.2 mass% or more and 1.6 mass% or less, P is 0.05 mass% or more and 0.4 mass% or less, Containing 0.05 mass% or more and 0.7 mass% or less of Sn, The balance consists of Cu and impurities, It is composed of a copper alloy having a mass ratio of Fe / P of 4.0 or more, The wire diameter is 0.5 mm or less.
  • the copper alloy twisted wire of the present disclosure is A plurality of the copper alloy wires of the present disclosure are twisted together.
  • FIG. 3 is a cross-sectional view of the electric wire with terminal shown in FIG. 2 cut along the line (III)-(III). It is explanatory drawing explaining the measuring method of the "impact resistance energy of a terminal mounting state" measured by the test examples 1 and 2.
  • FIG. 3 is a cross-sectional view of the electric wire with terminal shown in FIG. 2 cut along the line (III)-(III). It is explanatory drawing explaining the measuring method of the "impact resistance energy of a terminal mounting state" measured by the test examples 1 and 2.
  • the weight of the electric wire is also increasing.
  • the wire comprised of the above-described copper-based material tends to have high electrical conductivity, it tends to increase in weight. For example, if a thin copper wire having a wire diameter of 0.5 mm or less is used for the conductor, high strength by work hardening and light weight by thin diameter can be expected.
  • a thin wire has a small cross-sectional area, and when it receives an impact, the force to receive the impact is likely to be small. Therefore, a copper-based wire excellent in impact resistance is desired even if it is thin as described above.
  • the cross-sectional area of the terminal attachment portion subjected to compression processing in the conductor may be referred to as another portion (hereinafter referred to as a main line portion). ) Is smaller than the cross-sectional area. For this reason, the terminal attachment location on the conductor is likely to be a location that is easily broken when subjected to an impact. Therefore, it is desired that even a thin copper-based wire as described above is difficult to break near the terminal mounting portion when subjected to an impact, that is, excellent in impact resistance in a terminal mounted state.
  • the wires may be pulled, bent, twisted, or vibrated during use when being routed or connected to the connector housing.
  • bending or twisting is applied during use. It is more preferable to use an electric wire that is not easily broken by such operations as repeated bending and twisting and has excellent fatigue resistance, and an electric wire that has excellent adhesion to a terminal such as a crimp terminal as described above.
  • an object is to provide a covered electric wire, a terminal-attached electric wire, a copper alloy wire, and a copper alloy twisted wire that are excellent in conductivity and strength, and also excellent in impact resistance.
  • the covered electric wire, the electric wire with terminal, the copper alloy wire, and the copper alloy twisted wire of the present disclosure are excellent in conductivity and strength, and also in impact resistance.
  • the covered electric wire according to one aspect of the present disclosure is A covered electric wire comprising a conductor and an insulating coating layer provided outside the conductor,
  • the conductor is Fe is 0.2 mass% or more and 1.6 mass% or less
  • P is 0.05 mass% or more and 0.4 mass% or less
  • the balance consists of Cu and impurities, It is composed of a copper alloy having a mass ratio of Fe / P of 4.0 or more, It is a stranded wire formed by twisting a plurality of copper alloy wires having a wire diameter of 0.5 mm or less.
  • the stranded wire includes a so-called compression stranded wire formed by compression after twisting, in addition to a mere twist of a plurality of copper alloy wires.
  • a concentric twist is mentioned as a typical twisting method.
  • the wire diameter is the diameter when the copper alloy wire is a round wire, and the diameter of a circle having an equivalent area in the cross section when the cross-sectional shape is a wire other than a circle.
  • the above-mentioned covered electric wire is provided with a thin wire (copper alloy wire) made of a copper-based material in the conductor, it is excellent in conductivity and strength and is lightweight. Since this copper alloy wire is composed of a copper alloy having a specific composition, the above-described covered electric wire is excellent in conductivity and strength as well as in impact resistance as described below.
  • Fe and P are typically present in the parent phase (Cu) as precipitates and crystallized substances including Fe and P such as a compound such as Fe 2 P, and the strength improvement effect by precipitation strengthening and Cu It has the effect of maintaining high conductivity by reducing solid solution.
  • Fe is contained in a larger amount than P
  • Fe and P can easily form a compound without excess and deficiency, and it is possible to effectively prevent excess P from forming a solid solution in the matrix and lowering the conductivity. . From this point, it is easier to maintain the high conductivity of Cu.
  • Sn is included in a specific range, the further strength improvement effect by the solid solution strengthening of Sn is acquired. Since it has high strength by the above precipitation strengthening and solid solution strengthening, it has high toughness and excellent impact resistance while having high strength even when elongation is increased by heat treatment.
  • Such a covered electric wire, a copper alloy stranded wire constituting the conductor of the covered electric wire, and a copper alloy wire that is each element of the copper alloy stranded wire have a high balance of high conductivity, high strength, and high toughness. It can be said.
  • the above-mentioned covered electric wire is a conductor (twisted wire) as compared with the case where a single wire having the same cross-sectional area is used as a conductor because a twisted wire of a high-strength, high-toughness copper alloy wire is used as a conductor.
  • twisted wire As a whole, it tends to be excellent due to mechanical properties such as flexibility and twistability, and is excellent in fatigue resistance.
  • the stranded wire and the copper alloy wire tend to be work-hardened easily when plastic working with a cross-sectional reduction such as compression is performed. Therefore, when a terminal such as a crimp terminal is fixed, the above covered electric wire can be firmly fixed by work hardening, and is excellent in adhesion to the terminal.
  • the said copper alloy is a mass ratio, and the form which contains 10 to 500 ppm in total of 1 or more types of elements selected from C, Si, and Mn is mentioned.
  • the conductor is provided with a copper alloy wire having a high elongation at break, it is excellent in impact resistance, is not easily broken even by bending or twisting, and is excellent in flexibility and twistability.
  • the conductivity of the copper alloy wire is 60% IACS or more, and the tensile strength is 400 MPa or more.
  • the above form is excellent in conductivity and strength because the conductor is provided with a copper alloy wire having high conductivity and high tensile strength.
  • the above configuration can firmly fix the terminal when a terminal such as a crimp terminal is attached, and is excellent in adhesion to the terminal. Therefore, the above-mentioned form is excellent in conductivity, strength, and impact resistance, and is also excellent in terminal fixability, and can be suitably used for the above-described electric wire with terminal.
  • the above-described form has high impact energy when the terminal such as a crimp terminal is crimped, and it is difficult to break at the terminal mounting location even when the terminal is subjected to an impact. Therefore, the above-mentioned form is excellent in conductivity, strength, and impact resistance, and is also excellent in impact resistance in a terminal-mounted state, and can be suitably used for the above-described electric wire with a terminal.
  • the above-mentioned form has high impact energy of the covered electric wire itself, hardly breaks even when subjected to impact, and has excellent impact resistance.
  • the electric wire with terminal according to one aspect of the present disclosure is The covered electric wire according to any one of (1) to (7) and a terminal attached to an end of the covered electric wire.
  • the above-mentioned electric wire with a terminal is provided with the above-mentioned covered electric wire, it is excellent in conductivity and strength as described above, and also in impact resistance. Moreover, since the said electric wire with a terminal is provided with said covered electric wire, as above-mentioned, it is excellent also in fatigue resistance, the adherability with terminals, such as a crimp terminal, and the impact resistance in a terminal mounting state.
  • the copper alloy wire according to one aspect of the present disclosure is: A copper alloy wire used for a conductor, Fe is 0.2 mass% or more and 1.6 mass% or less, P is 0.05 mass% or more and 0.4 mass% or less, Containing 0.05 mass% or more and 0.7 mass% or less of Sn, The balance consists of Cu and impurities, It is composed of a copper alloy having a mass ratio of Fe / P of 4.0 or more, The wire diameter is 0.5 mm or less.
  • the above copper alloy wire is a thin wire composed of a copper-based material, when used as a conductor such as an electric wire in the state of a single wire or a stranded wire, it has excellent conductivity and strength, and also has an electric wire, etc. Contributes to weight reduction.
  • the copper alloy wire is made of a copper alloy having a specific composition including Fe, P, and Sn, and is excellent in conductivity and strength as described above, and also in impact resistance.
  • the electric wire not only has excellent conductivity and strength, but also has excellent impact resistance, and further, fatigue resistance, adhesion to a terminal such as a crimp terminal, terminal It is possible to construct an electric wire that is also excellent in impact resistance in the mounted state.
  • the copper alloy twisted wire according to one aspect of the present disclosure is A plurality of the copper alloy wires described in (9) above are twisted together.
  • the above-mentioned copper alloy stranded wire substantially maintains the composition and characteristics of the copper alloy wire of (9) above, and is excellent in conductivity and strength and also in impact resistance. Therefore, by using the above copper alloy stranded wire as the conductor of the electric wire, the electric wire excellent in conductivity and strength and also in impact resistance, and further, fatigue resistance, adhesion to a terminal such as a crimp terminal, It is possible to construct an electric wire that has excellent impact resistance when the terminal is attached.
  • the above form has high impact energy when the terminal is mounted.
  • a copper alloy stranded wire of the above-described form as a conductor and a covered electric wire provided with an insulating coating layer
  • the coated electric wire having a higher impact energy in a terminal-mounted state typically the above-described coating of (6) Electric wires can be constructed. Therefore, the above-described embodiment can be suitably used for conductors such as covered electric wires and electric wires with terminals, which are excellent in conductivity, strength, and impact resistance, and also excellent in impact resistance in a terminal-mounted state.
  • the impact energy of the copper alloy stranded wire itself is high. If such a copper alloy stranded wire of the above-mentioned form is used as a conductor and a covered electric wire provided with an insulating coating layer, a covered electric wire with higher impact resistance energy, typically the above-described covered electric wire of (7) can be constructed. Therefore, the said form can be utilized suitably for conductors, such as a covered electric wire and an electric wire with a terminal which are excellent in impact resistance while being excellent in electroconductivity and intensity
  • the copper alloy wire 1 of the embodiment is used for a conductor of an electric wire such as the covered electric wire 3 (FIG. 1), and is composed of a copper alloy containing a specific additive element in a specific range.
  • the copper alloy contains Fe of 0.2% to 1.6%, P of 0.05% to 0.4%, Sn of 0.05% to 0.7%, with the balance being Cu and This is an Fe—P—Sn—Cu alloy made of impurities.
  • the ratio Fe / P of the Fe content to the P content is 4.0 or more by mass ratio.
  • the impurities are mainly inevitable.
  • each element will be described in detail.
  • ⁇ Fe Fe is present mainly by precipitation in Cu as a parent phase, and contributes to improvement in strength such as tensile strength.
  • Fe is contained in an amount of 0.2% or more, precipitates containing Fe and P can be generated satisfactorily, and the copper alloy wire 1 having excellent strength can be obtained by precipitation strengthening. And it can be set as the copper alloy wire 1 which has high electrical conductivity by suppressing the solid solution to the matrix of P by said precipitation.
  • the strength of the copper alloy wire 1 is likely to increase as the Fe content increases. When it is desired to increase the strength, the Fe content can be over 0.35%, further 0.4% or more, 0.45% or more.
  • the Fe content is 1.5% or less, 1.2% or less, 1.0% or less, or less than 0.9%. It can be.
  • P mainly exists as a precipitate together with Fe and contributes to improvement in strength such as tensile strength, that is, functions mainly as a precipitation strengthening element.
  • P is contained in an amount of 0.05% or more, precipitates containing Fe and P can be generated satisfactorily, and the copper alloy wire 1 having excellent strength can be obtained by precipitation strengthening.
  • the strength of the copper alloy wire 1 is likely to increase as the P content increases.
  • the P content can be more than 0.1%, further 0.11% or more, and 0.12% or more.
  • a part of the contained P functions as a deoxidizing agent and allows the matrix to exist as an oxide.
  • P When P is contained in the range of 0.4% or less, it is easy to suppress coarsening of precipitates containing Fe and P, and breakage and disconnection can be reduced. Although depending on the amount of Fe and manufacturing conditions, the smaller the P content, the easier it is to suppress the above-mentioned coarsening. When it is desired to suppress the coarsening of the precipitate (reduction of breakage and disconnection), the P content can be 0.35% or less, further 0.3% or less, or 0.25% or less.
  • Fe and P are present as compounds. easy. As a result, the effect of improving the strength by precipitation strengthening can be obtained appropriately, and the effect of maintaining the high conductivity of the mother phase by reducing the solid solution of excess P can be appropriately achieved.
  • the copper alloy wire 1 can be obtained. If Fe / P is 4.0 or more, it is excellent in electroconductivity as described above, and also has high strength. The larger the Fe / P, the better the conductivity, and the Fe / P can be more than 4.0 and further 4.1 or more. Fe / P can be selected in the range of 30 or less, for example, but if it is 20 or less, and further 10 or less, it is easy to suppress the coarsening of precipitates due to excessive Fe.
  • ⁇ Sn Sn mainly exists as a solid solution in Cu as a parent phase, and contributes to improvement of strength such as tensile strength, that is, functions mainly as a solid solution strengthening element.
  • Sn is contained in an amount of 0.05% or more, the copper alloy wire 1 can be made superior in strength. The greater the Sn content, the higher the strength.
  • the Sn content can be 0.08% or more, further 0.1% or more, and 0.12% or more.
  • Sn is contained in a range of 0.7% or less, a decrease in electrical conductivity due to excessive dissolution of Sn in Cu can be suppressed, and the copper alloy wire 1 having high electrical conductivity can be obtained.
  • the Sn content can be 0.6% or less, further 0.55% or less, and 0.5% or less.
  • the copper alloy wire 1 of the embodiment has high strength due to precipitation strengthening of Fe and P and solid solution strengthening of Sn as described above. Therefore, even when artificial aging and softening are performed in the manufacturing process, the copper alloy wire 1 having high strength and high toughness can be obtained while having high strength and the like.
  • the copper alloy constituting the copper alloy wire 1 of the embodiment can include an element having a deoxidizing effect on Fe, P, Sn, and the like.
  • the copper alloy includes, by mass ratio, a total of one or more elements selected from C, Si, and Mn from 10 ppm to 500 ppm.
  • elements such as Fe, P, and Sn may be oxidized.
  • these elements become oxides, the above-mentioned precipitates cannot be formed properly or cannot be dissolved in the mother phase, resulting in high conductivity and high strength due to the inclusion of Fe and P, and the inclusion of Sn.
  • These oxides may be the starting point of breakage during wire drawing and the like, and may cause a decrease in manufacturability.
  • At least one element of C, Mn, and Si, preferably two elements (in this case, C and Mn, or C and Si are preferable), more preferably all three elements are included in a specific range.
  • the total content is 10 ppm or more, oxidation of elements such as Fe can be prevented.
  • the greater the total content the easier it is to obtain an antioxidant effect, and it can be 20 ppm or more, and more preferably 30 ppm or more.
  • said total content is 500 ppm or less, it will be difficult to cause the fall of the electroconductivity by excess containing of these deoxidizer elements, and it will be excellent in electroconductivity. Since the lower the total content is, the easier it is to suppress the above-mentioned decrease in conductivity, it can be made 300 ppm or less, further 200 ppm or less, or 150 ppm or less.
  • the content of C alone is preferably 10 ppm to 300 ppm, more preferably 10 ppm to 200 ppm, and particularly preferably 30 ppm to 150 ppm.
  • the content of only Mn or the content of only Si is preferably 5 ppm or more and 100 ppm or less, more preferably more than 5 ppm and 50 ppm or less.
  • the total content of Mn and Si is preferably 10 ppm or more and 200 ppm or less, more preferably more than 10 ppm and 100 ppm or less.
  • the above-described antioxidant effect of elements such as Fe can be easily obtained satisfactorily.
  • the content of oxygen in the copper alloy can be 20 ppm or less, 15 ppm or less, and further 10 ppm or less.
  • Examples of the structure of the copper alloy constituting the copper alloy wire 1 of the embodiment include a structure in which precipitates and crystallized substances containing Fe and P are dispersed.
  • a dispersed structure such as precipitates, preferably a structure in which fine precipitates are uniformly dispersed, it is expected to increase strength by precipitation strengthening and secure high conductivity by reducing solid solution in Cu such as P. it can.
  • the structure of the copper alloy a fine crystal structure can be mentioned.
  • the above-mentioned precipitates and the like are likely to be uniformly dispersed, and further increase in strength can be expected.
  • toughness such as elongation is likely to be high, and it is expected to be superior in impact resistance.
  • the copper alloy wire 1 of the embodiment is used as a conductor of an electric wire such as the covered electric wire 3 and a terminal such as a crimp terminal is attached to the conductor, the terminal can be firmly fixed and the terminal fixing force can be easily increased.
  • the average crystal grain size is 10 ⁇ m or less, the above-mentioned effects can be easily obtained, and it can be set to 7 ⁇ m or less, further 5 ⁇ m or less.
  • the crystal grain size can be adjusted, for example, by adjusting the production conditions (working degree, heat treatment temperature, etc.) according to the composition (Fe, P, Sn content, Fe / P values, etc.). It can be a predetermined size.
  • the average crystal grain size is measured as follows. A cross section that has been subjected to cross section polisher (CP) processing is taken, and this cross section is observed with a scanning electron microscope. An observation range of a predetermined area S 0 is taken from the observation image, and the number N of all crystals existing in the observation range is examined. An area (S 0 / N) obtained by dividing the area S 0 by the number of crystals N is defined as an area Sg of each crystal grain, and a diameter of a circle having a crystal grain area Sg and an equivalent area is defined as a crystal grain diameter R. The average of the diameter R of the crystal grains is defined as the average crystal grain size.
  • the observation range can be the range where the number of crystals n is 50 or more, or the entire cross section. Thus, by sufficiently widening the observation range, errors caused by things other than crystals (such as precipitates) that may exist in the area S 0 can be sufficiently reduced.
  • the copper alloy wire 1 of the embodiment can have its wire diameter set to a predetermined size by adjusting the degree of processing (cross-sectional reduction rate) during wire drawing during the manufacturing process.
  • the copper alloy wire 1 is a thin wire having a wire diameter of 0.5 mm or less, it can be suitably used for a conductor of an electric wire that is desired to be reduced in weight, for example, a conductor for an electric wire wired in an automobile.
  • the said wire diameter can be 0.35 mm or less, and also 0.25 mm or less.
  • the cross-sectional shape of the copper alloy wire 1 of the embodiment can be selected as appropriate.
  • a typical example of the copper alloy wire 1 is a round wire having a circular cross section.
  • the cross-sectional shape varies depending on the shape of a die used for wire drawing or the shape of a molding die when the copper alloy wire 1 is a compression stranded wire.
  • the copper alloy wire 1 can be, for example, a square wire having a rectangular cross section, a polygonal shape such as a hexagon, or a deformed wire such as an ellipse.
  • the copper alloy wire 1 constituting the compression stranded wire is typically a deformed wire having an irregular cross-sectional shape.
  • the copper alloy wire 1 of the embodiment is composed of the copper alloy having the specific composition described above, so that it has excellent electrical conductivity and high strength. By being manufactured by appropriate heat treatment, high strength, high toughness, and high conductivity are provided in a well-balanced manner.
  • the copper alloy wire 1 has at least one, preferably two, tensile strength of 400 MPa or more, elongation at break of 5% or more, and conductivity of 60% IACS or more. More preferably, all three are satisfied.
  • An example of the copper alloy wire 1 is one having an electrical conductivity of 60% IACS or more and a tensile strength of 400 MPa or more.
  • an example of the copper alloy wire 1 is one having an elongation at break of 5% or more.
  • the tensile strength can be set to 405 MPa or more, 410 MPa or more, and further 415 MPa or more.
  • the elongation at break can be 6% or more, 7% or more, 8% or more, 9.5% or more, and further 10% or more. If a higher conductivity is desired, the conductivity can be 62% IACS or higher, 63% IACS or higher, and even 65% IACS or higher.
  • C is an intensity constant.
  • the index n is obtained by conducting a tensile test using a commercially available tensile tester and creating an SS curve (see also JIS G 2253 (2011)).
  • the terminal attachment portion of the conductor is subjected to plastic processing such as compression processing. It is the processed part that has been applied.
  • this processed portion is subjected to plastic processing accompanied by a reduction in cross section such as compression processing, it is harder than before the plastic processing and has an increased strength. Therefore, it is possible to reduce this processed portion, that is, the terminal attachment location in the conductor and the vicinity thereof, which are weak points of strength.
  • the work hardening index is 0.11 or more, further 0.12 or more, and 0.13 or more, it is easy to obtain the strength improvement effect by work hardening.
  • the terminal mounting location on the conductor maintains the same strength as the main location on the conductor. Since the work hardening index varies depending on the composition and manufacturing conditions, there is no particular upper limit.
  • the tensile strength, elongation at break, electrical conductivity, and work hardening index can be set to predetermined sizes by adjusting the composition and manufacturing conditions. For example, if the amount of Fe, P, Sn is increased or the degree of wire drawing is increased (thinned), the tensile strength tends to increase. For example, when heat treatment is performed after wire drawing, if the heat treatment temperature is increased, the elongation at break and conductivity are high, and the tensile strength tends to be low.
  • the copper alloy wire 1 of the embodiment also has an effect of being excellent in weldability.
  • a copper alloy wire 1 or a copper alloy twisted wire 10 described later is used as a conductor of an electric wire and another conductor wire is welded to take a branch from this conductor, the welded portion is difficult to break, and the welding strength Is expensive.
  • the copper alloy stranded wire 10 of the embodiment uses the copper alloy wire 1 of the embodiment as an element wire, and a plurality of copper alloy wires 1 are twisted together. Since the copper alloy stranded wire 10 substantially maintains the composition, structure, and characteristics of the copper alloy wire 1 that is a strand, and its cross-sectional area tends to be larger than that of a single strand, It is possible to increase the force that can be received sometimes, and it is superior in impact resistance. Further, the copper alloy stranded wire 10 is easy to bend and twist as compared with a single wire having the same cross-sectional area, and is excellent in bendability and twistability. It is difficult to break due to repeated bending.
  • the copper alloy twisted wire 10 is a collection of a plurality of copper alloy wires 1 that are easy to work and harden as described above, the copper alloy twisted wire 10 is used as a conductor of an electric wire such as the covered electric wire 3, and the conductor When a terminal such as a crimp terminal is attached, the terminal can be more firmly fixed.
  • FIG. 1 seven concentric stranded copper alloy stranded wires 10 are illustrated, but the number of twists and the twisting method can be changed as appropriate.
  • the copper alloy stranded wire 10 can be a compression stranded wire (not shown) that is compression-molded after twisting. Since the compression stranded wire is excellent in stability in a twisted state, when the compression stranded wire is a conductor of an electric wire such as the covered electric wire 3, the insulating coating layer 2 or the like is easily formed on the outer periphery of the conductor. In addition, the compression stranded wire tends to be more excellent in mechanical properties than the case where it is simply twisted, and can have a small diameter.
  • the wire diameter, cross-sectional area, twist pitch, and the like of the copper alloy twisted wire 10 can be appropriately selected according to the wire diameter, cross-sectional area, the number of twists, and the like of the copper alloy wire 1. If the cross-sectional area of the copper alloy twisted wire 10 is, for example, 0.03 mm 2 or more, the conductor cross-sectional area is large, so that the electrical resistance is small and the conductivity is excellent. Further, when the copper alloy stranded wire 10 is used as a conductor of an electric wire such as the covered electric wire 3 and a terminal such as a crimp terminal is attached to the conductor, the cross-sectional area is large to some extent, so that the terminal can be easily attached.
  • the terminal can be firmly fixed to the copper alloy twisted wire 10 as described above, and the impact resistance in the terminal mounted state is excellent.
  • the cross-sectional area can be 0.1 mm 2 or more. If the said cross-sectional area is 0.5 mm ⁇ 2 > or less, for example, it can be set as the lightweight copper alloy twisted wire 10.
  • FIG. If the twist pitch of the copper alloy twisted wire 10 is, for example, 10 mm or more, even if the strand (copper alloy wire 1) is a thin wire of 0.5 mm or less, it is easy to twist and the manufacturability of the copper alloy twisted wire 10 is improved. Excellent. When the twist pitch is, for example, 20 mm or less, the twist is not loosened even when bending is performed, and the flexibility is excellent.
  • the copper alloy stranded wire 10 of the embodiment is used as a conductor such as a covered electric wire because the copper alloy wire 1 composed of a specific copper alloy is used as a strand as described above.
  • a terminal such as a crimp terminal attached to the end of this conductor
  • the impact energy impact energy in a terminal mounting state
  • the impact resistance energy of the copper alloy twisted wire 10 in the terminal mounting state is preferably 1.6 J / m or more, more preferably 1.7 J / m or more, and the upper limit is not particularly defined.
  • the copper alloy twisted wire 10 of embodiment uses the copper alloy wire 1 comprised from a specific copper alloy as above-mentioned as a strand, it is hard to fracture
  • the impact energy of only the copper alloy twisted wire 10 is 4 J / m or more. The greater the impact resistance energy, the harder the copper alloy stranded wire 10 itself breaks when impacted. If such a copper alloy stranded wire 10 is used as a conductor, a covered electric wire having excellent impact resistance can be constructed.
  • the impact energy in the copper alloy twisted wire 10 is preferably 4.2 J / m or more, more preferably 4.5 J / m or more, and the upper limit is not particularly defined.
  • the impact resistance energy and impact resistance energy in the terminal mounting state satisfy the above-mentioned range.
  • the copper alloy twisted wire 10 according to the embodiment tends to have higher impact resistance energy and impact resistance energy in a terminal-mounted state than the single copper alloy wire 1.
  • the covered electric wire 3 of the embodiment includes a conductor and an insulating coating layer 2 provided outside the conductor, and the conductor is the copper alloy stranded wire 10 of the embodiment.
  • a covered electric wire of another embodiment what a conductor is copper alloy wire 1 (single wire) is mentioned. In FIG. 1, the case where the copper alloy twisted wire 10 is provided in a conductor is illustrated.
  • Examples of the insulating material constituting the insulating coating layer 2 include polyvinyl chloride (PVC), non-halogen resin (for example, polypropylene (PP)), a material having excellent flame retardancy, and the like.
  • PVC polyvinyl chloride
  • PP polypropylene
  • a known insulating material can be used.
  • the thickness of the insulating coating layer 2 can be appropriately selected according to a predetermined insulation strength, and is not particularly limited.
  • the covered electric wire 3 of the embodiment includes the copper alloy twisted wire 10 having the copper alloy wire 1 composed of a specific copper alloy as a strand as described above, a terminal such as a crimp terminal is provided.
  • the terminal can be firmly fixed in a state where it is attached by crimping or the like.
  • the terminal fixing force is 45N or more. The larger the terminal fixing force, the more firmly the terminal can be fixed, and it is easier to maintain the connection state between the covered electric wire 3 (conductor) and the terminal.
  • the terminal fixing force is preferably 50N or more, more than 55N, and further preferably 58N or more, and the upper limit is not particularly defined.
  • the shock-resistant energy in the terminal-mounted state of the covered electric wire 3 of the embodiment and the shock-resistant energy of the covered electric wire 3 are the bare conductors that do not include the insulating coating layer 2, that is, Compared to the copper alloy twisted wire 10, it tends to be high.
  • the impact energy in the terminal-mounted state of the coated electric wire 3 and the impact energy of only the coated electric wire 3 may be further increased as compared with the bare conductor. is there.
  • the impact energy in the terminal mounting state in the covered electric wire 3 is 3 J / m or more.
  • the impact-resistant energy of only the covered electric wire 3 (hereinafter, referred to as the impact-resistant energy of the main wire) is 6 J / m or more.
  • the insulation coating layer 2 is removed from the covered electric wire 3 to make the state of only the conductor, that is, the state of the copper alloy twisted wire 10 only, and the impact resistance energy and the impact resistance energy in the terminal mounted state of this conductor are measured.
  • the value is substantially the same as that of the copper alloy twisted wire 10.
  • a form in which the impact resistance energy of the conductor provided in the covered electric wire 3 is 1.5 J / m or more in a terminal mounting state
  • a form in which the impact energy of the conductor provided in the covered electric wire 3 is 4 J / m or more.
  • a covered electric wire having a single copper alloy wire 1 as a conductor it is preferable that at least one of terminal adhering force, impact energy in a terminal-mounted state, and main wire impact energy satisfy the above-mentioned range.
  • the covered electric wire 3 of the embodiment in which the conductor is a copper alloy twisted wire 10 is more than the covered electric wire having the single copper alloy wire 1 as a conductor, the terminal fixing force, the impact energy in the terminal mounting state, and the main wire impact energy. Tend to be higher.
  • the terminal adhering force in the coated electric wire 3 of the embodiment, the impact energy when the terminal is mounted, and the impact energy of the main wire are determined by the composition and manufacturing conditions of the copper alloy wire 1, the constituent material and thickness of the insulating coating layer 2, and the like. By adjusting, it can be made a predetermined size.
  • the composition and manufacturing conditions of the copper alloy wire 1 may be adjusted so that the above-described specific parameters such as the tensile strength, elongation at break, electrical conductivity, and work hardening index satisfy the specific ranges described above.
  • the electric wire with terminal 4 of the embodiment includes the covered electric wire 3 of the embodiment and the terminal 5 attached to the end of the covered electric wire 3 as shown in FIG.
  • a female or male fitting portion 52 is provided at one end
  • an insulation barrel portion 54 that holds the insulating coating layer 2 is provided at the other end
  • a conductor (copper alloy in FIG. 2) is provided at the intermediate portion.
  • the crimp terminal provided with the wire barrel part 50 which holds the twisted wire 10) is illustrated. The crimp terminal is crimped to the end portion of the conductor exposed by removing the insulating coating layer 2 at the end portion of the covered electric wire 3, and is electrically and mechanically connected to the conductor.
  • Examples of the terminal 5 include a crimping type such as a crimping terminal and a melting type to which a molten conductor is connected.
  • a crimping type such as a crimping terminal
  • a melting type to which a molten conductor is connected.
  • an electric wire with a terminal of another embodiment what is provided with a covering electric wire which makes the above-mentioned copper alloy wire 1 (single wire) a conductor is mentioned.
  • the terminal-attached electric wire 4 includes a form in which one terminal 5 is attached to each of the covered electric wires 3 and a form in which one terminal 5 is provided for the plurality of covered electric wires 3. That is, the terminal-attached electric wire 4 includes a single covered electric wire 3 and a single terminal 5 as well as a plurality of covered electric wires 3 and a single terminal 5, a plurality of covered electric wires 3 and a plurality of terminals. 5 and the form provided. When a plurality of electric wires are provided, the terminal-attached electric wires 4 can be easily handled by bundling the plurality of electric wires with a binding tool or the like.
  • Each element of the copper alloy stranded wire 10 of the embodiment, each element constituting the conductor of the covered electric wire 3, and each element constituting the conductor of the terminal-attached electric wire 4 are composed of the composition of the copper alloy wire 1, the structure, Maintain characteristics or have comparable characteristics. Therefore, as an example of each of the above strands, there is a form satisfying at least one of a tensile strength of 400 MPa or more, a breaking elongation of 5% or more, and a conductivity of 60% IACS or more. Can be mentioned.
  • the terminal 5 such as a crimp terminal provided in the terminal-attached electric wire 4 itself can be used as a terminal used for measuring the terminal fixing force of the terminal-attached electric wire 4 and the impact energy when the terminal is attached.
  • the covered electric wire 3 of the embodiment can be used for wiring portions of various electric devices.
  • the coated electric wire 3 of the embodiment is suitably used for wiring used in a state in which the terminal 5 is attached to the end, for example, a transport device such as an automobile or an airplane, or a control device such as an industrial robot. it can.
  • the electric wire 4 with a terminal according to the embodiment can be used for wiring of various electric devices such as the transfer device and the control device.
  • the covered electric wire 3 and the electric wire 4 with a terminal of such embodiment can be utilized suitably for the component of various wire harnesses, such as a wire harness for motor vehicles.
  • the wire harness including the covered electric wire 3 and the terminal-attached electric wire 4 of the embodiment can easily maintain a connection state with the terminal 5 and can improve reliability.
  • the copper alloy wire 1 of the embodiment and the copper alloy twisted wire 10 of the embodiment can be used for conductors of electric wires such as the covered electric wire 3 and the electric wire 4 with a terminal.
  • the copper alloy wire 1 of the embodiment is made of a specific copper alloy containing Fe, P, and Sn, and is excellent in conductivity and strength and excellent in impact resistance.
  • the copper alloy stranded wire 10 according to the embodiment using the copper alloy wire 1 as an element wire is excellent in conductivity and strength and also in impact resistance.
  • the covered electric wire 3 of the embodiment includes the copper alloy stranded wire 10 of the embodiment in which the copper alloy wire 1 of the embodiment is used as a conductor, the conductor 3 is excellent in conductivity and strength and excellent in impact resistance.
  • the terminal 5 such as a crimp terminal is crimped
  • the covered electric wire 3 can firmly fix the terminal 5 and also has excellent impact resistance when the terminal 5 is attached.
  • the electric wire with terminal 4 of the embodiment includes the covered electric wire 3 of the embodiment, it is excellent in conductivity and strength and excellent in impact resistance. Furthermore, the electric wire 4 with a terminal can firmly fix the terminal 5 and also has excellent impact resistance when the terminal 5 is mounted. These effects will be specifically described in Test Examples 1 and 2.
  • the copper alloy wire 1, the copper alloy twisted wire 10, the covered electric wire 3, and the terminal-attached electric wire 4 of the embodiment can be manufactured by a manufacturing method including the following steps, for example. The outline of each process is listed below.
  • (Copper alloy wire) ⁇ Continuous Casting Process> A cast material is produced by continuously casting a molten copper alloy having a specific composition described above.
  • ⁇ Wire Drawing Process> A wire drawing material is produced by subjecting the cast material or a work material obtained by processing the cast material to wire drawing.
  • ⁇ Heat treatment step> The wire drawing material is heat treated to produce a heat treatment material. This heat treatment is typically performed by artificial aging for depositing precipitates containing Fe and P from a copper alloy in which Fe and P are in a solid solution state, and by wire drawing work hardened by wire drawing to the final wire diameter. And softening to improve elongation.
  • this heat treatment is called aging / softening treatment.
  • the solution treatment is a heat treatment for the purpose of forming a supersaturated solid solution, and can be applied after the continuous casting step and at any time before the aging / softening treatment.
  • the above ⁇ heat treatment step> includes subjecting the twisted wire or the compressed twisted wire to aging / softening heat treatment.
  • the heat-treated material is a stranded wire or a compression stranded wire
  • the stranded wire or the compressed stranded wire may be further provided with a second heat treatment step for performing an aging / softening heat treatment, or the second heat treatment step may be omitted. May be.
  • the heat treatment conditions can be adjusted so that the above-mentioned characteristic parameters satisfy a specific range. By adjusting the heat treatment conditions, for example, it is easy to suppress the growth of crystal grains to form a fine crystal structure, and to have high strength and high elongation.
  • the copper alloy wire (the copper alloy wire 1 of the embodiment) manufactured by the above-described copper alloy wire manufacturing method or the above-described copper
  • a coating step of forming an insulating coating layer on the outer periphery of a copper alloy stranded wire (copper alloy stranded wire 10 of the embodiment) manufactured by the method for manufacturing an alloy stranded wire is provided.
  • a method for forming the insulating coating layer a known method such as extrusion coating or powder coating can be used.
  • a cast material is produced by continuously casting a molten copper alloy having a specific composition containing Fe, P, and Sn in a specific range.
  • the atmosphere during melting is a vacuum atmosphere, oxidation of Fe, P, Sn, etc. can be prevented.
  • the atmosphere at the time of melting is an air atmosphere, atmosphere control is unnecessary and productivity can be improved.
  • Examples of the method for adding C (carbon) include covering the molten metal surface with charcoal pieces or charcoal powder.
  • C can be supplied into the molten metal from charcoal pieces or charcoal powder in the vicinity of the hot water surface.
  • Mn and Si raw materials containing these may be prepared separately and mixed in the molten metal. In this case, even if a portion exposed from a gap formed by charcoal pieces or charcoal powder on the hot water surface comes into contact with oxygen in the atmosphere, oxidation near the hot water surface can be suppressed.
  • Examples of the raw material include simple substances of Mn and Si, and alloys of Mn, Si and Fe.
  • a high-purity carbon made of few impurities as a crucible or a mold because impurities are hardly mixed into the molten metal.
  • the copper alloy wire 1 of the embodiment typically includes Fe and P as precipitates and Sn as a solid solution. Therefore, it is preferable that the manufacturing process of the copper alloy wire 1 includes a process of forming a supersaturated solid solution. For example, a solution treatment step for performing a solution treatment can be provided separately. In this case, a supersaturated solid solution can be formed at an arbitrary time. On the other hand, if the casting rate of the supersaturated solid solution is made by increasing the cooling rate when continuous casting is performed, the coated wire is finally excellent in electrical and mechanical properties without providing a solution treatment step. A copper alloy wire 1 suitable for a conductor such as 3 can be manufactured. Therefore, as a method for producing the copper alloy wire 1, it is proposed to perform continuous casting, in particular, to rapidly cool by increasing the cooling rate in the cooling process.
  • the continuous casting method various methods such as a belt-and-wheel method, a twin belt method, and an upcast method can be used.
  • the upcast method is preferable because it can reduce impurities such as oxygen and easily prevent oxidation of Cu, Fe, P, Sn and the like.
  • the cooling rate in the cooling process is preferably more than 5 ° C / sec, more preferably more than 10 ° C / sec, and more than 15 ° C / sec.
  • the cast material can be subjected to various types of plastic processing and cutting.
  • the plastic working include conform extrusion, rolling (hot, warm, cold) and the like.
  • the cutting process include peeling.
  • ⁇ Wire drawing process> In this step, at least one pass, typically a plurality of passes of wire drawing (cold) is performed on the cast material or the work material obtained by processing the cast material, and a predetermined final wire diameter is obtained. A wire drawing material is produced.
  • the degree of processing for each pass may be appropriately adjusted according to the composition, final wire diameter, and the like.
  • intermediate heat treatment is performed before wire drawing or multiple passes are performed, workability can be improved by performing intermediate heat treatment between passes. The conditions for the intermediate heat treatment can be appropriately selected so that desired workability can be obtained.
  • ⁇ Heat treatment process> an aging / softening treatment for artificial aging and softening is performed as described above. With this aging / softening treatment, it is possible to improve the strength improvement effect by precipitation strengthening of the above-mentioned precipitates and the like, and to maintain the high conductivity by reducing the solid solution in Cu. Alloy wire 1 and copper alloy twisted wire 10 are obtained. Moreover, the copper alloy wire 1 and the copper alloy twisted wire 10 which can improve toughness, such as elongation, are excellent in toughness, maintaining high intensity
  • the conditions for aging / softening treatment include, for example, the following if batch treatment is used.
  • (Heat treatment temperature) 350 ° C. or higher and 550 ° C. or lower, preferably 400 ° C. or higher and 500 ° C. or lower
  • (holding time) 1 hour or longer and 40 hours or shorter, preferably 3 hours or longer and 20 hours or shorter From the above ranges, depending on the composition, processing state, etc. To select. As specific examples, reference may be made to Test Examples 1 and 2 described later. In addition, you may utilize continuous processes, such as a furnace type and an electricity supply type.
  • the conductivity, elongation at break, impact resistance energy in the terminal mounting state, and impact resistance energy of the main line tend to be improved.
  • the heat treatment temperature is low, growth of crystal grains can be suppressed and tensile strength tends to be improved.
  • the above-mentioned precipitate is sufficiently deposited, the strength is high and the conductivity tends to be improved.
  • the aging treatment can be mainly performed during the wire drawing, and the final twisted wire can be mainly softened.
  • the conditions for the aging treatment and the conditions for the softening treatment may be selected from the conditions for the aging / softening treatment described above.
  • the copper alloy wire was manufactured by one of the manufacturing patterns (A) to (C) shown in Table 1 (final wire diameter ⁇ 0.35 mm or ⁇ 0.16 mm).
  • the covered electric wire was manufactured by any one of the manufacturing patterns (a) to (c) shown in Table 1.
  • Electrolytic copper purity 99.99% or more
  • a mother alloy containing each element shown in Table 2 or a simple element were prepared as raw materials.
  • the prepared raw material was melted in the air using a high-purity carbon crucible (impurity amount of 20 ppm by mass or less) to prepare a molten copper alloy.
  • Table 2 shows the composition of the copper alloy (remainder Cu and impurities).
  • Continuous casting material (wire diameter ⁇ 12.5 mm or ⁇ 9.5 mm) having a circular cross-section by an upcast method using the above-described molten copper alloy and a high-purity carbon mold (impurity amount of 20 mass ppm or less) was made.
  • the cooling rate was over 10 ° C./sec.
  • a wire drawing material having a wire diameter of 0.16 mm is produced in the same manner as the processes shown in the copper alloy wire production patterns (A) to (C), and seven wire drawing materials are prepared.
  • compression molding was performed to produce a compression stranded wire having a cross-sectional area of 0.13 mm 2 (0.13 sq), and heat treatment (aging / softening treatment) was performed under the conditions shown in Table 2.
  • Polyvinyl chloride (PVC) or polyethylene (PP) is extruded to a predetermined thickness (selected from 0.1 mm to 0.3 mm) on the outer periphery of the obtained heat treatment material to form an insulating coating layer, and the heat treatment material is used as a conductor.
  • a covered electric wire was produced.
  • the terminal fixing force (N) of the covered electric wires (conductor cross-sectional area 0.13 mm 2 ) manufactured according to the manufacturing patterns (a) to (c) was examined.
  • the impact resistance energy (J / m, terminal mounting impact resistance E) of the conductor in the terminal mounting state the conductor impact energy (J / m, impact resistance E).
  • Table 3 The results are shown in Table 3.
  • the terminal fixing force (N) is measured as follows.
  • the insulation coating layer is peeled off at one end of the covered electric wire to expose the compressed stranded wire as a conductor, and a terminal is attached to one end of the compressed stranded wire.
  • a commercially available crimp terminal is used as the terminal and is crimped to the compression stranded wire.
  • the cross-sectional area of the terminal attachment location 12 in the conductor (compression stranded wire) is the value shown in Table 3 (the conductor remaining) with respect to the cross-sectional area of the main location other than the terminal attachment location.
  • the mounting height crimp height C / H was adjusted so that the ratio was 70% or 80%.
  • the maximum load (N) at which the terminal did not come out when the terminal was pulled at 100 mm / min was measured. This maximum load is defined as the terminal fixing force.
  • the impact energy (J / m or (N / m) / m) of the conductor is measured as follows. A weight is attached to the tip of the heat-treated material (compressed twisted wire conductor) before the insulating material is extruded, and the weight is lifted upward by 1 m and then freely dropped. The weight (kg) of the maximum weight at which the conductor is not broken is measured, and the product of the gravitational acceleration (9.8 m / s 2 ) and the drop distance is divided by the drop distance ((weight weight ⁇ 9. 8 ⁇ 1) / 1) is defined as the impact energy of the conductor.
  • the impact energy (J / m or (N / m) / m) of the conductor terminal mounted state is measured as follows.
  • a length of 1 m is prepared, and the terminal 5 is fixed by the jig J as shown in FIG.
  • a weight W is attached to the other end of the sample S, and the weight W is lifted to a fixed position of the terminal 5 and then freely dropped.
  • the weight of the largest weight W that does not break the conductor is measured, and ((weight weight ⁇ 9.8 ⁇ 1) / 1) is defined as the impact resistance energy of the terminal mounted state.
  • Sample No. 1-1-No. Samples Nos. 1-8 are all sample no. No. 1-101 Compared with 1-104, it can be seen that the conductivity, strength and impact resistance are superior. Furthermore, sample no. 1-1-No. 1-8 is also excellent in impact resistance in the terminal mounted state. Quantitatively, it is as follows. Sample No. 1-1-No. In all of 1-8, the tensile strength is 400 MPa or more, further 415 MPa or more, and many samples have 420 MPa or more. Sample No. 1-1-No. In any of the samples 1-8, the conductivity is 60% IACS or more, further 62% IACS or more, and there are many samples having 65% IACS or more, and further 68% IACS or more. Sample No.
  • the impact energy of the conductor is 4 J / m or more, further 4.5 J / m or more, and there are many samples having 5 J / m or more and further 6 J / m or more.
  • Sample No. 1-1-No. 1-8 has a shock energy of 1.5 J / m or more, more than 1.7 J / m, more than 2.5 J / m, and more than 3 J / m when the conductor terminal is mounted. Many. Sample No. provided with such a conductor. 1-1-No.
  • the covered electric wire of 1-8 is expected to have higher impact resistance energy and impact resistance energy when the terminal is mounted (see Test Example 2).
  • sample no. 1-1-No. It can be seen that all of 1-8 have high elongation at break and high strength, high toughness, and high conductivity in a well-balanced manner. Quantitatively, the elongation at break is 5% or more, more than 7%, 8% or more, and there are many samples of 10% or more. Sample No. 1-1-No. It can be seen that 1-8 has a large terminal fixing force of 45N or more, more than 50N or more than 55N, and can firmly fix the terminal. Furthermore, sample no. 1-1-No. 1-8 has a work hardening index as large as 0.1 or more, and many samples are 0.12 or more, and further 0.13 or more, and it can be seen that it is easy to obtain the strength improvement effect by work hardening.
  • the C content is 100 mass ppm or less
  • the total content of Mn and Si is 20 mass ppm or less
  • the total content of these three elements is 150 mass ppm or less, particularly 120 mass ppm or less.
  • the copper alloy having a specific composition containing Fe, P, and Sn described above is subjected to plastic working such as wire drawing and heat treatment such as aging / softening treatment, so that the conductivity and strength are as described above. It was shown that a copper alloy wire and a copper alloy twisted wire excellent in impact resistance as well as a covered electric wire and a terminal-attached electric wire using these as conductors can be obtained. Further, it can be seen that even with the same composition, the tensile strength, electrical conductivity, impact resistance energy, etc. can be varied by adjusting the heat treatment temperature (for example, Samples No. 1-2 and No. 1-3). Comparison of sample No. 1-4 and No. 1-5, comparison of sample No. 1-7 and No. 1-8).
  • Test Example 2 In the same manner as in Test Example 1, copper alloy wires having various compositions and coated wires using the obtained copper alloy wires as conductors were produced under various production conditions, and the characteristics were examined.
  • a wire drawing material having a wire diameter of 0.16 mm is manufactured, and after seven wire drawing materials are twisted together, compression molding is performed to produce a compression stranded wire having a cross-sectional area of 0.13 mm 2 Then, heat treatment was performed under the conditions shown in Table 5.
  • An insulating coating layer is formed by extruding the insulating material (PVC or PP) shown in Table 5 to the thickness (0.20 mm or 0.23 mm) shown in Table 5 on the outer periphery of the obtained heat-treated material. A covered electric wire was produced.
  • the obtained heat treated material (conductor of compressed wire) was examined for breaking load (N), breaking elongation (%), and electrical resistance per m (m ⁇ / m). Moreover, about the obtained covered electric wire, breaking load (N), breaking elongation (%), and impact resistance energy (J / m) of the main line were investigated. The results are shown in Table 5.
  • the breaking load (N) and breaking elongation (%) were measured using a general-purpose tensile testing machine in accordance with JIS Z 2241 (Metal Material Tensile Test Method, 1998).
  • the electrical resistance was measured as a resistance value at a length of 1 m using a 4-terminal resistance measuring device according to JASO D 618.
  • the impact resistance energy of the main wire was measured in the same manner as in Test Example 1 with the covered electric wire as the test object.
  • the impact resistance energy (J / m) in the terminal mounted state was measured for the obtained covered electric wire.
  • the results are shown in Table 6.
  • the insulation coating layer was peeled off at one end of the covered electric wire 3 to expose a compression stranded wire as a conductor, and a crimp terminal was attached to one end of the compression stranded wire, and measurement was performed in the same manner as in Test Example 1. (See FIG. 4).
  • the crimp terminal is a crimp terminal formed by press-molding a metal plate (made of copper alloy) into a predetermined shape, and includes a fitting part 52, a wire barrel part 50, an insulation barrel part 54 (over) as shown in FIG. A wrap type was prepared.
  • the thickness of the metal plate is the thickness (mm) shown in Table 6, and various types are provided with the plating type (tin (Sn) or gold (Au)) shown in Table 6 on the surface.
  • the mounting height (C / H (mm)) in the wire barrel portion 50 and the mounting height (V / H (mm)) in the insulation barrel portion 54 are the sizes shown in Table 6, and A crimp terminal was attached to the conductor of the covered electric wire.
  • Sample No. 2-11-No. Sample Nos. 2-14 have the same wire diameter or the same conductor cross-sectional area. Compared with 2-101, it can be seen that the balance of conductivity, strength, and impact resistance is provided in a well-balanced manner. Further, as shown in Table 6, sample No. 2-11-No. Each of 2-14 is excellent in impact resistance in the terminal mounted state. Quantitatively, it is as follows. Sample No. 2-11-No. All of 2-14 have a tensile strength of 400 MPa or more, and further 450 MPa or more (Table 4). Sample No. 2-11-No. In any of the cases 2-14, the conductivity is 60% IACS or more, and further 62% IACS or more (Table 4). Sample No.
  • 2-11-No. All of 2-14 have impact energy of 9 J / m or more, and further 10 J / m or more (Table 5).
  • Sample No. 2-11-No. In 2-14, the impact energy in the terminal mounted state is 3 J / m or more, more than 3.5 J / m or more, 3.8 J / m or more, and there are many samples of 4 J / m or more (Table 6). .
  • C / H and V / H are the same, it can be said that the impact energy in the terminal mounting state can be further increased by changing the terminal plating type, coating type, coating thickness, and the like. (For example, see Condition No. 2 and Condition No. 3 in Table 6 for comparison).
  • Fe and P were prepared by providing a copper alloy wire made of a copper alloy having a specific composition containing Fe, P, and Sn in the conductor. It is considered that the effect of improving the strength by precipitation strengthening of Sn and the solid solution strengthening of Sn and the effect of maintaining the high conductivity of Cu by reducing the solid solution of P and the like were successfully obtained.
  • Test Example 1 by appropriately containing C, Mn, and Si, an antioxidant effect of Fe, P, and Sn and an effect of suppressing the decrease in conductivity due to the inclusion of a deoxidizer element such as C were obtained. it is conceivable that. Furthermore, it is considered to be excellent in toughness while having high strength, and excellent in impact resistance and impact resistance in a terminal-mounted state.
  • the present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • the composition of the copper alloys of Test Examples 1 and 2 can be appropriately changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、前記導体は、Feを0.2質量%以上1.6質量%以下、Pを0.05質量%以上0.4質量%以下、Snを0.05質量%以上0.7質量%以下含有し、残部がCu及び不純物からなり、質量比で、Fe/Pが4.0以上である銅合金から構成され、線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である被覆電線。

Description

被覆電線、端子付き電線、銅合金線、及び銅合金撚線
 本発明は、被覆電線、端子付き電線、銅合金線、及び銅合金撚線に関する。
 本出願は、2016年11月07日付の日本国出願「特願2016-217040」に基づく優先権を主張し、上記日本国出願に記載された全ての記載内容を援用するものである。
 従来、自動車や産業用ロボットなどの配線構造に複数の端子付き電線を束ねたワイヤーハーネスが利用されている。端子付き電線は、電線の端部において絶縁被覆層から露出させた導体に圧着端子などの端子が取り付けられたものである。代表的には、各端子は、コネクタハウジングに設けられた複数の端子孔にそれぞれ挿入されて、コネクタハウジングに機械的に接続される。このコネクタハウジングを介して、機器本体に電線が接続される。コネクタハウジング同士が接続されて、電線同士が接続されることもある。上記導体の構成材料には、銅などの銅系材料が主流である(例えば、特許文献1)。
特開2014-156617号公報
 本開示の被覆電線は、
 導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、
 前記導体は、
  Feを0.2質量%以上1.6質量%以下、
  Pを0.05質量%以上0.4質量%以下、
  Snを0.05質量%以上0.7質量%以下含有し、
  残部がCu及び不純物からなり、
  質量比で、Fe/Pが4.0以上である銅合金から構成され、
  線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である。
 本開示の端子付き電線は、
 上記の本開示の被覆電線と、前記被覆電線の端部に取り付けられた端子とを備える。
 本開示の銅合金線は、
 導体に利用される銅合金線であって、
 Feを0.2質量%以上1.6質量%以下、
 Pを0.05質量%以上0.4質量%以下、
 Snを0.05質量%以上0.7質量%以下含有し、
 残部がCu及び不純物からなり、
 質量比で、Fe/Pが4.0以上である銅合金から構成され、
 線径が0.5mm以下である。
 本開示の銅合金撚線は、
 上記の本開示の銅合金線が複数撚り合わされてなる。
実施形態の被覆電線を示す概略斜視図である。 実施形態の端子付き電線について、端子近傍を示す概略側面図である。 図2に示す端子付き電線を(III)-(III)切断線で切断した横断面図である。 試験例1,2で測定した「端子装着状態の耐衝撃エネルギー」の測定方法を説明する説明図である。
[本開示が解決しようとする課題]
 導電性及び強度に優れる上に、耐衝撃性にも優れる電線が望まれている。特に、導体を構成する線材が細くても、衝撃を受けた場合に破断し難い電線が望まれる。
 昨今、自動車の高性能化や高機能化などに伴って、車載される各種の電気機器、制御機器などが増加し、これらの機器に使用される電線も増加傾向にある。従って、電線の重量も増加傾向にある。一方で、環境保全のため、自動車の燃費の向上などを目的として、電線の軽量化が望まれる。上述の銅系材料で構成される線材は、高い導電率を有し易いものの、重量が大きくなり易い。例えば、線径0.5mm以下の細い銅系線材を導体に用いれば、加工硬化による高強度化、細径による軽量化が期待できる。しかし、上述のように細い線材では、断面積が小さく、衝撃を受けた場合に衝撃を受けられる力が小さくなり易いため、衝撃を受けると破断し易い。従って、上述のように細くても、耐衝撃性に優れる銅系線材が望まれる。
 上述のように圧着端子などの端子が取り付けられた状態で使用される電線では、導体における圧縮加工が施された端子取付箇所の断面積は、その他の箇所(以下、本線箇所と呼ぶことがある)の断面積よりも小さい。このことから、導体における端子取付箇所は、衝撃を受けた場合に破断し易い箇所となり易い。従って、上述のような細い銅系線材であっても、衝撃を受けた場合に端子取付箇所近傍が破断し難いこと、即ち、端子装着状態での耐衝撃性にも優れることが望まれる。
 更に、車載用途などの電線では、配策時や、コネクタハウジングとの接続時などで引っ張られたり、曲げや捻回が加えられたり、使用時に振動が与えられたりすることが考えられる。ロボット用途などの電線では、使用時に曲げや捻回が与えられることが考えられる。このような繰り返しの曲げや捻回などの動作によっても破断し難く、耐疲労性に優れる電線や、上述のように圧着端子などの端子との固着性に優れる電線がより好ましい。
 そこで、導電性及び強度に優れる上に、耐衝撃性にも優れる被覆電線、端子付き電線、銅合金線、及び銅合金撚線を提供することを目的の一つとする。
[本開示の効果]
 本開示の被覆電線、端子付き電線、銅合金線、及び銅合金撚線は、導電性及び強度に優れる上に、耐衝撃性にも優れる。
[本願発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
(1)本開示の一態様に係る被覆電線は、
 導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、
 前記導体は、
  Feを0.2質量%以上1.6質量%以下、
  Pを0.05質量%以上0.4質量%以下、
  Snを0.05質量%以上0.7質量%以下含有し、
  残部がCu及び不純物からなり、
  質量比で、Fe/Pが4.0以上である銅合金から構成され、
  線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である。
 上記の撚線は、複数の銅合金線を単に撚り合せたものの他、撚り合せ後に圧縮成形された、いわゆる圧縮撚線を含む。後述する(10)の銅合金撚線についても同様である。代表的な撚り方法として、同心撚りが挙げられる。
 線径とは、銅合金線が丸線の場合には直径とし、横断面形状が円形以外の線材である場合には、横断面における等価面積の円の直径とする。
 上記の被覆電線は、銅系材料から構成される細径の線材(銅合金線)を導体に備えるため、導電性及び強度に優れる上に軽量である。この銅合金線は、特定の組成の銅合金から構成されるため、上記の被覆電線は、以下に説明するように、導電性及び強度により優れる上に、耐衝撃性にも優れる。上記銅合金においてFe及びPは、代表的には、FePなどの化合物といったFeやPを含む析出物や晶出物として母相(Cu)に存在し、析出強化による強度向上効果とCuへの固溶低減による高い導電率の維持効果とを有する。特に、Pに対してFeを多めに含むため、FeとPとが過不足なく化合物を形成し易く、過剰のPが母相に固溶して導電率が低下することを効果的に防止できる。この点から、Cuの高い導電率を更に維持し易い。かつ、Snを特定の範囲で含むため、Snの固溶強化による更なる強度向上効果が得られる。上述の析出強化と固溶強化とによって高い強度を有するため、熱処理によって伸びなどを高めた場合にも高い強度を有しつつ、高い靭性も有して耐衝撃性にも優れる。このような上記の被覆電線、この被覆電線の導体を構成する銅合金撚線、この銅合金撚線の各素線である銅合金線は、高導電率、高強度、高靭性をバランスよく備えるといえる。
 また、上記の被覆電線は、上述のように高強度、高靭性の銅合金線の撚線を導体とするため、同一断面積の単線を導体とする場合に比較して、導体(撚線)全体として屈曲性や捻回性といった機械的特性により優れる傾向にあり、耐疲労性に優れる。更に、上記撚線や銅合金線は、圧縮加工などの断面減少を伴う塑性加工を施した場合に加工硬化し易い傾向にある。そのため、上記の被覆電線は、圧着端子などの端子が固着された場合に、加工硬化によって、上記端子を強固に固着でき、上記端子との固着性にも優れる。この加工硬化によって導体(撚線)における端子接続箇所の強度を高められる。そのため、衝撃を受けた場合に端子接続箇所で破断し難く、上記の被覆電線は、端子装着状態での耐衝撃性にも優れる。
(2)上記の被覆電線の一例として、
 前記銅合金は、質量割合で、C,Si,及びMnから選択される1種以上の元素を合計で10ppm以上500ppm以下含む形態が挙げられる。
 C,Si,Mnは、特定の範囲で含有することで、Fe,P,Snなどの脱酸剤として機能し、これらの元素の酸化を低減、防止して、これらの元素の含有による高導電性及び高強度という効果を適切に得られる。また、上記形態は、C,Si,Mnの過剰含有による導電率の低下を抑制できることからも、導電性に優れる。従って、上記形態は、導電性及び強度により優れる。
(3)上記の被覆電線の一例として、
 前記銅合金線の破断伸びが5%以上である形態が挙げられる。
 上記形態は、破断伸びが高い銅合金線を導体に備えるため、耐衝撃性に優れる上に、曲げや捻回によっても破断し難く、屈曲性、捻回性にも優れる。
(4)上記の被覆電線の一例として、
 前記銅合金線の導電率が60%IACS以上であり、引張強さが400MPa以上である形態が挙げられる。
 上記形態は、導電率及び引張強さが高い銅合金線を導体に備えるため、導電性及び強度に優れる。
(5)上記の被覆電線の一例として、
 端子固着力が45N以上である形態が挙げられる。
 端子固着力、後述する(6),(11)端子装着状態での耐衝撃エネルギー、(7),(12)耐衝撃エネルギーの測定方法は後述する(試験例1,2参照)。
 上記形態は、圧着端子などの端子が取り付けられた場合に端子を強固に固着でき、端子との固着性に優れる。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子固着性にも優れ、上述の端子付き電線などに好適に利用できる。
(6)上記の被覆電線の一例として、
 端子が取り付けられた状態での耐衝撃エネルギーが3J/m以上である形態が挙げられる。
 上記形態は、圧着端子などの端子が圧着された端子装着状態での耐衝撃エネルギーが高く、端子装着状態で衝撃を受けた場合でも端子取付箇所で破断し難い。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子装着状態での耐衝撃性にも優れ、上述の端子付き電線などに好適に利用できる。
(7)上記の被覆電線の一例として、
 前記被覆電線のみの耐衝撃エネルギーが6J/m以上である形態が挙げられる。
 上記形態は、被覆電線自体の耐衝撃エネルギーが高く、衝撃を受けた場合でも破断し難く、耐衝撃性に優れる。
(8)本開示の一態様に係る端子付き電線は、
 上記(1)から(7)のいずれか一つに記載の被覆電線と、前記被覆電線の端部に取り付けられた端子とを備える。
 上記の端子付き電線は、上記の被覆電線を備えるため、上述のように導電性及び強度に優れる上に、耐衝撃性にも優れる。また、上記の端子付き電線は、上記の被覆電線を備えるため、上述のように耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる。
(9)本開示の一態様に係る銅合金線は、
 導体に利用される銅合金線であって、
 Feを0.2質量%以上1.6質量%以下、
 Pを0.05質量%以上0.4質量%以下、
 Snを0.05質量%以上0.7質量%以下含有し、
 残部がCu及び不純物からなり、
 質量比で、Fe/Pが4.0以上である銅合金から構成され、
 線径が0.5mm以下である。
 上記の銅合金線は、銅系材料から構成される細径の線材であるため、単線又は撚線の状態で電線などの導体に利用される場合に、導電性及び強度に優れる上に電線などの軽量化に寄与する。特に、上記の銅合金線は、Fe,P,Snを含む特定の組成の銅合金から構成されて、上述のように導電性及び強度により優れる上に耐衝撃性にも優れる。従って、上記の銅合金線を電線の導体に利用することで、導電性及び強度に優れる上に耐衝撃性にも優れる電線、更には耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる電線を構築できる。
(10)本開示の一態様に係る銅合金撚線は、
 上記(9)に記載の銅合金線が複数撚り合わされてなる。
 上記の銅合金撚線は、上記(9)の銅合金線の組成及び特性を実質的に維持しており、導電性及び強度に優れる上に耐衝撃性にも優れる。従って、上記の銅合金撚線を電線の導体に利用することで、導電性及び強度に優れる上に耐衝撃性にも優れる電線、更には耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる電線を構築できる。
(11)上記の銅合金撚線の一例として、
 端子が取り付けられた状態での耐衝撃エネルギーが1.5J/m以上である形態が挙げられる。
 上記形態は、端子装着状態での耐衝撃エネルギーが高い。このような上記形態の銅合金撚線を導体とし、絶縁被覆層を備える被覆電線とすれば、端子装着状態での耐衝撃エネルギーがより高い被覆電線、代表的には上述の(6)の被覆電線を構築できる。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子装着状態での耐衝撃性により優れる被覆電線や端子付き電線などの導体に好適に利用できる。
(12)上記の銅合金撚線の一例として、
 前記銅合金撚線のみの耐衝撃エネルギーが4J/m以上である形態が挙げられる。
 上記形態は、銅合金撚線自体の耐衝撃エネルギーが高い。このような上記形態の銅合金撚線を導体とし、絶縁被覆層を備える被覆電線とすれば、耐衝撃エネルギーがより高い被覆電線、代表的には上述の(7)の被覆電線を構築できる。従って、上記形態は、導電性及び強度に優れる上に、耐衝撃性により優れる被覆電線や端子付き電線などの導体に好適に利用できる。
[本願発明の実施形態の詳細]
 以下、適宜、図面を参照して、本願発明の実施の形態を詳細に説明する。図中、同一符号は同一名称物を示す。元素の含有量は、断りが無い限り質量割合(質量%又は質量ppm)とする。
[銅合金線]
(組成)
 実施形態の銅合金線1は、被覆電線3などの電線の導体に利用されるものであり(図1)、特定の添加元素を特定の範囲で含む銅合金から構成される。上記銅合金は、Feを0.2%以上1.6%以下、Pを0.05%以上0.4%以下、Snを0.05%以上0.7%以下含有し、残部がCu及び不純物からなるFe-P-Sn-Cu合金である。特に、上記銅合金では、Pの含有量に対するFeの含有量の割合Fe/Pが、質量比で4.0以上である。上記不純物とは主として不可避なものをいう。以下、元素ごとに詳細に説明する。
・Fe
 Feは、主として、母相であるCuに析出して存在し、引張強さといった強度の向上に寄与する。
 Feを0.2%以上含有すると、Fe及びPを含む析出物などを良好に生成でき、析出強化によって強度に優れる銅合金線1とすることができる。かつ、上記の析出によってPの母相への固溶を抑制して、高い導電率を有する銅合金線1とすることができる。P量や製造条件にもよるが、Feの含有量が多いほど、銅合金線1の強度が高くなり易い。高強度化などを望む場合には、Feの含有量を0.35%超、更に0.4%以上、0.45%以上とすることができる。
 Feを1.6%以下の範囲で含有すると、Feを含む析出物などの粗大化を抑制し易い。その結果、粗大な析出物を起点とする破断を低減できて強度に優れる上に、製造過程では伸線加工時などに断線し難く、製造性にも優れる。P量や製造条件にもよるが、Feの含有量が少ないほど、上述の析出物の粗大化などを抑制し易い。析出物の粗大化の抑制(破断、断線の低減)などを望む場合には、Feの含有量を1.5%以下、更に1.2%以下、1.0%以下、0.9%未満とすることができる。
・P
 銅合金線1においてPは、主としてFeと共に析出物として存在して引張強さといった強度の向上に寄与する、即ち主として析出強化元素として機能する。
 Pを0.05%以上含有すると、Fe及びPを含む析出物などを良好に生成でき、析出強化によって強度に優れる銅合金線1とすることができる。Fe量や製造条件にもよるが、Pの含有量が多いほど、銅合金線1の強度が高くなり易い。高強度化などを望む場合には、Pの含有量を0.1%超、更に0.11%以上、0.12%以上とすることができる。なお、含有するPのうちの一部が脱酸剤として機能し、母相に酸化物として存在することを許容する。
 Pを0.4%以下の範囲で含有すると、Fe及びPを含む析出物などの粗大化を抑制し易く、破断や断線を低減できる。Fe量や製造条件にもよるが、Pの含有量が少ないほど、上述の粗大化を抑制し易い。析出物の粗大化の抑制(破断、断線の低減)などを望む場合には、Pの含有量を0.35%以下、更に0.3%以下、0.25%以下とすることができる。
・Fe/P
 Fe及びPを上述の特定の範囲で含有することに加えて、Pに対してFeを適切に含むと、特にPに対してFeを同等又はそれ以上含むとFeとPとを化合物として存在させ易い。その結果、析出強化による強度向上効果を適切に得られると共に、過剰のPの固溶低減による母相の高い導電率の維持効果を適切に図ることができ、導電性に優れる上に高強度な銅合金線1とすることができる。
 Fe/Pが4.0以上であれば、上述のように導電性に優れる上に高強度である。Fe/Pが大きいほど、導電性により優れる傾向にあり、Fe/Pを4.0超、更に4.1以上とすることができる。Fe/Pは例えば30以下の範囲で選択できるが、20以下、更に10以下であると、過剰なFeによる析出物の粗大化などを抑制し易い。
・Sn
 Snは、主として、母相であるCuに固溶して存在し、引張強さといった強度の向上に寄与する、即ち主として固溶強化元素として機能する。
 Snを0.05%以上含有すると、強度により優れる銅合金線1とすることができる。Snの含有量が多いほど、強度が高くなり易い。高強度化を望む場合には、Snの含有量を0.08%以上、更に0.1%以上、0.12%以上とすることができる。
 Snを0.7%以下の範囲で含有すると、SnがCuに過剰に固溶することによる導電率の低下を抑制して、導電率が高い銅合金線1とすることができる。また、Snの過剰固溶に起因する加工性の低下を抑制して、伸線加工などの塑性加工が行い易く、製造性にも優れる。高導電性、良好な加工性などを望む場合には、Snの含有量を0.6%以下、更に0.55%以下、0.5%以下とすることができる。
 実施形態の銅合金線1は、上述のようにFe及びPの析出強化とSnの固溶強化とによって高強度である。そのため、製造過程で人工時効と軟化とを行った場合にも、高い強度を有しながら高い伸びなども有して、高強度、高靭性な銅合金線1とすることができる。
・C,Si,Mn
 実施形態の銅合金線1を構成する銅合金は、Fe,P,Snなどに対して脱酸効果を有する元素を含むことができる。具体的には、上記銅合金は、質量割合で、C,Si,及びMnから選択される1種以上の元素を合計で10ppm以上500ppm以下含むことが挙げられる。
 ここで、製造過程で大気雰囲気などの酸素含有雰囲気とすると、Fe,P,Snなどの元素が酸化する恐れがある。これらの元素が酸化物となると、上述の析出物などを適切に形成できなかったり、母相に固溶できなかったりして、Fe及びPの含有による高導電性及び高強度、並びにSnの含有による固溶強化という効果を適切に得られない恐れがある。これらの酸化物が伸線加工時などに破断の起点となり、製造性の低下を招く恐れもある。C,Mn,及びSiの少なくとも1種の元素、好ましくは2種の元素(この場合、CとMn、又はCとSiが好ましい)、より好ましくは3種全ての元素を特定の範囲で含むことで、Fe及びPの析出による析出強化と高導電性の確保、Snの固溶強化をより確実に図り、導電性に優れ、高強度な銅合金線1とすることができる。
 上述の合計含有量が10ppm以上であれば、上述のFeなどの元素の酸化を防止できる。上記合計含有量が多いほど、酸化防止効果を得易く、20ppm以上、更に30ppm以上とすることができる。
 上記の合計含有量が500ppm以下であれば、これら脱酸剤元素の過剰含有による導電性の低下を招き難く、導電性に優れる。上記合計含有量が少ないほど、上記導電性の低下を抑制し易いことから、300ppm以下、更に200ppm以下、150ppm以下とすることができる。
 Cのみの含有量は、10ppm以上300ppm以下、更に10ppm以上200ppm以下、特に30ppm以上150ppm以下が好ましい。
 Mnのみの含有量、又はSiのみの含有量は、5ppm以上100ppm以下、更に5ppm超50ppm以下が好ましい。Mn及びSiの合計含有量は、10ppm以上200ppm以下、更に10ppm超100ppm以下が好ましい。
 C,Mn,Siをそれぞれ上述の範囲で含有すると、上述のFeなどの元素の酸化防止効果を良好に得易い。例えば、銅合金中の酸素の含有量を20ppm以下、15ppm以下、更に10ppm以下とすることができる。
(組織)
 実施形態の銅合金線1を構成する銅合金の組織として、Fe及びPを含む析出物や晶出物が分散する組織が挙げられる。析出物などの分散組織、好ましくは微細な析出物などが均一的に分散する組織を有することで、析出強化による高強度化、PなどのCuへの固溶低減による高い導電率の確保を期待できる。
 更に、上記銅合金の組織として、微細な結晶組織が挙げられる。この場合、上述の析出物などが均一的に分散して存在し易く、更なる高強度化が期待できる。また、破断の起点となり得る粗大結晶粒が少なく破断し難いため、伸びといった靭性も高くなり易く、耐衝撃性により優れると期待される。更に、この場合、実施形態の銅合金線1を被覆電線3などの電線の導体とし、この導体に圧着端子などの端子を取り付けると、端子を強固に固着できて、端子固着力を高め易い。
 定量的には、平均結晶粒径が10μm以下であると、上述の効果を得易く、7μm以下、更に5μm以下とすることができる。結晶粒径は、例えば、組成(Fe,P,Snの含有量、Fe/Pの値など、以下同様)に応じて製造条件(加工度や熱処理温度など、以下同様)を調整することで、所定の大きさにすることができる。
 平均結晶粒径は、以下のように測定する。クロスセクションポリッシャ(CP)加工を施した横断面をとって、この横断面を走査型電子顕微鏡で観察する。観察像から、所定の面積Sの観測範囲をとり、観測範囲内に存在する全ての結晶数Nを調べる。面積Sを結晶数Nで除した面積(S/N)を各結晶粒の面積Sgとし、結晶粒の面積Sgと等価面積の円の直径を結晶粒の直径Rとする。この結晶粒の直径Rの平均を平均結晶粒径とする。観察範囲は、結晶数nが50以上である範囲、又は横断面の全体とすることができる。このように観察範囲を十分に広くすることで、面積Sに存在し得る結晶以外のもの(析出物など)に起因する誤差を十分に小さくできる。
(線径)
 実施形態の銅合金線1は、製造過程で伸線加工時の加工度(断面減少率)などを調整することで、その線径を所定の大きさにすることができる。特に、銅合金線1が線径0.5mm以下の細線であれば、軽量化が望まれる電線の導体、例えば自動車に配線される電線用導体などに好適に利用できる。上記線径を0.35mm以下、更に0.25mm以下とすることができる。
(断面形状)
 実施形態の銅合金線1の横断面形状は、適宜選択できる。銅合金線1の代表例として、横断面円形状の丸線が挙げられる。横断面形状は、伸線加工に用いるダイスの形状や、銅合金線1を圧縮撚線とする場合には成形金型の形状などによって変化する。銅合金線1を、例えば、横断面形状が長方形などの四角形状の角線、六角形といった多角形状や楕円形状などの異形線とすることができる。圧縮撚線を構成する銅合金線1では、代表的にはその横断面形状が不定形な異形線である。
(特性)
・引張強さ、破断伸び、導電率
 実施形態の銅合金線1は、上述の特定の組成の銅合金で構成されることで、導電性に優れる上に、高強度である。適宜な熱処理が施されて製造されることで、高強度、高靭性、高導電率をバランスよく備える。定量的には、銅合金線1は、引張強さが400MPa以上であること、破断伸びが5%以上であること、及び導電率が60%IACS以上であることの少なくとも一つ、好ましくは二つ、より好ましくは三つ全てを満たすことが挙げられる。銅合金線1の一例として、導電率が60%IACS以上であり、引張強さが400MPa以上であるものが挙げられる。又は、銅合金線1の一例として、破断伸びが5%以上であるものが挙げられる。
 より高強度を望む場合には、引張強さを405MPa以上、410MPa以上、更に415MPa以上とすることができる。
 より高靭性を望む場合には、破断伸びを6%以上、7%以上、8%以上、9.5%以上、更に10%以上とすることができる。
 より高導電率を望む場合には、導電率を62%IACS以上、63%IACS以上、更に65%IACS以上とすることができる。
・加工硬化指数
 実施形態の銅合金線1の一例として、加工硬化指数が0.1以上であるものが挙げられる。
 加工硬化指数とは、引張試験の試験力を単軸方向に適用したときの塑性ひずみ域における真応力σと真ひずみεとの式σ=C×εにおいて、真ひずみεの指数nとして定義される。上記式において、Cは強度定数である。
 上記の指数nは、市販の引張試験機を用いて引張試験を行い、S-S曲線を作成することで求められる(JIS G 2253(2011)も参照)。
 加工硬化指数が大きいほど、加工硬化し易く、加工部分では、加工硬化による強度向上効果を得られる。例えば、銅合金線1を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を圧着などして取り付けた場合、導体における端子取付箇所は、圧縮加工などの塑性加工が施された加工部分となる。この加工部分は、圧縮加工などの断面減少を伴う塑性加工が施されているものの、上記塑性加工前よりも硬くなっており、強度が高められている。従って、この加工部分、即ち上記導体における端子取付箇所及びその近傍が強度の弱点となることを低減できる。加工硬化指数が0.11以上、更に0.12以上、0.13以上であると、加工硬化による強度向上効果を得易い。組成や製造条件によっては、導体における端子取付箇所は、導体における本線箇所と同等程度の強度を維持することが期待できる。加工硬化指数は、組成や製造条件で変わるため、上限は特に定めない。
 引張強さ、破断伸び、導電率、加工硬化指数は、組成や製造条件を調整することで所定の大きさにすることができる。例えば、Fe,P,Snを多くしたり、伸線加工度を高めたり(細くしたり)すると、引張強さが高くなる傾向にある。例えば、伸線後に熱処理を行う場合に熱処理温度を高めると、破断伸び及び導電率が高く、引張強さが低くなる傾向にある。
・溶接性
 実施形態の銅合金線1は、溶接性に優れるという効果も奏する。例えば、銅合金線1や後述の銅合金撚線10を電線の導体に利用して、この導体から分岐をとるために別の導体線などを溶接した場合に溶接箇所が破断し難く、溶接強度が高い。
[銅合金撚線]
 実施形態の銅合金撚線10は、実施形態の銅合金線1を素線とするものであり、銅合金線1が複数撚り合わされてなる。銅合金撚線10は、素線である銅合金線1の組成や組織、特性を実質的に維持している上に、その断面積が素線1本の場合よりも大きくなり易いため、衝撃時に受けられる力を増大できて耐衝撃性により優れる。また、銅合金撚線10は、同じ断面積を有する単線と比較して、曲げや捻じりなどを行い易く、屈曲性、捻回性にも優れており、電線の導体に用いると配策時や繰り返しの曲げなどで断線し難い。更に、銅合金撚線10は、上述のように加工硬化し易い銅合金線1が複数集められているため、銅合金撚線10を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を取り付けた場合に、上記端子をより強固に固着できる。図1では、7本の同心撚りの銅合金撚線10を例示するが、撚り合せ本数、撚り方法は適宜変更できる。
 銅合金撚線10は、撚り合せ後に圧縮成形された圧縮撚線(図示せず)とすることができる。圧縮撚線は、撚り合せ状態の安定性に優れるため、圧縮撚線を被覆電線3などの電線の導体とする場合、導体の外周に絶縁被覆層2などを形成し易い。また、圧縮撚線は、単に撚り合せた場合よりも機械的特性により優れる傾向にある上に小径にできる。
 銅合金撚線10の線径、断面積、撚りピッチなどは、銅合金線1の線径や断面積、撚り合せ本数などに応じて適宜選択できる。
 銅合金撚線10の断面積が、例えば、0.03mm以上であれば、導体断面積が大きいため、電気抵抗が小さく導電性に優れる。また、銅合金撚線10を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を取り付ける場合に断面積がある程度大きいため、上記端子を取り付け易い。更に、上述のように銅合金撚線10に上記端子を強固に固着できる上に、端子装着状態での耐衝撃性にも優れる。上記断面積を0.1mm以上とすることができる。上記断面積が、例えば、0.5mm以下であれば、軽量な銅合金撚線10とすることができる。
 銅合金撚線10の撚りピッチが、例えば、10mm以上であれば、素線(銅合金線1)が0.5mm以下の細線であっても撚り合せ易く、銅合金撚線10の製造性に優れる。上記撚りピッチが例えば20mm以下であれば、曲げなどを行った場合にも撚りがほぐれず、屈曲性に優れる。
・端子装着状態での耐衝撃エネルギー
 実施形態の銅合金撚線10は、上述のように特定の銅合金から構成される銅合金線1を素線とするため、被覆電線などの導体に利用されて、この導体の端部に圧着端子などの端子が取り付けられた状態で衝撃を受けた場合に端子取付箇所近傍で破断し難い。定量的には、銅合金撚線10において、上記端子が取り付けられた状態での耐衝撃エネルギー(端子装着状態での耐衝撃エネルギー)が1.5J/m以上であることが挙げられる。端子装着状態での耐衝撃エネルギーが大きいほど、衝撃を受けた場合に上述の端子取付箇所近傍で破断し難い。このような銅合金撚線10を導体とすれば、端子装着状態での耐衝撃性に優れる被覆電線などを構築できる。銅合金撚線10における端子装着状態での耐衝撃エネルギーは、1.6J/m以上、更に1.7J/m以上が好ましく、上限は特に定めない。
・耐衝撃エネルギー
 実施形態の銅合金撚線10は、上述のように特定の銅合金から構成される銅合金線1を素線とするため、衝撃などを受けた場合に破断し難い。定量的には、銅合金撚線10のみの耐衝撃エネルギーが4J/m以上であることが挙げられる。耐衝撃エネルギーが大きいほど、衝撃を受けた場合に銅合金撚線10自身が破断し難い。このような銅合金撚線10を導体とすれば、耐衝撃性に優れる被覆電線などを構築できる。銅合金撚線10における耐衝撃エネルギーは、4.2J/m以上、更に4.5J/m以上が好ましく、上限は特に定めない。
 なお、単線の銅合金線1についても、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが上述の範囲を満たすことが好ましい。実施形態の銅合金撚線10は、単線の銅合金線1と比較して、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが高い傾向にある。
[被覆電線]
 実施形態の銅合金線1や銅合金撚線10は、そのままでも導体に利用できるが、外周に絶縁被覆層を備えると、絶縁性に優れる。実施形態の被覆電線3は、導体と、導体の外側に設けられた絶縁被覆層2とを備え、導体が実施形態の銅合金撚線10である。別の実施形態の被覆電線として、導体が銅合金線1(単線)であるものが挙げられる。図1では、導体に銅合金撚線10を備える場合を例示する。
 絶縁被覆層2を構成する絶縁材料は、例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂(例えば、ポリプロピレン(PP))、難燃性に優れる材料などが挙げられる。公知の絶縁材料が利用できる。
 絶縁被覆層2の厚さは、所定の絶縁強度に応じて適宜選択でき、特に限定されない。
・端子固着力
 実施形態の被覆電線3は、上述のように特定の銅合金から構成される銅合金線1を素線とする銅合金撚線10を導体に備えるため、圧着端子などの端子を圧着などして取り付けた状態において、端子を強固に固着できる。定量的には、端子固着力が45N以上であることが挙げられる。端子固着力が大きいほど、端子を強固に固着でき、被覆電線3(導体)と端子との接続状態を維持し易く好ましい。端子固着力は50N以上、55N超、更に58N以上が好ましく、上限は特に定めない。
・端子装着状態での耐衝撃エネルギー
 実施形態の被覆電線3における端子装着状態での耐衝撃エネルギー、被覆電線3における耐衝撃エネルギーは、絶縁被覆層2を備えていない裸の導体、即ち実施形態の銅合金撚線10に比較して高い傾向にある。絶縁被覆層2の構成材料や厚さなどによっては、上記裸の導体と比較して、被覆電線3における端子装着状態での耐衝撃エネルギー、被覆電線3のみの耐衝撃エネルギーを更に高められる場合がある。定量的には、被覆電線3における端子装着状態での耐衝撃エネルギーが3J/m以上であることが挙げられる。被覆電線3における端子装着状態での耐衝撃エネルギーは、大きいほど衝撃を受けた場合に端子取付箇所近傍で破断し難く、3.2J/m以上、更に3.5J/m以上が好ましく、上限は特に定めない。
・耐衝撃エネルギー
 また、定量的には、被覆電線3のみの耐衝撃エネルギー(以下、本線の耐衝撃エネルギーと呼ぶことがある)が6J/m以上であることが挙げられる。本線の耐衝撃エネルギーは、大きいほど衝撃を受けた場合に破断し難く、6.5J/m以上、更に7J/m以上、8J/m以上が好ましく、上限は特に定めない。
 被覆電線3から絶縁被覆層2を除去して導体のみの状態、即ち銅合金撚線10のみの状態とし、この導体について端子装着状態での耐衝撃エネルギー、耐衝撃エネルギーを測定した場合、上述の銅合金撚線10と実質的に同様の値をとる。具体的には、被覆電線3に備える導体の端子装着状態での耐衝撃エネルギーが1.5J/m以上である形態、被覆電線3に備える導体の耐衝撃エネルギーが4J/m以上である形態が挙げられる。
 なお、単線の銅合金線1を導体に備える被覆電線においても、端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーの少なくとも一つが上述の範囲を満たすことが好ましい。導体を銅合金撚線10とする実施形態の被覆電線3は、単線の銅合金線1を導体とする被覆電線よりも、端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーがより高い傾向にある。
 実施形態の被覆電線3などにおける端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーは、銅合金線1の組成や製造条件、絶縁被覆層2の構成材料や厚さなどを調整することで、所定の大きさにすることができる。例えば、上述の引張強さ、破断伸び、導電率、加工硬化指数などの特性パラメータが上述の特定の範囲を満たすように、銅合金線1の組成や製造条件を調整することが挙げられる。
[端子付き電線]
 実施形態の端子付き電線4は、図2に示すように実施形態の被覆電線3と、被覆電線3の端部に取り付けられた端子5とを備える。ここでは、端子5として、一端に雌型又は雄型の嵌合部52を備え、他端に絶縁被覆層2を把持するインシュレーションバレル部54を備え、中間部に導体(図2では銅合金撚線10)を把持するワイヤバレル部50を備える圧着端子を例示する。圧着端子は、被覆電線3の端部において絶縁被覆層2が除去されて露出された導体の端部に圧着されて、導体と電気的及び機械的に接続される。端子5は、圧着端子などの圧着型の他、溶融した導体が接続される溶融型などが挙げられる。別の実施形態の端子付き電線として、上述の銅合金線1(単線)を導体とする被覆電線を備えるものが挙げられる。
 端子付き電線4は、図2に示すように被覆電線3ごとに一つの端子5が取り付けられた形態の他、複数の被覆電線3に対して一つの端子5を備える形態が挙げられる。即ち、端子付き電線4は、被覆電線3を一つ、及び端子5を一つ備える形態の他、複数の被覆電線3と一つの端子5とを備える形態、複数の被覆電線3と複数の端子5とを備える形態が挙げられる。複数の電線を備える場合には、結束具などによって複数の電線を束ねると、端子付き電線4を取り扱い易い。
[銅合金線、銅合金撚線、被覆電線、端子付き電線の特性]
 実施形態の銅合金撚線10の各素線、被覆電線3の導体を構成する各素線、端子付き電線4の導体を構成する各素線は、いずれも銅合金線1の組成、組織、特性を維持する、又は同等程度の特性を有する。そのため、上記の各素線の一例として、引張強さが400MPa以上であること、破断伸びが5%以上であること、及び導電率が60%IACS以上であることの少なくとも一つを満たす形態が挙げられる。
 端子付き電線4の端子固着力、端子装着状態での耐衝撃エネルギーの測定に用いる端子として、端子付き電線4自体に備える圧着端子などの端子5を利用することができる。
[銅合金線、銅合金撚線、被覆電線、端子付き電線の用途]
 実施形態の被覆電線3は、各種の電気機器の配線部分などに利用できる。特に、実施形態の被覆電線3は、端部に端子5が取り付けられた状態で使用される用途、例えば、自動車や飛行機等の搬送機器、産業用ロボット等の制御機器などの配線に好適に利用できる。実施形態の端子付き電線4は、上記搬送機器、制御機器といった各種の電気機器の配線に利用できる。このような実施形態の被覆電線3や端子付き電線4は、自動車用ワイヤーハーネスなどの各種のワイヤーハーネスの構成要素に好適に利用できる。実施形態の被覆電線3や端子付き電線4を備えるワイヤーハーネスは、端子5との接続状態を良好に維持し易く、信頼性を高められる。実施形態の銅合金線1、実施形態の銅合金撚線10は、被覆電線3や端子付き電線4などの電線の導体に利用できる。
[効果]
 実施形態の銅合金線1は、Fe,P,Snを含む特定の銅合金で構成されて、導電性及び強度に優れる上に、耐衝撃性にも優れる。このような銅合金線1を素線とする実施形態の銅合金撚線10も同様に、導電性及び強度に優れる上に、耐衝撃性にも優れる。
 実施形態の被覆電線3は、導体に、実施形態の銅合金線1を素線とする実施形態の銅合金撚線10を備えるため、導電性及び強度に優れる上に耐衝撃性にも優れる。また、被覆電線3は、圧着端子などの端子5が圧着などされた場合に、端子5を強固に固着できる上に、端子5の装着状態での耐衝撃性にも優れる。
 実施形態の端子付き電線4は、実施形態の被覆電線3を備えるため、導電性及び強度に優れる上に耐衝撃性にも優れる。更に、端子付き電線4は、端子5を強固に固着できる上に、端子5の装着状態での耐衝撃性にも優れる。
 これらの効果を試験例1,2で具体的に説明する。
[製造方法]
 実施形態の銅合金線1、銅合金撚線10、被覆電線3、端子付き電線4は、例えば、以下の工程を備える製造方法によって製造することができる。以下、各工程の概要を列挙する。
(銅合金線)
<連続鋳造工程>上述の特定の組成の銅合金の溶湯を連続鋳造して鋳造材を製造する。
<伸線工程>上記鋳造材、又は上記鋳造材に加工を施した加工材に、伸線加工を施して伸線材を製造する。
<熱処理工程>上記伸線材に熱処理を施し、熱処理材を製造する。
 この熱処理は、代表的にはFe,Pが固溶状態である銅合金からFe及びPを含む析出物を析出させる人工時効と、最終線径までの伸線加工によって加工硬化された伸線材の伸びを改善する軟化とを含むものとする。以下、この熱処理を時効・軟化処理と呼ぶ。
 時効・軟化処理以外の熱処理として、以下の溶体化処理を含むことができる。
 溶体化処理は、過飽和固溶体を形成することを目的の一つとする熱処理であり、連続鋳造工程以降、時効・軟化処理前の任意の時期に施すことができる。
(銅合金撚線)
 銅合金撚線10を製造する場合には、上述の<連続鋳造工程>、<伸線工程>、<熱処理工程>に加えて、以下の撚線工程を備える。圧縮撚線とする場合には、以下の圧縮工程を更に備える。
<撚線工程>複数の上記伸線材を撚り合わせて、撚線を製造する。又は複数の上記熱処理材を撚り合わせて、撚線を製造する。
<圧縮工程>上記撚線を所定の形状に圧縮成形して、圧縮撚線を製造する。
 上記<撚線工程>,<圧縮工程>を備える場合、上記<熱処理工程>では上記撚線又は上記圧縮撚線に時効・軟化熱処理を施すことが挙げられる。上記熱処理材の撚線又は圧縮撚線とする場合には、この撚線又は圧縮撚線に更に時効・軟化熱処理を施す第二の熱処理工程を備えてもよいし、第二の熱処理工程を省略してもよい。時効・軟化熱処理を複数回行う場合には、上述の特性パラメータが特定の範囲を満たすように熱処理条件を調整することができる。熱処理条件を調整することで、例えば結晶粒の成長を抑制して微細な結晶組織とし易く、高い強度と高い伸びとを有し易い。
(被覆電線)
 被覆電線3や単線の銅合金線1を備える被覆電線を製造する場合には、上述の銅合金線の製造方法によって製造された銅合金線(実施形態の銅合金線1)、又は上述の銅合金撚線の製造方法によって製造された銅合金撚線(実施形態の銅合金撚線10)の外周に絶縁被覆層を形成する被覆工程を備える。絶縁被覆層の形成方法には、押出被覆や粉体塗装など、公知の手法を利用できる。
(端子付き電線)
 端子付き電線4を製造する場合には、上述の被覆電線の製造方法によって製造された被覆電線(実施形態の被覆電線3など)の端部において、絶縁被覆層を除去して露出した導体に端子を取り付ける圧着工程を備える。
 以下、連続鋳造工程、伸線工程、熱処理工程を詳細に説明する。
<連続鋳造工程>
 この工程では、上述したFe,P,Snを特定の範囲で含む特定の組成の銅合金の溶湯を連続鋳造して鋳造材を作製する。ここで、溶解時の雰囲気を真空雰囲気とすると、Fe,P,Snなどの酸化を防止できる。一方、溶解時の雰囲気を大気雰囲気とすると、雰囲気制御が不要であり、生産性を向上できる。この場合、雰囲気中の酸素による上記元素の酸化防止のために、上述のC,Mn,Si(脱酸剤元素)を利用することが好ましい。
 C(炭素)の添加方法は、例えば、上記溶湯の湯面を木炭片や木炭粉などで覆うことが挙げられる。この場合、湯面近傍の木炭片や木炭粉などから溶湯中にCを供給できる。
 MnやSiは、これらを含む原料を別途用意して、上記溶湯中に混合することが挙げられる。この場合、上記湯面における木炭片や木炭粉などがつくる隙間から露出する箇所が雰囲気中の酸素に接触しても、湯面近傍での酸化を抑制できる。上記原料には、MnやSiの単体、MnやSiとFeとの合金などが挙げられる。
 上述の脱酸剤元素の添加に加えて、坩堝や鋳型として、不純物が少ない高純度カーボン製のものを利用すると、溶湯に不純物が混入され難く、好ましい。
 ここで、実施形態の銅合金線1は、代表的には、Fe及びPを析出物として存在させ、Snを固溶体として存在させる。そのため、銅合金線1の製造過程では過飽和固溶体を形成する過程を備えることが好ましい。例えば、溶体化処理を行う溶体化工程を別途設けることができる。この場合、任意の時期に過飽和固溶体を形成できる。一方、連続鋳造を行う場合に冷却速度を大きくして過飽和固溶体の鋳造材を作製すれば、別途、溶体化工程を設けることなく、最終的に電気的特性及び機械的特性に優れて、被覆電線3などの導体に適した銅合金線1を製造できる。そこで、銅合金線1の製造方法として、連続鋳造を行うこと、特に冷却過程で冷却速度を大きくして急冷することを提案する。
 連続鋳造法は、ベルトアンドホイール法、双ベルト法、アップキャスト法など各種の方法が利用できる。特に、アップキャスト法は、酸素などの不純物を低減できて、CuやFe,P,Snなどの酸化を防止し易く好ましい。冷却過程の冷却速度は、5℃/sec超、更に10℃/sec超、15℃/sec以上が好ましい。
 鋳造材には、各種の塑性加工、切削加工などの加工を施すことができる。塑性加工は、コンフォーム押出、圧延(熱間、温間、冷間)などが挙げられる。切削加工は、皮剥ぎなどが挙げられる。これらの加工を施すことで、鋳造材の表面欠陥を低減できて、伸線加工時に断線などを低減して、生産性を向上できる。特に、アップキャスト材には、これらの加工を施すと断線などし難い。
<伸線工程>
 この工程では、上記鋳造材や上記鋳造材に加工を施した上記加工材などに、少なくとも1パス、代表的には複数パスの伸線加工(冷間)を施して、所定の最終線径の伸線材を作製する。複数パスを行う場合、パスごとの加工度は、組成や最終線径などに応じて適宜調整するとよい。伸線加工前に中間熱処理を行ったり、複数パスを行う場合、パス間に中間熱処理を行ったりして、加工性を高めることができる。この中間熱処理の条件は、所望の加工性が得られるように適宜選択できる。
<熱処理工程>
 この工程では、上述のように人工時効と軟化とを目的とした時効・軟化処理を施す。この時効・軟化処理によって、上記の析出物などの析出強化による強度向上効果と、Cuへの固溶低減による高い導電率の維持効果とを良好に図ることができ、導電性及び強度に優れる銅合金線1や銅合金撚線10が得られる。また、時効・軟化処理によって、高い強度を維持しつつ、伸びなどの靭性を向上でき、靭性にも優れる銅合金線1や銅合金撚線10が得られる。
 時効・軟化処理の条件は、バッチ処理であれば、例えば、以下が挙げられる。
(熱処理温度)350℃以上550℃以下、好ましくは400℃以上500℃以下
(保持時間)1時間以上40時間以下、好ましくは3時間以上20時間以下
 上記の範囲から、組成、加工状態などに応じて選択するとよい。具体例として、後述の試験例1,2を参照するとよい。なお、炉式や通電式などの連続処理を利用してもよい。
 同じ組成の場合に上記の範囲で熱処理温度が高いと、導電率、破断伸び、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーが向上する傾向にある。上記熱処理温度が低いと、結晶粒の成長を抑制できると共に、引張強さが向上する傾向にある。上述の析出物を十分に析出させると、高強度である上に、導電率が向上する傾向にある。
 その他、伸線途中に主として時効処理を行って、最終的な撚線に主として軟化処理を行うことなどができる。時効処理の条件、軟化処理の条件は、上述の時効・軟化処理の条件から選択するとよい。
[試験例1]
 種々の組成の銅合金線、及び得られた銅合金線を導体に用いた被覆電線を種々の製造条件で作製して、特性を調べた。
 銅合金線は、表1に示す製造パターン(A)から(C)のいずれかによって製造し(最終線径φ0.35mm又はφ0.16mm)によって製造した。被覆電線は、表1に示す製造パターン(a)から(c)のいずれかによって製造した。
Figure JPOXMLDOC01-appb-T000001
 いずれの製造パターンにおいても、以下の鋳造材を用意した。
(鋳造材)
 電気銅(純度99.99%以上)と、表2に示す各元素を含有する母合金、又は元素単体とを原料として用意した。用意した原料を高純度カーボン製の坩堝(不純物量が20質量ppm以下)を用いて、大気溶解して銅合金の溶湯を作製した。銅合金の組成(残部Cu及び不純物)を表2に示す。
 上記の銅合金の溶湯と、高純度カーボン製鋳型(不純物量が20質量ppm以下)とを用いて、アップキャスト法によって、断面円形状の連続鋳造材(線径φ12.5mm又はφ9.5mm)を作製した。冷却速度は、10℃/sec超とした。
 製造パターン(a)から(c)では、銅合金線の製造パターン(A)から(C)に示す工程と同様にして、線径φ0.16mmの伸線材を作製し、7本の伸線材を撚り合せた後、圧縮成形して横断面積0.13mm(0.13sq)の圧縮撚線を作製し、表2に示す条件で熱処理(時効・軟化処理)を施した。得られた熱処理材の外周にポリ塩化ビニル(PVC)又はポリエチレン(PP)を所定の厚さ(0.1mm~0.3mmより選択)に押出して絶縁被覆層を形成し、上記熱処理材を導体とする被覆電線を作製した。
Figure JPOXMLDOC01-appb-T000002
(特性の測定)
 製造パターン(A)から(C)によって製造した銅合金線(φ0.35mm又はφ0.16mm)について、引張強さ(MPa)、破断伸び(%)、導電率(%IACS)、加工硬化指数を調べた。結果を表3に示す。
 導電率(%IACS)は、ブリッジ法によって測定した。引張強さ(MPa)、破断伸び(%)、加工硬化指数は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。
 製造パターン(a)から(c)によって製造した被覆電線(導体断面積0.13mm)について端子固着力(N)を調べた。また、製造パターン(a)から(c)によって製造した圧縮撚線を対象として導体の端子装着状態での耐衝撃エネルギー(J/m、端子装着 耐衝撃E)、導体の耐衝撃エネルギー(J/m、耐衝撃E)を調べた。結果を表3に示す。
 端子固着力(N)は、以下のように測定する。被覆電線の一端部において絶縁被覆層を剥いで導体である圧縮撚線を露出させ、この圧縮撚線の一端部に端子を取り付ける。ここでは、端子として市販の圧着端子を用いて、上記圧縮撚線に圧着する。また、ここでは、図3に示すように、導体(圧縮撚線)における端子取付箇所12の横断面積が、端子取付箇所以外の本線箇所の横断面積に対して、表3に示す値(導体残存率、70%又は80%)となるように、取付高さ(クリンプハイトC/H)を調整した。
 汎用の引張試験機を用いて、端子を100mm/minで引っ張ったときに端子が抜けない最大荷重(N)を測定した。この最大荷重を端子固着力とする。
 導体の耐衝撃エネルギー(J/m又は(N/m)/m)は、以下のように測定する。絶縁材の押出前の熱処理材(圧縮撚線の導体)について、その先端に錘を取り付け、この錘を1m上方に持ち上げた後、自由落下させる。導体が断線しない最大の錘の重量(kg)を測定し、この重量に重力加速度(9.8m/s)と落下距離との積値を落下距離で除した値((錘重量×9.8×1)/1)を導体の耐衝撃エネルギーとする。
 導体の端子装着状態の耐衝撃エネルギー(J/m又は(N/m)/m)は、以下のように測定する。ここでは、絶縁材の押出前の熱処理材(圧縮撚線の導体)について、上述の端子固着力の測定と同様に、導体10の一端部に端子5(ここでは圧着端子)を取り付けた試料S(ここでは長さ1m)を用意し、図4に示すように端子5を治具Jによって固定する。試料Sの他端部に錘Wを取り付け、この錘Wを端子5の固定位置まで持ち上げた後、自由落下させる。上述の導体の耐衝撃エネルギーと同様に、導体が破断しない最大の錘Wの重量を測定し、((錘重量×9.8×1)/1)を端子装着状態の耐衝撃エネルギーとする。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように試料No.1-1~No.1-8はいずれも、試料No.1-101からNo.1-104と比較して、導電性と、強度と、耐衝撃性との三者に優れることが分かる。更に、試料No.1-1~No.1-8はいずれも、端子装着状態での耐衝撃性にも優れる。定量的には、以下の通りである。
 試料No.1-1~No.1-8はいずれも、引張強さが400MPa以上、更に415MPa以上であり、420MPa以上の試料も多い。
 試料No.1-1~No.1-8はいずれも、導電率が60%IACS以上、更に62%IACS以上であり、65%IACS以上、更に68%IACS以上の試料も多い。
 試料No.1-1~No.1-8はいずれも、導体の耐衝撃エネルギーが4J/m以上、更に4.5J/m以上であり、5J/m以上、更に6J/m以上の試料も多い。
 試料No.1-1~No.1-8はいずれも、導体の端子装着状態での耐衝撃エネルギーが1.5J/m以上、更に1.7J/m以上であり、2.5J/m以上、更に3J/m以上の試料も多い。このような導体を備える試料No.1-1~No.1-8の被覆電線は、端子装着状態での耐衝撃エネルギー、耐衝撃エネルギーがより高いと期待される(試験例2参照)。
 更に、試料No.1-1~No.1-8はいずれも、破断伸びが高く、高強度、高靭性、高導電率をバランスよく備えることが分かる。定量的には、破断伸びが5%以上、更に7%超、8%以上であり、10%以上の試料も多い。また、試料No.1-1~No.1-8はいずれも、端子固着力が45N以上、更に50N以上、55N超と大きく、端子を強固に固着できることが分かる。更に、試料No.1-1~No.1-8はいずれも、加工硬化指数が0.1以上と大きく、多くの試料は0.12以上、更に0.13以上であり、加工硬化による強度向上効果を得易いことが分かる。
 上述の結果が得られた理由の一つとして、Fe,P,Snを上述の特定の範囲で含むと共に、Fe/Pの質量比が4.0以上であるという特定の組成の銅合金から構成される銅合金線を導体に備えることで、Fe及びPの析出強化及びSnの固溶強化による強度向上効果と、Fe及びPの適切な析出に基づくPなどの固溶低減によるCuの高い導電率の維持効果とが良好に得られたため、と考えられる。ここでは、C,Mn,Siを適切に含むことで、これらの元素を酸化防止剤として機能させてFe,P,Snの酸化を防止したため、Fe,Pを適切に析出できたと共にSnを適切に固溶できた、と考えられる。また、C,Mn,Siの含有による導電率の低下を抑制できたため、と考えられる。この試験では、Cの含有量が100質量ppm以下、Mn及びSiの合計含有量が20質量ppm以下、これら3種の元素の合計含有量が150質量ppm以下、特に120質量ppm以下であることで、上述の酸化防止効果、導電率の低下抑制効果を適切に得られたと考えられる。更に、高強度でありながら破断伸びも高く、靭性にも優れており、衝撃を受けた場合でも破断し難いため、耐衝撃性にも優れた、と考えられる。上記導体における端子取付箇所では、圧縮加工に伴う加工硬化による強度向上効果を良好に得られたため、端子装着状態での耐衝撃性にも優れた、と考えられる。
 その他、端子固着力が高い理由の一つとして、加工硬化指数が大きく、加工硬化による強度向上効果が得られたことが考えられる。例えば、加工硬化指数が異なり、端子の取付条件(導体残存率)が同じである試料No.1-1,No.1-101を比較する。試料No.1-1は、試料No.1-101よりも引張強さが低いものの、端子固着力が同程度である上に、端子装着状態での耐衝撃エネルギーが大幅に大きい。試料No.1-1は、引張強さが小さい分を加工硬化によって補ったと考えられる。この試験では、引張強さと、端子固着力とに着目すると、引張強さが大きいほど端子固着力も大きくなるという相関があるといえる。
 この試験から、上述のFe,P,Snを含む特定の組成の銅合金に、伸線加工などの塑性加工と、時効・軟化処理などの熱処理とを施すことで上述のように導電性及び強度に優れる上に、耐衝撃性にも優れる銅合金線や銅合金撚線、これらを導体とする被覆電線や端子付き電線が得られることが示された。また、同じ組成であっても、熱処理温度を調整することで、引張強さや導電率、耐衝撃エネルギーなどを異ならせられることが分かる(例えば、試料No.1-2とNo.1-3との比較、試料No.1-4とNo.1-5との比較、試料No.1-7とNo.1-8との比較参照)。熱処理温度を高めると、導電率や導体の耐衝撃エネルギーが高い傾向にある。その他、Snの含有量が多いほど引張強さが高い傾向にある(例えば、試料No.1-8、No.1-4,No.1-2を比較参照)。
[試験例2]
 試験例1と同様にして、種々の組成の銅合金線、及び得られた銅合金線を導体に用いた被覆電線を種々の製造条件で作製して、特性を調べた。
 この試験では、試験例1の製造パターン(B)に従って、線径0.16mmの銅合金線(熱処理材)を作製した。熱処理条件を表4に示す。また、試験例1と同様にして、得られた銅合金線(線径0.16mm)について、導電率(%IACS)、引張強さ(MPa)、破断伸び(%)、加工硬化指数を調べた。結果を表4に示す。
 試験例1の製造パターン(b)に従って、線径0.16mmの伸線材を作製し、7本の伸線材を撚り合せた後、圧縮成形して横断面積0.13mmの圧縮撚線を作製し、表5に示す条件で熱処理を施した。得られた熱処理材の外周に表5に示す絶縁材(PVC又はPP)を表5に示す厚さ(0.20mm又は0.23mm)に押し出して絶縁被覆層を形成し、上記熱処理材を導体とする被覆電線を作製した。
 得られた熱処理材(圧縮線材の導体)について、破断荷重(N)、破断伸び(%)、1mあたりの電気抵抗(mΩ/m)を調べた。また、得られた被覆電線について、破断荷重(N)、破断伸び(%)、本線の耐衝撃エネルギー(J/m)を調べた。その結果を表5に示す。
 破断荷重(N)、破断伸び(%)は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。電気抵抗は、JASO D 618に従い、4端子法の抵抗測定装置を用いて、長さ1mにおける抵抗値を測定した。本線の耐衝撃エネルギーは、被覆電線を試験対象として試験例1と同様にして測定した。
 得られた被覆電線について、端子装着状態での耐衝撃エネルギー(J/m)を測定した。その結果を表6に示す。この試験では、被覆電線3の一端部において絶縁被覆層を剥いで導体である圧縮撚線を露出させ、この圧縮撚線の一端部に圧着端子を取り付けて、試験例1と同様にして測定した(図4参照)。圧着端子として、金属板(銅合金製)を所定の形状にプレス成形してなる圧着端子であって、図2に示すような嵌合部52、ワイヤバレル部50、インシュレーションバレル部54(オーバーラップ型)を備えるものを用意した。ここでは、金属板の厚さが表6に示す厚さ(mm)であり、その表面に表6に示すメッキ種(錫(Sn)又は金(Au))が施された種々のものを用意し、ワイヤバレル部50における取付高さ(C/H(mm))及びインシュレーションバレル部54における取付高さ(V/H(mm))が表6に示す大きさとなるように、各試料の被覆電線の導体に圧着端子を取り付けた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4,表5に示すように試料No.2-11~No.2-14はいずれも、同じ線径又は同じ導体断面積である試料No.2-101と比較して、導電性と、強度と、耐衝撃性との三者をバランスよく備えることが分かる。更に、表6に示すように試料No.2-11~No.2-14はいずれも、端子装着状態での耐衝撃性にも優れる。定量的には、以下の通りである。
 試料No.2-11~No.2-14はいずれも、引張強さが400MPa以上、更に450MPa以上である(表4)。
 試料No.2-11~No.2-14はいずれも、導電率が60%IACS以上、更に62%IACS以上である(表4)。
 試料No.2-11~No.2-14はいずれも、耐衝撃エネルギーが9J/m以上、更に10J/m以上である(表5)。
 試料No.2-11~No.2-14はいずれも、端子装着状態での耐衝撃エネルギーが3J/m以上、更に3.5J/m以上、3.8J/m以上であり、4J/m以上の試料も多い(表6)。
 この試験では、C/H及びV/Hが同じでも、端子のメッキ種や被覆種、被覆厚さなどを異ならせることで、端子装着状態での耐衝撃エネルギーをより高められる場合があるといえる(例えば、表6の条件No.2と条件No.3とを比較参照)。また、この試験では、同じ圧着端子を用いても、V/Hを異ならせることで(ここではV/Hを大きくする)、端子装着状態での耐衝撃エネルギーをより高められる傾向にあるといえる(例えば、表6の条件No.2,No.4,No.7からNo.10を比較参照)。
 更に、表4に示すように試料No.2-11~No.2-14はいずれも、破断伸びが5%以上、更に10%以上であり、試験例1と同様に、高強度、高靭性、高導電率をバランスよく備えることが分かる。また、表5に示すように、圧縮撚線では単線よりも引張強さ(破断荷重/断面積)が大きく、絶縁被覆層を備える被覆電線では圧縮撚線よりも引張強さを向上できるといえる。圧縮撚線になっても単線のときの破断伸びを実質的に維持すること(表4と比較参照)、絶縁被覆層を備える被覆電線では圧縮撚線よりも破断伸びを向上できるといえる。絶縁被覆層を備える被覆電線では、試験例1に示す導体のみの場合と比較して、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが高い傾向にあるといえる。
 その他、試料No.2-11~No.2-14はいずれも、加工硬化指数が0.1以上、更に0.12以上である。このような試料No.2-11~No.2-14はいずれも、端子の固着性にも優れると考えられる。
 上述の結果が得られた理由の一つとして、試験例1と同様に、Fe,P,Snを含む特定の組成の銅合金から構成される銅合金線を導体に備えることで、Fe及びPの析出強化及びSnの固溶強化による強度向上効果と、Pなどの固溶低減によるCuの高い導電率の維持効果とが良好に得られたため、と考えられる。特に、試験例1と同様に、C,Mn,Siの適切な含有によって、Fe,P,Snの酸化防止効果及びCなど脱酸剤元素の含有による導電率の低下抑制効果を得られたため、と考えられる。更に、高強度でありながら靭性にも優れており、耐衝撃性、端子装着状態での耐衝撃性にも優れた、と考えられる。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、試験例1,2の銅合金の組成、銅合金線の線径、撚り合せ本数、熱処理条件などを適宜変更できる。
 1 銅合金線 10 銅合金撚線(導体) 3 被覆電線
 4 端子付き電線
 12 端子取付箇所 2 絶縁被覆層
 5 端子 50 ワイヤバレル部 52 嵌合部
 54 インシュレーションバレル部
 S 試料 J 治具 W 錘

Claims (12)

  1.  導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、
     前記導体は、
      Feを0.2質量%以上1.6質量%以下、
      Pを0.05質量%以上0.4質量%以下、
      Snを0.05質量%以上0.7質量%以下含有し、
      残部がCu及び不純物からなり、
      質量比で、Fe/Pが4.0以上である銅合金から構成され、
      線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である被覆電線。
  2.  前記銅合金は、質量割合で、C,Si,及びMnから選択される1種以上の元素を合計で10ppm以上500ppm以下含む請求項1に記載の被覆電線。
  3.  前記銅合金線の破断伸びが5%以上である請求項1又は請求項2に記載の被覆電線。
  4.  前記銅合金線の導電率が60%IACS以上であり、引張強さが400MPa以上である請求項1から請求項3のいずれか1項に記載の被覆電線。
  5.  端子固着力が45N以上である請求項1から請求項4のいずれか1項に記載の被覆電線。
  6.  端子が取り付けられた状態での耐衝撃エネルギーが3J/m以上である請求項1から請求項5のいずれか1項に記載の被覆電線。
  7.  前記被覆電線のみの耐衝撃エネルギーが6J/m以上である請求項1から請求項6のいずれか1項に記載の被覆電線。
  8.  請求項1から請求項7のいずれか1項に記載の被覆電線と、前記被覆電線の端部に取り付けられた端子とを備える端子付き電線。
  9.  導体に利用される銅合金線であって、
     Feを0.2質量%以上1.6質量%以下、
     Pを0.05質量%以上0.4質量%以下、
     Snを0.05質量%以上0.7質量%以下含有し、
     残部がCu及び不純物からなり、
     質量比で、Fe/Pが4.0以上である銅合金から構成され、
     線径が0.5mm以下である銅合金線。
  10.  請求項9に記載の銅合金線が複数撚り合わされてなる銅合金撚線。
  11.  端子が取り付けられた状態での耐衝撃エネルギーが1.5J/m以上である請求項10に記載の銅合金撚線。
  12.  前記銅合金撚線のみの耐衝撃エネルギーが4J/m以上である請求項10又は請求項11に記載の銅合金撚線。
PCT/JP2016/089161 2016-11-07 2016-12-28 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 WO2018083812A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/348,020 US11315702B2 (en) 2016-11-07 2016-12-28 Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
DE112016007415.8T DE112016007415T5 (de) 2016-11-07 2016-12-28 Überzogener elektrischer Draht, mit Anschluss versehener elektrischer Draht, Kupferlegierungsdraht und Kupferlegierungslitzendraht
CN201680090676.1A CN109983141B (zh) 2016-11-07 2016-12-28 包覆电线、带端子电线、铜合金线和铜合金绞合线
CN202110879448.5A CN113611439A (zh) 2016-11-07 2017-06-21 包覆电线和带端子电线
DE112017005596.2T DE112017005596T5 (de) 2016-11-07 2017-06-21 Ummanteltes Stromkabel, mit einem Anschluss versehenes Stromkabel, Kupferlegierungsdraht, undKupferlegierungslitze
JP2017560338A JP6338133B1 (ja) 2016-11-07 2017-06-21 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
PCT/JP2017/022928 WO2018083836A1 (ja) 2016-11-07 2017-06-21 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
CN201780068904.XA CN110012676B (zh) 2016-11-07 2017-06-21 包覆电线、带端子电线、铜合金线和铜合金绞合线
US16/347,867 US11315701B2 (en) 2016-11-07 2017-06-21 Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
JP2018092130A JP6872175B2 (ja) 2016-11-07 2018-05-11 銅合金線、及び銅合金撚線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-217040 2016-11-07
JP2016217040A JP6172368B1 (ja) 2016-11-07 2016-11-07 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Publications (1)

Publication Number Publication Date
WO2018083812A1 true WO2018083812A1 (ja) 2018-05-11

Family

ID=59505156

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/089161 WO2018083812A1 (ja) 2016-11-07 2016-12-28 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
PCT/JP2017/022928 WO2018083836A1 (ja) 2016-11-07 2017-06-21 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022928 WO2018083836A1 (ja) 2016-11-07 2017-06-21 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Country Status (5)

Country Link
US (2) US11315702B2 (ja)
JP (3) JP6172368B1 (ja)
CN (3) CN109983141B (ja)
DE (2) DE112016007415T5 (ja)
WO (2) WO2018083812A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585699A (zh) * 2018-08-21 2021-03-30 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
WO2023032389A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 銅合金線、及び銅合金線の製造方法
WO2023032390A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 銅合金線、被覆電線、端子付き電線、及び銅合金線の製造方法
WO2024057541A1 (ja) * 2022-09-16 2024-03-21 Swcc株式会社 端子付き絶縁電線の評価予測方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593778B2 (ja) * 2016-02-05 2019-10-23 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP6172368B1 (ja) * 2016-11-07 2017-08-02 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
WO2018083887A1 (ja) * 2016-11-07 2018-05-11 住友電気工業株式会社 コネクタ端子用線材
DE102017121924B3 (de) 2017-09-21 2019-02-21 Tdk Electronics Ag Elektrisches Bauelement mit Anschlussbereich und Verfahren zur Herstellung eines Anschlussbereichs
DE102017121908B4 (de) 2017-09-21 2023-12-07 Tdk Electronics Ag Elektrisches Bauelement mit Litzenkontakt und Verfahren zur Herstellung eines Litzenkontakts
US11380458B2 (en) 2018-08-21 2022-07-05 Sumitomo Electric Industries, Ltd. Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
WO2020039710A1 (ja) * 2018-08-21 2020-02-27 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164834A (ja) * 1984-09-04 1986-04-03 Nippon Mining Co Ltd 耐熱高力高導電性銅合金
JP2006283181A (ja) * 2005-04-05 2006-10-19 Mitsubishi Cable Ind Ltd 耐摩耗性銅合金トロリ線およびその製造方法
JP2007023305A (ja) * 2005-07-12 2007-02-01 Mitsubishi Cable Ind Ltd 自動車用電線のための導体素線およびその製造方法
WO2015159671A1 (ja) * 2014-04-14 2015-10-22 株式会社オートネットワーク技術研究所 銅合金素線、銅合金撚線および自動車用電線

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508001A (en) * 1992-11-13 1996-04-16 Mitsubishi Sindoh Co., Ltd. Copper based alloy for electrical and electronic parts excellent in hot workability and blankability
JP2962139B2 (ja) * 1994-03-03 1999-10-12 三菱マテリアル株式会社 メッキ性および導電性に優れた銅合金およびこの銅合金からなる薄板または条
JP4041452B2 (ja) * 2003-11-05 2008-01-30 株式会社神戸製鋼所 耐熱性に優れた銅合金の製法
KR100876051B1 (ko) 2004-08-17 2008-12-26 가부시키가이샤 고베 세이코쇼 굽힘 가공성을 구비한 전기 전자 부품용 구리 합금판
EP2366807B1 (en) * 2005-06-08 2013-08-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and copper alloy plate
JP4937628B2 (ja) * 2006-03-31 2012-05-23 Jx日鉱日石金属株式会社 熱間加工性に優れた銅合金
JP4157898B2 (ja) * 2006-10-02 2008-10-01 株式会社神戸製鋼所 プレス打ち抜き性に優れた電気電子部品用銅合金板
EP2388347B1 (en) * 2006-10-02 2014-04-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing a copper alloy sheet for electric and electronic parts
CN102356435B (zh) * 2009-01-26 2013-08-07 古河电气工业株式会社 布线用电线导体、布线用电线导体的制造方法、布线用电线及铜合金线料
JP2012001780A (ja) * 2010-06-18 2012-01-05 Hitachi Cable Ltd 電気・電子部品用銅合金材、及びその製造方法
JP6230087B2 (ja) * 2011-12-09 2017-11-15 株式会社神戸製鋼所 ベアボンディング性に優れたリードフレーム用銅合金
JP5751268B2 (ja) 2013-02-14 2015-07-22 住友電気工業株式会社 銅合金線、銅合金撚線、被覆電線、及び端子付き電線
JP2015086452A (ja) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法
KR20160100922A (ko) 2013-12-19 2016-08-24 스미토모 덴키 고교 가부시키가이샤 구리 합금 선, 구리 합금 연선, 전선, 단자 부착 전선, 및 구리 합금 선의 제조 방법
JP5950249B2 (ja) * 2014-08-08 2016-07-13 住友電気工業株式会社 銅合金線、銅合金撚線、被覆電線、及び端子付き電線
JP5851000B1 (ja) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Ledのリードフレーム用銅合金板条
US20170283910A1 (en) 2014-08-25 2017-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connection parts which has excellent minute slide wear resistance
JP6686293B2 (ja) 2015-04-21 2020-04-22 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス
JP6654810B2 (ja) 2015-05-22 2020-02-26 鹿島建設株式会社 養生装置の設置構造
JP6172368B1 (ja) * 2016-11-07 2017-08-02 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164834A (ja) * 1984-09-04 1986-04-03 Nippon Mining Co Ltd 耐熱高力高導電性銅合金
JP2006283181A (ja) * 2005-04-05 2006-10-19 Mitsubishi Cable Ind Ltd 耐摩耗性銅合金トロリ線およびその製造方法
JP2007023305A (ja) * 2005-07-12 2007-02-01 Mitsubishi Cable Ind Ltd 自動車用電線のための導体素線およびその製造方法
WO2015159671A1 (ja) * 2014-04-14 2015-10-22 株式会社オートネットワーク技術研究所 銅合金素線、銅合金撚線および自動車用電線

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585699A (zh) * 2018-08-21 2021-03-30 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
CN112585699B (zh) * 2018-08-21 2022-05-13 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
WO2023032389A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 銅合金線、及び銅合金線の製造方法
WO2023032390A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 銅合金線、被覆電線、端子付き電線、及び銅合金線の製造方法
WO2024057541A1 (ja) * 2022-09-16 2024-03-21 Swcc株式会社 端子付き絶縁電線の評価予測方法

Also Published As

Publication number Publication date
US11315702B2 (en) 2022-04-26
JP2018141243A (ja) 2018-09-13
DE112016007415T5 (de) 2019-07-25
JP6872175B2 (ja) 2021-05-19
JPWO2018083836A1 (ja) 2018-11-08
US20190341164A1 (en) 2019-11-07
CN109983141B (zh) 2021-11-19
US11315701B2 (en) 2022-04-26
DE112017005596T5 (de) 2019-09-05
US20190355489A1 (en) 2019-11-21
JP2018077941A (ja) 2018-05-17
CN109983141A (zh) 2019-07-05
CN110012676B (zh) 2021-08-03
CN110012676A (zh) 2019-07-12
JP6172368B1 (ja) 2017-08-02
CN113611439A (zh) 2021-11-05
WO2018083836A1 (ja) 2018-05-11
JP6338133B1 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6172368B1 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP5950249B2 (ja) 銅合金線、銅合金撚線、被覆電線、及び端子付き電線
WO2018084263A1 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP7503240B2 (ja) 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法
JP6807041B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP6593778B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP6807040B2 (ja) 被覆電線、端子付き電線、及び銅合金線
JP7054482B2 (ja) 被覆電線の製造方法、銅合金線の製造方法、及び銅合金撚線の製造方法
JP6807027B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP6135949B2 (ja) 銅合金線、銅合金撚線、被覆電線、及び端子付き電線
JP7483217B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
WO2020039710A1 (ja) 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法
JP2016183420A (ja) 銅合金線、銅合金撚線、被覆電線、及び端子付き電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920767

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16920767

Country of ref document: EP

Kind code of ref document: A1