WO2024057541A1 - 端子付き絶縁電線の評価予測方法 - Google Patents

端子付き絶縁電線の評価予測方法 Download PDF

Info

Publication number
WO2024057541A1
WO2024057541A1 PCT/JP2022/034790 JP2022034790W WO2024057541A1 WO 2024057541 A1 WO2024057541 A1 WO 2024057541A1 JP 2022034790 W JP2022034790 W JP 2022034790W WO 2024057541 A1 WO2024057541 A1 WO 2024057541A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
terminal
insulated wire
coating layer
prediction method
Prior art date
Application number
PCT/JP2022/034790
Other languages
English (en)
French (fr)
Inventor
慎之介 植田
龍一 新井
Original Assignee
Swcc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swcc株式会社 filed Critical Swcc株式会社
Priority to PCT/JP2022/034790 priority Critical patent/WO2024057541A1/ja
Publication of WO2024057541A1 publication Critical patent/WO2024057541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to an evaluation prediction method for an insulated wire with a terminal.
  • Insulated wires having a conductor and a coating layer covering the conductor have been used as power lines, signal lines, etc. for vehicles and industry.
  • BACKGROUND ART In recent years, as vehicles and industrial machinery become more complex and automated, smaller diameter and higher strength electric wires are required.
  • Insulated wires for vehicles include insulated wires in which the cross-sectional area of the conductor is approximately 0.22 mm2 (Patent Document 1), and insulated wires in which the amount of oil adhering to the conductor is adjusted to suppress buckling (Patent Document 1). 2), various insulated wires have been proposed.
  • insulated wires are generally not used alone, but terminals are connected to both ends of the insulated wires, and various devices are connected via these terminals.
  • various devices When assembling automobiles and industrial machinery, or when using them, various devices may fall with electric wires connected to them. As a result, stress is momentarily applied to the insulated wire in the direction of free fall, and the wire may break. If such a break occurs, the device may be damaged or sufficient electrical continuity may not be achieved between the devices.
  • the strength of the insulated wire against the free fall of the above equipment is generally evaluated by a free fall test. Furthermore, when selecting the conductor and coating layer material of the insulated wire or evaluating the performance of the insulated wire with a terminal, it is necessary to perform a free fall test each time, which is very complicated. Therefore, it is desired to provide a method that can more easily evaluate the results of free fall tests.
  • the main object of the present invention is to provide a method that allows easy prediction of evaluation of a free fall test of an insulated wire with a terminal.
  • a free fall test is performed on an insulated wire with a terminal, which has a conductor in which a plurality of wires are twisted together, an insulated wire having a coating layer covering the conductor, and a terminal connected to at least one end of the insulated wire. It is a method of predicting the evaluation when A step of confirming whether the tensile strength of the conductor and the 3% yield strength of the coating layer satisfy the following formula, A method for evaluating and predicting an insulated wire with a terminal is provided. 100 [N] ⁇ (Tensile strength of conductor [N] x 0.7) + (3% yield strength of coating layer [N])
  • a free fall test is performed on an insulated wire with a terminal, which has a conductor in which a plurality of wires are twisted together, an insulated wire having a coating layer covering the conductor, and a terminal connected to the end of the insulated wire. It is a method of predicting the evaluation when A step of identifying the minimum value of terminal adhesion force necessary to make the pass rate of the free fall test 100%; a step of confirming whether the minimum value, the tensile strength of the conductor, and the 3% yield strength of the coating layer satisfy the following formula, Evaluation prediction method for insulated wires with terminals.
  • the evaluation prediction method for an insulated wire with a terminal of the present invention it is possible to easily predict the result of a free fall test of an insulated wire with a terminal.
  • FIG. 2 is a side view showing an example of an insulated wire with a terminal. It is a schematic sectional view showing an example of an insulated wire. It is a schematic sectional view showing other examples of an insulated wire. It is a flow chart which shows the procedure of the evaluation prediction method of the insulated electric wire with the terminal concerning one embodiment. It is a flow chart which shows the procedure of the evaluation prediction method of the insulated electric wire with the terminal concerning other embodiments. It is a graph showing the correlation between the terminal adhesion force of an insulated wire with a terminal and the pass rate of a free fall test. It is a graph showing the relationship between the tensile strength of a conductor, the fixing force when the conductor is fixed to a terminal, and the cross-sectional area of the conductor.
  • the insulated wire with a terminal which is the object of the evaluation prediction method of the present invention, will be explained, and then the evaluation prediction method will be explained.
  • FIG. 1 shows the shape of one end of an insulated wire with a terminal 20 according to an embodiment of the present invention.
  • the terminal 10 may be connected to only one end of the insulated wire 1, or may be connected to both ends.
  • Specific examples of the insulated wire 1 and the terminal 10 are shown below, but the insulated wire 1 and the terminal 10 of the insulated wire 20 with a terminal are not limited to these, and the evaluation prediction method described later is applicable to terminals other than those shown below. It is also applicable to attached electric wires.
  • FIG. 2A A cross-sectional view of the insulated wire 1 according to this embodiment is shown in FIG. 2A, and a cross-sectional view of the insulated wire 1 according to another embodiment is shown in FIG. 2B.
  • the insulated wire 1 includes a conductor 2 in which a plurality of wires 2 a and 2 b are twisted together, and a covering layer 3 for covering the conductor 2 .
  • the conductor 2 is composed of one central strand 2a and six concentric strands 2b concentrically surrounding the central strand 2a.
  • the number of strands 2a and 2b is appropriately selected depending on the use of the insulated wire 1 (insulated wire 20 with a terminal).
  • the conductor 2 may be an uncompressed conductor made by simply twisting a plurality of wires 2a, 2b together, as shown in FIG. It may be a compressed conductor that is twisted and then compressed into a desired shape. Note that when the conductor 2 is a compressed conductor, the compression ratio is preferably 3 to 4%.
  • the cross-sectional area and diameter of each of the wires 2a and 2b constituting the conductor 2 are not particularly limited, the total cross-sectional area of the wires 2a and 2b, that is, the cross-sectional area of the conductor 2, is preferably 0.16 mm 2 or less.
  • the cross-sectional area of the conductor 2 is more preferably 0.120 mm 2 or more and 0.16 mm 2 or less, and even more preferably 0.125 mm 2 or more and 0.16 mm 2 or less.
  • the evaluation prediction method described below is also applicable to the insulated wire 20 with a terminal including a conductor having a cross-sectional area larger than 0.16 mm 2 .
  • the cross-sectional area of the conductor 2 there has been a demand for reducing the cross-sectional area of the conductor 2, and it can be particularly suitably used when developing an insulated wire 1 in which the cross-sectional area of the conductor 2 is 0.16 mm 2 or less.
  • the cross-sectional shape of the conductor 2 may be substantially circular, elliptical, polygonal, or the like.
  • the thicknesses of the wires 2a and 2b constituting the conductor 2 may be the same or different, but are usually the same.
  • the said conductor 2 is twisted in the fixed direction centering on the center strand 2a and the concentric strands 2b arranged around the center strand 2a.
  • the twisting pitch at this time is not particularly limited, and is appropriately selected according to the desired performance of the insulated wire 1. Generally, it is preferably 5 mm or more and 10 mm or less, and more preferably 6 mm or more and 8 mm or less.
  • the "twist pitch" refers to the length of the conductor 2 necessary for the conductor 2 to rotate 360 degrees around the center wire 2a.
  • the wires 2a and 2b of the conductor 2 are not tempered. Further, the amount of oil adhering to each strand 2a, 2b of the conductor 2 may be adjusted.
  • the metal constituting each strand 2a, 2b of the conductor 2 is not particularly limited, and is the same as the metal contained in the conductor of a known insulated wire.
  • the metal may be a single metal or an alloy.
  • copper alloys are preferably used from the viewpoint of electrical conductivity and workability.
  • Examples of copper alloys include one or more additive elements selected from the group consisting of Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, P, Be, Co and Si, Alloys in which the remainder is composed of Cu and unavoidable elements are included.
  • the additive element is preferably Mg and/or Sn.
  • the above additive elements may be one type or a combination of two or more types. Usually there are 3 types or less.
  • the amount of additional elements in the copper alloy is also appropriately selected depending on the desired performance of the insulated wire.
  • the content is preferably 0.2% by mass or more and 0.4% by mass or less, more preferably 0.25% by mass or more and 0.35% by mass or less, and even more preferably 0.28% by mass or more and 0.32% by mass or less.
  • the amount of the additive element in the copper alloy is 0.2% by mass or more, the strength of the conductor 2 tends to increase and the tensile strength tends to increase.
  • the amount of the added element in the copper alloy is 0.4% by mass or less, the electrical conductivity of the conductor 2 tends to increase.
  • the electrical conductivity of the conductor 2 is not particularly limited, but it is preferably 75% IACS or more because the insulated wire 1 can be used for various purposes, and 80% IACS or more is more preferable.
  • the conductivity of the conductor 2 is a value calculated from the electrical resistance value based on JIS H 0505. The electrical resistance value is measured by the double bridge method using a conductor with a length of 500 mm. The electrical conductivity of the conductor 2 can be adjusted, for example, by the type and amount of the above-mentioned additive element.
  • the coating layer 3 is a layer that insulates the conductor 2 and is usually composed of a resin alone or a composition of a resin and other components.
  • the type of resin is not particularly limited, and may be, for example, polyvinyl chloride, polyphenylene ether resin, etc., as shown in Examples below. Further, it may contain an olefin resin such as polyethylene or polypropylene.
  • the coating layer 3 may contain arbitrary components such as a plasticizer, a filler, a stabilizer, and a processing aid in addition to the resin.
  • the thickness of the coating layer 3 is not particularly limited, but is preferably 0.15 mm or more and 0.25 mm or less, more preferably 0.15 mm or more and 0.20 mm or less. When the thickness of the coating layer 3 is 0.15 mm or more, sufficient insulation is likely to be obtained. On the other hand, when the thickness of the coating layer 3 is 0.25 mm or less, the insulated wire 1 can be made thinner. However, the evaluation prediction method described below is also applicable to the insulated wire 20 with a terminal having the coating layer 3 less than 0.15 mm thick or more than 0.25 mm thick.
  • the method for manufacturing the insulated wire 1 having the conductor 2 and the coating layer 3 is not particularly limited, and the evaluation prediction method described below can be applied to the insulated wire 1 manufactured by any method.
  • a plurality of wires 2a and 2b are prepared and twisted together to form a conductor 2 so as to have a desired cross-sectional area.
  • an insulating material is extruded and coated around the conductor 2 to form a coating layer 3, and an insulated wire 1 is obtained.
  • Terminal 10 The shape and type of the terminal 10 are not particularly limited, and are appropriately selected depending on the use of the terminal-equipped electric wire 20.
  • the terminal 10 shown in FIG. Insulation barrel portions 13 for support are arranged in this order.
  • the shape of the fitting portion 11 may be any structure as long as it can be connected to various devices, and is appropriately selected depending on the type of device.
  • the wire barrel portion 12 is a portion for electrically and mechanically reliably connecting the conductor 2 and the terminal 10, and has a structure for compressing and fixing the conductor 2.
  • the insulation barrel portion 13 has a structure for compressing and fixing the coating layer 3. These are similar to the structure of general terminals.
  • the method of connecting the terminal 20 and the insulated wire 1 is not particularly limited, and the connection can be made, for example, by the following method.
  • the covering layer 3 is peeled off from the end of the insulated wire 1 to expose the conductor 2.
  • the conductor 2 can be exposed by a general method, and the conductor 2 may be exposed using a special tool such as a stripper.
  • the terminal 10 is connected to the exposed conductor 2. Specifically, the coating layer 3 of the insulated wire 1 is fixed to the insulation barrel part 13 of the terminal 10, the wire barrel part 12 is crimped, and the conductor 2 exposed to the wire barrel part 12 is pressed into contact with the wire barrel part 12. be able to.
  • a weight is attached to one end of an insulated wire with a terminal including an insulated wire with a length of 300 mm, and the other end of the insulated wire with a terminal is set at a predetermined height (e.g., height It is possible to predict the evaluation results of a test (free fall test) in which a weight is fixed at a height of 1000 mm and is allowed to fall freely from the other end.
  • a predetermined height e.g., height
  • the above prediction result is the result when a weight is attached so that a load is applied to the wire barrel portion and the insulation barrel portion of the terminal. The method will be explained below.
  • the "tensile strength A of the conductor” refers to the tensile strength of the conductor in a state similar to that in an insulated wire, that is, the tensile strength of the conductor in a state in which a plurality of wires are twisted in a certain direction. Note that the tensile strength of the conductor may change depending on whether or not the wire is compressed, the compression ratio, the cross-sectional area of the conductor, the twisting pitch of the conductor, the amount of oil attached to the wire, etc.
  • the "tensile strength A of the conductor” is the value obtained by actually producing an insulated wire, taking out the conductor from it, and measuring the tensile strength, or by producing only the conductor using the same procedure as when producing the insulated wire, and measuring the tensile strength of the conductor.
  • the value obtained by measuring the tensile strength is preferred.
  • the tensile strength of the conductor can be determined using a universal testing machine (Autograph) manufactured by Shimadzu Corporation.
  • 3% proof stress B of the coating layer refers to the 3% proof stress of the coating layer in the same state as in the insulated wire, that is, the 3% proof stress of the tubular coating layer with a predetermined thickness.
  • 3% proof stress B of the coating layer is the value obtained by peeling the coating layer from the insulated wire and measuring its 3% proof stress, or by making only the coating layer using the same procedure as when making the insulated wire, and measuring the 3% proof stress of the coating layer. A value obtained by measuring % proof stress is preferable.
  • the 3% yield strength of the coating layer is measured in accordance with JASO D618.
  • the thickness and composition of the coating layer, the composition and diameter of the conductor, compression ratio, twist pitch, etc. are changed, and the above evaluation and prediction method is repeated to find the optimal conductor.
  • the type and structure of the coating layer may also be determined. That is, according to the evaluation prediction method, the evaluation result of a free fall test can be easily predicted without actually producing an insulated wire or performing a free fall test. Therefore, it is very useful when developing new insulated wires or changing specifications. Moreover, it is possible to perform quality control not only when newly developing insulated wires but also by using the above evaluation prediction method.
  • the above evaluation prediction method is useful in any field that performs the above-mentioned free fall test.
  • it is useful in the development and quality control of insulated wires used in various electrical devices such as devices such as automobiles and airplanes and control devices such as industrial robots.
  • it is useful for evaluating insulated wires with terminals for automotive wire harnesses.
  • the evaluation prediction method described above is applicable to a free fall test in which the weight of the weight is 400 g and the length of the insulated wire is 300 mm. However, when changing the conditions of the free fall test, it is preferable to use the evaluation prediction method as described below. The procedure of the evaluation prediction method is shown in the flowchart of FIG.
  • the minimum value C of the terminal adhesion force of the insulated wire with a terminal which is necessary to make the pass rate 100%, is specified (S11). Specifically, a plurality of types of insulated wires with terminals including insulated wires having arbitrary conductors and arbitrary coating layers are prepared. Then, the terminal fixing force of these insulated wires with terminals is measured for each type. Furthermore, a desired free fall test is performed on these insulated wires with terminals, and the pass rate for each type is calculated. Then, the terminal adhesion force is compared with the pass rate of the free fall test, and the minimum value C of the terminal adhesion force at which the pass rate is always 100% is specified.
  • the terminal adhesion force is not appropriate as the minimum value C.
  • the minimum value among the terminal adhesion forces for which the pass rate is always 100% is selected as the above-mentioned minimum value C.
  • this evaluation prediction method by simply setting the minimum value C first, it is possible to easily predict the desired evaluation result of a free fall test without actually producing an insulated wire or conducting a free fall test. . Therefore, it is very useful when developing new insulated wires or changing specifications. Moreover, it is possible to perform quality control not only when newly developing insulated wires but also by using the above evaluation prediction method.
  • the evaluation prediction method described above was derived based on the following verification. In addition, verification (Verification 3) was conducted to determine whether the evaluation results derived by the evaluation prediction method described above were consistent with the actual results.
  • Terminal adhesion force The terminal adhesion force (N) of the insulated wires with terminals of each of the above samples was measured as follows. The coating layer was peeled off at one end of the insulated wire to expose the conductor, and a terminal was attached to one end of the conductor. Here, commercially available crimp terminals were used as terminals to crimp them onto the conductor. The appropriate installation height was adjusted by combining the conductor and coating layer. Thereafter, using a general-purpose tensile tester, the maximum load (N) at which the terminal would not come off when the terminal was pulled at 100 mm/min was measured. This maximum load was defined as the terminal fixing force.
  • Verification 2 (Relationship between terminal adhesion force, conductor adhesion force, and coating layer adhesion force) As mentioned above, there is a correlation between the terminal adhesion force of an insulated wire with a terminal and the evaluation result of a free fall test, and if the terminal adhesion force exceeds 100N, the free fall test result will always be good. became clear.
  • the terminal is connected to the insulated wire by a wire barrel portion that crimps the conductor of the insulated wire and an insulation barrel portion that crimps the coating layer.
  • Terminal adhesion force Adhesion force between the conductor and the terminal + Adhesion force between the coating layer and the terminal
  • the tensile strength of the conductor is indicated by a black circle, and the adhesion force with the terminal is indicated by a white circle. Furthermore, in FIG. 6, gray circles indicate how much the strength was reduced by fixing the conductor to the terminal. As shown in FIG. 6, for conductors of any cross-sectional area, by fixing the conductor to the terminal, a decrease in strength of about 25% to 30% was observed. In other words, it became clear that the adhesion force between the conductor and the terminal was equal to or greater than "tensile strength of the conductor x 0.7". In FIG. 6, the tensile strength, the adhesion force to the terminal, and the rate of decrease in strength are shown as average values.
  • the adhesion strength of the coating layer was measured based on JASO D618. Specifically, an insulated wire with a length of 100 mm was prepared in the same way as the sample above, and the coating layer at one end was removed to expose a 25 mm long conductor, and the other end was coated with a 25 mm long insulated wire. was cut and discarded. Using the insulated wire with a total length of 75 mm as a measurement object, the exposed conductor was inserted into a through hole (a hole whose diameter is larger than the outer diameter of the conductor and smaller than the outer diameter of the insulated wire) of the holder.
  • a through hole a hole whose diameter is larger than the outer diameter of the conductor and smaller than the outer diameter of the insulated wire
  • the holder was fixed, and one end of the conductor protruding from the holder was pulled.
  • the adhesion strength was defined as the minimum load when the coating layer peeled off from the conductor and the conductor came off.
  • the measuring device used was a universal testing machine (Autograph) manufactured by Shimadzu Corporation.
  • the yield point strength and 3% yield strength of the coating layer were measured based on JASO D618. Specifically, a tubular test piece with a length of about 150 mm was taken from the sample, and the yield point strength and 3% proof stress of the tubular test piece were measured using a universal testing machine (Autograph) manufactured by Shimadzu Corporation.
  • Terminal adhesion strength tensile strength of conductor x 0.7 + 3% yield strength of coating layer
  • Verification 3 (Verification of correlation between terminal adhesion force (predicted value) and free fall test) Verification 1 shows that when performing the above-mentioned free fall test, there is a correlation between the evaluation result and the terminal adhesion strength of the insulated wire with a terminal, and that the evaluation result of the free fall test is always 100%. It became clear that the terminal adhesion force that passed the test was 100N. On the other hand, Verification 2 revealed that the minimum value predicted as the terminal adhesion force of each insulated wire with a terminal is "tensile strength of the conductor x 0.7 + 3% yield strength of the coating layer".
  • the evaluation prediction method of the present invention the results of a free fall test of an insulated wire having a conductor in which a plurality of wires are twisted together and a coating layer covering the conductor, and an insulated wire with a terminal having a terminal, It can be predicted without actually producing an insulated wire with a terminal. Therefore, it is very useful in the development and quality control of insulated wires.
  • Insulated wire 1 Insulated wire 2 Conductor 2a Center wire 2b Concentric wire 3 Covering layer 10 Terminal 11 Fitting portion 12 Wire barrel portion 13 Insulation barrel portion 20 Insulated wire with terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Communication Cables (AREA)

Abstract

端子付き絶縁電線の自由落下試験の結果を容易に予測可能な方法の提供を課題とする。上記課題を解決する評価予測方法は、複数の素線が撚り合わされた導体(2)、および前記導体を被覆する被覆層(3)を有する絶縁電線(1)と、前記絶縁電線(1)の少なくとも一端に接続された端子(10)と、を有する端子付き絶縁電線(20)に対し、自由落下試験を行ったときの評価予測方法であり、前記導体の引張強度、および前記被覆層の3%耐力が、下記式を満たすかを確認する工程を有する。

Description

端子付き絶縁電線の評価予測方法
 本発明は端子付き絶縁電線の評価予測方法に関する。
 車両用や産業用の電力線や信号線等として、導体とそれを被覆する被覆層とを有する絶縁電線が用いられてきた。昨今、車両および産業機械の複雑制御や自動化に伴い、電線の細径化および高強度化が求められている。車両用の絶縁電線としても、導体の断面積を略0.22mmとした絶縁電線(特許文献1)や、座屈抑制のために、導体に付着する油分量を調整した絶縁電線(特許文献2)等、様々な絶縁電線が提案されている。
 ここで、一般的に絶縁電線は単独で使用されることは少なく、絶縁電線の両端に端子を接続し、これを介して各種機器と接続する。そして、自動車や産業機械組み立ての際、またはこれらの使用時に、各種機器と電線とを接続した状態で、機器が落下することがある。これにより、絶縁電線に瞬間的に、自由落下方向への応力がかかり、電線が破断することがある。このような破断が生じると、機器が破損したり、機器間で十分な導通が図れなくなったりする。
特許第6134103号公報 特許第6864856号公報
 上記機器の自由落下に対する、絶縁電線の耐力は、自由落下試験によって評価することが一般的である。そして、上記絶縁電線の導体や被覆層の材料を選定したり、端子付き絶縁電線の性能を評価したりする際には、毎回自由落下試験を行う必要があり、非常に煩雑である。そのため、自由落下試験の結果をより簡便に評価可能な方法の提供が望まれている。
 本発明は、端子付き絶縁電線の自由落下試験の評価を容易に予測可能な方法の提供を、主な目的とする。
 本発明の一態様によれば、
 複数の素線が撚り合わされた導体、および前記導体を被覆する被覆層を有する絶縁電線と、前記絶縁電線の少なくとも一端に接続された端子と、を有する端子付き絶縁電線に対し、自由落下試験を行ったときの評価予測方法であり、
 前記導体の引張強度、および前記被覆層の3%耐力が、下記式を満たすかを確認する工程を有する、
 端子付き絶縁電線の評価予測方法が提供される。
 100[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])
 本発明の別の態様によれば、
 複数の素線が撚り合わされた導体、および前記導体を被覆する被覆層を有する絶縁電線と、前記絶縁電線の端部に接続された端子と、を有する端子付き絶縁電線に対し、自由落下試験を行ったときの評価予測方法であり、
 前記自由落下試験の合格率を100%とするために必要な、端子固着力の最小値を特定する工程と、
 前記最小値、前記導体の引張強度、および前記被覆層の3%耐力が、下記式を満たすかを確認する工程を有する、
 端子付き絶縁電線の評価予測方法。
 最小値[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])
 本発明の端子付き絶縁電線の評価予測方法によれば、端子付き絶縁電線の自由落下試験の結果を容易に予測可能である。
端子付き絶縁電線の一例を示す側面図である。 絶縁電線の一例を示す概略断面図である。 絶縁電線の他の例を示す概略断面図である。 一実施形態に係る端子付き絶縁電線の評価予測方法の手順を示すフローチャートである。 他の実施形態に係る端子付き絶縁電線の評価予測方法の手順を示すフローチャートである。 端子付き絶縁電線の端子固着力および自由落下試験の合格率の相関性を示すグラフである。 導体の引張強度および導体を端子に固着したときの固着力と、導体の断面積との関係を示すグラフである。
 まず、本発明の評価予測方法の対象である端子付き絶縁電線について説明し、その後、評価予測方法について説明する。
 1.端子付き絶縁電線について
 本発明の一実施形態に係る端子付き絶縁電線20の、一端の形状を図1に示す。本実施形態の端子付き絶縁電線20では、端子10が絶縁電線1の一方の端部のみに接続されていてもよく、両方の端部に接続されていてもよい。以下、具体的な絶縁電線1および端子10の例を示すが、端子付き絶縁電線20の絶縁電線1や端子10は、これらに制限されず、後述の評価予測方法は、下記に示す以外の端子付き電線に対しても適用可能である。
 (1)絶縁電線
 本実施形態に係る絶縁電線1の断面図を図2Aに示し、他の実施形態に係る絶縁電線1の断面図を図2Bに示す。絶縁電線1は、複数の素線2a、2bが撚り合わされた導体2と、当該導体2を覆うための被覆層3とを有する。
 図2Aおよび図2Bに示す絶縁電線1では、いずれも導体2が、1本の中心素線2aと、これを同心状に取り囲む6本の同心素線2bとから構成されている。素線2a、2bの本数は、絶縁電線1(端子付き絶縁電線20)の用途等に応じて適宜選択される。また、導体2は、図2Aに示すように、複数の素線2a、2bを撚り合わせただけの非圧縮導体であってもよく、図2Bに示すように、複数の素線2a、2bを撚り合わせた後、所望の形状に圧縮した圧縮導体であってもよい。なお、導体2が圧縮導体である場合、圧縮率は3~4%が好ましい。導体2の圧縮率は下記式から導出される。
圧縮率=(圧縮前の導体断面積-圧縮後の導体断面積)/圧縮前の導体断面積×100%
 導体2を構成する各素線2a、2bの断面積や径は特に制限されないが、各素線2a、2bの合計断面積、すなわち導体2の断面積は、0.16mm以下が好ましい。導体2の断面積は、0.120mm以上0.16mm以下がより好ましく、0.125mm以上0.16mm以下がさらに好ましい。後述の評価予測方法は、0.16mmより大きい断面積を有する導体を含む端子付き絶縁電線20にも適用可能である。ただし、近年、導体2の断面積を小さくすることが求められており、導体2の断面積が0.16mm以下である絶縁電線1の開発の際に、特に好適に使用できる。なお、導体2の断面形状は、略円形状や楕円状であってもよく、多角形状等であってもよい。導体2を構成する各素線2a、2bの太さは同一であってもよく、異なっていてもよいが、通常同一である。
 また、当該導体2は、中心素線2aと、その周囲に配置された同心素線2bとが、中心素線2aを軸として一定方向に撚られていることが好ましい。このときの撚りピッチは特に制限されず、所望の絶縁電線1の性能に合わせて適宜選択される。通常5mm以上10mm以下が好ましく、6mm以上8mm以下がより好ましい。「撚りピッチ」とは、中心素線2aを軸として、導体2が360°回転するのに必要な導体2の長さをいう。
 また、導体2の各素線2a、2bは、調質されていないものを使用する。また、導体2の各素線2a、2bに付着する油分量が調整されていてもよい。
 ここで、導体2の各素線2a、2bを構成する金属は特に制限されず、公知の絶縁電線の導体が含む金属と同様である。当該金属は、金属単体であってもよく、合金であってもよい。特に、導電性や加工性の観点で、銅合金が好ましく用いられる。銅合金の例には、Fe、Ti、Mg、Sn、Ag、Ni、In、Zn、Cr、Al、P、Be、CoおよびSiからなる群から選ばれる1種以上の添加元素を含有し、残部がCuおよび不可避元素から構成される合金が含まれる。添加元素は、好ましくはMgおよび/またはSnである。上記添加元素は1種類であってもよく、2種以上の組み合わせであってもよい。通常3種以下である。
 銅合金中の添加元素の量も、所望の絶縁電線の性能に合わせて適宜選択される。例えば、0.2質量%以上0.4質量%以下が好ましく、0.25質量%以上0.35質量%以下がより好ましく、0.28質量%以上0.32質量%以下がさらに好ましい。銅合金中の添加元素の量が0.2質量%以上であると、導体2の強度が高まり、引っ張り強さが強くなる傾向がある。一方、銅合金中の添加元素の量が0.4質量%以下であると、導体2の導電率が高まりやすい傾向がある。
 また、導体2の導電率は特に制限されないが、75%IACS以上であると、絶縁電線1を各種用途に使用可能となることから好ましく、80%IACS以上がより好ましい。導体2の導電率は、JIS H 0505に基づき電気抵抗値から算出される値である。当該電気抵抗値は、長さ500mmの導体を用いてダブルブリッジ法にて測定される。導体2の導電率は、例えば上記添加元素の種類や量によって調整できる。
 一方、被覆層3は、導体2を絶縁被覆する層であり、通常樹脂単独、または樹脂と他の成分との組成物で構成される。当該樹脂の種類は特に制限されず、例えば、後述の実施例に示すように、ポリ塩化ビニルや、ポリフェニレンエーテル樹脂等であってもよい。また、ポリエチレンやポリプロピレン等のオレフィン系樹脂を含んでいてもよい。さらに、被覆層3は、樹脂以外に可塑剤や充填剤、安定剤、加工助剤等、任意の成分を含んでいてもよい。
 被覆層3の厚さは特に制限されないが、0.15mm以上0.25mm以下が好ましく、0.15mm以上0.20mm以下がより好ましい。被覆層3の厚さが0.15mm以上であると、十分な絶縁性が得られやすい。一方、被覆層3の厚さが0.25mm以下であると、絶縁電線1を細くできる。ただし、後述の評価予測方法は、厚み0.15mm未満、もしくは厚み0.25mm超の被覆層3を有する端子付き絶縁電線20に対しても適用可能である。
 上記導体2および被覆層3を有する絶縁電線1の製造方法は特に制限されず、どのような方法で製造された絶縁電線1に対しても、後述の評価予測方法を適用できる。一般的には、複数の素線2a、2bを準備し、これを所望の断面積になるように撚り合わせて導体2とする。その後、導体2の周囲に絶縁材料を押出被覆して、被覆層3を形成し、絶縁電線1を得る。
 (2)端子
 端子10の形状や種類は特に制限されず、端子付き電線20の用途に応じて適宜選択される。
 図1に示す端子10は、各種装置と接続するための雌型または雄型の嵌合部11と、絶縁電線1の導体2を固定するワイヤバレル部12と、絶縁電線1の被覆層3を支持するためのインシュレーションバレル部13とが順に配置されている。
 嵌合部11の形状は、各種装置と接続可能な構造であればよく、装置の種類に応じて適宜選択される。
 ワイヤバレル部12は、導体2と端子10とを電気的および機械的に確実に接続するための部分であり、導体2を圧縮して固定するための構造を有している。
 インシュレーションバレル部13は、被覆層3を圧縮して固定するための構造を有している。これらは、一般的な端子の構造と同様である。
 端子20と絶縁電線1との接続方法は、特に制限されず、例えば以下の方法によって接続できる。
 まず、絶縁電線1の端部から被覆層3を剥離し導体2を露出させる。導体2を露出させる方法は、一般的な方法で行うことができ、ストリッパー等の専用器具で導体2を露出させてもよい。
 次いで、露出させた導体2に端子10を接続する。具体的には、端子10のインシュレーションバレル部13に絶縁電線1の被覆層3を固定するとともに、ワイヤバレル部12を加締めて、ワイヤバレル部12に露出した導体2を圧接させる方法とすることができる。
 2.端子付き絶縁電線の評価予測方法
 上述の端子付き絶縁電線の評価予測方法(以下、単に「評価予測方法」とも称する)について、説明する。
 本発明の一実施形態に係る評価予測方法では、長さ300mmの絶縁電線を含む端子付き絶縁電線の一端に、錘をつけ、当該端子付き絶縁電線の他端を所定の高さ(例えば高さ1000mm)に固定した状態で、錘を他端側から自由落下させる試験(自由落下試験)の評価結果を予測できる。具体的には、錘を自由落下させたときに、絶縁電線に破断が生じるか否かの結果を予測できる。また、上記当該予測結果は、端子のワイヤバレル部およびインシュレーションバレル部に負荷がかかるように錘を取り付けたときの結果である。以下、当該方法について、説明する。
 本実施形態の評価予測方法の手順を図3のフローチャートに示す。
 まず、評価を行う端子付き電線の絶縁電線の導体の引張強度A[N]、および絶縁電線の被覆層の3%耐力B[N]を特定する(S1)。
 本明細書における「導体の引張強度A」とは、絶縁電線内と同様の状態の導体の引張強度、すなわち複数の素線が一定方向に撚られた状態の導体の引張強度とする。なお、素線の圧縮の有無や圧縮率、導体の断面積、導体の撚りピッチ、素線に付着する油分量等によって、導体の引張強度は変化する可能性がある。そこで、「導体の引張強度A」は、実際に絶縁電線を作製し、これから導体を取り出して引張強度を測定した値、もしくは絶縁電線の作製時と同様の手順で導体のみを作製し、当該導体について引張強度を測定した値が好ましい。導体の引張強度は、島津製作所社製の万能試験機(オートグラフ)等によって特定可能である。
 一方、「被覆層の3%耐力B」とは、絶縁電線内と同様の状態の被覆層の3%耐力、すなわち所定の厚み、かつ管状の被覆層の3%耐力とする。「被覆層の3%耐力B」は、絶縁電線から被覆層を剥離し、その3%耐力を測定した値、もしくは絶縁電線の作製時と同様の手順で被覆層のみを作製し、これについて3%耐力を測定した値が好ましい。被覆層の3%耐力は、JASO D618に準拠して測定される。
 続いて、上記で特定した「導体の引張応力A」および「被覆層の3%耐力B」が、下記式を満たすか否かを検討する(S2)。
 100[N]≦(導体の引張強度A[N]×0.7)+(被覆層の3%耐力B[N])
 上記式における右辺は、後述の実施例で検証するように、端子付き絶縁電線の端子固着力に相当する。また、上記式における左辺の値(100N)は、後述の実施例で実証するように、上記自由落下試験を行ったときに、合格率が必ず100%になる端子固着力の最小値である。当該値は、後述の実施例により導き出された値である。
 そして、上記式を満たす場合には合格と判定し(S3)、上記式を満たさない場合には不合格と判定する(S4)。
 なお、必要に応じて、被覆層の厚みや組成を変更したり、導体の組成や径、圧縮率、撚りピッチ等、様々な条件を変更して、上記評価予測方法を繰り返し行い、最適な導体や被覆層の種類や構造等を決定してもよい。つまり、当該評価予測方法によれば、実際に絶縁電線を作製したり、自由落下試験を行わなくても、自由落下試験の評価結果を容易に予測できる。したがって、新たな絶縁電線の開発や仕様変更の際に非常に有用である。また、絶縁電線を新規に開発する場合だけでなく、上記評価予測方法を利用して、品質管理を行うことも可能である。
 さらに、上記評価予測方法は、上述の自由落下試験を行う分野であれば、いずれの分野においても有用である。例えば、自動車や飛行機等の機器、産業用ロボット等の制御機器の各種電気機器に使用される絶縁電線の開発や品質管理等において有用である。中でも、自動車用ワイヤーハーネス用の端子付き絶縁電線の評価に有用である。
 (他の実施形態)
 上記で説明した評価予測方法は、錘の重さが400g、かつ絶縁電線の長さが300mmである自由落下試験に適用可能である。ただし、自由落下試験の条件を変更する場合等には、以下のように、評価予測方法を行うことが好ましい。当該評価予測方法の手順を図4のフローチャートに示す。
 まず、所望の自由落下試験において、合格率を100%とするのに必要な、端子付き絶縁電線の端子固着力の最小値Cを特定する(S11)。具体的には、任意の導体及び任意の被覆層を有する絶縁電線を含む端子付き絶縁電線を複数種類準備する。そして、これらの端子付き絶縁電線の端子固着力を、種類ごとに測定する。さらに、これらの端子付き絶縁電線に対し、所望の自由落下試験を行い、種類ごとの合格率を算出する。そして、上記端子固着力と自由落下試験の合格率とを照らし合わせ、合格率が必ず100%となる端子固着力の最小値Cを特定する。例えば、同一の端子固着力において、合格率が100%となる例および合格率が100%未満となる例とが混在する場合には、当該端子固着力は上記最小値Cとして適切でない。合格率が必ず100%となる端子固着力のうち、最小の値を上記最小値Cとして選択する。
 続いて、所望の自由落下試験にて、評価結果を予測したい端子付き絶縁電線の導体の引張強度A[N]および被覆層の3%耐力B[N]を、上述の実施形態と同様に特定する(S12)。
 その後、上記で特定した「導体の引張応力A」、「被覆層の3%耐力B」、および「最小値C」が、下記式を満たすか否かを検討する(S13)。
 最小値C[N]≦(導体の引張強度A[N]×0.7)+(被覆層の3%耐力B[N])
 そして、上記式を満たす場合には合格と判定し(S14)、上記式を満たさない場合には不合格と判定する(S15)。
 当該評価予測方法によれば、最初に最小値Cを設定するだけで、実際に絶縁電線を作製したり、自由落下試験を行わなくても、所望の自由落下試験の評価結果を容易に予測できる。したがって、新たな絶縁電線の開発や仕様変更の際に非常に有用である。また、絶縁電線を新規に開発する場合だけでなく、上記評価予測方法を利用して、品質管理を行うことも可能である。
 上述の評価予測方法は、以下の検証に基づき導き出した。また、上述の評価予測方法によって導き出される評価結果と、実際の結果とが整合するか否かの検証(検証3)も行った。
 検証1(端子固着力と、自由落下試験評価の相関性の確認)
 (1)サンプルの作製
 以下の方法で、サンプル1~11を、それぞれ10本ずつ作製した。
 (1.1)サンプル1の作製
 0.3質量%のSnを含有し、残部がCuおよび不可避元素から構成される銅合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、直径12mmの鋳造ロッドを作製した。当該鋳造ロッドに冷間加工を施して直径約0.16mmの複数本の素線を得た。
 その後、素線を7本準備し、そのうちの1本を中心素線と、残りの6本を中心素線の周囲に同心状に配置する同心素線とした。これらを、該導体の断面積が、0.155mmとなるように撚り合わせた。
 上記導体の周囲を覆うように、三菱ケミカル社製ポリ塩化ビニル樹脂(PVC1)を押出機のダイスから押し出して、導体の周囲に被覆層を形成し、絶縁電線を作製した。被覆層の厚さは0.2mmとした。
 その後、上記絶縁電線の一方の端部に図1のような端子を取り付け、端子付き絶縁電線とした。
 (1.2)サンプル2の作製
 ポリ塩化ビニル樹脂、可塑剤、重質炭酸カルシウム系充填剤、Ca/Zn系安定剤、およびアクリル系加工助剤の混合物からなる樹脂組成物1を用いて(配合比は表2参照)、被覆層を形成した以外は、サンプル1と同様に端子付き絶縁電線を作製した。
 (1.3)サンプル3の作製
 リケンテクノス社製ポリ塩化ビニル樹脂(PVC2)を用いて被覆層を形成した以外は、サンプル1と同様に端子付き絶縁電線を作製した。
 (1.4)サンプル4の作製
 サンプル1と同様に素線を7本準備し、これらを、該導体の断面積が、0.160mmとなるように撚り合わせた。その後、Sabic社製変性ポリフェニレンエーテル樹脂(m-PPE)を用いて、サンプル1と同様に被覆層を形成し、端子を取付け、端子付き絶縁電線を作製した。
 (1.5)サンプル5の作製
 サンプル2と同様の樹脂組成物1を用いて被覆層を形成した以外は、サンプル4と同様に端子付き絶縁電線を作製した。
 (1.6)サンプル6の作製
 サンプル1と同様に素線を7本準備し、これらを、該導体の断面積が、0.137mmとなるように圧縮し、撚り合わせた。その後サンプル1と同様に被覆層を形成し、端子を取り付けて、端子付き絶縁電線を作製した。
 (1.7)サンプル7~11の作製
 被覆層の材料を、下記表1に示すように変更した以外は、サンプル6と同様に端子付き絶縁電線を作製した。
 なお、表1中の樹脂組成物2および樹脂組成物3は、樹脂組成物1の配合比を変更したものであり、配合比は表2のとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (2)自由落下試験
 上記各端子付き絶縁電線(絶縁電線の長さ300mm)の端子のワイヤバレル部およびインシュレーションバレル部に負荷がかかるように、端子の先端に400gの錘を付けた。そして、端子を取り付けていない側の端部を、高さ1000mmの位置で固定した。そして、錘を高さ1000mmの位置から自由落下させて、絶縁電線に破断が生じたかどうかを、目視によって確認した。評価は以下の基準で行った。そして、サンプルごとに自由落下試験の合格率を算出した。
   合格 :絶縁電線に破断が生じなかった
   不合格:絶縁電線に破断が生じた
 (3)端子固着力
 上記各サンプルの端子付き絶縁電線の端子固着力(N)を、以下のように測定した。絶縁電線の一端部において被覆層を剥いで導体を露出させ、この導体の一端部に端子を取り付けた。ここでは、端子として市販の圧着端子を用いて導体に圧着した。導体および被覆層の組み合わせにより適正な取付け高さを調整した。その後、汎用の引張試験機を用いて、端子を100mm/minで引っ張ったときに端子が抜けない最大荷重(N)を測定した。この最大荷重を端子固着力とした。
 (4)端子固着力と、自由落下試験評価の相関性
 上記端子固着力を横軸、自由落下試験の合格率を縦軸として、グラフにした。当該グラフを図5に示す。図5から明らかなように、端子固着力が増加すると、自由落下試験の合格率が上昇し、これらに相関性があることが明らかとなった。また、上記自由落下試験において、必ず100%合格となる端子固着力の最小値が、100Nであることが、当該試験結果から導き出された。
 検証2(端子固着力と、導体の固着力および被覆層の固着力との関係について)
 上述のように、端子付き絶縁電線の端子固着力と、自由落下試験の評価結果には、相関性があり、当該端子固着力が100Nを超えると、自由落下試験の結果が必ず良好になることが明らかとなった。ただし、端子付き絶縁電線の材料等を選定する際、端子付き絶縁電線を作製するとともに、その端子固着力をそれぞれ測定することは、煩雑である。ここで、絶縁電線への端子の接続は、絶縁電線の導体を加締めるワイヤバレル部と、被覆層を加締めるインシュレーションバレル部と、によって行われる。すなわち端子固着力は、導体の端子との固着力、および被覆層の端子との固着力とを合計した、下記式にて表すことができるとの予測に基づき、以下の検証を行った。
  端子固着力=導体の端子との固着力+被覆層の端子との固着力
 ・導体の端子による固着力について
 各サンプルで使用した3種類の導体(導体の断面積0.155mm、0.160mm、および0.137mm)について、それぞれの引張強度を島津製作所社製の万能試験機(オートグラフ)等によって特定した。
 続いて、これらの導体(のみ)を、上記端子に接続し、上記と同様の方法で固着力を測定した。導体の断面積を横軸、強度を縦軸にして図6に示す。なお、図6において、導体の引張強度は黒丸で表記し、端子との固着力は白丸で表記した。さらに、図6には、導体を端子に固着したことで、どの程度強度が低下したかを灰色の丸で表記した。図6に示すように、いずれの断面積の導体においても、導体を端子に固着することで、25%~30%程度の強度の低下がみられた。つまり、導体の端子との固着力は、「導体の引張強度×0.7」以上となることが明らかとなった。図6では、引張強度、端子との固着力および強度の低下割合を平均値で示した。
 ・被覆層の端子による固着力について
 各サンプルで使用した11種類の端子付き絶縁電線の被覆層について、端子固着力との相関性が予測される「導体と被覆層との密着強度」、被覆層の引張特性である「降伏点強度」、および被覆層の引張特性である「3%耐力」をそれぞれ以下の方法で測定した。
 (被覆層の密着強度の測定)
 被覆層の密着強度は、JASO D618に基づいて測定した。具体的には、上記サンプルと同様に長さ100mmの絶縁電線を準備して、その一端部の被覆層を除去して長さ25mm分の導体を露出させるとともに、他端部の長さ25mm分を切断し廃棄した。全長75mmの当該絶縁電線を測定対象として、露出させた導体を保持具の貫通孔(直径が導体の外径より大きく、かつ絶縁電線の外径より小さい孔)に挿通した。当該保持具を固定し、保持具から突出した導体の一端部を引っ張った。そして、被覆層が導体から剥離し、導体が抜けたときの最小荷重を密着強度とした。測定装置は株式会社島津製作所製万能試験機(オートグラフ)を使用した。
 (被覆層の降伏点強度および3%耐力の測定)
 被覆層の降伏点強度および3%耐力は、JASO D618に基づいて測定した。具体的には、上記サンプルから長さ約150mmの管状試験片を採取し、その管状試験片について、降伏点強度および3%耐力を株式会社島津製作所製万能試験機(オートグラフ)で測定した。
 (分析)
 上述の各サンプルの被覆層のみを端子に固定し、上記と同様の方法で固着力を測定した。そして、被覆層の固着力を横軸、上記試験で得られた密着強度、降伏点強度、3%耐力をそれぞれ縦軸として、グラフ化し(図示せず)、各特性(密着強度、降伏点強度、3%耐力)と端子付き絶縁電線の固着力との関係を一次関数(近似式)で表した。算出した一次関数を表3に示す。また、各近似式について、決定係数Rを算出した。結果を表3に示す。決定係数の値から、3%耐力が被覆層の固着力と相関性が非常に高いことが明らかであり、さらに当該3%耐力の値は、被覆層の端子との固着力と略同等であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
 ・結果
 以上の結果から、端子付き絶縁電線の端子固着力として予測される値の最小の値は、以下の式で表されることが明らかとなった。
  端子固着力(予測最小値)=導体の引張強度×0.7+被覆層の3%耐力
 検証3(端子固着力(予測値)と、自由落下試験との相関性の検証)
 検証1から、上述の自由落下試験を行う場合には、その評価結果と、端子付き絶縁電線の端子固着力との間には相関性があること、さらに自由落下試験の評価結果が必ず100%合格となる端子固着力は、100Nであることが明らかとなった。
 一方、検証2から、各端子付き絶縁電線の端子固着力として予測される最小値は、「導体の引張強度×0.7+被覆層の3%耐力」であることが明らかとなった。
 これらをまとめると、端子付き絶縁電線を製造する際に、その導体の引張強度、および被覆層が、以下の式を満たせば、自由落下試験の結果が必ず合格になると考えられる。
 100[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])
 そこで、当該式から算出される値と、上述の検証1で行った自由落下試験の試験結果とを照らし合わせ、上記式の実効性を確認した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示されるように、上記の式(100[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])を満たす場合には、いずれも自由落下試験の合格率が100%であり、上述の評価予測方法が有用であることが確認された。
 なお、上記式を満たさない場合には、合格率が100%にならない場合があった。そのため、100%合格とするためには、上記式を満たす必要があるといえる。
 本発明の評価予測方法によれば、複数の素線が撚り合わされた導体と、それを被覆する被覆層と、を有する絶縁電線、および端子を有する端子付き絶縁電線の自由落下試験の結果を、実際に端子付き絶縁電線を作製しなくても予測可能である。したがって、絶縁電線の開発や品質管理において非常に有用である。
 1 絶縁電線
 2 導体
 2a 中心素線
 2b 同心素線
 3 被覆層
 10 端子
 11 嵌合部
 12 ワイヤバレル部
 13 インシュレーションバレル部
 20 端子付き絶縁電線

Claims (4)

  1.  複数の素線が撚り合わされた導体、および前記導体を被覆する被覆層を有する絶縁電線と、前記絶縁電線の少なくとも一端に接続された端子と、を有する端子付き絶縁電線に対し、自由落下試験を行ったときの評価予測方法であり、
     前記導体の引張強度、および前記被覆層の3%耐力が、下記式を満たすかを確認する工程を有する、
     端子付き絶縁電線の評価予測方法。
     100[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])
  2.  請求項1に記載の端子付き絶縁電線の評価予測方法における、
     前記自由落下試験が、長さ300mmの前記絶縁電線を有する前記端子付き絶縁電線の一端に400gの錘をつけ、前記端子付き電線の他端を固定して、前記錘を前記他端側から自由落下させる試験である、
     評価予測方法。
  3.  請求項1に記載の端子付き絶縁電線の評価予測方法における、
     前記導体の断面積が0.16mm以下であり、かつ
     前記被覆層の厚さが0.15mm以上0.25mm以下である、
     評価予測方法。
  4.  複数の素線が撚り合わされた導体、および前記導体を被覆する被覆層を有する絶縁電線と、前記絶縁電線の端部に接続された端子と、を有する端子付き絶縁電線に対し、自由落下試験を行ったときの評価予測方法であり、
     前記自由落下試験の合格率を100%とするために必要な、端子固着力の最小値を特定する工程と、
     前記最小値、前記導体の引張強度、および前記被覆層の3%耐力が、下記式を満たすかを確認する工程を有する、
     端子付き絶縁電線の評価予測方法。
     最小値[N]≦(導体の引張強度[N]×0.7)+(被覆層の3%耐力[N])
     
PCT/JP2022/034790 2022-09-16 2022-09-16 端子付き絶縁電線の評価予測方法 WO2024057541A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034790 WO2024057541A1 (ja) 2022-09-16 2022-09-16 端子付き絶縁電線の評価予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034790 WO2024057541A1 (ja) 2022-09-16 2022-09-16 端子付き絶縁電線の評価予測方法

Publications (1)

Publication Number Publication Date
WO2024057541A1 true WO2024057541A1 (ja) 2024-03-21

Family

ID=90274666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034790 WO2024057541A1 (ja) 2022-09-16 2022-09-16 端子付き絶縁電線の評価予測方法

Country Status (1)

Country Link
WO (1) WO2024057541A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170992A1 (ja) * 2015-04-21 2016-10-27 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス
WO2018084263A1 (ja) * 2016-11-07 2018-05-11 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
WO2018083812A1 (ja) * 2016-11-07 2018-05-11 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170992A1 (ja) * 2015-04-21 2016-10-27 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス
WO2018084263A1 (ja) * 2016-11-07 2018-05-11 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
WO2018083812A1 (ja) * 2016-11-07 2018-05-11 住友電気工業株式会社 被覆電線、端子付き電線、銅合金線、及び銅合金撚線

Similar Documents

Publication Publication Date Title
CN109983141B (zh) 包覆电线、带端子电线、铜合金线和铜合金绞合线
JP2015086452A (ja) 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法
KR20180096525A (ko) 금속/카본 나노튜브 복합 와이어
EP3576104B1 (en) Insulation cable
JP2015196881A (ja) アルミニウム合金素線、アルミニウム合金撚線および自動車用電線
CN110462936B (zh) 连接结构体
WO2024057541A1 (ja) 端子付き絶縁電線の評価予測方法
JP4330005B2 (ja) アルミ導電線
JP4330003B2 (ja) アルミ導電線
WO2023047514A1 (ja) 絶縁電線およびその製造方法ならびに端子付き絶縁電線およびその製造方法
CN110914923B (zh) 包覆电线、附带端子的电线及绞合线
US11830638B2 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP2018077942A (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP2020037745A (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP2020161263A (ja) ワイヤーハーネス用撚り線
JP7393743B2 (ja) 電線、及び端子付き電線
WO2023167255A1 (ja) アルミニウム圧縮電線及びワイヤーハーネス
JP2006004760A (ja) アルミ導電線
JP7424042B2 (ja) 撚線導体、絶縁電線、及び撚線導体の製造方法
JP2006004757A (ja) アルミ導電線
JP7295817B2 (ja) ワイヤーハーネス用導体撚線
JP2012221680A (ja) 自動車用電線
CN102347102A (zh) 含氟弹性体包覆电线及含氟弹性体包覆电线的制造方法
JP2015167092A (ja) 絶縁電線
JP2015196880A (ja) アルミニウム合金素線、アルミニウム合金撚線および自動車用電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958860

Country of ref document: EP

Kind code of ref document: A1