WO2018082584A1 - 表皮电极的制作方法 - Google Patents

表皮电极的制作方法 Download PDF

Info

Publication number
WO2018082584A1
WO2018082584A1 PCT/CN2017/109016 CN2017109016W WO2018082584A1 WO 2018082584 A1 WO2018082584 A1 WO 2018082584A1 CN 2017109016 W CN2017109016 W CN 2017109016W WO 2018082584 A1 WO2018082584 A1 WO 2018082584A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
metal film
skin electrode
fabricating
sensing
Prior art date
Application number
PCT/CN2017/109016
Other languages
English (en)
French (fr)
Inventor
杨泽宇
鲁南姝
王普林
Original Assignee
成都柔电云科科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都柔电云科科技有限公司 filed Critical 成都柔电云科科技有限公司
Publication of WO2018082584A1 publication Critical patent/WO2018082584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/28Applying continuous inductive loading, e.g. Krarup loading
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching

Definitions

  • the invention relates to a method for manufacturing a sensor, and more particularly to a method for manufacturing a skin electrode in the field of manufacturing a wearable device.
  • the skin electrode is a flexible stretchable electrode that can be adhered to human skin like a temporary tattoo so that the electrophysiological signal of the human body can be monitored like a conventional device.
  • the existing skin electrode is usually made of a composite film formed by a metal layer and a plastic layer adhered together, wherein the metal layer is used for bonding with the skin of the human body, in order to conduct the data of the metal layer to the external chip,
  • the electro-physiological data measured by the metal layer is obtained by perforating the composite film and mounting the conductive nails in the perforations, connecting the metal layer through the conductive nails, and connecting the conductive nails to the chip through the external wires.
  • the skin electrode of the structure has a thick thickness of the skin electrode due to the use of the conductive nail structure, which limits the development of the skin electrode to the light and thin direction; in addition, the friction generated by the conductive nail and the metal layer under the dynamic of the human body is generated. Dynamic noise causes measurement data to be inaccurate and wears the metal layer; further, conductive pins are not conducive to connection to small chips.
  • the invention provides a method for fabricating a skin electrode, wherein the skin electrode has a sensing contact, and the method for manufacturing the skin electrode comprises the following steps:
  • the metal film includes an upper metal layer and a lower metal layer, and a plastic layer is interposed between the upper metal layer and the lower metal layer;
  • c) potting filling a plurality of the perforations with a conductive paste to electrically connect the upper metal layer and the lower metal layer through the conductive paste;
  • the method and the advantage of the method for producing the skin electrode of the present invention are that a thinner and thinner skin electrode can be produced by the method, and the method for producing the skin electrode is simple and the production efficiency is high.
  • FIG. 1 is a schematic view showing the outer structure of a sensor contact sheet of a skin electrode of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a metal film used to manufacture the skin electrode of the present invention.
  • Figure 3 is a schematic cross-sectional view of a perforation in a metal film.
  • FIG. 4 is a schematic cross-sectional view showing a conductive paste filled in a perforation of a metal film.
  • Figure 5 is a schematic cross-sectional view showing the adhesion of a metal film to a plastic base film.
  • Figure 6 is a schematic cross-sectional view showing the structure of a die-cut or laser-cut sensing contact on a metal film.
  • Figure 7 is a schematic cross-sectional view showing the sensor contact pad attached to the plastic base film.
  • Fig. 8 is a schematic view showing the structure of the bottom surface of the skin electrode.
  • Fig. 9 is a schematic view showing the top surface structure of the skin electrode.
  • Fig. 10 is a schematic view showing the structure of a metal film after perforation.
  • Fig. 11 is a schematic view showing the structure of the lower metal layer of the metal film after half-cutting.
  • Fig. 12 is a schematic view showing the structure of the upper metal layer of the metal film after half-cutting.
  • the present invention provides a method for fabricating a skin electrode, the skin electrode 1 having a sensing contact 11, and the method for fabricating the skin electrode includes the following steps:
  • the metal film 2 includes an upper metal layer 21 and a lower metal layer 22, between the upper metal layer 21 and the lower metal layer 22 is sandwiched with a plastic layer 23;
  • the skin electrode 1 is a tool for contacting the human skin and sensing the potential difference of the human body. By connecting the skin electrode 1 to the chip, data detected on the skin electrode 1 can be obtained.
  • the sensing contact 11 of the skin electrode 1 is a basic unit for measuring the potential of the human body, and the shape of the sensing contact 11 can be arbitrarily selected according to actual needs.
  • the sensing contact 11 is A plurality of connected hollow fan structures 113 are formed.
  • the hollow fan structure 113 is composed of four sides of a generally "S" shape, and each of the hollow fan structures 113 has a hollow hole 114.
  • the sensing contact 11 of the structure is adopted.
  • the potential difference of the human body can be acquired in real time by arranging the plurality of sensing contacts 11 on the human skin and conducting the measurement data of the plurality of sensing contacts 11 to the external chip through the external wires.
  • a metal film 2 is first provided, and the metal film 2 is substantially in the shape of a rectangular parallelepiped, which is formed by sequentially bonding the upper metal layer 21, the plastic layer 23 and the lower metal layer 22 to each other.
  • Thin film structure the upper metal layer 21 may be made of platinum, gold or stainless steel, and has a thickness h1 of 50 nm to 200 nm; and the lower metal layer 22 may be made of a conductive metal material or alloy material such as gold, aluminum, stainless steel or copper.
  • the thickness h2 is 50 nm to 200 nm; the plastic layer 23 may be a polyethylene terephthalate (PET) or a polyimide (PI) material having a thickness h3 of 0.5 ⁇ m to 25 ⁇ m.
  • PET polyethylene terephthalate
  • PI polyimide
  • step b) as shown in FIG. 3, according to the shape and structure of the sensor contact piece 11 to be formed, a punching operation is performed at a position on the metal film 2 where the sensor contact piece 11 is to be formed, and the hole diameter d of the hole 111 is 0.1. Mm ⁇ 0.3mm.
  • the through hole 111 penetrates the upper surface of the metal film 2 and the lower surface of the metal film 2.
  • the through hole 111 can be formed, for example, by laser etching. Of course, other prior art tools can be used for the metal film. 2 Perform the punching operation without limitation.
  • the number of the perforations 111 on the sensing contact 11 and the distance between the two adjacent perforations 111 can also be selected according to actual needs, which is not limited herein.
  • the position of the plurality of perforations 111 can be set, for example, on the common “S” edge of two adjacent hollow fan structures 113, each “S” edge. There are three perforations 111 arranged at equal intervals.
  • the plurality of perforations 111 on the metal film 2 are subjected to an ultrasonic cleaning operation.
  • the metal film 2 etched with the plurality of through holes 111 is placed in the ultrasonic cleaning device, and the ultrasonic cleaning device is activated to perform ultrasonic cleaning on the plurality of through holes 111 on the metal film 2 to remove the broken holes in the through holes 111.
  • the swarf facilitates the subsequent adhesion of the conductive paste in the through hole 111 to the through hole 111.
  • step c) is performed, as shown in FIG. 4, the plurality of perforations 111 of the metal film 2 are filled. gum.
  • the conductive paste 112 is dropped into the through hole 111 by means of titration.
  • the conductive paste 112 may be a conductive paste made of epoxy resin mixed silver powder.
  • the conductive paste 112 gradually The solidification in the perforation 111 is limited by the material of the conductive paste 112, so that the two ends of the conductive paste 112 dropped into the through hole 111 slightly overflow the upper metal layer 21 and the lower metal layer 22 of the metal film 2, so that the conductive paste can be made.
  • the contact area of the upper metal layer 21 and the lower metal layer 22 is relatively increased, which facilitates the circuit connection between the upper metal layer 21 and the lower metal layer 22.
  • the step d) can be completed in two steps as follows:
  • step d2) All external engraving: After completing step d1), the outer edge 115 of the sensing contact 11 is die cut or laser cut on the metal film 2.
  • the metal film 2 is adhered to a plastic base film 3; that is, before the step d1), the lower metal layer of the metal film 2 is as shown in FIG. 22 is adhered to the plastic base film 3, which may be a single-sided PET or PI material having a thickness h4 of 0.05 mm to 0.1 mm.
  • each hollow hole 114 of the sensing contact 11 is die-cut or laser-cut on the metal film 2 and the plastic base film 3.
  • the structure of the sensing contact 11 can be obtained by punching or laser cutting.
  • the above two methods are existing mature processing techniques, and the punching method belongs to a relatively traditional processing method.
  • the use of molds and tools for processing, this method is low cost and wide range of applications; and the laser cutting method is to use the laser beam to cut the material to be processed, the existing laser cutting equipment usually uses computerized digital control technology device,
  • the use of computer-aided design tools (such as CAD) to receive cutting data, without the use of molds, can obtain the shape of the material to be processed through the preset design graphics, laser cutting equipment costs higher, but fast, efficient, and can achieve More refined cutting.
  • the metal film 2 with the plastic base film 3 is placed on a horizontal film plate with the metal film 2 facing upward and the plastic base film 3 facing downward; then, providing the first The cutter places the first cutter above the metal film 2 and moves the first cutter downward to punch the metal film 2 and the plastic base film 3.
  • the first cutter has the same shape as the contour of the plurality of hollow holes 114 of the sensing contact 11, and the die-cut metal film 2 and the plastic are adjusted by adjusting the distance that the first cutter moves downward. The depth of the base film 3.
  • the metal film 2 and the plastic base film 3 are die-cut by the first cutter so that a plurality of hollow holes 114 are formed on the metal film 2 and the plastic base film 3.
  • the step d1) can also laser cut a plurality of hollow holes 114 by using a laser cutting device.
  • the outer step of step d2) is performed: the outer edge 115 of the sensing contact 11 is die-cut or laser-cut on the metal film 2.
  • the second cutter has a cutter having the same contour shape as the outer edge 115 of the sensor contact 11, and the depth of the die-cut metal film 2 is adjusted by adjusting the distance by which the second cutter moves downward.
  • the second cutter performs the punching operation only on the metal film 2 without performing the punching operation on the plastic base film 3.
  • the step d2) can also laser cut the outer edge 115 of the sensing contact 11 by using a laser cutting device.
  • step d2) After the above step d2) is completed, as shown in FIG. 7, the sensing contact piece 11 and the scrap metal film 12 separated from each other are formed on the plastic base film 3, and the scrap metal film 12 is peeled off from the plastic base film 3. That is, the sensing contact 11 adhered to the plastic base film 3 is obtained.
  • the sensor contact piece 11 adhered to the plastic base film 3 can be reversely bonded to a plastic film having a viscosity greater than that of the plastic base film 3, thereby achieving peeling of the sensor contact piece 11 and the plastic base film 3, and finally producing Complete a complete epidermal electrode 1 structure.
  • the structure of the skin electrode 1 is not limited to the above-mentioned sensor contact piece 11 having a plurality of hollow fan structures 113, and the sensor contact piece 11 of the skin electrode 1 can be arbitrarily selected according to actual needs. Shape, no restrictions here.
  • the metal film 2 can be subjected to a punching or laser cutting operation by a punching tool or a laser cutting device to form the structure of the sensor contact piece 11, wherein
  • the shape of the punching blade of the punching cutter is the same as the contour shape of the sensing contact 11, and the cutting shape preset by the laser cutting device is also the same as the contour shape of the sensing contact 11.
  • the skin electrode 1 includes a collecting contact 13 and a plurality of spaced apart sensing contacts 11 , between each sensing contact 11 and the collecting contact 13 . They are connected by a sensing strip 14.
  • the skin sensor 1 has three sensing contacts 11 as an example. The three sensing contacts 11 are equally spaced, the collecting contacts 13 are located at the middle and lower portions of the skin electrode 1, and the three sensing contacts 11 are respectively The three contact strips 14 are connected to the collecting contact 13 .
  • the specific steps of fabricating the above-described skin electrode 1 on the provided metal film 2 are as follows:
  • step b) and step c) further comprise the step b1) half-cutting the metal layer 22: die cutting or laser cutting the lower metal layer 22 to the lower metal layer 22 A half-line 221 is formed on the sensing strip 14 .
  • step b2) is further performed on the metal layer 21: punching or laser cutting the upper metal layer 21, and the upper metal layer 21 is formed at a position corresponding to the position where the contact piece 13 is collected.
  • the plurality of sensing strips 14 are separated from each other by the half-notch 211.
  • the position of the plurality of perforations 111 formed after the perforation operation on the metal film 2 is as shown in FIG. 10 from the plan view of the metal film 2.
  • the step b1) is performed for half-cutting of the metal layer 22: please refer to FIG. 8 to perform a half-cut operation at a position corresponding to the sensing strip 14 and the sensing contact 11, that is, The lower metal layer 22 of the metal film 2 after the perforation is etched by laser cutting, and as shown in FIG. 11, three half-cut lines 221 are formed on the lower metal layer 22.
  • step b2) is performed on the metal layer 21 for half-time: please refer to FIG. 9 , at the position where the contact strip 13 is collected, the contacts 131 connected to the corresponding sensing strips 14 are respectively reserved, and the contacts are respectively
  • the point 131 is used for electrical connection with the external chip, and the region of the collecting contact 13 other than the three electric electrodes 131 (that is, the half-notch 211) is etched, as shown in FIG. 12, so that the upper metal layer 21 is positioned.
  • the sensing strips 14 are separated from each other by a half-notch 211.
  • the contact lens needs to be punched or laser cut on the metal film.
  • the structure of 13 and the structure of the plurality of sensing contacts 14 are die cut or laser cut to produce a complete skin electrode 1 structure.
  • a thinner and thinner skin electrode can be produced by the method, and the method for producing the skin electrode is simple and the production efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种表皮电极(1)的制作方法,所述表皮电极(1)具有传感触片(11),所述表皮电极(1)的制作方法包括如下步骤:a)提供一金属膜(2):所述金属膜(2)包括上金属层(21)和下金属层(22),所述上金属层(21)和所述下金属层(22)之间夹设有塑料层(23);b)穿孔:在所述金属膜(2)上欲成型所述传感触片(11)的位置处进行穿孔(111)作业;c)灌胶:在多个所述穿孔(111)内灌导电胶(112),以使所述上金属层(21)与所述下金属层(22)通过所述导电胶(112)形成电连接;d)全刻:在所述金属膜(2)上冲切出所述传感触片(11)的结构。通过该表皮电极(1)的制作方法可制作更加轻薄的表皮电极(1),该表皮电极(1)的制作方法简单、制作效率高。

Description

表皮电极的制作方法 技术领域
本发明有关于一种传感器的制作方法,尤其有关于一种可穿戴设备制造领域中的表皮电极的制作方法。
背景技术
表皮电极是一种柔性可拉伸电极,其可以像临时刺青一样粘在人体皮肤上,以便能够像常规装置一样监测人体的电生理信号。
现有的表皮电极,通常采用粘附在一起的金属层及塑料层形成的复合膜制成,其中该金属层用于与人体的皮肤贴合,为了将金属层的数据传导至外部芯片,现有技术中,通常采用在复合膜上穿孔并于穿孔中安装导电钉的方式,通过导电钉连接金属层,并通过外部导线将导电钉与芯片连接,从而获取金属层测量的电生理数据。
然而,该种结构的表皮电极,由于采用导电钉结构,使得表皮电极的厚度较大,限制了表皮电极向轻薄方向的发展;另外,导电钉与金属层在人体动态下产生的磨擦,会产生动态噪音以致测量数据不准确,并且会磨损金属层;再有,导电钉不利于与小型芯片连接。
因此,有必要提供一种新的制作表皮电极的方法,来克服上述缺陷。
发明内容
本发明的目的是提供一种表皮电极的制作方法,通过该方法可制作更加轻薄的表皮电极,该表皮电极的制作方法简单、制作效率高、制作成本低。
本发明提供一种表皮电极的制作方法,所述表皮电极具有传感触片,所述表皮电极的制作方法包括如下步骤:
a)提供一金属膜:所述金属膜包括上金属层和下金属层,所述上金属层和所述下金属层之间夹设有塑料层;
b)穿孔:在所述金属膜上欲成型所述传感触片的位置处进行穿孔作业;
c)灌胶:在多个所述穿孔内灌导电胶,以使所述上金属层与所述下金属层通过所述导电胶形成电连接;
d)全刻:在所述金属膜上冲切或激光切割出所述传感触片的结构。
本发明的表皮电极的制作方法的特点及优点是:通过该方法可制作更加轻薄的表皮电极,该表皮电极的制作方法简单、制作效率高。
附图说明
图1为本发明的表皮电极的传感触片的外形结构示意图。
图2为用于制造本发明的表皮电极的金属膜的剖面示意图。
图3为在金属膜上穿孔的剖面示意图。
图4为金属膜的穿孔内灌有导电胶的剖面示意图。
图5为金属膜粘附在塑料底膜上的剖面示意图。
图6为在金属膜上冲切或激光切割传感触片的结构的剖面示意图。
图7为塑料底膜上粘贴传感触片的剖面示意图。
图8为表皮电极的底面结构示意图。
图9为表皮电极的顶面结构示意图。
图10为金属膜穿孔后的结构示意图。
图11为在金属膜的下金属层进行半刻作业后的结构示意图。
图12为在金属膜的上金属层进行半刻作业后的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施方式一
如图1至图4所示,本发明提供了一种表皮电极的制作方法,所述表皮电极1具有传感触片11,所述表皮电极的制作方法包括如下步骤:
a)提供一金属膜2:所述金属膜2包括上金属层21和下金属层22,所述上金属层21和所述下金属层22之间夹设有塑料层23;
b)穿孔:在所述金属膜2上欲成型所述传感触片11的位置处进行穿孔111作业;
c)灌胶:在多个所述穿孔111内灌导电胶112,以使所述上金属层21与所述下金属层22通过所述导电胶112形成电连接;
d)全刻:在所述金属膜2上冲切或激光切割出所述传感触片11的结构。
表皮电极1为用于与人体皮肤接触并感知人体电势差的工具,通过将表皮电极1与芯片连接,可获取表皮电极1上检测的数据。其中,如图1所示,表皮电极1的传感触片11为测量人体电势的基础单元,该传感触片11的形状可根据实际需要任意选择,在本发明中,该传感触片11为由多个相连接的镂空风扇结构113组成,该镂空风扇结构113由大体呈“S”型的四条边首尾相连组成,每个镂空风扇结构113具有一个镂空孔114,采用该结构的传感触片11可具有更加优越的拉伸性能,可与人体皮肤贴合更加紧密,使得表皮电极1的测量数据更加可靠。通过将多个传感触片11间隔设置在人体皮肤上,并通过外部导线将多个传感触片11的测量数据传导至外部芯片,从而可实时获取人体的电势差。
本发明用于制作上述具有镂空风扇结构113的传感触片11的表皮电极1的具体步骤如下:
在步骤a)中,如图2所示,首先提供一金属膜2,该金属膜2大体呈长方体形,其为由上金属层21、塑料层23和下金属层22依次相互粘结而构成的薄膜结构。在本实施例中,上金属层21可由铂金、金或不锈钢材料制成,其厚度h1为50nm~200nm;下金属层22可由金、铝、不锈钢或铜等导电金属材料或合金材料制成,其厚度h2为50nm~200nm;塑料层23可为聚对苯二甲酸类塑料(Polyethylene terephthalate,PET)或聚酰亚胺(Polyimide,PI)材料,其厚度h3为0.5μm~25μm。
在步骤b)中,如图3所示,根据欲成型的传感触片11的形状结构,在金属膜2上需成型传感触片11的位置处进行穿孔作业,该穿孔111的孔径d为0.1mm~0.3mm。在本实施例中,该穿孔111贯穿金属膜2的上表面和金属膜2的下表面,该穿孔111例如可通过激光刻蚀形成,当然也可采用其他现有技术中的可行工具对金属膜2进行穿孔作业,在此不作限制。另外,传感触片11上的穿孔111数量及两两相邻穿孔111之间的距离也可根据实际需要选择设置,在此不作限制。在本发明中,请配合参阅图1所示,多个穿孔111的位置,例如可设置在相邻连接的两个镂空风扇结构113的共同“S”形边上,每个“S”形边具有三个等间隔设置的穿孔111。
进一步的,在完成步骤b)且进行步骤c)之前,需对金属膜2上的多个穿孔111进行超声波清洗作业。例如,将刻蚀有多个穿孔111的金属膜2放入超声波清洗仪内,启动超声波清洗仪,以对金属膜2上的多个穿孔111进行超声波清洗作业,用以清除穿孔111内的碎屑,便于后续灌入穿孔111内的导电胶可与穿孔111充分粘合。
完成超声波清洗作业后,进行步骤c),如图4所示,向金属膜2的多个穿孔111内灌 胶。在本发明中,穿孔111内用滴定的方式滴入导电胶112,该导电胶112可为环氧树脂混合银粉制成的导电胶,当导电胶112滴入穿孔111内后,导电胶112逐渐在穿孔111内凝固,因导电胶112自身材料的限定,使得滴入穿孔111内的导电胶112的两端会稍稍溢出金属膜2的上金属层21和下金属层22,这样可使导电胶112与上金属层21、下金属层22的接触面积相对增大,利于上金属层21和下金属层22的电路连通。
在本发明中,因传感触片11形成有多个镂空孔114,因此,步骤d)可分由如下两个步骤依次完成:
d1)内边全刻:在金属膜2上冲切或激光切割出传感触片11的多个镂空孔114;
d2)外边全刻:在完成步骤d1)后,于金属膜2上冲切或激光切割出传感触片11的外边缘115。
具体是,在进行步骤d)之前,需将该金属膜2粘附在一塑料底膜3上;也即,在进行步骤d1)之前,如图5所示,将金属膜2的下金属层22与塑料底膜3粘贴,该塑料底膜3可为单面带胶的PET或PI材料,其厚度h4为0.05mm~0.1mm。
之后,如图6所示,进行步骤d1)内边全刻:在金属膜2及该塑料底膜3上冲切或激光切割出该传感触片11的每个镂空孔114。在本发明中,可采用冲切或激光切割的方式进行全刻以获取该传感触片11的结构,上述两种方式都为现有成熟的加工工艺,冲切方式属于较为传统的加工方式,利用模具和刀具进行加工,该种方式成本较低、适用范围广;而激光切割的方式是利用激光光束对被加工材料进行切割,现有的激光切割设备通常采用计算机化数字控制技术装置,可利用计算机辅助设计工具(如CAD)来接收切割数据,无需采用模具,通过预设的设计图形即可获取需加工材料的形状,激光切割设备成本较高,但速度快、效率高,并能够实现更精细化的切割。
在本发明中,例如,采用冲切方式时,将带有塑料底膜3的金属膜2放置在一水平膜板上,金属膜2朝上,塑料底膜3朝下;然后,提供第一刀具,将第一刀具放置在金属膜2的上方,向下移动第一刀具以冲切金属膜2及塑料底膜3。在本实施例中,该第一刀具具有与传感触片11的多个镂空孔114的轮廓形状相同的刻刀,通过调整第一刀具向下移动的距离,来调整冲切金属膜2和塑料底膜3的深度。在该步骤d1)中,通过第一刀具冲切金属膜2及该塑料底膜3,以使金属膜2和塑料底膜3上均形成多个镂空孔114。同样,该步骤d1)也可采用激光切割设备激光切割出多个镂空孔114。
完成上述步骤d1)之后,进行步骤d2)外边全刻:在金属膜2上冲切或激光切割出传感触片11的外边缘115。例如,采用冲切方式时,将上述第一刀具更换为第二刀具后, 通过第二刀具向下冲切金属膜2。该第二刀具具有与传感触片11的外边缘115轮廓形状相同的刻刀,通过调整第二刀具向下移动的距离,来调整冲切金属膜2的深度。在该步骤d2)中,该第二刀具仅对金属膜2进行冲切作业,而不对塑料底膜3进行冲切作业。同样,该步骤d2)也可采用激光切割设备激光切割出该传感触片11的外边缘115。
待完成上述步骤d2)之后,请配合参阅图7所示,在塑料底膜3上形成有相互分离的传感触片11及废料金属膜12,将废料金属膜12自塑料底膜3上剥离,即获得粘附在塑料底膜3上的传感触片11。
最后,可通过将粘附在塑料底膜3上的传感触片11反向粘贴至一粘性大于塑料底膜3的塑料膜上,实现传感触片11与塑料底膜3的剥离,并最终制作完成一个完整的表皮电极1结构。
在本发明的另一实施例中,表皮电极1的结构并不限于上述具有多个镂空风扇结构113的传感触片11,该表皮电极1的传感触片11也可根据实际需要任意选择合适的形状,在此不作限制。
当表皮电极1选择其他形状结构时,在步骤d)中,可通过冲切刀具或激光切割设备对金属膜2进行一次冲切或激光切割作业,以成型该传感触片11的结构,其中,该冲切刀具的冲切刀的形状与传感触片11的轮廓形状相同,该激光切割设备所预设的切割形状也与传感触片11的轮廓形状相同。通过该种方式冲切或激光切割,可相对提高制作传感触片11的效率。
实施方式二
如图8和图9所示,根据本发明的一个实施方式,该表皮电极1包括采集触片13及多个间隔设置的传感触片11,每个传感触片11与采集触片13之间通过传感触条14相连。在本实施例中,仅需将表皮电极1与人体皮肤接触,并将外部芯片贴合至采集触片13上,即可实现对人体电势差的实时采集。在此,以表皮电极1具有三个传感触片11为例进行具体说明,该三个传感触片11等间隔设置,采集触片13位于表皮电极1的中下部,三个传感触片11分别通过三条传感触条14与采集触片13连接。
在实施方式二的表皮电极的制作方法中,在所提供的金属膜2上制作上述表皮电极1的具体步骤如下:
该实施方式二与实施方式一的不同点仅在于:在步骤b)与步骤c)之间还包括步骤b1)半刻下金属层22:冲切或激光切割下金属层22,以在下金属层22上形成半刻线221,该半刻线221位于传感触条14上。
进一步的,完成步骤b1)且进行步骤c)之前还需进行步骤b2)半刻上金属层21:冲切或激光切割上金属层21,以上金属层21对应采集触片13的位置处形成半刻区211,多个传感触条14通过该半刻区211彼此分离。
具体是,在该实施方式二的步骤b)中,从金属膜2的俯视图看,于金属膜2上进行穿孔作业后形成的多个穿孔111的位置如图10所示。
待上述步骤b)完成后,进行步骤b1)半刻下金属层22:请配合参阅图8所示,在对应传感触条14与传感触片11相连接的位置处进行半刻作业,也即,通过激光切割,在穿孔后的金属膜2的下金属层22上进行刻蚀,如图11所示,于下金属层22上形成三条半刻线221。
之后,进行步骤b2)半刻上金属层21:请配合参阅图9所示,在采集触片13的位置处,分别预留出与对应传感触条14相连接的触点131,该些触点131用于与外部芯片电连接,对该三个触电131以外的采集触片13的区域(也即,半刻区211)进行刻蚀,如图12所示,从而使得上金属层21位置处的传感触条14之间通过半刻区211彼此分离。
然后,依次依照实施方式一的步骤进行,直至进行至步骤d)时,除了需按照实施方式一来刻蚀传感触片11外,还需在金属膜上2冲切或激光切割出采集触片13的结构以及冲切或激光切割出多个传感触条14的结构,以制作出完整的表皮电极1结构。
本发明的表皮电极的制作方法,通过该方法可制作更加轻薄的表皮电极,该表皮电极的制作方法简单、制作效率高。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (12)

  1. 一种表皮电极的制作方法,其特征在于,所述表皮电极具有传感触片,所述表皮电极的制作方法包括如下步骤:
    a)提供一金属膜:所述金属膜包括上金属层和下金属层,所述上金属层和所述下金属层之间夹设有塑料层;
    b)穿孔:在所述金属膜上欲成型所述传感触片的位置处进行穿孔作业;
    c)灌胶:在多个所述穿孔内灌导电胶,以使所述上金属层与所述下金属层通过所述导电胶形成电连接;
    d)全刻:在所述金属膜上冲切或激光切割出所述传感触片的结构。
  2. 如权利要求1所述的表皮电极的制作方法,其特征在于,在所述步骤a)中,所述上金属层的厚度和所述下金属层的厚度均为50nm~200nm,所述塑料层的厚度为0.5μm~25μm。
  3. 如权利要求1所述的表皮电极的制作方法,其特征在于,在所述步骤b)中,所述穿孔的孔径为0.1mm~0.3mm。
  4. 如权利要求1所述的表皮电极的制作方法,其特征在于,在进行所述步骤c)之前,需对所述金属膜上的多个所述穿孔进行超声波清洗作业。
  5. 如权利要求1所述的表皮电极的制作方法,其特征在于,所述传感触片具有多个镂空孔,所述步骤d)包括如下步骤:
    d1)内边全刻:在所述金属膜上冲切或激光切割出所述传感触片的多个所述镂空孔;
    d2)外边全刻:在完成所述步骤d1)后,于所述金属膜上冲切或激光切割出所述传感触片的外边缘。
  6. 如权利要求5所述的表皮电极的制作方法,其特征在于,在进行所述步骤d)之前,需将所述金属膜粘附在一塑料底膜上,在所述步骤d1)中,在所述金属膜及所述塑料底膜上冲切或激光切割所述传感触片的每个所述镂空孔。
  7. 如权利要求6所述的表皮电极的制作方法,其特征在于,在所述步骤d2)中,在所述金属膜上冲切或激光切割所述传感触片的外边缘。
  8. 如权利要求7所述的表皮电极的制作方法,其特征在于,在完成所述步骤d2)之后,在所述塑料底膜上形成有相互分离的所述传感触片及废料金属膜,将所述废料金属膜自所述塑料底膜上剥离,所述传感触片粘附在所述塑料底膜上。
  9. 如权利要求1所述的表皮电极的制作方法,其特征在于,在所述步骤d)中,所 述冲切方式是通过冲切刀具对所述金属膜进行一次冲切作业,以成型所述传感触片,其中,所述冲切刀具的冲切刀的形状与所述传感触片的轮廓形状相同。
  10. 如权利要求1~9中任一项所述的表皮电极的制作方法,其特征在于,所述表皮电极包括采集触片及多个间隔设置的所述传感触片,所述传感触片与所述采集触片之间通过传感触条相连,在所述步骤b)与所述步骤c)之间还包括步骤b1)半刻下金属层:冲切或激光切割所述下金属层,以在所述下金属层上形成半刻线,所述半刻线位于所述传感触条上。
  11. 如权利要求10所述的表皮电极的制作方法,其特征在于,在所述步骤b1)与所述步骤c)之间还包括步骤b2)半刻上金属层:冲切或激光切割所述上金属层,以在所述上金属层对应所述采集触片的位置处形成半刻区,多个所述传感触条通过所述半刻区彼此分离。
  12. 如权利要求11所述的表皮电极的制作方法,其特征在于,所述步骤d)还包括如下步骤:在所述金属膜上冲切或激光切割出所述采集触片的结构以及冲切或激光切割出多个所述传感触条的结构。
PCT/CN2017/109016 2016-11-03 2017-11-02 表皮电极的制作方法 WO2018082584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610958195.X 2016-11-03
CN201610958195 2016-11-03

Publications (1)

Publication Number Publication Date
WO2018082584A1 true WO2018082584A1 (zh) 2018-05-11

Family

ID=61783552

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/097654 WO2018082362A1 (zh) 2016-11-03 2017-08-16 表皮电极的制作方法
PCT/CN2017/109016 WO2018082584A1 (zh) 2016-11-03 2017-11-02 表皮电极的制作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097654 WO2018082362A1 (zh) 2016-11-03 2017-08-16 表皮电极的制作方法

Country Status (2)

Country Link
CN (1) CN107887079B (zh)
WO (2) WO2018082362A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567744A (zh) * 2018-10-24 2019-04-05 永康国科康复工程技术有限公司 类皮肤基体
CN110051348A (zh) * 2019-03-29 2019-07-26 永康国科康复工程技术有限公司 一种柔性电子检测贴片及人机交互系统
CN110051326A (zh) * 2019-03-29 2019-07-26 永康国科康复工程技术有限公司 一种基于类皮肤基体的电子检测贴片及测量设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082087A (en) * 1977-02-07 1978-04-04 Isis Medical Instruments Body contact electrode structure for deriving electrical signals due to physiological activity
CN203138488U (zh) * 2013-01-30 2013-08-21 北京蓬阳丰业医疗设备有限公司 一种电极贴
CN203953649U (zh) * 2014-06-23 2014-11-26 浙江纺织服装职业技术学院 一种柔性心电电极
CN104266780A (zh) * 2014-10-22 2015-01-07 中国科学院合肥物质科学研究院 一种可测量法向和切向力的柔性力传感器
CN105326495A (zh) * 2015-10-19 2016-02-17 杨军 一种可穿戴柔性皮肤电极的制造和使用方法
CN205163046U (zh) * 2015-11-28 2016-04-20 深圳市前海安测信息技术有限公司 用于检测体表温度的柔性电子皮肤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261189A (ja) * 2001-03-05 2002-09-13 Murata Mfg Co Ltd 高周波用回路チップ及びその製造方法
KR20060045208A (ko) * 2004-11-12 2006-05-17 삼성테크윈 주식회사 반도체 팩키지용 회로기판 및 이의 제조방법
CN100391320C (zh) * 2005-05-23 2008-05-28 松维线路板(深圳)有限公司 一种多层印刷线路板的生产方法
CN101553077A (zh) * 2009-05-11 2009-10-07 昆山亿富达电子有限公司 印有acp导电胶的双面柔性印制线路板
CN101951737A (zh) * 2010-09-25 2011-01-19 东莞佶升电路板有限公司 多层式电路板的制造方法
EP2830492B1 (en) * 2012-03-30 2021-05-19 The Board of Trustees of the University of Illinois Appendage mountable electronic devices conformable to surfaces and method of making the same
JP2014095098A (ja) * 2012-11-07 2014-05-22 Sumitomo Metal Mining Co Ltd 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
CN103225204B (zh) * 2013-03-22 2015-07-08 电子科技大学 可穿戴的柔性传感器及制备方法
US10617354B2 (en) * 2014-04-29 2020-04-14 MAD Apparel, Inc. Biometric electrode system and method of manufacture
CN104510466B (zh) * 2014-12-15 2017-09-08 上海交通大学 柔性复合型干电极及其制备方法
CN205158319U (zh) * 2015-11-02 2016-04-13 南昌欧菲光科技有限公司 触控装置及其柔性电路板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082087A (en) * 1977-02-07 1978-04-04 Isis Medical Instruments Body contact electrode structure for deriving electrical signals due to physiological activity
CN203138488U (zh) * 2013-01-30 2013-08-21 北京蓬阳丰业医疗设备有限公司 一种电极贴
CN203953649U (zh) * 2014-06-23 2014-11-26 浙江纺织服装职业技术学院 一种柔性心电电极
CN104266780A (zh) * 2014-10-22 2015-01-07 中国科学院合肥物质科学研究院 一种可测量法向和切向力的柔性力传感器
CN105326495A (zh) * 2015-10-19 2016-02-17 杨军 一种可穿戴柔性皮肤电极的制造和使用方法
CN205163046U (zh) * 2015-11-28 2016-04-20 深圳市前海安测信息技术有限公司 用于检测体表温度的柔性电子皮肤

Also Published As

Publication number Publication date
CN107887079A (zh) 2018-04-06
WO2018082362A1 (zh) 2018-05-11
CN107887079B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2018082584A1 (zh) 表皮电极的制作方法
US10651320B2 (en) Method of manufacturing a circuit board by punching
JP4488733B2 (ja) 回路基板の製造方法および混成集積回路装置の製造方法。
TWI495403B (zh) 配線基板、多片式配線基板、及其製造方法
CN204505428U (zh) 一种带有内提手的泡棉模切件生产用模具组合
JP2013098332A5 (zh)
US9881719B2 (en) Chip resistor and method for making the same
KR20050030550A (ko) 혼성 집적 회로 장치 및 그 제조 방법
CN110634833A (zh) 一种覆晶薄膜
US20050161781A1 (en) Hybrid integrated circuit device and manufacturing method thereof
JP5173654B2 (ja) 半導体装置
JP4606447B2 (ja) 中板の金属基板の製造方法。
CN108023013B (zh) 压电薄膜传感器制备方法
JP5817168B2 (ja) 金属箔パターン積層体および金属箔の型抜き方法
JP6120629B2 (ja) チップ抵抗器、およびチップ抵抗器の製造方法
CN220475986U (zh) 一种柔性无胶镂空电路板封装结构及其制备系统
TW201415965A (zh) 連片電路板以及連片電路板之製作方法
TWI750663B (zh) 電化學試片及生產此試片之試片母板與方法
TWI696828B (zh) 電化學試片及生產此試片之試片母板與方法
CN204689934U (zh) 一种带有双面胶的裁切成型玻璃
JP2001160501A (ja) 積層体およびこれを用いた電子部品の製造方法
JP2006146890A5 (zh)
CN114269068A (zh) 一种热电分离铜基板制造方法
PH12018000306A1 (en) Method for producing lead frame and lead frame
JP5760401B2 (ja) 金属箔の型抜き方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868386

Country of ref document: EP

Kind code of ref document: A1