WO2018082136A1 - 扫描式激光诱导光谱面范围分析检测系统 - Google Patents

扫描式激光诱导光谱面范围分析检测系统 Download PDF

Info

Publication number
WO2018082136A1
WO2018082136A1 PCT/CN2016/107129 CN2016107129W WO2018082136A1 WO 2018082136 A1 WO2018082136 A1 WO 2018082136A1 CN 2016107129 W CN2016107129 W CN 2016107129W WO 2018082136 A1 WO2018082136 A1 WO 2018082136A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mirror
induced
lens
light
Prior art date
Application number
PCT/CN2016/107129
Other languages
English (en)
French (fr)
Inventor
樊仲维
赵天卓
连富强
貊泽强
林蔚然
刘洋
聂树真
肖红
张鸿博
Original Assignee
中国科学院光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电研究院 filed Critical 中国科学院光电研究院
Priority to US16/348,041 priority Critical patent/US10823679B2/en
Priority to DE112016007086.1T priority patent/DE112016007086T5/de
Publication of WO2018082136A1 publication Critical patent/WO2018082136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/105Purely optical scan

Definitions

  • the invention relates to the field of photoelectric non-destructive testing technology, in particular to a scanning laser induced spectral surface range analysis detecting system.
  • Laser Induced Plasma Spectroscopy (LIPS) detection technology is an analytical technique that uses pulsed laser ablation to generate plasma and qualitatively or quantitatively study the composition of matter by plasma emission spectroscopy. It has the advantages of wide application range, fast analysis speed, small measurement destructiveness, remote non-contact measurement and real-time detection.
  • Laser-induced plasma spectroscopy is a quantitative analysis technique based on the emission spectra produced by laser and material interactions. This method requires only a few micrograms in the measurement process to achieve non-destructive measurement and can be achieved without sample pretreatment. Elemental analysis of any physical state material.
  • Laser-induced plasma spectroscopy can quantify the elements in a substance by calibration, and the detection limits and precision fully meet the application requirements.
  • patents based on elemental analysis with laser-induced technology mainly application and methods for detection of different application fields.
  • the patent application number 201510566291.5 protects a rice variety identification method based on laser-induced breakdown spectroscopy
  • the patent application number 201110360773.7 protects a laser from the surface of molten steel by performing on the excited plasma spectrum. Analysis, to obtain an online detection system for molten steel composition.
  • the patent application number 201510073090.1 protects a two-dimensional energy-related laser induced breakdown spectroscopy analysis system and method, and provides an analysis system and method based on two-dimensional energy correlation laser induced breakdown spectroscopy, which can In order to clearly resolve the spectral features, the detection capability and repeatability of the conventional laser induced breakdown spectroscopy method are improved.
  • the invention patent No. 201480041306 discloses a method for performing elemental composition analysis by a double pulse laser induced breakdown spectrometer.
  • the patent application number 201310610554.9 protects a portable laser induced breakdown spectroscopy analyzer and method.
  • the analyzer includes a dichroic mirror to achieve the transmission of an excitation laser (usually a strong laser signal with a spectral width of less than 1 nm) to acquire spectral signals (typically broad-spectrum low-energy signals in the hundreds of nanometers range).
  • an excitation laser usually a strong laser signal with a spectral width of less than 1 nm
  • spectral signals typically broad-spectrum low-energy signals in the hundreds of nanometers range.
  • the device damage threshold When reflecting a wide spectral range of 100 nanometers, the reflectivity is low, and the device damage threshold is 5 to 10 times lower than that of single-wavelength mature technology, which limits the induction laser. Energy, develop important performance indicators such as signal-to-noise ratio and stability of equipment. For example, a typical 200 to 800 nm anti-reflection device with a high reflectance near the wavelength of 1064 nm, for a typical induced laser pulse with a pulse width of 10 ns and a repetition frequency of 10 Hz, the damage threshold is usually 200 to 300 MW/cm 2 , and it is difficult to reach 500 MW/cm 2 or more.
  • the coating technology of the high reflectivity device near the existing 1064 nm wavelength is very mature, and the damage threshold can reach 2GW/cm2 or more. Therefore, the induced laser energy of the system is limited to within several tens of millijoules, making the optical device susceptible to damage. At the same time, the 200-800 nm anti-reflection, high-reflectivity device near the wavelength of 1064nm is difficult to coat, and the effect is poor.
  • the residual reflectance of the antireflection in the range of 200 to 800 nm is 0.5 to 1.0%, which is the residual reflectance of the conventional narrow spectral range antireflection film at 0.05% of 10 to 20 times.
  • the object of the present invention is to provide a scanning laser induced spectral surface range analysis and detection system, which realizes hundreds of nanometer wide spectrum acquisition with the optical axis, and can carry Joule-level large energy laser induction with an efficiency of up to 90%. the above.
  • the invention provides a scanning laser induced spectral surface range analysis and detection system based on the above object, comprising:
  • the invention comprises a focusing optical device, a reflecting mirror, a light collecting device and a laser emitting head; wherein the laser emitting head is connected with an external laser induced light source, and an external laser induced light source generates a laser, and the laser is emitted through the laser emitting head Emitating, realizing the occurrence of laser induced plasma; the focusing optical device converges the induced excitation laser beam emitted by the laser emitting head onto the surface of the sample to be tested; The wide spectrum range of the sample to be measured is induced to converge the plasma scattered light signal into the light collecting device, and the light collecting device concentrates the induced plasma scattered light into the optical fiber and transmits it to the external spectrometer.
  • the external spectrometer splits the spectrum formed by the plasma to obtain spectral intensity data of different wavelengths.
  • a laser scanning device further comprising a laser scanning device, the laser scanning device and the focusing optical device concentrating an induced excitation laser beam emitted by the laser emitting head onto a surface of the sample to be tested;
  • the laser scanning device includes a laser mirror and a laser scanning controller, the laser mirror reflects an induced laser and is coaxial with the focusing optical device; meanwhile, the laser scanning controller controls the driving laser reflection
  • the alignment angle of the mirror enables the convergence of the incident-induced laser at different locations.
  • the focusing optics is a lens that converges the induced laser onto the sample being tested; the focusing optic is a lens or a lens group.
  • the focusing optical device comprises a lens or a lens group, and further comprises a central apertured lens; the central apertured lens is sequentially arranged with the lens or the lens group, and the central apertured lens is induced.
  • the laser light converges the collected plasma scattered light onto the sample to be tested.
  • the central apertured lens is one block or a central apertured lens set.
  • the laser emitting head includes at least one spherical, aspherical lens for achieving a divergence angle of the laser light emitted by the laser induced light source, and adjusting the spot size, the radiation direction, and the polarization state.
  • the sample to be tested is a complex alloy metal. Piece;
  • the box body has a right-angled triangle, and a through hole is disposed at an acute end of the box body, the through hole corresponds to the sample to be tested, and the lens and the center are sequentially installed inside the end box body.
  • a perforated lens two juxtaposed through holes are disposed at another acute end of the casing, and two juxtaposed through holes are respectively mounted with the light collecting means and the laser reflecting head; and at the same time, in the casing a right angle end is provided with a laser scanning controller, and a laser mirror connected to the laser scanning controller, the laser mirror is mounted on the transmitting mirror fixed at both ends of the two direct inner walls of the casing in.
  • a box body, a focusing optical device, a laser mirror, a laser scanning controller, a mirror, a light collecting device, and a laser emitting head are included;
  • the sample to be tested is a solution of a complex elemental component;
  • the box body is a polygonal body, and a laser scanning controller is disposed at one end corner of the box body, and a laser mirror connected to the laser scanning controller is mounted, and the laser mirror is fixed at the two ends to be fixed to the box body.
  • a focusing optical device is mounted on one end surface of the casing, and the focusing optical device is internally provided with a lens and a central apertured lens; and the other end surface of the casing
  • Two parallel through holes are arranged on the upper side, and two parallel through holes are respectively mounted with a light collecting device and a laser reflecting head.
  • a box body, a focusing optical device, a laser mirror, a mirror, a light collecting device, and a laser reflecting head are included;
  • the sample to be tested is a cake-like soil sample which is formed by stamping a trace amount of heavy metal elements. ;
  • the box body is a polygonal body
  • a laser mirror is disposed on one end surface of the box body, and the laser mirror is mounted in a hole fixed on the mirror of the end surface; meanwhile, in the box body
  • a focusing optical device is mounted on the end surface, and the focusing optical device is internally mounted with a lens and a central apertured lens; and the other end surface of the casing is provided with two parallel through holes and two parallel through holes.
  • a light collecting device and a laser reflecting head are separately mounted.
  • the mirror is a spherical mirror or an aspherical mirror that can be optically matched with the light collecting device to converge the collected spectrally induced light scattered light signal to a wide spectral range of the sample to be measured.
  • the laser mirror is plated with a dielectric film or a metal film for achieving high-efficiency reflection for an induced laser of a specific wavelength.
  • the present invention provides a scanning laser induced spectral surface range analysis detection system with high energy carrying capacity, and can also be used to realize a wide range of scanning laser induced plasma spectroscopy.
  • the invention adopts a scanning galvanometer and a defocusing parabolic mirror to realize an ultra-wide spectral signal acquisition with a wavelength of 200 to 1000 nm and an efficiency of more than 90%; and no focus point during the acquisition of the signal, no dichroic mirror is required, and thus the coating is performed.
  • the technology is more mature and reliable; in the system structure, due to the compact arrangement of the devices, it is possible to realize a small-volume, small-sized structural design.
  • FIG. 1 is a schematic diagram of a scanning laser induced spectral surface range analysis and detection system according to an embodiment of the present invention. schematic diagram;
  • FIG. 2 is a schematic diagram of an implementation path for scanning laser induced spectral surface range analysis and detection according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a scanning laser induced spectral surface range analysis detecting device according to a first reference embodiment of the present invention
  • FIG. 4 is a schematic structural view of a scanning laser induced spectral surface range analysis detecting device according to a second reference embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a scanning laser induced spectral surface range analysis detecting device according to a third reference embodiment of the present invention.
  • the scanning laser induced spectral surface range analysis and detection system includes focusing optics.
  • the laser emitting head 6 is connected to an external laser-induced light source, and an external laser-induced light source generates laser light, and the laser emitting head 6 emits laser light to realize laser-induced plasma generation.
  • the focusing optical device 2 converges the induced excitation laser beam emitted from the laser emitting head 6 onto the surface of the sample 9 to be tested.
  • the mirror 4 collects a wide spectral range of the sample 9 to be tested to induce the plasma scattered light signal to converge into the light collecting means 5.
  • the light collecting device concentrates the induced plasma scattered light into the optical fiber and transmits it to an external spectrometer, and the external spectrometer splits the spectrum formed by the plasma to obtain spectral intensity data of different wavelengths.
  • the scanning laser induced spectral surface range analysis detecting system may further comprise a laser scanning device, wherein the laser scanning device and the focusing optical device 2 converge the induced excitation laser beam emitted by the laser emitting head 6 to be Measure the surface of sample 9.
  • the laser scanning device includes a laser mirror 31 and a laser scanning controller 32.
  • the laser mirror 31 reflects the induced laser light and is coaxial with the focusing optical device 2.
  • the laser scanning controller 32 can precisely control the alignment angle of the driving laser mirror 31 to achieve convergence of the incident induced laser at different positions. That is to say, the scanning control is realized by the laser scanning controller 32, and scanning over a wide area can be realized, and scanning-type laser induced spectral analysis can be realized.
  • the laser mirror 31 is plated with a dielectric film or a metal film for achieving high efficiency reflection for an induced laser of a specific wavelength. It is also worth noting that the laser mirror 31 can be a plane mirror and only achieve high efficiency reflection. Of course, it can also be a spherical or aspherical concave mirror, which achieves high-efficiency reflection while achieving convergence of induced laser light.
  • the scanning operation of the laser scanning device comprises a specific range within a certain section perpendicular to a specific distance on the optical axis of the laser mirror, or a scan within a specific distance along the optical axis.
  • the working scheme of the scanning is as shown in FIG. 2, and the laser mirror 31 is controlled by the laser scanning controller 32 to realize the repeated induction and excitation of the tortuosity in the surface range, thereby realizing multiple circular lasers in a circular range.
  • Induction detection By superimposing the analysis result data of each point induction detection by an external spectrum detector connected to an external spectrometer, laser induced detection of material components in the surface range can be realized, and an image of the surface distribution is obtained by an external spectral data analyzer.
  • sample to be tested 9 may be a solid, liquid or gas sample, and may be any material capable of generating plasma by laser excitation and performing spectral analysis. It can also be a material to be tested under conditions of long distance, vacuum, underwater, high pressure, and the like.
  • the focusing optics 2 can be a lens 21 that effects the concentration of induced laser light onto the sample to be tested 9.
  • the lens 21 may be one block or a lens group of up to ten pieces.
  • the lens 21 is a lens group, by adjusting the lens 21 composed of a plurality of lenses, the convergence characteristics of the induced laser light on the surface of the material can be adjusted to achieve different convergence distances.
  • the adjustment of the focal position in the range of 100 mm to 1000 mm can be achieved by adjusting the spacing of the lenses in the lens group, controlling the ratio of the length of the elliptical converging spot length; and adjusting the radius of the circular spot.
  • the focusing optical device 2 may further include a central apertured lens 22 on the basis of the lens 21.
  • the central apertured lens 22 and the lens 21 are sequentially arranged, and the central apertured lens 22 can also induce laser light to concentrate the collected plasma scattered light onto the sample to be tested 9.
  • the central apertured lens 22 can be one block or a central apertured lens set of up to ten blocks.
  • the central apertured lens 22 has a circular aperture diameter of 2 to 15 mm, which is slightly larger than the passing laser diameter in view of the diffraction effect.
  • the central apertured lens 22 is a central apertured lens group
  • a central apertured lens 22 composed of a plurality of central apertured lenses by adjusting a central apertured lens 22 composed of a plurality of central apertured lenses, the convergence characteristics of the plasma scattered light can be adjusted to achieve plasma scattered light at different distances. Convergence.
  • the mirror 4 may be a spherical mirror or an aspherical mirror, and can be optically matched with the light-receiving device 5 to induce a wide spectral range of the collected sample 9 to be measured.
  • the plasma scattered light signals converge into the light collecting means 5.
  • the mirror 4 has a hole or a space at the front to place the laser mirror 31, and the induced laser light reflected by the laser mirror 31 is coaxial with the collected spectral signal light.
  • the mirror 4 can achieve high efficiency reflection by means of a metallized film (for example, an aluminum film), a dielectric film or the like.
  • the mirror 4 is required to achieve spectrally high efficiency reflection in the range of tens to hundreds of nm, for example about 93% of high efficiency reflection in the range of 200 to 1000 nm can be achieved by an aluminized film.
  • the incident signal light of the mirror 4 and the concentrated signal light have an angle of 5° to 170°, for example, 90° or 30°.
  • the light-receiving device 5 may be a fiber-coupled head formed by a lens group, and the aberrations are reduced to concentrate the collected induced plasma-scattered light into the optical fiber and then transmitted to an external spectrometer.
  • the light collecting means 5 may comprise a lens combination of 1 to 10 sheets.
  • an external spectrometer splits the collected spectrum formed by the plasma to obtain spectral intensity data of different wavelengths. It is a conventional spectrometer that performs grating grating splitting, and performs line distribution acquisition by linear array CCD, CMOS, or fixed-point spectral acquisition through a line array of devices such as photomultiplier tubes.
  • the external spectrometer can also be connected to the spectroscopic detector to collect and process the split optical signal to form a wavelength-relative intensity data curve.
  • the spectral detector may be a photo-discharge one-dimensional detector device that senses an optical signal, such as a photodiode (PD), a photomultiplier tube (PMT), or an avalanche photodiode (APD). It can also be a one-dimensional detector device that realizes sensing by pyroelectricity such as an energy meter, a power meter, and a four-quadrant detector. It can also be an EmCCD, ICCD, CCD, CMOS, or other charge coupled sensing detector.
  • a one- or two-dimensional detection system consisting of an array of the above devices or devices.
  • the spectral detector cooperates with the spectrometer.
  • the spectrometer is a one-dimensional grating spectroscopic system
  • the spectral detector is equipped with a line detection source
  • the spectrometer is a two-dimensional grating spectroscopic system
  • the spectral detector is equipped with a surface detection source. If only the signal of a specific wavelength is analyzed, a one-dimensional grating spectroscopic system may be equipped with a point detecting source; for the two-dimensional grating spectroscopic system 4, a line or point detecting source may be provided.
  • an external spectral data analyzer coupled to the spectral detector can process spectral data of wavelength-relative intensity and calculate and analyze the elemental composition.
  • the scanning laser induced spectral surface range analysis detection system performs the scanning function, it needs to achieve multiple times. According to the splicing, a three-dimensional topographical map of specific elements is formed.
  • the laser emitting head 6 may include 1 to 10 spherical, aspherical lenses for realizing the divergence angle of the laser light emitted by the laser induced light source, the spot size, and the adjustment of the radiation direction and the polarization state.
  • the optical fiber is connected to the laser-induced light source to realize the optical fiber-induced laser and to perform the emission.
  • direct illumination of the induced laser light on the laser mirror 31 can be achieved by providing a light-transmitting window, and then the focusing of the laser light on the surface of the detected material can be realized by the focusing optical device 2 to excite the plasma.
  • the external laser-induced light source may be a semiconductor laser, a solid or gas laser, such as a Nd:YAG laser, or a semiconductor laser coupled through a fiber, or a carbon dioxide laser, or A laser with a pulse output, or a laser with a continuous output. It can also be a laser capable of realizing an interval-adjustable 2 to 100 pulse output by means of a power supply or an optical modulation method for continuously emitting plasma on the surface of the sample to be tested 9.
  • the external laser-induced light source is combined by 2 to 5 lasers, controlled by a uniform timing output device, to excite the plasma at the surface of the material at set time intervals. The laser excitation effect can be improved by outputting a multi-wavelength laser according to the plasma excitation needs, or by different light sources.
  • a laser induced spectral surface range analysis detection system capable of coaxial scanning, such as the high efficiency coaxial scanning laser induced spectroscopy apparatus shown in FIG. 3, including the casing 1
  • the lens 21, the central apertured lens 22, the laser mirror 31, the laser scanning controller 32, the mirror 4, the light-receiving device 5, and the laser reflecting head 6, the sample to be tested 9 is an alloy metal block of a complex composition.
  • the box body 1 has a right-angled triangle, and a through hole is formed at an acute end of the box body 1. The through hole corresponds to the sample to be tested 9, and a lens 21 and a central aperture lens are sequentially mounted inside the end box body 1. twenty two.
  • Two juxtaposed through holes are provided at the other acute end of the casing 1, and the two juxtaposed through holes are respectively mounted with the light collecting means 5 and the laser reflecting head 6. Meanwhile, a laser scanning controller 32 is disposed at a right-angle end of the casing 1, and a laser mirror 31 connected to the laser scanning controller 32 is mounted. The laser mirror 31 is fixed at both ends to the two inner sides of the casing 1 The mirror 4 is in the hole.
  • the casing 1 is made of aerospace aluminum.
  • the lens 21 is a 50 mm diameter double convex spherical lens coated with a wide spectral range antireflection film.
  • the central apertured lens 22 has a diameter of 50 mm and a central hole with a diameter of 15 mm, made of quartz glass and plated with a broad spectral range antireflection coating.
  • Laser mirror 31 is a flat mirror with a diameter of 10 mm, which enables high-efficiency reflection of 99.5% or more near the incident laser wavelength.
  • the laser scanning controller 32 is a scanning galvanometer capable of rotating in the range of 0 to 2° to realize scanning control of the emitted laser light.
  • the mirror 4 is a parabolic mirror with a paraboloid size of 70 mm ⁇ 200 mm, which can achieve a 90-degree steering convergence of the incident laser and can eliminate the aberration itself; there is a hole with a diameter of 12 mm on the optical axis, and the laser mirror 31 is placed in the hole. in.
  • the light-receiving device 5 is composed of two quartz aspherical lenses, and can realize high-efficiency coupling of signal light in the spectral range of 200 to 800 nm, and the external spectrometer is an equator grating spectrometer of Andor Corporation.
  • the laser reflector head 6 is a fiber-coupled head, which includes three lenses inside, and the external laser-induced light source generates an induced laser with a pulse width of 10 ns, a center wavelength of 1064 nm, a repetition frequency of 10 Hz, and an energy of 200 mJ.
  • the pulsed laser light generated by the laser-induced light source is emitted through the laser emitting head 6, and the compression at the divergence angle is realized, and the divergence angle is nearly parallel with a full angle of less than 0.5 mrad.
  • the induced laser light is reflected by the laser mirror 31 at an incident angle of 45°, and after being folded at 90°, it is emitted from the center of the center apertured lens 22, and is concentrated by the lens 21 on the surface of the material of the sample 9 to be tested which is 1000 mm away.
  • the pulsed laser induces plasma generation, and the scattered light obtained by the lens 21 and the central apertured lens 22 is shaped together and projected onto the mirror 4.
  • the mirror 4 converges the projected plasma signal light into the light collecting means 5.
  • the signal light obtained by the light-receiving device 5 is processed by the spectrometer, transmitted to the ICCD detector, and combined with the spectral data analyzer to perform component analysis on the sample to be tested 9.
  • the laser scanning controller 32 drives the laser mirror 31 to rotate in a two-dimensional direction with a maximum rotation angle of 3°, so that the induced laser has a focused spot of 0.1 mm in diameter on the surface of the detected material, and Each pulse, or 10 consecutive pulses, is excited in a circular range, and then the laser mirror 31 is controlled to rotate until the scanning is completed in a 60 mm ⁇ 60 mm range according to the serpentine working mode shown in Fig. 2, and finally by spectral data.
  • the analyzer realizes the processing of the spectral data of the wavelength-relative intensity, calculates and analyzes the element components, and then superimposes the data of each measurement to form a three-dimensional topographical distribution map of the specific element.
  • a scanning laser induced spectral surface range analysis detection system that can be scanned along the optical axis direction with high efficiency and high energy can be used.
  • the scanning laser induced spectral surface range analysis detecting device shown in FIG. 4 includes a casing 1, a focusing optical device 2, a laser mirror 31, a laser scanning controller 32, a mirror 4, a light collecting device 5, and a laser emitting head. 6.
  • the sample to be tested 9 is a solution of a complex elemental component.
  • the casing 1 is a polygonal body, and one of the casings 1 A laser scanning controller 32 and a laser mirror 31 connected to the laser scanning controller 32 are disposed at the corners, and the laser mirror 31 is mounted in a hole fixed at both ends to the transmitting mirror 4 on both end faces of the casing 1.
  • a focusing optical device 2 is attached to one end surface of the casing 1, and a lens 21 and a central apertured lens 22 are sequentially mounted inside the focusing optical device 2.
  • two parallel through holes are provided, and the two parallel through holes are respectively mounted with the light collecting means 5 and the laser reflecting head 6.
  • the laser emitting head 6 only needs to directly align the incoming laser to the laser mirror 31. Therefore, the laser emitting head 6 can be a light transmitting window and directly utilize the incident laser. That is to say, the direct irradiation of the laser light onto the laser mirror 31 can be achieved by the light transmission window of the laser emitting head 6.
  • the casing 1 is made of aerospace aluminum.
  • the focusing optical device 2 comprises a central apertured lens 22 and a lens 21 arranged in series, the central apertured lens 22 having a diameter of 25 mm and a central hole having a diameter of 6 mm, made of quartz glass and plated with a broad spectral range anti-reflection coating.
  • the lens 21 is a biconvex spherical lens having a diameter of 25 mm and is plated with an antireflection film of a broad spectral range.
  • the focusing optical device 2 is disposed outside the casing 1, and is adapted by manual adjustment to achieve different working distances from the casing 1 to the sample to be tested 9.
  • the laser mirror 31 is a plane mirror having a diameter of 10 mm, and is capable of achieving high-efficiency reflection of 99.5% or more near the incident laser wavelength.
  • the laser scanning control system 32 is a scanning galvanometer, which can realize rotation in the range of 0 to 2°, and realizes scanning direction control of the outgoing laser.
  • the mirror 4 is a parabolic mirror with a paraboloid size of 70 mm x 200 mm, which enables a 90 degree turn convergence of the incident laser and eliminates aberrations by itself. At the same time, the mirror 4 has a hole having a diameter of 12 mm on the optical axis, and the laser mirror 31 is placed in the hole.
  • the light-receiving device 5 is composed of two quartz spherical lenses, and can realize high-efficiency coupling of signal light in the spectral range of 200 to 800 nm, and the external spectrometer is an equator grating spectrometer of Andor. Further, the laser-induced light source generates an induced laser beam having a pulse width of 8 ps, a center wavelength of 532 nm, a repetition frequency of 10 MHz, and a single pulse energy of 200 ⁇ J, and is directly irradiated onto the laser mirror 31.
  • the pulsed laser light generated by the laser induced light source is emitted through the laser emitting head 6, and the divergence angle is compressed to become a near parallel with a divergence angle full angle less than 0.5 mrad. Light, diameter 4mm.
  • the induced laser light is reflected by the laser mirror 31 at an incident angle of 45°, and after 90° folding, is emitted from the center of the center apertured lens 22, and is concentrated by the lens 21 on the surface of the material of the sample 9 to be tested which can move back and forth outside 1000 mm.
  • the pulsed laser induces plasma generation, and the scattered light obtained by the lens 21 and the central apertured lens 22 is shaped together and projected onto the mirror 4.
  • the mirror 4 converges the projected plasma signal light Go to the light collecting device 5.
  • the signal light obtained by the light-receiving device 5 is processed by a spectrometer, transmitted to an ICCD detector, and a spectral data analyzer for component analysis of the sample to be tested 9.
  • a scanning laser induced spectral surface range analysis detection system capable of high efficiency and high energy carrying can be realized.
  • This embodiment does not implement a scanning function, as shown in FIG.
  • the spectral surface range analysis detecting device includes a casing 1, a focusing optical device 2, a laser reflecting mirror 31, a reflecting mirror 4, a light collecting device 5, and a laser reflecting head 6.
  • the sample to be tested 9 was a cake-like soil sample which was prepared by punching and containing a trace amount of heavy metal elements.
  • the case 1 is a polygonal body, and a laser mirror 31 is disposed on one end surface of the case 1, and the laser mirror 31 is mounted in a hole fixed to the mirror 4 of the end face.
  • a focusing optical device 2 is attached to one end surface of the casing 1, and a lens 21 and a central apertured lens 22 are sequentially mounted inside the focusing optical device 2.
  • a lens 21 and a central apertured lens 22 are sequentially mounted inside the focusing optical device 2.
  • two parallel through holes are provided, and the two parallel through holes are respectively mounted with the light collecting means 5 and the laser reflecting head 6.
  • the casing 1 is made by injection molding to meet the shape and stability requirements.
  • the focusing optical device 2 is a lens 21, and the lens 21 is composed of two flat convex spherical lenses having a diameter of 25 mm, and is plated with a wide spectral range antireflection film.
  • the focusing optical device 2 is disposed outside the casing 1 to achieve a fixed working distance from the casing 1 to the sample to be tested 9.
  • the laser mirror 31 is a 10 mm-diameter concave mirror fixed by gluing on the mirror 4, and is capable of achieving high-efficiency reflection of 99.5% or more in a narrow spectral range of 20 nm near the incident laser wavelength.
  • the mirror 4 is a concave spherical mirror having a diameter of 80 mm and a hole having a diameter of 10.5 mm on the central axis, and the laser mirror 31 is glued to the center of the hole.
  • the laser mirror 31 and the mirror 4 can be integrally formed by injection molding, mold opening, and stamping, and then a laser mirror 31 is pasted on the mirror 4 .
  • the solution shown in Fig. 5 is a way of having a hole in the central axis of the concave spherical mirror and glue the laser mirror 31.
  • the light-receiving device 5 is composed of one quartz aspherical lens, and is capable of achieving high-efficiency coupling of signal light in the spectral range of 200 to 800 nm.
  • the laser-induced light source is a laser light emitted from a small semiconductor laser having a center wavelength of 1.5 ⁇ m, a repetition frequency of 5 Hz, and a single pulse energy of 100 mJ, and is coupled to the laser light to be directly irradiated onto the laser mirror 31 by optical fiber coupling output.
  • the scanning laser induced spectral surface range analysis detecting device is excited when performing work
  • the pulsed laser light generated by the light-inducing light source is emitted through the laser emitting head 6, and the spot irradiated on the laser mirror 31 has a diameter of about 7 mm, an incident angle of 15°, and after the reflection is 30°, the laser mirror 31 and the focus are adjusted.
  • the optical device 2 converges on the surface of the material 600 mm away.
  • the pulsed laser induces plasma generation, and the scattered light obtained by the focusing optical device 2 is concentrated and projected onto the mirror 4.
  • the mirror 4 converges the projected plasma signal light into the light collecting means 5.
  • the signal light obtained by the light-receiving device 5 is processed by a spectrometer, transmitted to a photomultiplier tube placed at a specific position, and combined with a spectral data analyzer, the sample to be tested 9 is analyzed for a specific elemental composition.
  • the scanning laser induced spectral surface range analysis detecting system creatively avoids the disadvantage that the dichroic optical device is easily damaged in the transmitting and receiving coaxial laser induced spectral optical scheme; and, the scanning mode can be realized, and the scanning vibration is performed.
  • the mirror combined with the defocused parabolic mirror can realize a wide range of scanning laser induced plasma spectroscopy; and there is no focus point in the process of acquiring signals, which can realize axial or area array scanning; at the same time, coaxial emission acquisition can ensure more stable
  • the scanning mode works to effectively control the signal intensity change caused by the relative position change; in addition, the optical efficiency of spectral signal collection is high, because the laser wavelength range is narrow, the reflection angle is small, and the laser mirror can achieve more than 99.5% of the reflection efficiency;
  • the mirror 4 can achieve an efficiency reflection of more than 93% in the range of 200 to 1000 nm by the aluminized film, and the theoretical efficiency of the new word system is over 90%; the ultra-wide spectrum signal high efficiency capable of achieving over 90% efficiency in the hundreds of nanometer spectral range can be achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种扫描式激光诱导光谱面范围分析检测系统,激光发射头(6)与外置的激光诱导光源连接,外置的激光诱导光源产生激光,经激光发射头(6)将激光发射,实现激光诱导等离子的发生。调焦光学装置(2)将激光发射头(6)发射的诱导激励的激光束汇聚到被测样品(9)表面上。之后,反射镜(4)采集被测样品(9)的宽光谱范围诱导等离子体散射光信号汇聚到收光装置(5)中。收光装置(5)将诱导等离子体散射光汇聚到光纤中,并传输给外置的光谱仪,外置的光谱仪对等离子体形成的光谱进行分光,获得不同波长光谱强度数据。因此,本分析检测系统同光学轴实现数百纳米宽范围光谱采集,能够承载焦耳级大能量激光诱导,效率高至90%以上。

Description

扫描式激光诱导光谱面范围分析检测系统 技术领域
本发明涉及光电无损检测技术领域,特别是指一种扫描式激光诱导光谱面范围分析检测系统。
背景技术
激光诱导等离子体光谱(Laser Induced Plasma Spectroscopy,LIPS)检测技术,是一种利用脉冲激光烧蚀物质产生等离子体,通过等离子体发射光谱来定性或定量研究物质成份的分析技术。它具有适用范围广、分析速度快、测量破坏性小、可远程非接触测量以及可实现实时检测等优点。激光诱导等离子体光谱技术是基于激光和材料相互作用产生的发射光谱的一种定量分析技术,该方法在测量过程中只需几微克,可实现非破坏测量,并且无需样品预处理即可实现对任何物理状态物质的元素分析。激光诱导等离子体光谱技术可通过定标对物质中的元素进行定量分析,且检测限和精密度完全满足应用需求。
基于与激光诱导技术的元素分析的专利已经较多,但是主要是对不同应用领域的检测的应用方案及方法。例如申请号为201510566291.5的专利,保护了一种基于激光诱导击穿光谱的水稻品种鉴别方法;申请号为201110360773.7的专利,保护了一种采用激光汇聚在钢水表面,通过针对所激发等离子体光谱进行分析,得到钢水成分的在线检测系统。另外,有部分激光诱导检测技术专利,针对激光诱导技术实现信号增强和改进。例如申请号为201510073090.1的专利,保护了一种二维能量相关激光诱导击穿光谱的分析系统及方法,提供了一种基于二维能量相关的激光诱导击穿光谱的分析系统及方法,能更为清晰地解析光谱特征,提高常规激光诱导击穿光谱方法的检测能力和重复性。申请号为201480041306的发明专利,公开了一种利用通过双重脉冲激光诱导击穿光谱仪进行元素成分分析的方法。
大范围扫描采集对于动态检测、提高检测效率具有重要价值。对于现有的激光诱导击穿光谱检测技术方案,都难以实现便捷的大范围扫描采集样 品。例如申请号201180054843.4、201220330846.8的专利,通过了多个反光板、透镜的汇聚,实现了激光诱导击穿光谱分析,但是仅能在激光轴向上调焦,无法实现激光诱导检测的扫描。
此外,大多数现有的专利,需要采用双向分光的二向色光学器件(如二向色反射镜),即根据光的波长不同,实现对特定波长光透射,另外对其他特定波长光反射的器件。例如申请号为201310610554.9的专利,保护了一种便携式激光诱导击穿光谱分析仪和方法。该分析仪就包括二向色镜来实现激发激光(通常是光谱宽度小于1纳米的强激光信号)透过,采集光谱信号(通常是数百纳米范围的宽光谱低能量信号)分光。而在光学加工领域,对于二向色光学器件,加工难度大,对百纳米宽光谱范围进行反射时,反射率低,器件损伤阈值比单波长成熟技术低5至10倍,这会限制诱导激光的能量,研制设备的信噪比、稳定性等重要性能指标。例如典型的200至800nm增透,1064nm波长附近高反射率的器件,对于脉冲宽度10ns、重复频率10Hz的典型诱导激光脉冲,损伤阈值通常200~300MW/cm2,很难达到500MW/cm2以上。而现有的1064nm波长附近高反射率器件的镀膜技术十分成熟,损伤阈值可达2GW/cm2以上。因此会限制系统的诱导激光能量在数十毫焦耳以内,使得光学器件容易损坏。同时,200至800nm增透,1064nm波长附近高反射率的器件镀膜难度很大,效果差。例如200至800nm增透,1064nm波长附近高反射的器件在200至800nm范围内增透的剩余反射率在0.5~1.0%,是常规窄光谱范围增透膜的剩余反射率在0.05%的10至20倍。
发明内容
有鉴于此,本发明的目的在于提出了一种扫描式激光诱导光谱面范围分析检测系统,同光学轴实现数百纳米宽范围光谱采集,能够承载焦耳级大能量激光诱导,效率高至90%以上。
基于上述目的本发明提供的一种扫描式激光诱导光谱面范围分析检测系统,包括:
包括调焦光学装置、反射镜、收光装置以及激光发射头;其中,所述激光发射头与外置的激光诱导光源连接,外置的激光诱导光源产生激光,经所述激光发射头将激光发射,实现激光诱导等离子的发生;所述调焦光学装置将所述激光发射头发射的诱导激励的激光束汇聚到被测样品表面上;所述反 射镜采集被测样品的宽光谱范围诱导等离子体散射光信号汇聚到所述收光装置中,所述的收光装置将诱导等离子体散射光汇聚到光纤中,并传输给外置的光谱仪,该外置的光谱仪对等离子体形成的光谱进行分光,获得不同波长光谱强度数据。
在本发明的一些实施例中,还包括激光扫描装置,所述的激光扫描装置和所述调焦光学装置将所述激光发射头发射的诱导激励的激光束汇聚到被测样品表面上;
所述的激光扫描装置包括激光反射镜和激光扫描控制器,所述激光反射镜反射诱导激光,并且与所述调焦光学装置同轴;同时,所述激光扫描控制器控制所述驱动激光反射镜的对准角度,实现入射诱导激光在不同位置的汇聚。
在本发明的一些实施例中,所述调焦光学装置为透镜,实现将诱导激光汇聚到被测样品上;所述调焦光学装置是1块透镜或者是一个透镜组。
在本发明的一些实施例中,所述调焦光学装置包括透镜或者透镜组的基础之上,还包括中心有孔透镜;中心有孔透镜与透镜或者透镜组依次排列,并且中心有孔透镜诱导激光,实现对收集到的等离子体散射光汇聚到被测样品上。
在本发明的一些实施例中,所述中心有孔透镜为1块,或者为一个中心有孔透镜组。
在本发明的一些实施例中,所述激光发射头包括至少1片的球面、非球面透镜,用来实现对激光诱导光源发射出的激光的发散角度,光斑尺寸和放射方向、偏振态的调整。
在本发明的一些实施例中,包括盒体、透镜、中心有孔透镜、激光反射镜、激光扫描控制器、反射镜、收光装置以及激光反射头,被测样品为一块复杂成分的合金金属块;
其中,所述盒体直角三角形,在所述盒体的一个锐角端设置有一通孔,该通孔与被测样品对应,并且在该端盒体的内部依次安装有所述透镜、所述中心有孔透镜;在所述盒体的另一个锐角端设置有两个并列的通孔,两个并列通孔分别安装上所述收光装置和所述激光反射头;同时,在所述盒体的直角端设置有激光扫描控制器,以及与该激光扫描控制器连接的激光反射镜,激光反射镜安装在两端固定于所述盒体两个直接边内壁的所述发射镜上的孔 中。
在本发明的一些实施例中,包括盒体、调焦光学装置、激光反射镜、激光扫描控制器、反射镜、收光装置以及激光发射头;被测样品为复杂元素成分的溶液;
其中,所述盒体呈多边体,在所述盒体的一端角上设置有激光扫描控制器,以及与该激光扫描控制器连接的激光反射镜,激光反射镜安装在两端固定于盒体两端面的发射镜上的孔中;同时,在盒体的一端面上安装有调焦光学装置,该调焦光学装置内部依次安装有透镜、中心有孔透镜;而在盒体的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置和激光反射头。
在本发明的一些实施例中,包括盒体、调焦光学装置、激光反射镜、反射镜、收光装置以及激光反射头;被测样品为包含微量重金属元素,冲压制成的饼状土壤样品;
其中,所述盒体呈多边体,在盒体的一端面上设置有激光反射镜,且激光反射镜安装在固定于该端面的发射镜上的孔中;同时,在所述盒体的一端面上安装有调焦光学装置,该调焦光学装置内部依次安装有透镜、中心有孔透镜;而在所述盒体的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置和激光反射头。
在本发明的一些实施例中,所述反射镜是球面镜或者非球面镜,能够在光学上与所述收光装置匹配,将采集到的被测样品的宽光谱范围诱导等离子体散射光信号汇聚到所述收光装置中;所述激光反射镜镀有介质膜或金属膜,用来针对特定波长的诱导激光实现高效率反射。
从上面所述可以看出,本发明提供的一种扫描式激光诱导光谱面范围分析检测系统,具有高能量承载,还可以用来实现大范围的扫描式激光诱导等离子光谱检测。本发明通过扫描振镜,结合离焦抛物面反射镜,能够实现波长200至1000nm,效率超过90%的超宽光谱信号采集;并且采集信号过程中无聚焦点,无需二向色镜,因此在镀膜技术上更成熟可靠;在系统结构上,由于器件位置排布紧凑,能够实现小体积,小尺寸的结构设计。
附图说明
图1为本发明实施例中扫描式激光诱导光谱面范围分析检测系统的原理 示意图;
图2为本发明实施例中用于扫描式激光诱导光谱面范围分析检测的实现途径图;
图3为本发明第一可参考实施例中扫描式激光诱导光谱面范围分析检测装置的结构示意图;
图4为本发明第二可参考实施例中扫描式激光诱导光谱面范围分析检测装置的结构示意图;
图5为本发明第三可参考实施例中扫描式激光诱导光谱面范围分析检测装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
作为本发明的一个实施例,参阅图1所示,为本发明实施例中扫描式激光诱导光谱面范围分析检测系统的结构示意图,所述扫描式激光诱导光谱面范围分析检测系统包括调焦光学装置2、反射镜4、收光装置5以及激光发射头6。其中,激光发射头6与外置的激光诱导光源连接,外置的激光诱导光源产生激光,经激光发射头6将激光发射,实现激光诱导等离子的发生。调焦光学装置2将激光发射头6发射的诱导激励的激光束汇聚到被测样品9表面上。之后,反射镜4采集被测样品9的宽光谱范围诱导等离子体散射光信号汇聚到收光装置5中。所述的收光装置将诱导等离子体散射光汇聚到光纤中,并传输给外置的光谱仪,该外置的光谱仪对等离子体形成的光谱进行分光,获得不同波长光谱强度数据。
较佳地,所述扫描式激光诱导光谱面范围分析检测系统还可以包括激光扫描装置,所述的激光扫描装置和调焦光学装置2将激光发射头6发射的诱导激励的激光束汇聚到被测样品9表面上。所述的激光扫描装置包括激光反射镜31和激光扫描控制器32。其中,激光反射镜31反射诱导激光,并且与调焦光学装置2同轴。同时,激光扫描控制器32可以精确控制驱动激光反射镜31的对准角度,实现入射诱导激光在不同位置的汇聚。也就是说,通过激光扫描控制器32实现扫描控制,能够实现大范围面积上的扫描,实现扫描式的激光诱导光谱分析。
优选地,激光反射镜31镀有介质膜或金属膜,用来针对特定波长的诱导激光实现高效率反射。还值得说明的是,激光反射镜31可以是平面镜,仅实现高效率反射即可。当然也可以是球面或非球面凹面镜,在实现高效率反射的同时实现对诱导激光的汇聚。
在实施例中,激光扫描装置的扫描工作方式包括垂直于激光反射镜光轴上特定距离的某个截面内的特定范围,也可以是沿着光轴上特定的距离范围内的扫描。在实现面扫描的工作方式时,扫描的工作方案如图2所示,通过激光扫描控制器32控制激光反射镜31,实现在面范围上的曲折反复诱导激发,实现多个圆形范围的激光诱导检测。通过与外置光谱仪连接的外置光谱探测器将各个点诱导检测的分析结果数据叠加,能够实现面范围内材料成分的激光诱导检测,通过外置的光谱数据分析器获得面分布的图像。
需要说明的是,被测样品9可以是固体、液体、气体试样,可以是任何能够通过激光激发产生等离子体,并实施光谱分析的材料。也可以是处于远距离、真空、水下、高气压等条件下的被测材料。
在本发明的另一个实施例中,调焦光学装置2可以为透镜21,实现将诱导激光汇聚到被测样品9上。透镜21可以是1块,也可以是多至10块的透镜组。当透镜21为透镜组时,通过调节由多块透镜组成的透镜21,可以调节诱导激光在材料表面的汇聚特性,实现不同的汇聚距离。在实施例中,可以通过调节透镜组中透镜的间隔,实现100mm至1000mm范围内焦点位置的调节,控制椭圆形汇聚光斑长短半径的比例;调节圆形光斑半径的大小。
另外,调焦光学装置2还可以在包括透镜21的基础之上,还包括中心有孔透镜22。中心有孔透镜22与透镜21依次排列,并且中心有孔透镜22也可以诱导激光,实现对收集到的等离子体散射光汇聚到被测样品9上。较佳地,中心有孔透镜22可以是1块,也可以是多至10块的中心有孔透镜组。优选地,中心有孔透镜22的圆孔直径2至15mm,考虑衍射影响,略大于通过的激光直径。当中心有孔透镜22为中心有孔透镜组时,通过调节由多块中心有孔透镜组成的中心有孔透镜22,可以调节等离子体散射光的汇聚特性,实现对不同距离上等离子体散射光的汇聚。
作为本发明的一个实施例,反射镜4可以是球面镜也可以是非球面镜,能够在光学上与收光装置5匹配,将采集到的被测样品9的宽光谱范围诱导 等离子体散射光信号汇聚到收光装置5中。并且,反射镜4上有孔或者前部有空间来放置激光反射镜31,实现激光反射镜31反射的诱导激光与采集到的光谱信号光同轴。较佳地,反射镜4可以通过镀金属膜(例如铝膜)、介质膜等方式来实现高效率反射。优选地,反射镜4需要实现数十至数百nm范围的光谱高效率反射,例如通过镀铝膜可以实现200~1000nm范围内约93%的高效率反射。另外,反射镜4的入射的信号光与汇聚后的信号光存在5°至170°的夹角,例如90°或30°。
作为另一个实施例,收光装置5可以为通过透镜组构成的光纤耦合头,并且降低像差将采集到的诱导等离子体散射光汇聚到光纤中,然后传输给外置的光谱仪。较佳地,收光装置5可以包括1至10片的透镜组合。另外,外置的光谱仪对收集到的由等离子体形成的光谱进行分光,获得不同波长光谱强度数据。以是一次光栅分光的常规光谱仪,通过线阵CCD、CMOS进行线分布的采集,或者通过光电倍增管等器件的线阵列进行定点的光谱采集。或者可以是二次(二维)或多次分光,具有宽光谱范围、高光谱分辨率的光谱仪,例如中阶梯光栅光谱仪。通过面阵CCD或CMOS进行面分布的采集,或者通过光电倍增管等器件的面阵列进行光谱采集。
更进一步地,外置的光谱仪还可以连接光谱探测器,对分光后的光信号进行采集并处理,形成波长-相对强度的数据曲线。较佳地,光谱探测器可以是光电二极管(PD)、光电倍增管(PMT)、雪崩光电二极管(APD)等对光信号进行感知的光释电一维探测器件。也可以是能量计、功率计、四象限探测器等通过热释电实现感知的一维探测器件。还可以是EmCCD、ICCD、CCD、CMOS、或者其他电荷耦合感应探测器件。或者上述器件或器件的阵列构成的一维或者二维探测系统。光谱探测器与光谱仪配合,对于光谱仪为一维光栅分光系统,则光谱探测器配以线探测源;对于光谱仪为二维光栅分光系统,则光谱探测器配以面探测源。如果只对特定波长的信号进行分析处理,对于一维光栅分光系统,可以配以点探测源;对于二维光栅分光系统4,可以配以线或点探测源。
另一个更进一步地实施例,与光谱探测器连接的外置光谱数据分析器可以实现对波长-相对强度的光谱数据进行处理,计算分析得到元素成分。在扫描式激光诱导光谱面范围分析检测系统执行扫描功能时,需要实现对多次数 据的拼接,形成特定元素的三维形貌分布图。
作为又一个实施例,激光发射头6可以包括1至10片的球面、非球面透镜,用来实现对激光诱导光源发射出的激光的发散角度,光斑尺寸和放射方向、偏振态的调整。还有,通过光纤与激光诱导光源连接,用来实现光纤传输诱导激光,并实施发射。另外,可以通过设置透光窗口,来实现诱导激光直接照射在激光反射镜31上,然后通过调焦光学装置2实现诱导激光在被检测材料表面的汇聚,激发等离子体。
在该实施例中,外置的激光诱导光源可以是半导体激光器、固体或气体激光器的一种,例如Nd:YAG激光器,也可以是通过光纤耦合输出的半导体激光器,或者二氧化碳激光器,还可以是能够脉冲输出的激光器,或者连续输出的激光器。也可以是一个激光器,能够通过电源或者光学调制的方法,实现间隔时间可调节的2至100个脉冲输出,用来持续的在被测样品9表面发等离子体。在另外的实施例中,外置的激光诱导光源由2至5台的激光器组合在一起,由统一的时序输出设备控制,按照设定的时间间隔在材料表面激发等离子体。可以根据等离子的激发需要,同时或者由不同的光源输出多波长的激光,用来提高等离子体的激发效果。
在本发明的第一个可参考的实施例中,可以同轴面扫描的激光诱导光谱面范围分析检测系统,如图3所示的高效率同轴扫描式激光诱导光谱装置,包括盒体1、透镜21、中心有孔透镜22、激光反射镜31、激光扫描控制器32、反射镜4、收光装置5以及激光反射头6,被测样品9为一块复杂成分的合金金属块。其中,盒体1直角三角形,在盒体1的一个锐角端设置有一通孔,该通孔与被测样品9对应,并且在该端盒体1的内部依次安装有透镜21、中心有孔透镜22。在盒体1的另一个锐角端设置有两个并列的通孔,两个并列通孔分别安装上收光装置5和激光反射头6。同时,在盒体1的直角端设置有激光扫描控制器32,以及与该激光扫描控制器32连接的激光反射镜31,激光反射镜31安装在两端固定于盒体1两个直接边内壁的发射镜4上的孔中。
较佳地,盒体1为航空铝加工制成。透镜21为一片直径50mm的双凸球面透镜,镀有宽光谱范围增透膜。中心有孔透镜22的直径50mm,中心带有直径15mm圆孔,由石英玻璃制成,并镀有宽光谱范围增透膜。激光反射镜 31为一个直径10mm的平面反射镜,能够实现对入射激光波长附近99.5%以上的高效率反射。激光扫描控制器32为扫描振镜,能够实现0至2°范围内的旋转,实现出射激光的扫描控制。反射镜4为一个抛物面反射镜,抛物面尺寸70mm×200mm,能够实现入射激光90度的转向汇聚,并且自身能够消除像差;在光轴上有一个直径12mm的孔,激光反射镜31放置在孔中。收光装置5由2片石英非球面透镜构成,能够实现200至800nm光谱范围信号光的高效率耦合,外接的光谱仪为andor公司的中阶梯光栅光谱仪。激光反射头6为光纤耦合头,内部包括3片透镜,而外接的激光诱导光源产生脉冲宽度10ns,中心波长1064nm,重复频率10Hz,能量200mJ的诱导激光。
因此,所述高效率同轴扫描式激光诱导光谱装置在进行工作时,激光诱导光源产生的脉冲激光经过激光发射头6发出,实现发散角度的压缩,变成发散角全角小于0.5mrad的近平行光,直径6mm。诱导激光通过激光反射镜31反射,入射角45°,实现90°折转后,从中心有孔透镜22的中心出射,由透镜21汇聚在1000mm外的被测样品9的材料表面上。脉冲激光诱导产生等离子体,由透镜21和中心有孔透镜22共同对获得的散射光整形,投射在反射镜4上。反射镜4将投射过来的等离子体信号光汇聚到收光装置5中。收光装置5获得的信号光由光谱仪处理,传递给ICCD探测器,并结合光谱数据分析器对被测样品9实现成分分析。
与此同时,在扫描工作时,激光扫描控制器32驱动激光反射镜31进行二维方向的旋转,最大旋转角度3°,使得诱导激光在被检测材料表面有一个直径0.1mm的聚焦光斑,并且每个脉冲,或者连续10个脉冲在一个圆形范围内激发,然后控制激光反射镜31旋转,直至在60mm×60mm的范围内按照图2所示的蛇形工作方式完成扫描,最后由光谱数据分析器实现对波长-相对强度的光谱数据进行处理,计算分析得到元素成分,然后对每次测量的数据进行叠加拼接,形成特定元素的三维形貌分布图。
在本发明的第二个可参考的实施例中,可以高效率高能量承载的,沿着光学轴方向扫描的扫描式激光诱导光谱面范围分析检测系统。如图4所示的扫描式激光诱导光谱面范围分析检测装置包括盒体1、调焦光学装置2、激光反射镜31、激光扫描控制器32、反射镜4、收光装置5以及激光发射头6。其中,被测样品9为复杂元素成分的溶液。盒体1呈多边体,在盒体1的一 端角上设置有激光扫描控制器32,以及与该激光扫描控制器32连接的激光反射镜31,激光反射镜31安装在两端固定于盒体1两端面的发射镜4上的孔中。同时,在盒体1的一端面上安装有调焦光学装置2,该调焦光学装置2内部依次安装有透镜21、中心有孔透镜22。而在盒体1的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置5和激光反射头6。
优选地,所述的激光发射头6只需要将入社的诱导激光直接对准到激光反射镜31上即可,因此激光发射头6可以为一个透光窗口,直接利用入射的激光。也就是说,可以通过激光发射头6的透光窗口,来实现诱导激光直接照射在激光反射镜31上。
较佳地,盒体1为航空铝加工制成。调焦光学装置2包括依次排列的中心有孔透镜22和透镜21,中心有孔透镜22的直径25mm,中心带有直径6mm圆孔,由石英玻璃制成,并镀有宽光谱范围增透膜。透镜21为一片直径25mm的双凸球面透镜,镀有宽光谱范围增透膜。调焦光学装置2在盒体1外部设置,通过手动调节,实现对从盒体1到被测样品9不同工作距离的适应。激光反射镜31为一个直径10mm的平面反射镜,能够实现对入射激光波长附近99.5%以上的高效率反射。激光扫描控制系统32为扫描振镜,能够实现0至2°范围内的旋转,实现出射激光的扫描指向方向控制。反射镜4为一个抛物面反射镜,抛物面尺寸70mm×200mm,能够实现入射激光90度的转向汇聚,并且自身能够消除像差。同时,反射镜4在光轴上有一个直径12mm的孔,激光反射镜31放置在孔中。收光装置5由2片石英球面透镜构成,能够实现200至800nm光谱范围信号光的高效率耦合,外接的光谱仪为andor公司的中阶梯光栅光谱仪。另外,激光诱导光源产生脉冲宽度8ps,中心波长532nm,重复频率10MHz,单脉冲能量200μJ的诱导激光,直接照射在激光反射镜31上。
因此,所述扫描式激光诱导光谱面范围分析检测装置在进行工作时,激光诱导光源产生的脉冲激光经过激光发射头6发出,实现发散角度的压缩,变成发散角全角小于0.5mrad的近平行光,直径4mm。诱导激光通过激光反射镜31反射,入射角45°,实现90°折转后,从中心有孔透镜22的中心出射,由透镜21汇聚在1000mm外可以前后移动的被测样品9的材料表面上。脉冲激光诱导产生等离子体,由透镜21和中心有孔透镜22共同对获得的散射光整形,投射在反射镜4上。反射镜4将投射过来的等离子体信号光汇聚 到收光装置5中。收光装置5获得的信号光由光谱仪处理,传递给ICCD探测器,并光谱数据分析器,对被测样品9实现成分分析。通过手动调节中心有孔透镜22和透镜21的相对位置,能够实现激光的精确聚焦、等离子体信号光在收光装置5上的精确探测。
在本发明的第三个可参考的实施例中,可以高效率高能量承载的扫描式激光诱导光谱面范围分析检测系统,该实施例不实现扫描功能,如图5所示的扫描式激光诱导光谱面范围分析检测装置包括盒体1、调焦光学装置2、激光反射镜31、反射镜4、收光装置5以及激光反射头6。被测样品9为包含微量重金属元素,冲压制成的饼状土壤样品。其中,盒体1呈多边体,在盒体1的一端面上设置有激光反射镜31,且激光反射镜31安装在固定于该端面的发射镜4上的孔中。同时,在盒体1的一端面上安装有调焦光学装置2,该调焦光学装置2内部依次安装有透镜21、中心有孔透镜22。而在盒体1的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置5和激光反射头6。
较佳地,盒体1为开模注塑方式制成,满足形状及稳定性要求。调焦光学装置2为透镜21,并且透镜21为两片直径25mm的平凸球面透镜组成,镀有宽光谱范围增透膜。调焦光学装置2在盒体1外部设置,实现对从盒体1到被测样品9之间的工作距离固定。激光反射镜31为一个在反射镜4上通过胶合方式固定的直径10mm凹面反射镜,能够实现对入射激光波长附近20nm窄光谱范围内99.5%以上的高效率反射。反射镜4为一个凹球面反射镜,直径80mm,在中心轴上有一个直径10.5mm的孔,激光反射镜31胶粘在孔的中心。在简化的批量设计方案中,可以通过冲压的方式,将激光反射镜31和反射镜4一体化的通过注塑、开模、冲压的方式制作出来,然后将一片激光反射镜31粘贴在反射镜4上的适当位置,这里图5所示的方案为凹球面反射镜中心轴上有孔,胶粘激光反射镜31的方式。收光装置5由1片石英非球面透镜构成,能够实现200至800nm光谱范围信号光的高效率耦合。另外,激光诱导光源为小型半导体激光器发出的激光,中心波长1.5μm,重复频率5Hz,单脉冲能量100mJ,通过光纤耦合输出,诱导激光直接照射在激光反射镜31上。
因此,所述扫描式激光诱导光谱面范围分析检测装置在进行工作时,激 光诱导光源产生的脉冲激光经过激光发射头6发出,照射在激光反射镜31上的光斑直径约7mm,入射角15°,反射后实现30°的折转后,由激光反射镜31和调焦光学装置2汇聚在600mm外的材料表面上。脉冲激光诱导产生等离子体,由调焦光学装置2对获得的散射光汇聚,投射在反射镜4上。反射镜4将投射过来的等离子体信号光汇聚到收光装置5中。收光装置5获得的信号光由光谱仪处理,传递给在特定位置摆放的光电倍增管,结合光谱数据分析器,对被测样品9实现特定元素成分的分析。
因此,所述的扫描式激光诱导光谱面范围分析检测系统,创造性地避免了收发同轴激光诱导光谱光学方案中二向色光学器件易损伤的缺点;而且,可以实现扫描方式工作,通过扫描振镜结合离焦抛物面反射镜,可以实现大范围的扫描式激光诱导等离子光谱检测;并且采集信号过程中无聚焦点,可以实现轴向或面阵扫描;同时,同轴发射采集,能够保证更稳定的扫描方式工作,能够有效控制相对位置变化导致的信号强度变化问题;另外,光谱信号收集的光学效率高,由于激光波长范围窄,反射角度小,激光反射镜能够实现99.5%以上反射效率;反射镜4可以通过镀铝膜实现200~1000nm范围内93%以上的效率反射,新词系统的理论效率在90%以上;能够实现数百纳米光谱范围内超过90%效率的超宽光谱信号高效率采集;与此同时,在系统结构上,由于器件位置排布紧凑,能够实现小体积,小尺寸的结构设计;从而,本发明所述的扫描式激光诱导光谱面范围分析检测系统结构稳定,可靠性高,具有很好的实用价值。
所属领域的普通技术人员应当理解:以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种扫描式激光诱导光谱面范围分析检测系统,其特征在于,包括调焦光学装置、反射镜、收光装置以及激光发射头;其中,所述激光发射头与外置的激光诱导光源连接,外置的激光诱导光源产生激光,经所述激光发射头将激光发射,实现激光诱导等离子的发生;所述调焦光学装置将所述激光发射头发射的诱导激励的激光束汇聚到被测样品表面上;所述反射镜采集被测样品的宽光谱范围诱导等离子体散射光信号汇聚到所述收光装置中,所述的收光装置将诱导等离子体散射光汇聚到光纤中,并传输给外置的光谱仪,该外置的光谱仪对等离子体形成的光谱进行分光,获得不同波长光谱强度数据。
  2. 根据权利要求1所述的系统,其特征在于,还包括激光扫描装置,所述的激光扫描装置和所述调焦光学装置将所述激光发射头发射的诱导激励的激光束汇聚到被测样品表面上;
    所述的激光扫描装置包括激光反射镜和激光扫描控制器,所述激光反射镜反射诱导激光,并且与所述调焦光学装置同轴;同时,所述激光扫描控制器控制所述驱动激光反射镜的对准角度,实现入射诱导激光在不同位置的汇聚。
  3. 根据权利要求2所述的系统,其特征在于,所述调焦光学装置为透镜,实现将诱导激光汇聚到被测样品上;所述调焦光学装置是1块透镜或者是一个透镜组。
  4. 根据权利要求3所述的系统,其特征在于,所述调焦光学装置包括透镜或者透镜组的基础之上,还包括中心有孔透镜;中心有孔透镜与透镜或者透镜组依次排列,并且中心有孔透镜诱导激光,实现对收集到的等离子体散射光汇聚到被测样品上。
  5. 根据权利要求2所述的系统,其特征在于,所述中心有孔透镜为1块,或者为一个中心有孔透镜组。
  6. 根据权利要求2所述的系统,其特征在于,所述激光发射头包括至少1片的球面、非球面透镜,用来实现对激光诱导光源发射出的激光的发散角度,光斑尺寸和放射方向、偏振态的调整。
  7. 根据权利要求4所述的系统,其特征在于,包括盒体、透镜、中心有 孔透镜、激光反射镜、激光扫描控制器、反射镜、收光装置以及激光反射头,被测样品为一块复杂成分的合金金属块;
    其中,所述盒体直角三角形,在所述盒体的一个锐角端设置有一通孔,该通孔与被测样品对应,并且在该端盒体的内部依次安装有所述透镜、所述中心有孔透镜;在所述盒体的另一个锐角端设置有两个并列的通孔,两个并列通孔分别安装上所述收光装置和所述激光反射头;同时,在所述盒体的直角端设置有激光扫描控制器,以及与该激光扫描控制器连接的激光反射镜,激光反射镜安装在两端固定于所述盒体两个直接边内壁的所述发射镜上的孔中。
  8. 根据权利要求4所述的系统,其特征在于,包括盒体、调焦光学装置、激光反射镜、激光扫描控制器、反射镜、收光装置以及激光发射头;被测样品为复杂元素成分的溶液;
    其中,所述盒体呈多边体,在所述盒体的一端角上设置有激光扫描控制器,以及与该激光扫描控制器连接的激光反射镜,激光反射镜安装在两端固定于盒体两端面的发射镜上的孔中;同时,在盒体的一端面上安装有调焦光学装置,该调焦光学装置内部依次安装有透镜、中心有孔透镜;而在盒体的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置和激光反射头。
  9. 根据权利要求4所述的系统,其特征在于,包括盒体、调焦光学装置、激光反射镜、反射镜、收光装置以及激光反射头;被测样品为包含微量重金属元素,冲压制成的饼状土壤样品;
    其中,所述盒体呈多边体,在盒体的一端面上设置有激光反射镜,且激光反射镜安装在固定于该端面的发射镜上的孔中;同时,在所述盒体的一端面上安装有调焦光学装置,该调焦光学装置内部依次安装有透镜、中心有孔透镜;而在所述盒体的另一端面上设置有两个并列的通孔,两个并列通孔分别安装上收光装置和激光反射头。
  10. 根据权利要求1至9任意一项所述的系统,其特征在于,所述反射镜是球面镜或者非球面镜,能够在光学上与所述收光装置匹配,将采集到的被测样品的宽光谱范围诱导等离子体散射光信号汇聚到所述收光装置中;所述激光反射镜镀有介质膜或金属膜,用来针对特定波长的诱导激光实现高效率反射。
PCT/CN2016/107129 2016-11-07 2016-11-24 扫描式激光诱导光谱面范围分析检测系统 WO2018082136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/348,041 US10823679B2 (en) 2016-11-07 2016-11-24 Scanning type laser induced spectrum analysis and detection system
DE112016007086.1T DE112016007086T5 (de) 2016-11-07 2016-11-24 Scanning-typ-laser-induziertes spektralanalyse- und -detektionssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610975941.6A CN106568762B (zh) 2016-11-07 2016-11-07 扫描式激光诱导光谱面范围分析检测系统
CN2016109759416 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018082136A1 true WO2018082136A1 (zh) 2018-05-11

Family

ID=58540051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107129 WO2018082136A1 (zh) 2016-11-07 2016-11-24 扫描式激光诱导光谱面范围分析检测系统

Country Status (4)

Country Link
US (1) US10823679B2 (zh)
CN (1) CN106568762B (zh)
DE (1) DE112016007086T5 (zh)
WO (1) WO2018082136A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108677A (zh) * 2019-05-07 2019-08-09 新绎健康科技有限公司 生物延迟发光探测系统
EP3650842A1 (en) * 2018-11-12 2020-05-13 Hitachi High-Tech Analytical Science Finland Oy A light collection arrangement for optical emission spectroscopy
WO2021001344A1 (fr) * 2019-07-01 2021-01-07 Universite De Bourgogne DISPOSITIF DE PRODUCTION DE CO2 GAZEUX À PARTIR DE CARBONATES POUR ANALYSE ISOTOPIQUE (δ13C ET δ18O) SUR SITE ET PROCÉDÉ ASSOCIÉ
CN112748232A (zh) * 2020-12-22 2021-05-04 中国科学院合肥物质科学研究院 一种土壤剖面原位重金属分布的实时检测系统
CN115407362A (zh) * 2022-11-01 2022-11-29 中国科学院西安光学精密机械研究所 一种收发同轴的水下同步扫描成像系统及方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201609952D0 (en) * 2016-06-07 2016-07-20 Micromass Ltd Combined optical and mass spectral tissue ID probes
FR3057363B1 (fr) * 2016-10-11 2019-05-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cavite optique pendulaire a fort repliement.
EP3372966B1 (en) * 2017-03-10 2021-09-01 Hitachi High-Tech Analytical Science Limited A portable analyzer using optical emission spectoscopy
CN107607521B (zh) * 2017-09-11 2019-10-25 江西农业大学 一种茶叶重金属检测装置及其检测方法
CN108181270B (zh) * 2018-01-19 2019-02-26 广州市中加环境检测技术有限公司 一种土壤重金属元素污染分布情况的检测装置和方法
CN108723012A (zh) * 2018-07-18 2018-11-02 深圳市汇泽激光科技有限公司 一种集成式激光清洗光电系统
CN109520939B (zh) * 2019-01-03 2024-05-24 华域视觉科技(上海)有限公司 一种材料检测装置
CN111077134B (zh) * 2020-02-11 2022-09-06 杭州谱育科技发展有限公司 具有测碳功能的便携式libs系统及碳元素的检测方法
CN110927125B (zh) * 2020-02-20 2020-05-26 四川大学 飞秒高功率激光对透明材料的损伤阈值设置方法
CN111257305B (zh) * 2020-03-31 2023-06-27 北京农业智能装备技术研究中心 一种二维相关libs光谱测量方法、系统及装置
CN112129742A (zh) * 2020-09-10 2020-12-25 刘舆帅 一种煤炭元素检测仪
GB2598780B (en) * 2020-09-14 2022-10-12 Thermo Fisher Scient Ecublens Sarl Systems and methods for performing laser-induced breakdown spectroscopy
GB2598779B (en) * 2020-09-14 2023-05-24 Thermo Fisher Scient Ecublens Sarl Kinematics path method for laser-induced breakdown spectroscopy
CN112834466A (zh) * 2020-12-30 2021-05-25 中国原子能科学研究院 一种便携式核材料甄别仪器
CN112964696B (zh) * 2021-02-05 2022-08-12 江苏奥文仪器科技有限公司 一种激光光源可自动选型的激光诱导光谱仪的选型方法
CN112964695B (zh) * 2021-02-05 2022-08-23 江苏奥文仪器科技有限公司 一种可自动对焦、多激光光源的激光诱导光谱仪及工作方法
CN113176210A (zh) * 2021-04-20 2021-07-27 西派特(北京)科技有限公司 一种粮食多种物化性质智能检测系统
CN113340522A (zh) * 2021-05-25 2021-09-03 西安交通大学 一种基于光路复用的真空开关真空度检测装置
CN113985437A (zh) * 2021-11-09 2022-01-28 浙江大学 一种凝视型快速高光谱脉冲激光雷达系统
CN114393313B (zh) * 2021-12-01 2022-12-20 华中科技大学 一种基于同轴检测的激光扫描智能加工装置及方法
CN114280033A (zh) * 2021-12-31 2022-04-05 中国医学科学院血液病医院(中国医学科学院血液学研究所) 一种基于激光诱导击穿光谱技术的血清快速检测装置
CN117132473B (zh) * 2023-10-20 2024-01-23 中国海洋大学 水下稀土光谱检测方法及其光谱超分辨重建模型搭建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464411A (zh) * 2009-01-15 2009-06-24 浙江大学 毛细管阵列分析仪
FR2941529A1 (fr) * 2009-01-26 2010-07-30 Univ Claude Bernard Lyon Unite d'excitation lumineuse d'un echantillon et de collection de la lumiere emise par ledit echantillon excite
CN101984344A (zh) * 2010-10-22 2011-03-09 中南民族大学 地层岩性实时在线识别装置及其识别方法
CN102313721A (zh) * 2010-07-09 2012-01-11 中国科学院沈阳自动化研究所 一种冶金液态金属成分的原位、在线检测装置
CN204330594U (zh) * 2014-12-17 2015-05-13 郭锐 一种基于激光诱导击穿光谱技术的大气重金属污染物采集检测装置
US9255900B2 (en) * 2012-03-19 2016-02-09 Glenn M. Fishbine Hand held toxicity tester

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311385A (en) * 1979-07-02 1982-01-19 Raytheon Company Coherent detection lag angle compensated scanning system independent of inhomogeneities of the detector
JP2000289212A (ja) * 1999-02-04 2000-10-17 Toshiba Corp プリンタヘッドの製造方法とその装置及び孔加工装置
US6836325B2 (en) * 1999-07-16 2004-12-28 Textron Systems Corporation Optical probes and methods for spectral analysis
CN1423745A (zh) * 2000-04-11 2003-06-11 维尔道格股份有限公司 使用光谱仪原位探测和分析煤层瓦斯地层中的瓦斯
US6762835B2 (en) * 2002-03-18 2004-07-13 Mississippi State University Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis
US6762836B2 (en) * 2002-05-22 2004-07-13 General Electric Company Portable laser plasma spectroscopy apparatus and method for in situ identification of deposits
US7092087B2 (en) * 2003-09-16 2006-08-15 Mississippi State University Laser-induced breakdown spectroscopy for specimen analysis
US7016035B2 (en) * 2003-09-25 2006-03-21 General Electric Company Fiber optical apparatus and system for in situ laser plasma spectroscopy
US7173696B2 (en) * 2003-09-26 2007-02-06 Weatherford/Lamb, Inc. Polarization mitigation technique
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7236243B2 (en) * 2004-04-12 2007-06-26 Michael Thomas Beecroft Hand-held spectrometer
US7233643B2 (en) * 2005-05-20 2007-06-19 Oxford Instruments Analytical Oy Measurement apparatus and method for determining the material composition of a sample by combined X-ray fluorescence analysis and laser-induced breakdown spectroscopy
CN100510714C (zh) * 2006-12-05 2009-07-08 中国科学院安徽光学精密机械研究所 水体金属污染物激光击穿光谱探测方法与系统
US7394537B1 (en) * 2006-12-22 2008-07-01 Oxford Instruments Analytical Oy Practical laser induced breakdown spectroscopy unit
EP2137516A2 (en) * 2007-04-20 2009-12-30 Thermo Niton Analyzers LLC Laser-triggered plasma apparatus for atomic emission spectroscopy
FR2939195B1 (fr) * 2008-11-28 2011-01-21 Bertin Technologies Sa Dispositif d'analyse de materiaux par spectroscopie de plasma
JP5252586B2 (ja) * 2009-04-15 2013-07-31 ウシオ電機株式会社 レーザー駆動光源
CN101696936B (zh) * 2009-10-22 2011-07-20 浙江师范大学 激光诱导放电增强等离子体光谱检测装置
CN102183494B (zh) * 2011-02-18 2013-01-16 清华大学 一种利用等离子体空间限制作用提高元素测量精度的方法
JP5921876B2 (ja) * 2011-02-24 2016-05-24 ギガフォトン株式会社 極端紫外光生成装置
JP5672254B2 (ja) * 2012-02-21 2015-02-18 ウシオ電機株式会社 コヒーレント光源装置およびプロジェクタ
US9285272B2 (en) * 2012-07-17 2016-03-15 Sciaps, Inc. Dual source system and method
US9970876B2 (en) * 2012-07-17 2018-05-15 Sciaps, Inc. Dual source analyzer with single detector
CN103091289B (zh) * 2012-12-21 2014-12-03 吉林大学 基于激光诱导击穿光谱分析技术的自动化实验平台
WO2014113824A2 (en) * 2013-01-21 2014-07-24 Sciaps, Inc. Handheld libs spectrometer
US9267842B2 (en) * 2013-01-21 2016-02-23 Sciaps, Inc. Automated focusing, cleaning, and multiple location sampling spectrometer system
US9506869B2 (en) * 2013-10-16 2016-11-29 Tsi, Incorporated Handheld laser induced breakdown spectroscopy device
US9372115B2 (en) * 2014-08-05 2016-06-21 Bae Systems Information And Electronic Systems Integration Inc. Airborne hyperspectral scanning system with reflective telecentric relay
CN106546533B (zh) * 2015-09-20 2019-12-10 大连世佩达光谱智能检测科技有限公司 一种用全孔径角抛物镜收集表面增强拉曼散射光谱的设备
US10024716B2 (en) * 2015-10-26 2018-07-17 Burt J. Beardsley Field lens corrected three mirror anastigmat spectrograph
CN105527274B (zh) * 2016-01-29 2018-01-02 华中科技大学 一种高效的多路激光探针分析系统与方法
JP6232525B1 (ja) * 2016-02-09 2017-11-15 国立研究開発法人科学技術振興機構 照射装置、レーザ顕微鏡システム、照射方法及びレーザ顕微鏡の検出方法
CN105973871B (zh) * 2016-04-27 2019-04-09 中国科学院合肥物质科学研究院 一种光谱检测元素分布的微区扫描装置及其微区扫描方法
CN107782715B (zh) * 2016-08-24 2020-11-06 中国科学院光电研究院 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法
US11156817B2 (en) * 2018-08-08 2021-10-26 Kessler Optics and Photonics Solutions Ltd. Scanning microscope with enhanced FOV and NA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464411A (zh) * 2009-01-15 2009-06-24 浙江大学 毛细管阵列分析仪
FR2941529A1 (fr) * 2009-01-26 2010-07-30 Univ Claude Bernard Lyon Unite d'excitation lumineuse d'un echantillon et de collection de la lumiere emise par ledit echantillon excite
CN102313721A (zh) * 2010-07-09 2012-01-11 中国科学院沈阳自动化研究所 一种冶金液态金属成分的原位、在线检测装置
CN101984344A (zh) * 2010-10-22 2011-03-09 中南民族大学 地层岩性实时在线识别装置及其识别方法
US9255900B2 (en) * 2012-03-19 2016-02-09 Glenn M. Fishbine Hand held toxicity tester
CN204330594U (zh) * 2014-12-17 2015-05-13 郭锐 一种基于激光诱导击穿光谱技术的大气重金属污染物采集检测装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650842A1 (en) * 2018-11-12 2020-05-13 Hitachi High-Tech Analytical Science Finland Oy A light collection arrangement for optical emission spectroscopy
US10801888B2 (en) 2018-11-12 2020-10-13 Hitachi High-Tech Analytical Science Finland Oy Light collection arrangement for optical emission spectroscopy
CN110108677A (zh) * 2019-05-07 2019-08-09 新绎健康科技有限公司 生物延迟发光探测系统
CN110108677B (zh) * 2019-05-07 2023-07-21 新绎健康科技有限公司 生物延迟发光探测系统
WO2021001344A1 (fr) * 2019-07-01 2021-01-07 Universite De Bourgogne DISPOSITIF DE PRODUCTION DE CO2 GAZEUX À PARTIR DE CARBONATES POUR ANALYSE ISOTOPIQUE (δ13C ET δ18O) SUR SITE ET PROCÉDÉ ASSOCIÉ
FR3098300A1 (fr) * 2019-07-01 2021-01-08 Universite De Bourgogne Dispositif de production de CO2gazeux à partir de carbonates pour analyse isotopique (δ13C et δ18O) sur site et procédé associé.
CN112748232A (zh) * 2020-12-22 2021-05-04 中国科学院合肥物质科学研究院 一种土壤剖面原位重金属分布的实时检测系统
CN112748232B (zh) * 2020-12-22 2023-03-10 中国科学院合肥物质科学研究院 一种土壤剖面原位重金属分布的实时检测系统
CN115407362A (zh) * 2022-11-01 2022-11-29 中国科学院西安光学精密机械研究所 一种收发同轴的水下同步扫描成像系统及方法
CN115407362B (zh) * 2022-11-01 2023-02-14 中国科学院西安光学精密机械研究所 一种收发同轴的水下同步扫描成像系统及方法

Also Published As

Publication number Publication date
US10823679B2 (en) 2020-11-03
CN106568762A (zh) 2017-04-19
CN106568762B (zh) 2019-08-06
DE112016007086T5 (de) 2019-08-01
US20190271652A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2018082136A1 (zh) 扫描式激光诱导光谱面范围分析检测系统
JP6275240B2 (ja) 193nmレーザ及び193nmレーザを用いた検査システム
CN211652548U (zh) 基于光电倍增管的高灵敏度拉曼光谱仪
JP6605603B2 (ja) 遠赤外分光装置
TWI546533B (zh) 即時空間與時間光譜量測系統及其量測模組
CN108563034B (zh) 反射型空间滤波器调试装置和方法
CN110987900A (zh) 基于光电倍增管的高灵敏度拉曼光谱仪
CN111413314A (zh) 一种基于贝塞尔光的便携式拉曼光谱仪
US4691110A (en) Laser spectral fluorometer
CN105203222A (zh) 一种基于菲涅耳透镜和cars光谱对火焰一维扫描测温的装置
CN110632038A (zh) 光路延时双脉冲libs装置
JP2022508813A (ja) 小型2次元分光計
CN114018901A (zh) 一种基于振镜扫描分析的激光诱导击穿光谱仪及其光谱检测方法
US20050231717A1 (en) Fluorescence inspection spectrometer
CN105203223A (zh) 一种基于cars光谱测量一维扫描火焰温度的装置
CN109358036B (zh) 激光诱导击穿光谱信号误差校正系统和方法
CN111239084A (zh) 一种带有光束稳定性分析的激光诱导击穿光谱探测系统
CN109065209B (zh) 一种基于空心光束的双模输出光镊
WO2021131014A1 (ja) 遠赤外分光装置、遠赤外分光方法
CN216361769U (zh) 单激光源三脉冲libs与荧光光谱的重金属检测系统
RU2671150C1 (ru) Способ формирования дефектов в объеме образца диэлектрика лазерным излучением
CN105784681A (zh) 一种libs光谱探测及显微成像的多功能系统
CN111913191A (zh) 用于大气气溶胶探测的转动拉曼分光系统及分光方法
JP2019135499A (ja) 遠赤外分光装置
JP2019168701A (ja) 遠赤外分光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920926

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16920926

Country of ref document: EP

Kind code of ref document: A1