WO2018079694A1 - 通行不可道路区間推定システムおよび通行不可道路区間推定プログラム - Google Patents

通行不可道路区間推定システムおよび通行不可道路区間推定プログラム Download PDF

Info

Publication number
WO2018079694A1
WO2018079694A1 PCT/JP2017/038830 JP2017038830W WO2018079694A1 WO 2018079694 A1 WO2018079694 A1 WO 2018079694A1 JP 2017038830 W JP2017038830 W JP 2017038830W WO 2018079694 A1 WO2018079694 A1 WO 2018079694A1
Authority
WO
WIPO (PCT)
Prior art keywords
road section
inaccessible
road
area
route
Prior art date
Application number
PCT/JP2017/038830
Other languages
English (en)
French (fr)
Inventor
徳裕 中村
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US16/333,802 priority Critical patent/US20190259272A1/en
Priority to CN201780066720.XA priority patent/CN109923596A/zh
Priority to JP2018547771A priority patent/JP6690729B2/ja
Priority to EP17865372.1A priority patent/EP3509049A4/en
Publication of WO2018079694A1 publication Critical patent/WO2018079694A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data

Definitions

  • the present invention relates to an inaccessible road section estimation system and an inaccessible road section estimation program.
  • the case where the probe information does not exist includes not only the case where traffic on the road is actually impossible, but also the case where no vehicle has attempted to pass the road in the first place. Therefore, in Patent Document 1, when probe information does not exist, it is mistaken that it is impossible to pass a vehicle on a road section even though there was no vehicle trying to pass the road in the first place. There was a problem of judging.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique that can reduce the possibility of erroneous determination that a vehicle cannot pass on a road section.
  • the inaccessible road section estimation system of the present invention extracts an area road section that is an area road section that is a road section in a target area that is a region where a factor that makes the road section inaccessible has occurred.
  • An extraction unit, and a non-passable road section estimation unit that estimates a road section bypassed by the mobile body as a non-passable road section after the occurrence of a factor among the area road sections.
  • the inaccessible road section estimation program of the present invention extracts a region road section that is a road section in a target area, which is an area where a factor that makes the road section inaccessible has occurred.
  • the first road section extraction unit and the area road section function as an inaccessible road section estimation unit that estimates a road section bypassed by the mobile body as an inaccessible road section after the occurrence of the factor.
  • the possibility of erroneous determination that the mobile body cannot pass through the road section can be reduced. That is, it is possible to reduce the possibility that a road section in which no single mobile object has attempted to pass through the road is erroneously estimated as an inaccessible road section.
  • FIG. 1 is a block diagram showing a configuration of an impassable road section estimation system 10 according to an embodiment of the present invention.
  • the inaccessible road section estimation system 10 is a server configured to be able to communicate with the vehicle group and the disaster information distribution server 50.
  • the moving body of this embodiment is a vehicle.
  • the inaccessible road section estimation system 10 includes a control unit 20, a recording medium 30, and a communication unit 40.
  • the control unit 20 includes a CPU, a RAM, a ROM, and the like, and executes an inaccessible road section estimation program 21 stored in the recording medium 30 or the ROM.
  • the recording medium 30 records map information 30a, a probe DB (Database) 30b, and a guidance route DB (Database) 30c.
  • the map information 30a includes node data, link data, and area information.
  • the node data mainly indicates information about the node corresponding to the intersection. Specifically, the node data indicates the coordinates of the node and the shape of the intersection.
  • the link data indicates various types of information such as the number of lanes, the width, and the search cost for the link corresponding to the road section.
  • a road section is a unit of road divided by intersections continuous in the length direction, and nodes exist at both ends of the link.
  • a node to which three or more links are connected corresponds to an intersection.
  • the link data includes shape interpolation point data.
  • the shape interpolation point data is data indicating the coordinates of the shape interpolation point set at the center in the width direction of the road section.
  • the control unit 20 acquires the coordinates of the node and the coordinates of the shape interpolation point, and acquires a polygonal line connecting these coordinates or an approximate curve of these coordinates as the shape of the road section.
  • the search cost is an index value used for searching for a guidance route, and is an index value indicating the difficulty of being adopted as a road section on the guidance route.
  • the area information is information that defines the boundaries of administrative divisions (prefectures, cities, towns, villages, etc.).
  • the probe DB 30b is a database in which probe information transmitted from the probe car P is accumulated.
  • the probe car P includes a computer such as a car navigation device (not shown) and position specifying means, and the computer generates probe information and transmits it to the inaccessible road section estimation system 10 every time the vehicle leaves the road section.
  • This probe information includes information for identifying an individual probe car P, information for identifying a road section in which traffic has been completed, and information indicating the traffic time (for example, exit time) of the road section.
  • the position specifying means may include, for example, a GPS receiver, a vehicle speed sensor, and a gyro sensor.
  • the guidance route DB 30c is a database in which route information indicating the guidance route provided to the route providing vehicle Pr is accumulated.
  • the route providing vehicle Pr is a part of the probe car P. All of the probe cars P provide the probe information to the impassable road section estimation system 10, and among these, the guided road is provided from the impassable road section estimation system 10 (route providing car Pr). It has become.
  • the inaccessible road section estimation system 10 distributes the guidance route to the route providing vehicle Pr and accumulates the guidance route in the guidance route DB 30c.
  • a guide route is a route in which a series of road sections are connected from a departure place to a destination.
  • guidance for guiding the vehicle on the guidance route is performed. For example, a map showing the guidance route is displayed on the map, or the traveling direction of the vehicle at the intersection (straight, right turn, etc.) is guided so that the vehicle exits to the next road section on the guidance route at the intersection. Is done.
  • the communication unit 40 is a communication circuit for realizing communication between the inaccessible road section estimation system 10 and each probe car P and communication between the inaccessible road section estimation system 10 and the disaster information distribution server 50. It is.
  • the communication unit 40 communicates with the probe car P via the mobile phone communication network, and communicates with the disaster information distribution server 50 via the Internet.
  • the communication method of the communication part 40 is not limited to these.
  • the inaccessible road section estimation program 21 includes a route guidance module 21a, an area road section extraction module 21b, and an inaccessible road section estimation module 21c.
  • the area road section extraction module 21b and the inaccessible road section estimation module 21c are program modules that cause the control unit 20 as a computer to function as the area road section extraction section and the inaccessible road section estimation section, respectively.
  • the route guidance module 21a is a program module that searches the guidance route and causes the control unit 20 to realize a function for accumulating the guidance route in the guidance route DB 30c. That is, when receiving a route search request from the route providing vehicle Pr by the function of the route guidance module 21a, the control unit 20 searches for a guidance route according to the route search request.
  • the route search request includes the starting point and the destination of the route providing vehicle Pr.
  • the departure point is the current location of the route providing vehicle Pr. When the current location deviates from an existing guidance route, a route search request is made again with the deviated current location as the departure location.
  • the control unit 20 searches for a guidance route that is a series of road sections connecting from the departure point to the destination by a known Dijkstra method or the like.
  • the control unit 20 searches for the optimum guide route so that the total value of the search costs of the road sections constituting the guide route is minimized.
  • the search cost is an index value associated with each road section. For example, the search cost increases as the section length of the road section increases and increases as the travel time of the road section increases. Therefore, the control unit 20 searches for the guidance route so that the total value of the section length and the travel time becomes as small as possible.
  • the search cost of the road section is corrected upward.
  • control unit 20 distributes route information indicating a series of road sections constituting the guidance route to the route providing vehicle Pr.
  • the guide route can be displayed on the map, and the vehicle can be guided on the guide route.
  • control unit 20 distributes guidance information for guiding the vehicle on the guidance route to the route providing vehicle Pr. For example, information for guiding the vehicle traveling direction (straight, right turn, etc.) at the intersection to the user so that the vehicle exits to the road section on the guidance route at the intersection is delivered to the route providing vehicle Pr as guidance information. Is done.
  • the control unit 20 distributes the route information to the route providing vehicle Pr, and stores the route information in association with the identification information of the route providing vehicle Pr in the guidance route DB 30c.
  • the user is an occupant of the route providing vehicle Pr.
  • control unit 20 determines whether or not the route providing vehicle Pr that has delivered the route information has arrived at the destination of the guidance route. For example, the control unit 20 receives information indicating the current location of the route providing vehicle Pr every predetermined time period (for example, 1 minute) from the route providing vehicle Pr that delivered the route information, and the current location is the destination. Is within a predetermined determination distance (for example, 50 m), it is determined that the route providing vehicle Pr has arrived at the destination of the guidance route. The control unit 20 arrives at the destination when the arrival time at the destination is delayed by a reference period or more (for example, when it is delayed by 5 hours or more) from the delivery time of the route information or the estimated arrival time at the destination. You may make it not determine with having carried out.
  • a reference period or more for example, when it is delayed by 5 hours or more
  • a route search request is made again from the current location at the time of departure, and the guidance route corresponds to the route search request.
  • the route information of the corrected guide route will be distributed again to the route providing vehicle Pr. That is, each time the current location of the route providing vehicle Pr deviates from the guidance route, route information indicating the first guidance route having one common destination and one or more modified guidance routes is accumulated in the guidance route DB 30c. .
  • the control unit 20 adds the first guidance route with the common destination and the route information indicating one or more modified guidance routes. Attach an arrival flag. The arrival flag is associated with the arrival time.
  • the area road section extraction module 21b is a program module that causes the control unit 20 to realize a function of extracting an area road section that is a road section in the target area, which is an area where the road section is not allowed to pass.
  • the function of the area road section extraction module 21b allows the control unit 20 to receive the disaster information received from the disaster information distribution server 50 as the target area where the disaster occurred as a factor that makes the road section inaccessible and the time when the disaster occurred. Get from.
  • the disaster information indicates the administrative district where the disaster occurred, and the control unit 20 acquires the administrative district as the target area.
  • the factor that makes the road section inaccessible is a disaster, and includes, for example, an earthquake, flood, typhoon, heavy snow, large-scale fire, and the like.
  • the control unit 20 extracts an area road section that is a road section existing in the target area from the link data of the map information 30a.
  • the control unit 20 extracts all road sections in which at least a part (a node at one end) is included in the target area as the area road section.
  • the inaccessible road section estimation module 21c is a program module that causes the control unit 20 to realize a function of estimating a road section bypassed by the moving body as an inaccessible road section after the occurrence of a factor in the area road section. Specifically, by the function of the inaccessible road section estimation module 21c, the control unit 20 causes the moving body to pass through the area road section between the occurrence of the factor and the present time, and to move. Estimated as an inaccessible road section where the body detoured.
  • the control unit 20 is a non-road road section that is a road section in which no probe information indicating that the vehicle has passed on the area road section from the occurrence of the factor to the present is collected from the area road section. And a non-passable road section detoured by the moving body between the occurrence of the factor and the present time is extracted from the non-traffic road section.
  • control unit 20 extracts, from the probe DB 30b, probe information in which the time in the period from the disaster occurrence time to the current time is associated as the traffic time by the function of the impassable road section estimation module 21c. Then, the control unit 20 excludes the road section (passed road section) associated with the extracted probe information from the area road section, and extracts the road section remaining until the end as the non-passage road section. .
  • the control unit 20 extracts an inaccessible road section in which the mobile body has detoured from the occurrence of the factor to the present time in the non-accessible road section.
  • the road section detoured by the mobile body is guided to the user as a road section on the route for guiding the mobile body to the destination, but the mobile body arrives at the destination without passing through the road section. It is a road section.
  • the control unit 20 attaches an arrival flag from the guidance route DB 30c, and associates the time within the period from the disaster occurrence time to the current time as the arrival time. Extract route information.
  • control part 20 estimates as a non-trafficable road area which is the road area which is a road area which comprises the guidance route (a correction guidance route is included) which the extracted path
  • the non-traffic road section is a road section where the probe car P never passes
  • the non-passage road section constituting the guide route is a road section where the user is guided but not passed. Applicable.
  • FIG. 2 is a map showing an example of the guide route R. Assume that all the road sections shown in the figure are within the target area. In the figure, it is assumed that a guidance route R0 (solid line) from the departure point S0 to the destination G is guided to a user who is an occupant of the route providing vehicle Pr. However, the route providing vehicle Pr deviates from the guidance route R0 at the point Y0 on the guidance route R0, and the modified guidance route R1 (broken line) to the destination G is set to the user with the point near the point Y0 as the new departure point S1. Suppose you were guided.
  • a guidance route R0 solid line
  • the route providing vehicle Pr deviates from the correction guidance route R1 at the point Y1 on the correction guidance route R1, and the correction guidance route R2 (one-dot chain line) to the destination G with the point near the point Y1 as a new departure point S2. Is guided to the user, passes along the modified guidance route R2, and arrives at the destination G.
  • the arrival flag is attached to each of the guide route R0 and the corrected guide routes R1 and R2 when the route providing vehicle Pr arrives at the destination G through the corrected guide route R2.
  • the non-road road sections Z1 and Z2 are indicated by hatching.
  • the non-traffic road section Z2 is not included in any of the guide route R0 and the modified guide routes R1 and R2, and thus is not a bypassed road section guided to the user. Therefore, even if the vehicle does not pass through the no-passage road section Z2, the non-passage road section Z2 is not estimated to be an inaccessible road section. Since the route providing vehicle Pr is also a probe car P, probe information in which a road section that has actually passed among the road sections on the guide route R0 and the corrected guide routes R1 and R2 is associated is transmitted. .
  • the non-traffic road section Z1 is not included in the corrected guide route R2, but is included in the guide route R0 and the corrected guide route R1, and thus is a road section that is guided to the user but detoured. Therefore, the non-traffic road section Z1 is estimated to be an impassable road section.
  • the control unit 20 uses the function of the inaccessible road section estimation module 21c to make the search cost for the inaccessible road section much higher than the search cost before it is estimated that the inaccessible road section is inaccessible. Adjust upward to a larger value. As a result, the non-trafficable road section is difficult to be adopted as a road section constituting the guidance route.
  • the control unit 20 estimates that the road section in which the vehicle has never passed and the vehicle has bypassed is not allowed to pass. Not only that the vehicle has never passed, but also that the road section that is intentionally detoured is estimated to be a non-passable road section, so that it may be erroneously determined that the vehicle cannot pass through the road section. Can be reduced. That is, it is possible to reduce the possibility that a road section (for example, the non-passage road section Z2 in FIG. 2) in which only one vehicle has attempted to pass through the road is erroneously estimated as an inaccessible road section. .
  • the road section around which the vehicle has detoured is guided to the user as a road section on the guidance routes R0 and R1 that guides the vehicle to the destination G, but without passing through the road section.
  • This is the road section where the vehicle arrived at the destination G.
  • the road section where the vehicle did not actually pass even though it was being guided once is a road section where the user visually observed that an event such as a landslide occurred and detoured intentionally. It can be estimated that there is a road section that has been detoured after the user has determined that traffic is not possible (for example, the non-passage road section Z1 in FIG. 2).
  • the process of determining whether or not the vehicle has detoured by extracting the non-passage road sections Z1 and Z2 for which no probe information has been collected before extracting the road section on which the vehicle has detoured The number of road sections to be subject to can be greatly reduced, and the processing can be performed efficiently. Furthermore, by setting a disaster as a factor that makes a road section inaccessible, it is possible to estimate a road section that has become inaccessible due to a disaster.
  • FIG. 3 is a flowchart of the inaccessible road section estimation process.
  • the inaccessible road section estimation process is a process executed at predetermined time periods.
  • the control unit 20 acquires a target area by the function of the area road section extraction module 21b (step S100). That is, the control unit 20 acquires the target area indicated as the area where the disaster has occurred in the disaster information received so far.
  • control unit 20 extracts an area road section by the function of the area road section extraction module 21b (step S105). That is, the control unit 20 extracts an area road section that is a road section having at least a part in the target area from the link data of the map information 30a.
  • the control unit 20 extracts an impassable road section by the function of the impassable road section estimation module 21c (step S110). That is, the control unit 20 is a non-passage road area in which no probe information indicating that the vehicle has passed on the area road section between the occurrence of the factor and the present time is collected. Road sections Z1 and Z2 are extracted. Specifically, the control unit 20 excludes the road section indicated by the probe information in which the time in the period from the disaster occurrence time to the current time is associated with the passage time from the area road section, and remains until the end. Are extracted as traffic road sections Z1 and Z2.
  • the control unit 20 selects one of the non-traffic road sections Z1 and Z2 as a processing section (step S115).
  • the following description will be given on the assumption that the non-traffic road section Z1 in FIG. 2 has been selected.
  • the control unit 20 determines whether there is a guidance route including the processing section (step S120). As shown in FIG. 2, a guidance route R0 and a modified guidance route R1 are present in the guidance route DB 30c as guidance routes including the non-traffic road section Z1.
  • the control unit 20 determines whether or not the destination G has arrived by the function of the inaccessible road section estimation module 21c (step S125). . That is, the control unit 20 attaches an arrival flag to at least one of the guidance route R0 and the modified guidance route R1 including the processing section, and the arrival time is within the period from the disaster occurrence time to the current time. It is determined whether or not.
  • the arrival flag is also attached to the guidance route R0 and the modification guidance route R1 when the route providing vehicle Pr arrives at the destination G through the modification guidance route R2, so that the non-traffic road section It is determined that the route providing vehicle Pr has arrived at the destination G of the guidance route R0 and the modified guidance route R1 including Z1.
  • step S125: Y If it is determined that the vehicle has arrived at the destination G (step S125: Y), the control unit 20 estimates the target section as an inaccessible road section by the function of the inaccessible road section estimation module 21c (step S130). Thereby, the non-traffic road section Z1 is estimated as the non-passable road section.
  • the control unit 20 upwardly corrects the search cost of the inaccessible road section (step S135).
  • the control part 20 may prevent reliably adopting as the road section on a guidance route to the non-passage road area Z1 by deleting the non-passage road area Z1 from the map information 30a.
  • the control unit 20 determines whether or not all the impassable road sections have been selected (step S140). That is, the control unit 20 determines whether all the non-passage road sections Z1 and Z2 extracted in step S105 have been selected as the target section.
  • step S140: N If it is not determined that all the non-traffic road sections have been selected (step S140: N), the control unit 20 returns to step S115 by the function of the non-passable road section estimation module 21c. That is, the processing of steps S120 to S140 is executed with the remaining non-passage road section Z2 as the processing section. For the non-road road section Z2 in FIG. 2, it is not determined that there is a guidance route including the processing section (step S120: N). In this case, the control unit 20 proceeds to step S140, and the inaccessible road section estimation process is finished as it is. And it will wait until the next time period passes.
  • step S140 the control part 20 progresses to step S140. That is, when there is a guidance route including the processing section but there is no route providing vehicle Pr that has arrived at the destination G of the guidance route, the control unit 20 does not estimate the processing section as a non-traffic road section. If it does not arrive at the destination G, it can be estimated that the user's intention to go to the destination G has disappeared, and it cannot be estimated that the processing section has been detoured. For example, in FIG.
  • FIG. 4 is a flowchart of the inaccessible road section estimation process according to the second embodiment.
  • the control unit 20 makes it possible to distinguish between the non-passable road section and the non-passable road section when the road section is displayed on the map by the function of the non-passable road section estimation module 21c.
  • a point peculiar to the inaccessible road section estimation process (FIG. 4) according to the present embodiment is that steps S107, S137, and S138 indicated by bold frames are compared to the inaccessible road section estimation process (FIG. 3) of the first embodiment. Is added.
  • the control unit 20 sets the display color of road sections other than the non-passable road section to a normal color (for example, blue) (step S107).
  • the road sections other than the non-traffic road section include road sections outside the target area and road sections within the target area where the probe car P may have passed. For these road sections, a normal color that is unlikely to pass and does not alert the user is set.
  • control unit 20 sets the display color to a caution color (for example, yellow) for the target section that is an inaccessible road section but is not estimated to be an inaccessible road section by the function of the inaccessible road section estimation module 21c. (Step S137).
  • a caution color for example, yellow
  • the road section where the probe car P has never traveled may not be able to pass, so a caution color that alerts the user is set.
  • control unit 20 sets the display color to a warning color (for example, red) for the target section estimated to be an inaccessible road section by the function of the inaccessible road section estimation module 21c (step S137).
  • a warning color for example, red
  • the control unit 20 sets the display color to a warning color (for example, red) for the target section estimated to be an inaccessible road section by the function of the inaccessible road section estimation module 21c (step S137).
  • the set display color is associated with the link data of the map information 30a.
  • the control unit 20 distributes the map information 30a to the route providing vehicle Pr.
  • the vehicle-mounted display device provided in the probe car P displays each road section in the display color set in steps S107, S137, and S138 when displaying the map.
  • the map information 30a in which the display color of the road section is set may be uploaded to a map server on the Internet, and a map in which the road section is displayed in the display color indicated by the map information 30a is displayed on the terminal on the Internet. May be.
  • the display color of the road section may be set, and the search cost for the non-passable road section may be omitted (step S135) may be omitted.
  • control unit 20 not only corrects the search cost for the non-passable road section upward, but also sets the display color for the non-road road section as a caution color in step S137.
  • the search cost may be corrected upward.
  • the control part 20 should just make the degree of the upward correction of the search cost about a non-trafficable road section larger than the degree of the search cost upward correction about a non-traffic road section.
  • control unit 20 may make it possible to identify a road section in which the number of times the probe car P has passed among the road sections in the target area is equal to or more than a reference number (for example, once) and other road sections. Good.
  • the control unit 20 sets the display color of the road section where the number of times at least one probe car P has passed the reference number or more is blue or the like (a color different from the normal color, the warning color, and the caution color). Also good. Thereby, it becomes possible to recognize the road section in the target area where the possibility that the vehicle can actually pass is high.
  • FIG. 5 is a schematic diagram of a road.
  • a road Q indicated by a bold line is a national road with a single route number.
  • the control unit 20 uses the disaster information distribution server to indicate the occurrence point C where the disaster occurred as a factor that makes the road section inaccessible, the occurrence time of the disaster, and the degree of the disaster. Obtained from the disaster information received from 50. Then, the control unit 20 sets the disaster radius W to be larger as the degree of disaster is larger, and obtains it as a target area within a circle with the disaster radius W centering on the occurrence point C. Then, the control unit 20 extracts road sections U1 to U7 in the target area as area road sections.
  • the occurrence point C is an epicenter and the degree of disaster is its own seismic intensity or magnitude.
  • Road Q corresponds to a route along the road.
  • the control unit 20 acquires information indicating the travel route on which the probe car P actually traveled after the disaster occurrence time from the plurality of probe cars P.
  • the control unit 20 extracts a detour route in which the road sections U1 to U7 as the area road sections are detoured from the travel routes acquired from the plurality of probe cars P.
  • the probe car P traveling on the road Q once travels on the portion other than the road Q (the bypass portion D) in the target area and travels on the road Q again. Means that.
  • an upper limit value is set for the length of the detour portion D, and the control unit 20 does not extract a travel route in which the length of the detour portion D is equal to or greater than the upper limit value as a detour route of the road Q.
  • the control unit 20 acquires the total number of detour routes, and for each of the road sections U1 to U7 in the target area, acquires the number of detour paths that have passed through the road sections U1 to U7 (passage number). Then, the control unit 20 obtains a passage evaluation value by dividing each of the number of passages in the road sections U1 to U7 by the total number of detour routes. Then, the control unit 20 estimates the road sections U1 to U7 whose passage evaluation value is equal to or less than a threshold value (for example, 5%) as non-passable road sections.
  • a threshold value for example, 5%
  • the control unit 20 estimates that there are no inaccessible road sections in the target area. . Note that the control unit 20 may ignore a detour route that is past a certain period from the current time when acquiring the passage evaluation value. Thereby, an impassable road section can be estimated based on somewhat new information. In addition, the control unit 20 may calculate the passage evaluation value with an emphasis on newer travel routes.
  • control unit 20 does not necessarily have to estimate an impassable road section from among impassable road sections. Furthermore, the control unit 20 does not necessarily have to estimate the road section on the guidance route as a non-passable road section. Moreover, as shown in FIG. 5, the control part 20 may acquire a target area
  • the road section on the guidance route where the route providing vehicle Pr arrives at the destination is extracted from the previously extracted non-passage road sections.
  • the road sections are not necessarily extracted in this order. Also good. That is, the control unit 20 extracts a road section on the guidance route where the route providing vehicle Pr has arrived at the destination from among the area road sections, and the road that has never been passed from among the extracted road sections.
  • a section may be extracted as a non-traffic road section.
  • the search for the guidance route is performed in the inaccessible road section estimation system 10, but the vehicle-mounted device mounted on the probe car P is included in the map information 30 a distributed from the inaccessible road section estimation system 10. You may search for a guidance route based on it. In this case, what is necessary is just to be comprised so that the inaccessible road area estimation system 10 can collect the information which shows the path
  • the road section is a unit of road obtained by dividing the road in the length direction.
  • the road section may be a section obtained by dividing the road into consecutive intersections or predetermined distances.
  • the factor that makes the road impassable may be a factor that artificially makes the road improper, or may be a factor that makes the road improperly natural.
  • the target area is an area including a point where a factor that makes the road impassable occurs.
  • the target area may be an administrative division including the point, or an area within a predetermined distance from the point. There may be.
  • the area road section extraction unit only needs to acquire information indicating the target area, and may set the target area based on a point where the road becomes inaccessible, or may indicate a preset target area. Information may be acquired by communication or the like.
  • the area road section extraction unit may extract an area road section having at least a part in the target area, and may extract an area road section from map information in which each road section on the map is defined in advance.
  • the period from the occurrence of a factor to the present is a period from the occurrence time of the factor to the present time.
  • the area road segment extraction unit may regard the time when the information indicating the target area is acquired as the factor occurrence time.
  • the information indicating the target area is acquired because the time is later than the generation time of the factor.
  • the fact that the mobile object has never passed may be that the number of times that information indicating that the mobile object has passed is acquired is zero.
  • the information indicating that the mobile body has passed may be acquired from, for example, the detection result of the detector of the mobile body installed on the road, may be acquired from the position information of the mobile body, or from the mobile body You may acquire from the information transmitted.
  • the mobile body only needs to move together with the user, and may be a vehicle on which the user rides or a mobile terminal carried by the user.
  • a road section detoured by a moving body is a road section where the user of the mobile body detours can be seen, even if it is a road section that is intentionally avoided in situations where it would normally pass Good.
  • the inaccessible road section estimation unit may determine whether or not the road section has been detoured based on the past traffic history, and whether or not the road section has been detoured based on the route through which the mobile body has passed in the past. It may be determined.
  • the non-passable road section estimation unit has passed in the past route when it has passed the same route as the past route that has been passed at a frequency equal to or higher than the threshold in the traffic history, but in this route It may be determined that the road section that did not pass is detoured.
  • the almost same route may be a route in which the coincidence rate of the road sections that have been passed is equal to or greater than a threshold value, or a route in which the departure point and the destination coincide.
  • the inaccessible road section estimation unit normally passes between the first road section and the second road section when passing through the first road section and then passing through the first road section.
  • the third road section that should pass is not passing, it may be determined that the third road section has been detoured.
  • the inaccessible road section estimation unit may determine that the third road section has been detoured when the first to third road sections are road sections that are continuous roads.
  • the road may be that the route name and route type match, the road width may be more than the standard, or the change in the direction of travel at the intersection is below the threshold. There may be.
  • the road section that the mobile body has detoured is guided to the user as a road section on the route that guides the mobile body to the destination, but the mobile body has arrived at the destination without passing through the road section. It may be a road section.
  • the road section where the mobile object did not actually pass even though it was guided once is a road section deliberately detoured by the user, and the user determines that the passage is impossible.
  • the inaccessible road section estimation unit is a road section in which no probe information indicating that the vehicle has passed on the area road section from the occurrence of the factor to the present is collected among the area road sections.
  • a certain non-traffic road section may be extracted, and a non-passable road section detoured by the mobile body may be extracted from the occurrence of the factor until the present. In this way, by narrowing down the road sections corresponding to the inaccessible road sections first, it is possible to efficiently realize the process of extracting the inaccessible road sections.
  • a process for determining whether or not a mobile object has detoured by extracting a non-traffic road section in which no probe information is collected before extracting a road section detoured by the mobile object The number of target road sections can be greatly narrowed down, and processing can be performed efficiently.
  • the impassable road section estimation unit may make it possible to identify the impassable road section and the impassable road section when displaying the road section on the map. Thereby, a road section can be displayed so that possibility that a passage is impossible can be identified.
  • the road section estimation unit displays the road section on the map
  • the road section in which the moving body has passed the reference number of times or more during the period from the occurrence of the factor to the present is displayed.
  • other road sections may be identifiable. Thereby, a road section can be displayed so that a road section with high possibility of actually passing is identifiable.
  • the factor that makes the road section inaccessible may be a disaster. Thereby, it is possible to estimate a road section that is not allowed to pass due to a disaster.
  • the area road section extraction unit may acquire the target area based on the point where the factor has occurred. For example, the area road section extraction unit may acquire a target area having a larger range as the degree of factor intensity increases.
  • the strength of the factor may be the seismic intensity or magnitude of an earthquake, or the speed of a typhoon or the size of a storm zone.
  • the area road section extraction unit may acquire a target area having a shape according to the nature of the factor. For example, when the factor relates to flood damage such as a tsunami, storm surge, or flood, the target area may be acquired based on the shape of a coastline, a river, or a contour line (below the sea level threshold).
  • the method for estimating a non-passable road section depending on whether or not a detour is made can be applied as a program or method.
  • the system, program, and method as described above may be realized as a single device, or may be realized using components shared with each part of the vehicle, and include various aspects. It is a waste.
  • some changes may be made as appropriate, such as a part of software and a part of hardware.
  • the invention is also established as a recording medium for a program for controlling the apparatus.
  • the software recording medium may be a magnetic recording medium, a magneto-optical recording medium, or any recording medium to be developed in the future.

Abstract

【課題】道路区間における車両の通行が不可であると誤判定する可能性を低減できる技術の提供。 【解決手段】通行不可道路区間推定システムは、道路区間が通行不可となる要因が生じた地域である対象領域内の前記道路区間である領域道路区間を抽出する領域道路区間抽出部と、前記領域道路区間のうち、前記要因の発生以降において、移動体が迂回した前記道路区間を通行不可道路区間として推定する通行不可道路区間推定部と、を備える。

Description

通行不可道路区間推定システムおよび通行不可道路区間推定プログラム
 本発明は、通行不可道路区間推定システムおよび通行不可道路区間推定プログラムに関する。
 道路区間に設置された交通設備や車両感知器に異常が発生しており、かつ、道路区間を通行するプローブカーから送信されたプローブ情報が存在しない場合に、道路区間における車両の通行が不可となっていると判定する技術が知られている(特許文献1、参照)。
特開2013-97550号公報
 プローブ情報が存在しない場合には、道路の通行が現実に不可であった場合だけでなく、そもそもその道路を通行しようとした車両が1台もなかった場合も含まれる。そのため、特許文献1において、プローブ情報が存在しない場合に、そもそもその道路を通行しようとした車両が1台もなかっただけであるのに、道路区間における車両の通行が不可となっていると誤判定してしまうという問題があった。
 本発明は、前記課題にかんがみてなされたもので、道路区間における車両の通行が不可であると誤判定する可能性を低減できる技術を提供することを目的とする。
 前記の目的を達成するため、本発明の通行不可道路区間推定システムは、道路区間が通行不可となる要因が生じた地域である対象領域内の道路区間である領域道路区間を抽出する領域道路区間抽出部と、領域道路区間のうち、要因の発生以降において、移動体が迂回した道路区間を通行不可道路区間として推定する通行不可道路区間推定部と、を備える。
 前記の目的を達成するため、本発明の通行不可道路区間推定プログラムは、コンピュータを、道路区間が通行不可となる要因が生じた地域である対象領域内の道路区間である領域道路区間を抽出する第1道路区間抽出部、領域道路区間のうち、要因の発生以降において、移動体が迂回した道路区間を通行不可道路区間として推定する通行不可道路区間推定部、として機能させる。
 前記の構成において、移動体の利用者が意図的に迂回した道路区間を通行不可道路区間として推定することで、道路区間における移動体の通行が不可であると誤判定する可能性を低減できる。すなわち、そもそもその道路を通行しようとした移動体が1台もなかっただけに過ぎない道路区間が誤って通行不可道路区間として推定される可能性を低減できる。
通行不可道路区間推定システムのブロック図である。 地図の例である。 通行不可道路区間推定処理のフローチャートである。 第2実施形態にかかる通行不可道路区間推定処理のフローチャートである。 第3実施形態における道路の模式図である。
 ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)通行不可道路区間推定システムの構成:
(2)通行不可道路区間推定処理:
(3)第2実施形態:
(4)第3実施形態:
(5)他の実施形態:
 (1)通行不可道路区間推定システムの構成:
 図1は、本発明の一実施形態にかかる通行不可道路区間推定システム10の構成を示すブロック図である。通行不可道路区間推定システム10は、車両群や災害情報配信サーバ50と通信可能に構成されたサーバである。本実施形態の移動体は車両である。通行不可道路区間推定システム10は、制御部20と記録媒体30と通信部40とを備えている。制御部20は、CPUとRAMとROM等を備え、記録媒体30やROMに記憶された通行不可道路区間推定プログラム21を実行する。
 記録媒体30は、地図情報30aとプローブDB(Database)30bと誘導経路DB(Database)30cとを記録している。地図情報30aは、ノードデータとリンクデータと領域情報とを含む。ノードデータは、おもに交差点に対応するノードついての情報を示す。具体的に、ノードデータは、ノードの座標や交差点の形状を示す。リンクデータは、道路区間に対応するリンクについてレーン数や幅員や探索コスト等の各種情報を示す。道路区間は、長さ方向に連続する交差点で区切った道路の単位であり、リンクの両端にはノードが存在する。なお、3個以上のリンクが接続しているノードが交差点に対応する。リンクデータは、形状補間点データを含む。形状補間点データは、道路区間の幅方向の中央に設定された形状補間点の座標を示すデータである。制御部20は、ノードの座標と形状補間点の座標とを取得し、これらの座標を接続する折れ線、または、これらの座標の近似曲線を道路区間の形状として取得する。探索コストとは、誘導経路の探索に使用する指標値であり、誘導経路上の道路区間として採用されにくさを示す指標値である。領域情報は、行政区画(都道府県、市、町、村等)の境界を規定する情報である。
 プローブDB30bは、プローブカーPから送信されたプローブ情報を蓄積したデータベースである。プローブカーPは、図示しないカーナビゲーション装置等のコンピュータと位置特定手段を備え、当該コンピュータは車両が道路区間を退出するごとにプローブ情報を生成し、通行不可道路区間推定システム10に送信する。このプローブ情報は、プローブカーPの個体を識別する情報と、通行が完了した道路区間を識別する情報と、道路区間の通行時刻(例えば退出時刻)を示す情報とを含む。位置特定手段は、例えばGPS受信部や車速センサやジャイロセンサを含んでもよい。
 誘導経路DB30cは、経路提供車Prに提供した誘導経路を示す経路情報を蓄積したデータベースである。経路提供車Prとは、プローブカーPのうちの一部の車両である。すべてのプローブカーPがプローブ情報を通行不可道路区間推定システム10に提供するが、これらのうち通行不可道路区間推定システム10から誘導経路が提供されるのは一部の車両(経路提供車Pr)となっている。
 通行不可道路区間推定システム10は、経路提供車Prに対して誘導経路を配信するとともに、当該誘導経路を誘導経路DB30cに蓄積する。誘導経路は、出発地から目的地までを一連の道路区間によって接続した経路である。通行不可道路区間推定システム10から誘導経路が配信された経路提供車Prにおいては、当該誘導経路上に車両を誘導するための案内が行われる。例えば、地図上に誘導経路を示す線図が表示されたり、交差点において誘導経路上の次の道路区間へと車両が退出するように当該交差点における車両の進行方向(直進,右左折等)が案内される。
 通信部40は、通行不可道路区間推定システム10と各プローブカーPとの間の通信と、通行不可道路区間推定システム10と災害情報配信サーバ50との間の通信とを実現するための通信回路である。通信部40は、携帯電話通信網を介してプローブカーPと通信し、インターネットを介して災害情報配信サーバ50と通信する。むろん、通信部40の通信方法はこれらに限定されない。
 通行不可道路区間推定プログラム21は、経路誘導モジュール21aと領域道路区間抽出モジュール21bと通行不可道路区間推定モジュール21cとを含む。領域道路区間抽出モジュール21bと通行不可道路区間推定モジュール21cとは、それぞれコンピュータとしての制御部20を領域道路区間抽出部と通行不可道路区間推定部として機能させるプログラムモジュールである。
 経路誘導モジュール21aは、誘導経路を探索し、当該誘導経路を誘導経路DB30cに蓄積するための機能を制御部20に実現させるプログラムモジュールである。すなわち、経路誘導モジュール21aの機能により制御部20は、経路提供車Prから経路探索要求を受信すると、当該経路探索要求に応じて誘導経路を探索する。経路探索要求には、経路提供車Prの出発地と目的地とが含まれる。本実施形態において、出発地は、経路提供車Prの現在地であり、既存の誘導経路から現在地が逸脱した場合には、逸脱した現在地を出発地とする経路探索要求が再度行われる。
 制御部20は、出発地から目的地までを接続する一連の道路区間である誘導経路を、公知のダイクストラ法などによって探索する。制御部20は、誘導経路を構成する道路区間の探索コストの合計値が最も小さくなるように、最適な誘導経路を探索する。探索コストは、道路区間のそれぞれに対応付けられた指標値であり、例えば道路区間の区間長が大きいほど大きくなるとともに、道路区間の旅行時間が大きいほど大きくなる。従って、制御部20は、できるだけ区間長や旅行時間の合計値が小さくなるように誘導経路を探索することとなる。道路区間が通行不可道路区間と推定された場合、当該道路区間の探索コストが上方修正される。
 また、制御部20は、誘導経路を構成する一連の道路区間を示す経路情報を経路提供車Prに配信する。これにより、経路提供車Prにおいては、地図上に誘導経路を表示することができ、当該誘導経路上に車両を誘導できる。さらに、制御部20は、誘導経路上に車両を誘導するための誘導情報を経路提供車Prに配信する。例えば、交差点において誘導経路上の道路区間へと車両が退出するように当該交差点における車両の進行方向(直進,右左折等)をユーザに案内するための情報が誘導情報として経路提供車Prに配信される。制御部20は、経路情報を経路提供車Prに配信するとともに、当該経路情報に経路提供車Prの識別情報を対応付けて誘導経路DB30cに蓄積する。ここで、ユーザとは、経路提供車Prの乗員である。
 さらに、制御部20は、経路情報を配信した経路提供車Prが誘導経路の目的地に到着したか否かを判定する。例えば、制御部20は、経路情報を配信した経路提供車Prから予め決められた時間周期(例えば1分)ごとに、当該経路提供車Prの現在地を示す情報を受信し、当該現在地が目的地から予め決められた判定距離(例えば50m)以内となった場合に、経路提供車Prが誘導経路の目的地に到着したと判定する。なお、制御部20は、目的地に到着した時刻が、経路情報の配信時刻または目的地の到着予定時刻から基準期間以上遅れた場合(例えば5時間以上遅れた場合)には、目的地に到着したと判定しないようにしてもよい。
 ここで、既存の誘導経路から経路提供車Prの現在地が逸脱した場合には、逸脱した際の現在地を出発地とする経路探索要求が再度行われ、当該経路探索要求に対応する誘導経路である修正誘導経路の経路情報が経路提供車Prに再度配信されることとなる。つまり、誘導経路から経路提供車Prの現在地が逸脱するごとに、目的地を共通とする最初の誘導経路と1個以上の修正誘導経路を示す経路情報が誘導経路DB30cに蓄積されることとなる。このような場合において、経路提供車Prが誘導経路の目的地に到着すると、制御部20は、目的地を共通とする最初の誘導経路と1個以上の修正誘導経路を示す経路情報のそれぞれに到着フラグを添付する。また、この到着フラグには到着時刻が対応付けられる。
 領域道路区間抽出モジュール21bは、道路区間が通行不可となる要因が生じた地域である対象領域内の道路区間である領域道路区間を抽出する機能を制御部20に実現させるプログラムモジュールである。領域道路区間抽出モジュール21bの機能により制御部20は、道路区間が通行不可となる要因としての災害が発生した対象領域と、当該災害の発生時刻とを、災害情報配信サーバ50から受信した災害情報から取得する。災害情報は災害が発生した行政区画を示し、制御部20は、当該行政区画を対象領域として取得する。本実施形態において、道路区間が通行不可となる要因とは、災害であり、例えば地震や水害や台風や大雪や大規模火災等が含まれる。
 領域道路区間抽出モジュール21bの機能により制御部20は、対象領域内に存在する道路区間である領域道路区間を地図情報30aのリンクデータから抽出する。制御部20は、少なくとも一部分(片方の端のノード)が対象領域に含まれているすべての道路区間を領域道路区間として抽出する。
 通行不可道路区間推定モジュール21cは、領域道路区間のうち、要因の発生以降において、移動体が迂回した道路区間を通行不可道路区間として推定する機能を制御部20に実現させるプログラムモジュールである。具体的に、通行不可道路区間推定モジュール21cの機能により制御部20は、領域道路区間のうち、要因の発生から現在までの間に、移動体が1回も通行しておらず、かつ、移動体が迂回した道路区間を通行不可道路区間として推定する。制御部20は、領域道路区間のうち、要因の発生から現在までの間に、当該領域道路区間上を通行したことを示すプローブ情報が1個も収集されていない道路区間である無通行道路区間を抽出し、無通行道路区間のうち、要因の発生から現在までの間に、移動体が迂回した通行不可道路区間を抽出する。
 まず、通行不可道路区間推定モジュール21cの機能により制御部20は、プローブDB30bから、災害の発生時刻から現在時刻までの期間内の時刻が通行時刻として対応付けられているプローブ情報を抽出する。そして、制御部20は、抽出したプローブ情報が対応付けられている道路区間(通行された道路区間)を領域道路区間から除外していき、最後まで残った道路区間を無通行道路区間として抽出する。
 その後、通行不可道路区間推定モジュール21cの機能により制御部20は、無通行道路区間のうち、要因の発生から現在までの間に、移動体が迂回した通行不可道路区間を抽出する。ここで、移動体が迂回した道路区間とは、移動体を目的地まで誘導する経路上の道路区間としてユーザに案内がされたが、当該道路区間を通行することなく目的地に移動体が到着した道路区間である。通行不可道路区間推定モジュール21cの機能により制御部20は、誘導経路DB30cから、到着フラグが添付され、かつ、災害の発生時刻から現在時刻までの期間内の時刻が到着時刻として対応付けられている経路情報を抽出する。そして、制御部20は、無通行道路区間のうち、抽出した経路情報が示す誘導経路(修正誘導経路を含む)を構成する道路区間となっている道路区間を通行不可道路区間として推定する。上述したように、無通行道路区間はプローブカーPが一度も通行していない道路区間であるため、誘導経路を構成する無通行道路区間はユーザに案内がされたが通行されなかった道路区間に該当することとなる。
 図2は、誘導経路Rの例を示す地図である。同図に示す道路区間のすべてが対象領域内であることとする。同図において、出発地S0から目的地Gまでの誘導経路R0(実線)が経路提供車Prの乗員であるユーザに案内されていたこととする。しかし、経路提供車Prは、誘導経路R0上の地点Y0において誘導経路R0から逸脱し、地点Y0付近の地点を新たな出発地S1として目的地Gまでの修正誘導経路R1(破線)がユーザに案内されたこととする。さらに、経路提供車Prは、修正誘導経路R1上の地点Y1において修正誘導経路R1から逸脱し、地点Y1付近の地点を新たな出発地S2として目的地Gまでの修正誘導経路R2(一点鎖線)がユーザに案内され、当該修正誘導経路R2上を通行して目的地Gに到着したこととする。この場合、経路提供車Prが修正誘導経路R2上を通行して目的地Gに到着したことにより、誘導経路R0と修正誘導経路R1,R2のそれぞれに到着フラグが添付されることとなる。また、無通行道路区間Z1,Z2をハッチングで示す。
 図2の例において、無通行道路区間Z2は、誘導経路R0と修正誘導経路R1,R2のいずれにも含まれないため、ユーザに案内されたが迂回された道路区間とはならない。そのため、無通行道路区間Z2を車両が1回も通行していなくても、当該無通行道路区間Z2は通行不可道路区間であると推定されない。経路提供車PrもプローブカーPであるため、誘導経路R0と修正誘導経路R1,R2上の道路区間のうち、実際に通行した道路区間が対応付けられたプローブ情報が送信されていることとなる。
 ここで、無通行道路区間Z1は、修正誘導経路R2には含まれないが、誘導経路R0,修正誘導経路R1に含まれるため、ユーザに案内されたが迂回された道路区間となる。そのため、無通行道路区間Z1は、通行不可道路区間であると推定されることとなる。
 通行不可道路区間を推定すると、通行不可道路区間推定モジュール21cの機能により制御部20は、通行不可道路区間についての探索コストを、通行不可道路区間であると推定される前の探索コストよりも極めて大きい値へと上方修正する。その結果、通行不可道路区間は誘導経路を構成する道路区間として採用されにくくなる。
 以上説明した本実施形態おいて、制御部20は、車両が1回も通行しておらず、かつ、車両が迂回した道路区間を通行不可道路区間として推定している。単に車両が1回も通行していないだけでなく、さらに、意図的に迂回した道路区間を通行不可道路区間として推定することで、道路区間における車両の通行が不可であると誤判定する可能性を低減できる。すなわち、そもそもその道路を通行しようとした車両が1台もなかっただけに過ぎない道路区間(例えば図2の無通行道路区間Z2)が誤って通行不可道路区間として推定される可能性を低減できる。
 また、本実施形態において、車両が迂回した道路区間とは、車両を目的地Gまで誘導する誘導経路R0,R1上の道路区間としてユーザに案内がされたが、当該道路区間を通行することなく目的地Gに車両が到着した道路区間である。一度、案内されているにも拘わらず実際に車両が通行しなかった道路区間は、例えばユーザが前方にて土砂崩れ等の事象が発生しているのを視認し、意図的に迂回した道路区間であると推定でき、通行が不可であるとユーザが判断した上で迂回された道路区間(例えば図2の無通行道路区間Z1)であると推定できる。
 また、通行不可道路区間に該当する道路区間を先に絞り込むことにより、通行不可道路区間を抽出する処理を効率よく実現することができる。特に、車両が迂回した道路区間を抽出するよりも前に、プローブ情報が1個も収集されていない無通行道路区間Z1,Z2を抽出することで、車両が迂回したか否かを判定する処理の対象となる道路区間の数を大幅に絞り込むことができ、処理を効率よく行うことができる。さらに、災害を道路区間が通行不可となる要因とすることにより、災害によって通行不可となった道路区間を推定できる。
 (2)通行不可道路区間推定処理:
 次に、通行不可道路区間推定プログラム21の機能により実行される通行不可道路区間推定処理を図2の地図を例にして説明する。図3は、通行不可道路区間推定処理のフローチャートである。通行不可道路区間推定処理は、予め決められた時間周期ごとに実行される処理である。まず、領域道路区間抽出モジュール21bの機能により制御部20は、対象領域を取得する(ステップS100)。すなわち、制御部20は、これまでに受信した災害情報において、災害が発生した領域であると示されている対象領域を取得する。
 次に、領域道路区間抽出モジュール21bの機能により制御部20は、領域道路区間を抽出する(ステップS105)。すなわち、制御部20は、対象領域内に少なくとも一部分が存在する道路区間である領域道路区間を地図情報30aのリンクデータから抽出する。
 次に、通行不可道路区間推定モジュール21cの機能により制御部20は、無通行道路区間を抽出する(ステップS110)。すなわち、制御部20は、領域道路区間のうち、要因の発生から現在までの間に、当該領域道路区間上を通行したことを示すプローブ情報が1個も収集されていない道路区間である無通行道路区間Z1,Z2を抽出する。具体的に、制御部20は、災害の発生時刻から現在時刻までの期間内の時刻が通行時刻として対応付けられているプローブ情報が示す道路区間を領域道路区間から除外していき、最後まで残った道路区間を無通行道路区間Z1,Z2として抽出する。
 次に、通行不可道路区間推定モジュール21cの機能により制御部20は、無通行道路区間Z1,Z2の1個を処理区間として選択する(ステップS115)。ここでは、図2の無通行道路区間Z1が選択されたこととして、以下、説明する。
 次に、通行不可道路区間推定モジュール21cの機能により制御部20は、処理区間を含む誘導経路があるか否かを判定する(ステップS120)。図2に示すように、無通行道路区間Z1を含む誘導経路として、誘導経路R0と修正誘導経路R1が誘導経路DB30cに存在することとなる。
 処理区間を含む誘導経路があると判定した場合(ステップS120:Y)、通行不可道路区間推定モジュール21cの機能により制御部20は、目的地Gに到着したか否かを判定する(ステップS125)。すなわち、制御部20は、処理区間を含む誘導経路R0と修正誘導経路R1の少なくとも1個に対して、到着フラグが添付され、かつ、到着時刻が災害の発生時刻から現在時刻までの期間内となっているか否かを判定する。最終的に、経路提供車Prが修正誘導経路R2を通行して目的地Gに到着したことをもって、誘導経路R0と修正誘導経路R1に対しても到着フラグが添付されるため、無通行道路区間Z1を含む誘導経路R0と修正誘導経路R1の目的地Gに経路提供車Prが到着したと判定される。
 目的地Gに到着したと判定した場合(ステップS125:Y)、通行不可道路区間推定モジュール21cの機能により制御部20は、対象区間を通行不可道路区間として推定する(ステップS130)。これにより、無通行道路区間Z1が通行不可道路区間として推定されることとなる。
 次に、通行不可道路区間推定モジュール21cの機能により制御部20は、通行不可道路区間の探索コストを上方修正する(ステップS135)。これにより、無通行道路区間Z1が誘導経路を構成する道路区間として採用されにくくすることができる。すなわち、災害によって通行が不可能となった道路区間へとユーザを誘導する可能性を低減できる。なお、制御部20は、無通行道路区間Z1を地図情報30aから削除することで、無通行道路区間Z1に誘導経路上の道路区間として採用されることを確実に防止してもよい。
 次に、通行不可道路区間推定モジュール21cの機能により制御部20は、すべての無通行道路区間を選択したか否かを判定する(ステップS140)。すなわち、制御部20は、ステップS105にて抽出された無通行道路区間Z1,Z2のすべてが対象区間として選択されたか否かを判定する。
 すべての無通行道路区間を選択したと判定しなかった場合(ステップS140:N)、通行不可道路区間推定モジュール21cの機能により制御部20は、ステップS115に戻る。すなわち、残りの無通行道路区間Z2を処理区間としてステップS120~S140の処理を実行する。図2の無通行道路区間Z2については、処理区間を含む誘導経路があると判定されないこととなる(ステップS120:N)。この場合、制御部20は、ステップS140に進み、そのまま通行不可道路区間推定処理が終了する。そして、次に時間周期が経過するまで待機することとなる。
 なお、目的地Gに到着したと判定しなかった場合も(ステップS125:N)、制御部20は、ステップS140に進む。すなわち、処理区間を含む誘導経路が存在するものの、当該誘導経路の目的地Gに到着した経路提供車Prが存在しない場合、制御部20は、処理区間を無通行道路区間として推定しない。目的地Gに到着しなかった場合、目的地Gに行くユーザの意思がなくなったものと推定でき、処理区間が迂回されたとは推定できない。例えば、図2において、誘導経路R0が配信された経路提供車Prが無通行道路区間Z1を通行することなく、地点Fにて駐車した場合、目的地Gに行くユーザの意思がなくなり、無通行道路区間Z1を迂回したとは推定できない。
 (3)第2実施形態:
 図4は、第2実施形態にかかる通行不可道路区間推定処理のフローチャートである。本実施形態において、通行不可道路区間推定モジュール21cの機能により制御部20は、道路区間を地図上に表示する際に、無通行道路区間と通行不可道路区間とを識別可能にする。
 本実施形態にかかる通行不可道路区間推定処理(図4)に特有な点は、第1実施形態の通行不可道路区間推定処理(図3)に対して、太枠で示すステップS107,S137,S138が追加された点である。通行不可道路区間推定モジュール21cの機能により制御部20は、無通行道路区間以外の道路区間の表示色を通常色(例えば青色)に設定する(ステップS107)。ここで、無通行道路区間以外の道路区間とは、対象領域外の道路区間と、対象領域内の道路区間であるがプローブカーPが通行したことがある道路区間とを含む。これらの道路区間については、通行できない可能性が低く、ユーザに注意を喚起しない通常色を設定する。
 また、通行不可道路区間推定モジュール21cの機能により制御部20は、無通行道路区間であるが、通行不可道路区間であると推定されなかった対象区間について表示色を注意色(例えば黄色)に設定する(ステップS137)。プローブカーPが通行したことがない道路区間については、通行できない可能性があるため、ユーザに注意を喚起する注意色を設定する。
 さらに、通行不可道路区間推定モジュール21cの機能により制御部20は、通行不可道路区間であると推定された対象区間について表示色を警告色(例えば赤色)に設定する(ステップS137)。通行不可道路区間であると推定された道路区間については、通行できない可能性が高いため、注意色よりもユーザに強く注意を喚起する警告色を設定する。
 以上のように、設定された表示色は、地図情報30aのリンクデータに対応付けられる。制御部20は、当該地図情報30aを経路提供車Prに配信する。これにより、プローブカーP内に備えられた車載表示装置は、地図を表示する際にステップS107,S137,S138で設定された表示色で各道路区間を表示する。このようにすることにより、通行が不可である可能性が識別可能となるように道路区間を表示することができる。なお、道路区間の表示色が設定された地図情報30aはインターネット上の地図サーバにアップロードされてもよく、インターネット上の端末において、地図情報30aが示す表示色で道路区間が表示された地図が表示されてもよい。なお、本実施形態では、道路区間の表示色が設定できればよく、通行不可道路区間についての探索コストを上方修正するより(ステップS135)は省略されてもよい。
 逆に、制御部20は、通行不可道路区間についての探索コストを上方修正するだけでなく、ステップS137にて無通行道路区間について表示色を注意色に設定する際に、無通行道路区間についての探索コストを上方修正してもよい。この場合、制御部20は、通行不可道路区間についての探索コストの上方修正の度合いを、無通行道路区間についての探索コスト上方修正の度合いよりも大きくすればよい。
 さらに、制御部20は、対象領域内の道路区間のうち、プローブカーPが通行した回数が基準回数(例えば1回)以上の道路区間と他の道路区間とが識別可能となるようにしてもよい。例えば、制御部20は、少なくとも1台のプローブカーPが通行した回数が基準回数以上の道路区間の表示色を青色等(通常色と警告色と注意色のいずれとも異なる色)に設定してもよい。これにより、実際に車両が通行できる可能性が高い対象領域内の道路区間を認識することが可能となる。
 (4)第3実施形態:
 図5は、道路の模式図である。図5において太線で示す道路Qは単一の路線番号が付された国道であることとする。領域道路区間抽出モジュール21bの機能により制御部20は、道路区間が通行不可となる要因としての災害が発生した発生地点Cと、当該災害の発生時刻と、当該災害の度合いを、災害情報配信サーバ50から受信した災害情報から取得する。そして、制御部20は、災害の度合いが大きいほど災害半径Wを大きく設定し、発生地点Cを中心とする災害半径Wの円内の対象領域として取得する。そして、制御部20は、対象領域内の道路区間U1~U7を領域道路区間として抽出する。本実施形態において、発生地点Cは、震源地であり、災害の度合いは自身の震度またはマグニチュードであることとする。道路Qは、道なりの経路に該当する。
 通行不可道路区間推定モジュール21cの機能により制御部20は、複数のプローブカーPから当該プローブカーPが災害の発生時刻以降において実際に走行した走行経路を示す情報を取得する。制御部20は、複数のプローブカーPから取得した走行経路のうち、領域道路区間としての道路区間U1~U7が迂回された迂回経路を抽出する。道路区間U1~U7を迂回するとは、道路Qを走行していたプローブカーPが、対象領域内において、一旦、道路Q上以外の部分(迂回部分D)を走行し、再び道路Qを走行することを意味する。なお、迂回部分Dの長さに上限値が設定されており、制御部20は、迂回部分Dの長さが上限値以上である走行経路については、道路Qの迂回経路として抽出しない。
 制御部20は、迂回経路の全個数を取得するとともに、対象領域内の各道路区間U1~U7のそれぞれについて、当該道路区間U1~U7を通過した迂回経路の個数(通過個数)を取得する。そして、制御部20は、道路区間U1~U7の通過個数のそれぞれを迂回経路の全個数で除算することにより通過評価値を取得する。そして、制御部20は、通過評価値が閾値(例えば5%)以下の道路区間U1~U7を通行不可道路区間として推定する。ただし、対象領域内の道路区間U1~U7のすべてを走行した経路の個数が予め決められた判定値以上である場合、制御部20は、対象領域内に通行不可道路区間が存在しないと推定する。なお、制御部20は、通過評価値を取得するにあたり、現在時刻から一定期間以上過去の迂回経路を無視してもよい。これにより、ある程度新しい情報に基づいて、通行不可道路区間を推定できる。また、制御部20は、新しい走行経路ほど重視して通過評価値を算出するようにしてもよい。
 以上説明したように、制御部20は、必ずしも無通行道路区間のなかから通行不可道路区間を推定しなくてもよい。さらに、制御部20は、必ずしも誘導経路上の道路区間を通行不可道路区間として推定しなくてもよい。また、図5に示すように、領域道路区間抽出モジュール21bの機能により制御部20は、災害の発生地点に基づいて対象領域を取得してもよい。
 (5)他の実施形態:
 第1実施形態においては、予め抽出された無通行道路区間のなかから経路提供車Prが目的地に到着した誘導経路上の道路区間を抽出したが、必ずしもこの順序で道路区間を抽出しなくてもよい。すなわち、制御部20は、領域道路区間のなかから経路提供車Prが目的地に到着した誘導経路上の道路区間を抽出し、当該抽出された道路区間のなかから1度も通行されていない道路区間を無通行道路区間として抽出してもよい。
 前記実施形態では、誘導経路の探索が通行不可道路区間推定システム10にて行われたが、プローブカーPに搭載された車載器等が通行不可道路区間推定システム10から配信された地図情報30aに基づいて誘導経路を探索してもよい。この場合、プローブカーPに搭載された車載器等が探索した経路を示す情報を、通行不可道路区間推定システム10が収集できるように構成されていればよい。
 ここで、道路区間とは、道路を長さ方向に区切った道路の単位であり、例えば道路を連続する交差点や予め決められた距離ごとに区切った区間であってもよい。道路が通行不可となる要因とは、人為的に道路が通行不可となる要因であってもよいし、自然的に道路が通行不可となる要因であってもよい。対象領域は、道路が通行不可となる要因が生じた地点を含む地域であり、例えば当該地点を含む行政区画であってもよいし、当該地点からの距離が予め決められた距離以内の地域であってもよい。領域道路区間抽出部は、対象領域を示す情報を取得すればよく、道路が通行不可となる要因が生じた地点に基づいて対象領域を設定してもよいし、予め設定された対象領域を示す情報を通信等によって取得してもよい。
 領域道路区間抽出部は、対象領域内に少なくとも一部分が存在する領域道路区間を抽出すればよく、予め地図上の各道路区間を定義した地図情報から領域道路区間を抽出すればよい。要因の発生から現在までの間とは、要因の発生時刻から現在時刻までの間の期間である。ただし、要因の発生時刻が不確定である場合等において、領域道路区間抽出部は、対象領域を示す情報が取得された時刻を要因の発生時刻と見なしてもよい。対象領域を示す情報が取得されるのは、要因の発生時刻よりも後の時刻となるからである。移動体が1回も通行していないとは、移動体が通行したことを示す情報が取得された回数が0回であることであってもよい。移動体が通行したことを示す情報は、例えば道路上に設置された移動体の感知器の感知結果から取得されてもよいし、移動体の位置情報から取得されてもよいし、移動体から送信される情報から取得されてもよい。移動体は、ユーザとともに移動すればよく、ユーザが乗る乗り物であってもよいし、ユーザが携帯する携帯端末であってもよい。
 移動体が迂回した道路区間とは、移動体の利用者が迂回した意図が見られる道路区間であり、通常であれば通行するはずの状況において敢えて通行が避けられている道路区間であってもよい。例えば、通行不可道路区間推定部は、過去の通行履歴に基づいて道路区間が迂回されたか否かを判定してもよく、移動体が過去に通行した経路に基づいて道路区間が迂回されたか否かを判定してもよい。例えば、通行不可道路区間推定部は、通行履歴上、閾値以上の頻度で通行していた過去の経路とほぼ同じ経路を今回通行した場合において、過去の経路では通行していたが今回の経路では通行しなかった道路区間が迂回されたと判定してもよい。ほぼ同じ経路とは、通行した道路区間の一致率が閾値以上である経路であってもよいし、出発地と目的地とが一致する経路であってもよい。
 また、通行不可道路区間推定部は、第1の道路区間を通行し、その後、第1の道路区間を通行した場合において、第1の道路区間と第2の道路区間との間に、通常では通行するはずの第3の道路区間が通行されていない場合に、当該第3の道路区間が迂回されたと判定してもよい。例えば、通行不可道路区間推定部は、第1~第3の道路区間が連続する道なりの道路区間である場合に、当該第3の道路区間が迂回されたと判定してもよい。道なりとは、路線名や路線種別が一致することであってもよいし、道路の幅が基準以上類似することであってもよいし、交差点における進行方向の変化が閾値以下であることであってもよい。
 さらに、移動体が迂回した道路区間とは、移動体を目的地まで誘導する経路上の道路区間としてユーザに案内がされたが、当該道路区間を通行することなく目的地に移動体が到着した道路区間であってもよい。ここで、一度、案内されているにも拘わらず実際に移動体が通行しなかった道路区間は、ユーザが意図的に迂回した道路区間であると推定でき、通行が不可であるとユーザが判断した上で迂回された道路区間であると推定できる。
 さらに、通行不可道路区間推定部は、領域道路区間のうち、要因の発生から現在までの間に、当該領域道路区間上を通行したことを示すプローブ情報が1個も収集されていない道路区間である無通行道路区間を抽出し、無通行道路区間のうち、要因の発生から現在までの間に、移動体が迂回した通行不可道路区間を抽出してもよい。このように、通行不可道路区間に該当する道路区間を先に絞り込むことにより、通行不可道路区間を抽出する処理を効率よく実現することができる。特に、移動体が迂回した道路区間を抽出するよりも前に、プローブ情報が1個も収集されていない無通行道路区間を抽出することで、移動体が迂回したか否かを判定する処理の対象となる道路区間の数を大幅に絞り込むことができ、処理を効率よく行うことができる。
 さらに、通行不可道路区間推定部は、道路区間を地図上に表示する際に、無通行道路区間と通行不可道路区間とを識別可能にしてもよい。これにより、通行が不可である可能性が識別可能となるように道路区間を表示することができる。
 また、通行不可道路区間推定部は、道路区間を地図上に表示する際に、領域道路区間のうち、要因の発生から現在までの間に、移動体が通行した回数が基準回数以上の道路区間と他の道路区間とを識別可能にしてもよい。これにより、実際に通行が可能である可能性が高い道路区間が識別可能となるように道路区間を表示することができる。
 また、道路区間が通行不可となる要因とは、災害であってもよい。これにより、災害によって通行不可となった道路区間を推定できる。さらに、領域道路区間抽出部は、要因が生じた地点に基づいて対象領域を取得してもよい。例えば、領域道路区間抽出部は、要因の強さの度合いが大きいほど範囲が大きい対象領域を取得してもよい。要因の強さとは、地震の震度やマグニチュードであってもよいし、台風の風速や暴風域の大きさ等であってもよい。さらに、領域道路区間抽出部は、要因の性質に応じた形状の対象領域を取得してもよい。例えば、要因が津波や高潮や洪水等の水害に関するものである場合、海岸線や河川や等高線(海抜閾値以下)の形状に基づいて対象領域を取得してもよい。
 さらに、本発明のように、迂回されたか否かに応じて通行不可道路区間として推定する手法は、プログラムや方法としても適用可能である。また、以上のようなシステム、プログラム、方法は、単独の装置として実現される場合もあれば、車両に備えられる各部と共有の部品を利用して実現される場合もあり、各種の態様を含むものである。例えば、以上のような装置を備えたナビゲーションシステム、通行不可道路区間推定システムや方法、プログラムを提供することが可能である。また、一部がソフトウェアであり一部がハードウェアであったりするなど、適宜、変更可能である。さらに、装置を制御するプログラムの記録媒体としても発明は成立する。むろん、そのソフトウェアの記録媒体は、磁気記録媒体であってもよいし光磁気記録媒体であってもよいし、今後開発されるいかなる記録媒体においても全く同様に考えることができる。
10…通行不可道路区間推定システム、20…制御部、21…通行不可道路区間推定プログラム、21a…経路誘導モジュール、21b…領域道路区間抽出モジュール、21c…通行不可道路区間推定モジュール、30…記録媒体、30a…地図情報、30b…プローブDB、30c…誘導経路DB、40…通信部、50…災害情報配信サーバ、G…目的地、P…プローブカー、Pr…経路提供車、R…誘導経路、R0…誘導経路、R1,R2…修正誘導経路、S0~S2…出発地、Z1,Z2…無通行道路区間

Claims (9)

  1.  道路区間が通行不可となる要因が生じた地域である対象領域内の前記道路区間である領域道路区間を抽出する領域道路区間抽出部と、
     前記領域道路区間のうち、前記要因の発生以降において、移動体が迂回した前記道路区間を通行不可道路区間として推定する通行不可道路区間推定部と、
    を備える通行不可道路区間推定システム。
  2.  前記通行不可道路区間推定部は、前記領域道路区間のうち、前記要因の発生から現在までの間に、前記移動体が1回も通行しておらず、かつ、前記移動体が迂回した前記道路区間を通行不可道路区間として推定する、
    請求項1に記載の通行不可道路区間推定システム。
  3.  前記移動体が迂回した前記道路区間とは、前記移動体を目的地まで誘導する経路上の前記道路区間としてユーザに案内がされたが、当該道路区間を通行することなく前記目的地に前記移動体が到着した前記道路区間である、
    請求項1または請求項2のいずれかに記載の通行不可道路区間推定システム。
  4.  前記通行不可道路区間推定部は、
      前記領域道路区間のうち、前記要因の発生から現在までの間に、当該領域道路区間上を通行したことを示すプローブ情報が1個も収集されていない前記道路区間である無通行道路区間を抽出し、
      前記無通行道路区間のうち、前記要因の発生から現在までの間に、前記移動体が迂回した前記通行不可道路区間を抽出する、
    請求項3に記載の通行不可道路区間推定システム。
  5.  前記通行不可道路区間推定部は、前記道路区間を地図上に表示する際に、前記無通行道路区間と前記通行不可道路区間とを識別可能にする、
    請求項4に記載の通行不可道路区間推定システム。
  6.  前記通行不可道路区間推定部は、前記道路区間を地図上に表示する際に、前記領域道路区間のうち、前記要因の発生から現在までの間に、前記移動体が通行した回数が基準回数以上の前記道路区間と他の道路区間とを識別可能にする、
    請求項4に記載の通行不可道路区間推定システム。
  7.  前記道路区間が通行不可となる前記要因とは、災害である、
    請求項1から請求項6のいずれか一項に記載の通行不可道路区間推定システム。
  8.  前記領域道路区間抽出部は、前記要因が生じた地点に基づいて前記対象領域を取得する、
    請求項1から請求項7のいずれか一項に記載の通行不可道路区間推定システム。
  9.  コンピュータを、
     道路区間が通行不可となる要因が生じた地域である対象領域内の前記道路区間である領域道路区間を抽出する第1道路区間抽出部、
     前記領域道路区間のうち、前記要因の発生以降において、移動体が迂回した前記道路区間を通行不可道路区間として推定する通行不可道路区間推定部、
    として機能させる通行不可道路区間推定プログラム。
PCT/JP2017/038830 2016-10-31 2017-10-27 通行不可道路区間推定システムおよび通行不可道路区間推定プログラム WO2018079694A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/333,802 US20190259272A1 (en) 2016-10-31 2017-10-27 Inaccessible road section estimation system and inaccessible road section estimation program
CN201780066720.XA CN109923596A (zh) 2016-10-31 2017-10-27 不能通行道路区间推定系统,及不能通行道路区间推定程序
JP2018547771A JP6690729B2 (ja) 2016-10-31 2017-10-27 通行不可道路区間推定システムおよび通行不可道路区間推定プログラム
EP17865372.1A EP3509049A4 (en) 2016-10-31 2017-10-27 SYSTEM FOR CALCULATING INACCESSIBLE ROAD SECTIONS AND PROGRAM FOR CALCULATING INACCESSIBLE ROAD SECTIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212936 2016-10-31
JP2016-212936 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079694A1 true WO2018079694A1 (ja) 2018-05-03

Family

ID=62025070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038830 WO2018079694A1 (ja) 2016-10-31 2017-10-27 通行不可道路区間推定システムおよび通行不可道路区間推定プログラム

Country Status (5)

Country Link
US (1) US20190259272A1 (ja)
EP (1) EP3509049A4 (ja)
JP (1) JP6690729B2 (ja)
CN (1) CN109923596A (ja)
WO (1) WO2018079694A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680804B2 (en) * 2019-12-02 2023-06-20 Toyota Motor North America, Inc. System and method for verifying roads
CN114758498B (zh) * 2022-04-01 2023-06-20 中南大学 基于多向最优扩展的城市有向交通廊道识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153665A (ja) * 2004-11-29 2006-06-15 Denso Corp 車載ナビゲーション装置
JP2007003277A (ja) * 2005-06-22 2007-01-11 Denso Corp 車両用ナビゲーション装置及び車両の走行経路案内方法
JP2013097550A (ja) 2011-10-31 2013-05-20 Sumitomo Electric System Solutions Co Ltd 車両通行判定装置、交通信号制御装置、コンピュータプログラム、車両通行判定方法、及び交通信号制御方法
JP2013156825A (ja) * 2012-01-30 2013-08-15 Pioneer Electronic Corp サーバ装置及びナビゲーション装置
JP2013171317A (ja) * 2012-02-17 2013-09-02 Aisin Aw Co Ltd 交通情報配信システム、ナビゲーションシステム、交通情報配信プログラム、及び交通情報配信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413404A1 (de) * 1984-04-10 1984-10-11 Hans-Werner Dipl.-Ing. 4830 Gütersloh Kittner Vorrichtung und verfahren zur festlegung einer fahrtroute zur auffindung eines fahrtzieles
US5862244A (en) * 1995-07-13 1999-01-19 Motorola, Inc. Satellite traffic reporting system and methods
FI118614B (fi) * 2005-12-27 2008-01-15 Navicore Oy Menetelmä virheiden havaitsemiseksi navigointidatassa
WO2008146398A1 (ja) * 2007-05-31 2008-12-04 Pioneer Corporation 経路探索装置、経路探索方法、経路探索プログラム、および記録媒体
CN101078634B (zh) * 2007-06-20 2010-05-19 江苏华科导航科技有限公司 导航装置的沿路径信息提示的导航方法
JP4177422B1 (ja) * 2007-06-27 2008-11-05 本田技研工業株式会社 ナビサーバ
JP2011503639A (ja) * 2007-11-06 2011-01-27 テレ アトラス ノース アメリカ インコーポレイテッド 地図の更新において使用される、実世界の変化を検出するために複数の車両からのプローブ・データを使用する方法及びシステム
JP5448966B2 (ja) * 2010-03-29 2014-03-19 本田技研工業株式会社 災害時の車両の迂回路支援システム
US9417083B2 (en) * 2012-07-17 2016-08-16 Mitsubishi Electric Corporation Route creation device
JP5987630B2 (ja) * 2012-10-23 2016-09-07 アイシン・エィ・ダブリュ株式会社 情報収集システム、情報収集方法、及び情報収集プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153665A (ja) * 2004-11-29 2006-06-15 Denso Corp 車載ナビゲーション装置
JP2007003277A (ja) * 2005-06-22 2007-01-11 Denso Corp 車両用ナビゲーション装置及び車両の走行経路案内方法
JP2013097550A (ja) 2011-10-31 2013-05-20 Sumitomo Electric System Solutions Co Ltd 車両通行判定装置、交通信号制御装置、コンピュータプログラム、車両通行判定方法、及び交通信号制御方法
JP2013156825A (ja) * 2012-01-30 2013-08-15 Pioneer Electronic Corp サーバ装置及びナビゲーション装置
JP2013171317A (ja) * 2012-02-17 2013-09-02 Aisin Aw Co Ltd 交通情報配信システム、ナビゲーションシステム、交通情報配信プログラム、及び交通情報配信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509049A4

Also Published As

Publication number Publication date
EP3509049A4 (en) 2019-11-13
JP6690729B2 (ja) 2020-04-28
US20190259272A1 (en) 2019-08-22
CN109923596A (zh) 2019-06-21
JPWO2018079694A1 (ja) 2019-06-24
EP3509049A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
EP3143368B1 (en) Methods and systems for detecting a partial closure of a navigable element
US7653480B2 (en) Traffic information providing system
JP5424754B2 (ja) リンク旅行時間算出装置及びプログラム
JP5447488B2 (ja) カーナビゲーションシステム
EP2650854B1 (en) Traffic information creating device, traffic information creating method and program
US20120130634A1 (en) Road estimation device and method for estimating road
US8670595B2 (en) Road estimation device and method for estimating road
EP2650855A1 (en) Traffic information creating device, traffic information creating method and program
CN104101353A (zh) 一种导航方法、装置和实时导航系统
EP3092462B1 (en) Methods and systems for detecting a closure of a navigable element
CN108806244B (zh) 图像传送装置、方法及非暂态存储介质
US20120128217A1 (en) Road estimation device and method for estimating road
JP7009972B2 (ja) サーバ装置および渋滞特定方法
CN109099931B (zh) 检测可导航路段中的突发交通事件的导航方法及导航终端
WO2018079694A1 (ja) 通行不可道路区間推定システムおよび通行不可道路区間推定プログラム
US10697787B2 (en) Detour recommended area estimation system, detour recommended area estimation program, and navigation device
JP2007322183A (ja) 車載用ナビゲーション装置
JP4814896B2 (ja) カーナビゲーション方法、カーナビゲーションシステム、交通情報管理装置およびカーナビゲーション装置
JP6149328B2 (ja) 路上定点対応の車位置決定表示装置
JP6298789B2 (ja) 注意喚起装置及びプログラム
CN115451985B (zh) 面向自动驾驶的交通事件驱动车道级导航决策方法及设备
JP5348181B2 (ja) 道路推定装置
JP2012189382A (ja) 道路推定装置
JP2010217014A (ja) ナビゲーション装置
JP2005300229A (ja) リンク旅行時間推定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865372

Country of ref document: EP

Effective date: 20190315