WO2018079373A1 - 光波長変換部材及び発光装置 - Google Patents

光波長変換部材及び発光装置 Download PDF

Info

Publication number
WO2018079373A1
WO2018079373A1 PCT/JP2017/037679 JP2017037679W WO2018079373A1 WO 2018079373 A1 WO2018079373 A1 WO 2018079373A1 JP 2017037679 W JP2017037679 W JP 2017037679W WO 2018079373 A1 WO2018079373 A1 WO 2018079373A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
light
crystal
light wavelength
Prior art date
Application number
PCT/JP2017/037679
Other languages
English (en)
French (fr)
Inventor
淳 茂木
翔平 ▼高▲久
祐介 勝
光岡 健
経之 伊藤
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017198555A external-priority patent/JP6449963B2/ja
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020197005037A priority Critical patent/KR102196577B1/ko
Priority to EP17865718.5A priority patent/EP3534192B1/en
Priority to US16/328,161 priority patent/US10665761B2/en
Priority to CN201780057362.6A priority patent/CN109716178B/zh
Publication of WO2018079373A1 publication Critical patent/WO2018079373A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to an optical wavelength conversion member capable of converting the wavelength of light and a light emitting device including the optical wavelength conversion member.
  • LEDs Light Emitting Diodes
  • LDs Laser Diodes
  • Resin-based, glass-based, and ceramic-based materials are known as the material of this phosphor, but in recent years, the phosphor tends to increase in temperature due to higher output of the light source, and the ceramic-based phosphor with high durability. Development is underway. *
  • a garnet-type ceramic represented by the chemical formula A 3 B 5 O 12 is often used as the ceramic phosphor.
  • yttrium aluminum garnet YAG: Y 3 Al 5 O 12
  • Ce cerium
  • Patent Documents 1 to 3 YAG: Ce or Lu 3 Al 5 O 12 : Ce (LuAG: Ce) is dispersed and precipitated in alumina (Al 2 O 3 ) having excellent thermal conductivity. Thus, a ceramic composite with improved durability has been proposed.
  • Patent Documents 1 to 3 the balance between color unevenness and thermal conductivity is controlled by the volume ratio of Al 2 O 3 / A 3 B 5 O 12 : Ce.
  • the amount of YAG: Ce is set to 22 to 55 vol% of the whole. When the amount is less than 22 vol%, blue light is transmitted more, unevenness of color occurs, and when it exceeds 55 vol%, the thermal conductivity is increased. It is said that the durability will decrease.
  • the LuAG: Ce amount is 25 to 95 vol%. Furthermore, in Patent Document 3, the amount of A 3 B 5 O 12 : Ce is 20 to 25 vol%. Moreover, in Patent Document 3, in order to suppress the volatilization of Ce during firing, CeAl 11 O 18 is contained as 0.5 to 5 vol% as a Ce supply source.
  • the garnet-based fluorescent component is deposited in Al 2 O 3 without particularly controlling the crystal structure, in other words, high color homogeneity is achieved so as not to cause color unevenness in the volume ratio. Is to be obtained. For this reason, important characteristics as an original phosphor such as fluorescence intensity and translucency are impaired, and it cannot be said that sufficient fluorescence characteristics can be exhibited.
  • CeAl 11 O 18 in Patent Document 3 does not have both fluorescence and translucency, and therefore is a factor that further impairs the above-described fluorescence characteristics by being contained in the sintered body.
  • This invention is made
  • a first aspect of the present invention is a ceramic sintered body which is a polycrystalline body mainly composed of Al 2 O 3 crystal particles and crystal particles of a component represented by the chemical formula A 3 B 5 O 12 : Ce. It is related with the optical wavelength conversion member comprised from these.
  • a and B in A 3 B 5 O 12 are at least one element selected from the following element group.
  • the number of those existing in the Al 2 O 3 crystal particles is a, and other A 3
  • the number of B 5 O 12 : B existing in the Al 2 O 3 crystal grain boundary without being in contact with the Ce crystal grain is b, and one or more other
  • a 3 B 5 O 12 Ce crystal grains are in contact with the Al 2
  • the ratios are within the following ranges. Satisfies.
  • the light wavelength conversion member of the first aspect has the above-described configuration, high fluorescence intensity and high color homogeneity (that is, less color unevenness, as will be apparent from experimental examples described later). ) Can be realized. Details will be described below.
  • the Y is in the above range, the pinning effect is exerted against the Al 2 O 3, grain growth of Al 2 O 3 is suppressed. As a result, it is possible to obtain a sufficient translucency for extracting fluorescence.
  • the Z is in the above range, so that sufficient transparency can be taken out.
  • Z when Z is less than 48%, the fluorescence intensity is reduced due to insufficient translucency.
  • Z if Z is more than 90%, the translucency becomes too high, and the amount of transmitted excitation light increases, resulting in color unevenness. Moreover, it becomes difficult to form a connection path between the Al 2 O 3 crystal particles, and the thermal conductivity is lowered.
  • the light wavelength conversion member of the first aspect has high thermal conductivity due to the above-described configuration, even when the light source has a high output, it is possible to suppress the influence of heat, for example, light Disappearance can be prevented.
  • this light wavelength conversion member is a ceramic sintered body, its strength is high, and even when light is repeatedly irradiated from a light source, its performance is not easily deteriorated, and furthermore, weather resistance is also excellent. There is an advantage. *
  • the proportion of A 3 B 5 O 12 : Ce crystal particles in the ceramic sintered body is 5 to 50 vol%.
  • the ratio of A 3 B 5 O 12 : Ce crystal particles is 5 to 50 vol%, there is an advantage that sufficient fluorescence intensity can be obtained as will be apparent from the experimental examples described later. .
  • the ratio of Ce is less 10.0 mol% relative to A of A 3 B 5 O 12 (where not including 0).
  • the ratio of Ce is 10.0 mol% or less (excluding 0) with respect to A of A 3 B 5 O 12 , sufficient fluorescence is obtained as will be apparent from the experimental examples described later. There is an advantage that strength can be obtained.
  • the average crystal grain size of Al 2 O 3 crystal particles is 0.3 to 10 ⁇ m, and the average crystal grain size of A 3 B 5 O 12 : Ce crystal particles is 0.3 to 5 ⁇ m. It is.
  • the average crystal grain size of Al 2 O 3 crystal particles is 0.3 to 10 ⁇ m, and the average crystal grain size of A 3 B 5 O 12 : Ce crystal particles is 0.3 to 5 ⁇ m.
  • a fifth aspect of the present invention is a light emitting device including the light wavelength conversion member according to any one of the first to fourth aspects.
  • the light whose wavelength is converted by the light emitting device of the fifth aspect (specifically, the light wavelength conversion member) (that is, fluorescence) has high fluorescence intensity and high color homogeneity.
  • a light emitting element of the light emitting device a known element such as an LED or an LD can be used.
  • the “light wavelength conversion member” is a ceramic sintered body having the above-described configuration, and a grain boundary of each crystal particle includes a part of components constituting each crystal particle and inevitable impurities. Also good.
  • the “main component” indicates that the crystal particle is present in the largest amount (volume) in the light wavelength conversion member.
  • a 3 B 5 O 12 : Ce indicates that Ce is a solid solution substitution in a part of A in A 3 B 5 O 12.
  • the “cut surface of the light wavelength conversion member” is at least one cut surface in a portion where light is transmitted.
  • the average values satisfy X, Y, and Z can be employed.
  • the average value is employable.
  • the light wavelength conversion member 1 (see FIG. 2) of the embodiment is, for example, a plate-like ceramic sintered body, and has Al 2 O 3 crystal particles and a chemical formula A 3 B 5 O 12 : Ce. It is composed of a polycrystal having a main component of crystal particles (hereinafter also referred to as A 3 B 5 O 12 : Ce crystal particles) of the components represented.
  • a and B in A 3 B 5 O 12 are at least one element selected from the following element group.
  • the number of those existing in the Al 2 O 3 crystal particles is a, and other A 3
  • the number of B 5 O 12 : B existing in the Al 2 O 3 crystal grain boundary without being in contact with the Ce crystal grain is b, and one or more other
  • a 3 B 5 O 12 Ce crystal grains are in contact with the Al 2
  • the ratios are within the following ranges. Satisfies.
  • FIG. 1 the one corresponding to a (and hence X), that is, the A 3 B 5 O 12 : Ce crystal particle in the Al 2 O 3 crystal particle is indicated by Ka. Further, the crystal grains corresponding to b (and therefore Y), that is, A 3 B 5 O 12 : Ce particles present alone at the Al 2 O 3 grain boundary are indicated by Kb. Further, those corresponding to c (hence Z), i.e. Al 2 O 3 more than one A in 3 grain boundary B 5 O 12: contact with Ce crystal grains A 3 B 5 O 12: Ce, crystal grains, Kc Is shown.
  • the ratio of A 3 B 5 O 12 Ce crystal particles in the ceramic sintered body. Furthermore, in this embodiment, the ratio of Ce can be 10.0 mol% or less (excluding 0) with respect to A of A 3 B 5 O 12 .
  • the average crystal grain size of Al 2 O 3 crystal particles is 0.3 to 10 ⁇ m
  • the average crystal grain size of A 3 B 5 O 12 : Ce crystal particles is 0.3 to 5 ⁇ m. it can.
  • the light emitting device 3 includes a box-shaped ceramic package (container) 5 such as alumina, and a light emitting element 7 such as an LD disposed inside the container 5. And a plate-shaped optical wavelength conversion member 1 disposed so as to cover the opening 9 of the container 5.
  • the light emitted from the light emitting element 7 is transmitted through the light wavelength conversion member 1, and a part of the light is wavelength-converted inside the light wavelength conversion member 1 to emit light. That is, the light wavelength conversion member 1 emits fluorescence having a wavelength different from the wavelength of the light emitted from the light emitting element 7.
  • the light wavelength conversion member 1 of the present embodiment defines the ratios of X, Y, and Z, so that high fluorescence intensity and high color homogeneity can be realized. Moreover, since the light wavelength conversion member 1 of the present embodiment has high thermal conductivity, even when the output of the light source is increased, the influence of heat can be suppressed, for example, loss of light can be prevented. it can.
  • the light wavelength conversion member 1 of the present embodiment is a ceramic sintered body, the strength is high, and even when light is repeatedly irradiated from the light source, the performance is not easily deteriorated, and in addition, the weather resistance is improved. Also has the advantage of being superior.
  • the light emitting device 3 including the light wavelength conversion member 1 has an effect of generating fluorescence having high fluorescence intensity and high color uniformity.
  • Example 1 Under the conditions shown in Table 1 and Table 2 below, No. 1 to 9 ceramic sintered body samples were prepared. Of the samples, Nos. 1 to 9 are samples within the scope of the present invention.
  • the ratio of YAG (Y 3 Al 5 O 12 ) in the ceramic sintered body is 21 vol%.
  • Al 2 O 3 average particle size 0.3 ⁇ m
  • Y 2 O 3 average particle size 1.2 ⁇ m
  • CeO 2 average particle size
  • dispersant for example, a polycarboxylic acid-based dispersant, SN Dispersant 5468 manufactured by San Nopco, or Marialim AKM-0531 manufactured by Nippon Oil & Fats Co., Ltd. can be used.
  • SN Dispersant 5468 manufactured by San Nopco
  • Marialim AKM-0531 manufactured by Nippon Oil & Fats Co., Ltd.
  • (B) Average crystal grain size The sample (sample) was mirror-polished and then thermally etched at 1300 ° C. The etched surface was observed with a scanning electron microscope (that is, SEM observation), and an image of 5000 times an arbitrary portion in the ceramic sintered body was obtained.
  • SEM observation a scanning electron microscope
  • an arbitrary location when a sample is a rectangular plate shape, for example, the center position seen from the thickness direction which is a part which light permeate
  • Color unevenness (that is, color variation) was evaluated by measuring chromaticity variation with an illuminometer. For a sample processed to 20 mm square x 0.5 mm thickness, blue LD light having a wavelength of 465 nm is condensed by a lens to a width of 0.5 mm, and the color of light transmitted from the opposite surface is irradiated with this light. The chromaticity was measured with a luminometer.
  • Irradiation was carried out by setting an 18 mm square region at the center of the irradiation surface (sample surface) of the sample, and performing 3 mm intervals in the region, and evaluating the variation ( ⁇ X) in the chromaticity (X direction).
  • the variation ( ⁇ X) is the maximum value of deviation of chromaticity (X direction).
  • the chromaticity is an international display method established in 1931 by the International Commission on Illumination (CIE) and is a chromaticity represented by the CIE-XYZ color system. That is, the chromaticity is represented by an xy chromaticity diagram (so-called CIE chromaticity diagram) in which the three primary colors on the color are digitized and the colors are expressed in the xy coordinate space.
  • CIE International Commission on Illumination
  • Example 2 In any sample of Example 1, the relative density was 99% or more, and the sample was sufficiently densified.
  • the average crystal grain size of Al 2 O 3 (referred to as Al 2 O 3 grain size in Table 2) is in the range of 0.3 to 10 ⁇ m, and the average crystal of A 3 B 5 O 12 : Ce (YAG: Ce) It was found that the particle size (referred to as A 3 B 5 O 12 particle size in Table 2) was in the range of 0.3-5 ⁇ m.
  • Nos. 3 to 9 in which X, Y, and Z are within the scope of the present invention had good results in all of fluorescence intensity, color unevenness, and thermal conductivity.
  • No. 1 and 2 (with a lower firing temperature than the other samples) within the scope of the present invention showed more uneven color than the other Nos. 3 to 9. *
  • Example 2 As shown in Tables 1 and 2 below, ceramic sintered body samples (Nos. 10 to 15) were prepared by the same manufacturing method as in Example 1, and evaluated in the same manner.
  • the amount of the dispersant was changed in the range of 1.8 to 5 wt% and the firing time was changed in the range of 5 to 20 hours during the preparation.
  • Nos. 11 to 14 are samples within the scope of the present invention
  • Nos. 10 and 15 are samples outside the scope of the present invention (comparative example).
  • the average crystal grain size of Al 2 O 3 is in the range of 0.3 to 10 ⁇ m, and the average crystal grain size of A 3 B 5 O 12 : Ce (YAG: Ce) is 0.3
  • Nos. 11 to 14 in which X, Y, and Z are within the range of the present invention have a fluorescence intensity, color unevenness, and heat conduction. Both rates gave good results.
  • No. 10 with less Y had a slightly coarse Al 2 O 3 average crystal grain size of 11 ⁇ m, slightly reduced fluorescence intensity, and increased color unevenness.
  • No. 15 with a large amount of Y and a small amount of Z the fluorescence intensity was lower than 100.
  • Example 3 As shown in Tables 1 and 2 below, samples of ceramic sintered bodies (samples Nos. 16 to 20) were prepared by the same manufacturing method as in Example 1 and evaluated in the same manner.
  • Example 4 As shown in Table 1 and Table 2 below, a ceramic sintered body sample (No. 21 to 28 within the scope of the present invention) was prepared and evaluated in the same manner as in Example 1. went.
  • the raw material compounding ratio was changed so that the amount of A 3 B 5 O 12 : Ce (YAG: Ce amount) in the ceramic sintered body was 1 to 60 vol%.
  • all samples were sufficiently densified with a relative density of 99% or more.
  • the average crystal grain size of Al 2 O 3 is in the range of 0.3 to 10 ⁇ m
  • the average crystal grain size of A 3 B 5 O 12 : Ce (YAG: Ce) is in the range of 0.3 to 5 ⁇ m. I understood that.
  • Example 5 As shown in Table 1 and Table 2 below, a ceramic sintered body sample (No. 29 to 38 within the scope of the present invention) was prepared and evaluated in the same manner as in Example 1. went.
  • the raw material mixture ratio was changed so that the Ce concentration with respect to Y in A 3 B 5 O 12 (YAG) of the sintered body was 0 to 15 mol%.
  • all samples were sufficiently densified with a relative density of 99% or more.
  • the average crystal grain size of Al 2 O 3 is in the range of 0.3 to 10 ⁇ m
  • the average crystal grain size of A 3 B 5 O 12 : Ce (YAG: Ce) is in the range of 0.3 to 5 ⁇ m. I understood that.
  • Example 6 As shown in Table 1 and Table 2 below, a sintered ceramic sample (No. 39 to 59 within the scope of the present invention) was prepared and evaluated in the same manner as in Example 1. went.
  • one or more powders may be used to synthesize predetermined A 3 B 5 O 12 : Ce The blending ratio was changed.
  • the average crystal grain size of Al 2 O 3 is in the range of 0.3 to 10 ⁇ m, and the average crystal grain size of A 3 B 5 O 12 : Ce (YAG: Ce) is in the range of 0.3 to 5 ⁇ m. I understood that.
  • the atmospheric pressure firing method in the air was used as the firing method, but in addition, a vacuum atmosphere firing method, a reducing atmosphere firing method, a hot press (HP) method, hot isotropy, etc.
  • a sample having equivalent performance can also be produced by a pressure and pressure (HIP) method or a firing method combining these methods.
  • HIP pressure and pressure
  • Examples of uses of the light wavelength conversion member and the light emitting device include various uses such as phosphors, light wavelength conversion devices, headlamps, illumination, and optical devices such as projectors.
  • the function which one component in the said embodiment has may be shared by a some component, or the function which a some component has may be exhibited by one component.
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of another embodiment.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

高い蛍光強度と高い色均質性とを両立できる光波長変換部材及び発光装置を提供すること。光波長変換部材1において、A12中のAとBは下記元素群から選択される少なくとも1種の元素であり、 A:Sc、Y、ランタノイド(Ceは除く) B:Al、Ga 且つ、セラミックス焼結体の切断面の20μm角の範囲におけるA12:Ce結晶粒子N個の内、Al結晶粒子内に存在するものの個数をa個、他のA12:Ce結晶粒子に接することなくAl結晶粒界に存在するものの個数をb個、1個以上の他のA12:Ce結晶粒子と接しておりAl結晶粒界に存在するものの個数をc個とし、各個数に対する全体の割合a/N、b/N、c/NをそれぞれX、Y、Zとするとき、各割合が下記の範囲を満たす。 0%≦X≦25% 9%≦Y≦45% 48%≦Z≦90%

Description

光波長変換部材及び発光装置
本発明は、光の波長の変換が可能な光波長変換部材及びその光波長変換部材を備えた発光装置に関するものである。
従来、発光ダイオード(LED:Light Emitting Diode)や半導体レーザー(LD:Laser Diode)を光源とする白色の照明機器は、青色LEDや青色LDと青色の補色である黄色の蛍光体を組み合わせて白色を得ている照明機器が主流である。 
この蛍光体の材質としては、樹脂系、ガラス系、セラミックス系が知られているが、近年、光源の高出力化により、蛍光体が高温化する傾向にあり、耐久性の高いセラミックス系蛍光体の開発が進められている。 
例えば、前記セラミックス系蛍光体としては、化学式A12で表されるガーネット型のセラミックスが用いられることが多い。特に、イットリウムアルミニウムガーネット(YAG:YAl12)は、セリウム(Ce)元素を賦活剤として添加することにより、黄色の蛍光を示すようになる。 
また、下記の先行技術(特許文献1~3)では、YAG:CeまたはLuAl12:Ce(LuAG:Ce)を、熱伝導性に優れるアルミナ(Al)中に分散析出させることにより、耐久性などを向上させたセラミックス複合体が提案されている。 
具体的には、前記特許文献1~3では、色ムラと熱伝導率のバランスを、Al/A12:Ceの体積比率で制御している。 例えば、特許文献1では、YAG:Ce量を全体の22~55vol%としており、22vol%未満の場合は青色光の透過が多くなり、色ムラが生じ、55vol%より多い場合は熱伝導率が低下し、耐久性が低下するとしている。 
また、特許文献2では、LuAG:Ce量が25~95vol%となっている。 さらに、特許文献3では、A12:Ce量が20~25vol%となっている。しかも、この特許文献3では、焼成時のCeの揮発を抑制するために、Ce供給源としてCeAl1118を0.5~5vol%含有するとしている。
特許第5088977号公報 特許第5153014号公報 特許第5740017号公報
しかしながら、これら先行技術では、特に結晶組織を制御することなくAl中にガーネット系の蛍光成分を析出させているために、体積比率で色ムラを起こさないように言い換えると高い色均質性が得られるようにしている。このため、蛍光強度や透光性など本来の蛍光体として重要な特性を損なっており、十分な蛍光特性を発揮できているとは言えない状態である。 
また、特許文献3におけるCeAl1118は、蛍光性・透光性共に有しないため、焼結体中に含まれることによって上記の蛍光特性を更に損なう要因となっている。 本発明は、前記課題に鑑みてなされたものであり、その目的は、高い蛍光強度と高い色均質性とを両立できる光波長変換部材及び発光装置を提供することにある。
(1)本発明の第1局面は、Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子とを主成分とする多結晶体であるセラミックス焼結体から構成された光波長変換部材に関するものである。 
この光波長変換部材は、A12中のAとBは下記元素群から選択される少なくとも1種の元素である。  A:Sc、Y、ランタノイド(Ceは除く)















  B:Al、Ga















 しかも、セラミックス焼結体の切断面の20μm角の範囲におけるA12:Ce結晶粒子N個の内、Al結晶粒子内に存在するものの個数をa個、他のA12:Ce結晶粒子に接することなくAl結晶粒界に存在するものの個数をb個、1個以上の他のA12:Ce結晶粒子と接しておりAl結晶粒界に存在するものの個数をc個とし、各個数に対する全体の割合a/N、b/N、c/NをそれぞれX、Y、Zとするとき、各割合が下記の範囲を満たしている。 
0%≦X≦25%















   9%≦Y≦45%















  48%≦Z≦90%















 このように、本第1局面の光波長変換部材は、上述した構成を備えているので、後述する実験例からも明らかなように、高い蛍光強度と高い色均質性(即ち色ムラが少ないこと)とを実現することができる。以下、詳細に説明する。 
前記Xに該当するA12:Ce結晶粒子は、Al結晶粒子内に完全に取り込まれているため、Ceの揮発を抑制することができる。これにより、Ceの濃度差を生じさせることなく、色ムラのない安定的な蛍光性を示すようになる。 
ここで、Xが25%よりも多いと、Al結晶粒界に単独で存在するA12:Ce結晶粒子の割合(Y)が少なくなり、Alの粒成長を抑制する効果、いわゆるピン止め効果が働かなくなり、Alが粒成長し、透過性が低くなって結果的に蛍光強度が低下する。なお、Xが1%より少ない場合には、色ムラが多くなる傾向がある。 
前記Yが上記範囲にあることによって、Alに対してピン止め効果が働き、Alの粒成長が抑制される。結果として、蛍光を取り出すのに十分な透光性を得られるようになる。 
ここで、Yが9%未満であると、ピン止め効果が十分に発揮されず、Alの粒成長を引き起こし、結果として透過性不足から蛍光強度が低下し、さらに粒子の粗大化によって色ムラが発生しやすくなる。一方、Yが45%よりも多いと、Al/A12:Ce粒界における光分散が多くなり、透光性が低下するため、結果として蛍光強度が低下する。 
前記A12:Ce/A12:Ce粒界では、光分散が起きないため、前記Zが上記範囲にあることによって、十分な蛍光を取り出せる程度の透光性を有する。 ここで、Zが48%未満であると、透光性不足に伴う蛍光強度の低下が起きる。一方、Zが90%より多いと、透光性が高くなりすぎるために励起光の透過量が多くなり、色ムラが発生する。また、Al結晶粒子同士の連結パスが形成されにくくなり、熱伝導率が低下する。 
従って、前記X、Y、Zの範囲を、上述した範囲とすることにより、高い蛍光強度と高い色均質性とを実現することができる。 また、本第1局面の光波長変換部材は、上述した構成によって、高い熱伝導性を有しているので、光源が高出力化された場合でも、熱による影響を抑制すること、例えば光の消失を防ぐことができる。 
さらに、この光波長変換部材は、セラミックス焼結体であるので、強度が高く、しかも、光源から光が繰り返して照射された場合でも性能が劣化しにくく、その上、耐候性にも優れているという利点がある。 
(2)本発明の第2局面では、セラミックス焼結体に占めるA12:Ce結晶粒子の割合が、5~50vol%である。 本第2局面では、A12:Ce結晶粒子の割合が、5~50vol%であるので、後述する実験例からも明らかなように、十分な蛍光強度を得られるという利点がある。 
(3)本発明の第3局面では、Ceの割合がA12のAに対し10.0mol%以下(但し0を含まず)である。 本第3局面では、Ceの割合がA12のAに対し10.0mol%以下(但し0を含まず)であるので、後述する実験例からも明らかなように、十分な蛍光強度を得られるという利点がある。 
(4)本発明の第4局面では、Al結晶粒子の平均結晶粒径が0.3~10μm、A12:Ce結晶粒子の平均結晶粒径が0.3~5μmである。 本第4局面では、Al結晶粒子の平均結晶粒径が0.3~10μm、A12:Ce結晶粒子の平均結晶粒径が0.3~5μmであるので、後述する実験例からも明らかなように、十分な蛍光強度と適度な透光性とが得られるという利点がある。 
これは、上述した平均結晶粒径の場合には、第1局面における前記X、Y、Zの割合を含む結晶粒状態を達成しやすくなることを意味している。 (5)本発明の第5局面は、第1~4局面のいずれかの光波長変換部材を備えた発光装置である。 
本第5局面の発光装置(詳しくは光波長変換部材)にて波長が変換された光(即ち蛍光)は、高い蛍光強度と高い色均質性とを有する。 なお、発光装置の発光素子としては、例えばLEDやLDなどの公知の素子を用いることができる。 
<以下に、本発明の各構成について説明する>

 ・前記「光波長変換部材」は、上述した構成を有するセラミックス焼結体であり、各結晶粒子の粒界には、各結晶粒子を構成する成分の一部等や不可避不純物が含まれていてもよい。 
・前記「主成分」とは、前記結晶粒子が光波長変換部材中において、最も多い量(体積)存在することを示している。

 ・前記「A12:Ce」とは、A12中のAの一部にCeが固溶置換していることを示しており、このような構造を有することにより、同化合物は蛍光特性を示すようになる。
・前記「光波長変換部材の切断面」とは、光が透過する部分における少なくとも1箇所の切断面である。なお、例えば複数箇所(例えば5箇所)の切断面を観察した場合に、その平均の値がX、Y、Zを満たしているものを採用できる。また、各切断面において、複数箇所(例えば5箇所)にてX、Y、Zを求める場合には、その平均値を採用することができる。

  ・なお、前記X、Y、Zを上記範囲とするには、後述するように、分散剤量や焼成条件を適切な条件とする必要がある。例えば、焼成温度が低すぎるとXが少なくなるため、好ましくない。また、分散剤量が多すぎるとYが少なくなり、少なすぎるとZが多くなるため、適切な条件とする必要がある。
実施形態の光波長変換部材の組織の概略図である。 発光装置を厚み方向に破断した断面を示す断面図である。
次に、本発明の光波長変換部材及び発光装置の実施形態について説明する。















[1.実施形態]















[1-1.光波長変換部材の構成]















 まず、実施形態の光波長変換部材について説明する。図1に示すように、実施形態の光波長変換部材1(図2参照)は、例えば板状のセラミックス焼結体であり、Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子(以下A12:Ce結晶粒子と記すこともある)とを主成分とする多結晶体から構成されている。 
この光波長変換部材1においては、A12中のAとBは下記元素群から選択される少なくとも1種の元素である。

  A:Sc、Y、ランタノイド(Ceは除く)















  B:Al、Ga















 しかも、セラミックス焼結体の切断面の20μm角の範囲におけるA12:Ce結晶粒子N個の内、Al結晶粒子内に存在するものの個数をa個、他のA12:Ce結晶粒子に接することなくAl結晶粒界に存在するものの個数をb個、1個以上の他のA12:Ce結晶粒子と接しておりAl結晶粒界に存在するものの個数をc個とし、各個数に対する全体の割合a/N、b/N、c/NをそれぞれX、Y、Zとするとき、各割合が下記の範囲を満たしている。 
0%≦X≦25%















   9%≦Y≦45%















  48%≦Z≦90%















 なお、図1では、a(従ってX)に相当するもの、即ちAl結晶粒子内のA12:Ce結晶粒子を、Kaで示してある。また、b(従ってY)に相当するもの、即ちAl粒界に単独で存在するA12:Ce結晶粒子を、Kbで示してある。さらに、c(従ってZ)に相当するもの、即ちAl粒界にて一つ以上のA12:Ce結晶粒子と接するA12:Ce結晶粒子を、Kcで示している。 
また、本実施形態においては、セラミックス焼結体に占めるA12:Ce結晶粒子の割合として、5~50vol%を採用できる。 更に、本実施形態においては、Ceの割合がA12のAに対し10.0mol%以下(但し0を含まず)を採用できる。 
その上、本実施形態においては、Al結晶粒子の平均結晶粒径が0.3~10μm、A12:Ce結晶粒子の平均結晶粒径が0.3~5μmを採用できる。[1-2.発光装置の構成] 図2に示すように、発光装置3は、例えばアルミナ等の箱状のセラミック製のパッケージ(容器)5と、容器5の内部に配置された例えばLD等の発光素子7と、容器5の開口部9を覆うように配置された板状の光波長変換部材1とを備えている。 
この発光装置3では、発光素子7から放射された光は、光波長変換部材1を透過するとともに、その光の一部は光波長変換部材1の内部で波長変換されて発光する。つまり、光波長変換部材1では、発光素子7から放射される光の波長とは異なる波長の蛍光を発する。

[1-3.効果]















 次に、実施形態の効果を説明する。 
本実施形態の光波長変換部材1は、上述のように、X、Y、Zの割合等が規定されているので、高い蛍光強度と高い色均質性とを実現することができる。

 また、本実施形態の光波長変換部材1は、高い熱伝導性を有しているので、光源が高出力化された場合でも、熱による影響を抑制すること、例えば光の消失を防ぐことができる。 
さらに、本実施形態の光波長変換部材1は、セラミックス焼結体であるので、強度が高く、しかも、光源から光が繰り返して照射された場合でも性能が劣化しにくく、その上、耐候性にも優れているという利点がある。 
また、A12:Ce結晶粒子の割合が、5~50vol%である場合には、十分な蛍光強度を得られるという利点がある。

 さらに、Ceの割合がA12のAに対し10.0mol%以下(但し0を含まず)の場合には、十分な蛍光強度を得られるという利点がある。 
しかも、Al結晶粒子の平均結晶粒径が0.3~10μm、A12:Ce結晶粒子の平均結晶粒径が0.3~5μmの場合には、十分な蛍光強度と適度な透光性とが得られるという利点がある。 
従って、前記光波長変換部材1を備えた発光装置3では、高い蛍光強度と高い色均質性とを有する蛍光を発生することができるという効果を奏する。

[2.実施例]















 次に、具体的な各実施例について説明する。 
<実施例1>















 下記表1及び表2に示す条件により、No.1~9のセラミックス焼結体の試料を作製した。なお、各試料のうち、No.1~9が本発明の範囲内の試料である。 
具体的には、各試料に対して、セラミックス焼結体(即ち光波長変換部材を構成するセラミックス焼結体)中のYAG(YAl12)の割合が21vol%になるように、また、Ce濃度がYAG中のYに対して1mol%になるように、Al(平均粒径0.3μm)とY(平均粒径1.2μm)、CeO(平均粒径1.5μm)を秤量した。 
これを、純水と所定量の分散剤(原料粉末に対し固形物換算で2wt%)と共にボールミル中に投入し、12hr粉砕混合を行った。得られたスラリーを乾燥・造粒し、該造粒物を用いて成形体を作製した。そして、この成形体を、常圧下の大気中にて、焼成温度1450℃~1750℃、保持時間3~20時間で焼成を行った。これによって、No.1~9のセラミックス焼結体の試料(例えば板状の試料)を得た。 
なお、分散剤としては、例えば、ポリカルボン酸系分散剤のサンノプコ社製SNディスパーサント5468や、日本油脂株式会社製マリアリムAKM-0531を用いることができる。 
次に、得られたセラミックス焼結体について、後述する他の実施例と同様に、下記の特性(a)~(f)を調査した。その結果を下記表2に記す。

 (a)相対密度















 得られたセラミックス焼結体の相対密度は、アルキメデス法で密度を測定し、測定した密度を相対密度に換算する方法で算出した。














(b)平均結晶粒径















 試料(サンプル)を鏡面研磨後、1300℃で熱エッチングを行った。エッチング面を走査型電子顕微鏡で観察し(即ちSEM観察し)、セラミックス焼結体中の任意の箇所の5000倍の画像を得た。なお、任意の箇所としては、試料が例えば矩形状の板状の場合には、光が透過する部分である厚み方向から見た(平面視で)中心の位置が挙げられる。 
そして、前記位置における画像(例えば図1参照)中の20μm角の中で任意の線を引き、インターセプト法によってAl結晶粒子とA12:Ce結晶粒子の平均結晶粒径を求めた。

(c)粒子個数割合X、Y、Z















 前記(b)と同様に、サンプルを鏡面研磨後、1300℃で熱エッチングを行った。エッチング面をSEM観察し、セラミックス焼結体中の任意の箇所の5000倍の画像を得た。画像中の20μm角の中の粒子個数a、b、cを数え、割合X、Y、Zを算出した。同じ処理を任意の5視野について行い、X、Y、Zの平均値を求めた。なお、この研磨後に関する表面が、本発明の切断面に相当する。 
(d)蛍光強度















 13mm角×厚み0.5mmに加工したサンプルに対し、465nmの波長を有する青色LD光をレンズで0.5mm幅まで集光させて照射し、透過した光をレンズによって集光させ、パワーセンサーによりその発光強度を測定した。この時、照射される出力密度は40W/mmとなるようにした。なお、その強度はYAG:Ce単結晶体の強度を100としたときの相対値で評価した。 
(e)色ムラ















 色ムラ(即ち色バラツキ)は、照度計による色度バラツキ測定によって評価した。20mm角×厚み0.5mmに加工したサンプルに対し、465nmの波長を有する青色LD光をレンズで集光させて0.5mm幅とし、これを照射して反対面から透過してくる光について色彩照度計によって色度を測定した。 
照射は、サンプルの照射面(サンプル面)の中央おいて、18mm角の領域を設定し、その領域内において3mm間隔で行い、その色度(X方向)のバラツキ(ΔX)を評価した。ここで、バラツキ(ΔX)とは、色度(X方向)の偏差の最大値である。 
なお、色度とは、国際照明委員会(CIE)が1931年に策定した国際表示法で、CIE-XYZ表色系で示される色度である。つまり、表色上の3原色を数値化し、xy座標空間で色を表したxy色度図(いわゆるCIE色度図)で示される色度である。 
(f)熱伝導率















 10mm角×厚み2mmに加工したサンプルに対し、熱伝導率を測定した。具体的なやり方はJIS R1611に準拠した。 
そして、上述のようにして各試料毎に得られた結果のうち、蛍光強度、色ムラ、熱伝導率に関しては、下記のような評価基準により評価できる。なお、他の実施例も同様に評価できる。 
蛍光強度については、110以上が好ましく、100以上110未満はやや好ましい、100未満は好ましくないと考えられる。 色ムラについては、ΔX<0.02が好ましく、0.02≦ΔX<0.06はやや好ましい、0.06≦ΔXは好ましくないと考えられる。 
熱伝導率については、20W/m・K以上が好ましく、20W/m・K未満は好ましくないと考えられる。 以下では、本実施例1について、前記評価基準に基づいた評価などについて説明する。 
実施例1のいずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、Alの平均結晶粒径(表2ではAl粒径と記す)は0.3~10μmの範囲内、A12:Ce(YAG:Ce)の平均結晶粒径(表2ではA12粒径と記す)は0.3~5μmの範囲内にあることが分かった。 
そして、X、Y、Zが本発明の範囲内にあるNo.3~9は、蛍光強度、色ムラ、熱伝導率のいずれも良好な結果となった。また、本発明の範囲内にあるNo.1~2(但し焼成温度が他の試料よりも低いもの)は、他のNo.3~9よりは、色ムラが大きくなった。 
<実施例2>















 実施例1と同様な製造方法で、下記表1及び表2に示すように、セラミックス焼結体の試料(No.10~15の試料)を作製して、同様に評価を行った。 
ただし、調合時に分散剤量を1.8~5wt%の範囲で、また焼成時間を5~20時間の範囲で変化させた。 なお、各試料のうち、No.11~14が本発明の範囲内の試料であり、No.10、15が本発明の範囲外(比較例)の試料である。 
その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、No.10を除いて、Alの平均結晶粒径は0.3~10μmの範囲内、A12:Ce(YAG:Ce)の平均結晶粒径は0.3~5μmの範囲内にあることが分かった また、下記表2から明らかなように、X、Y、Zが本発明の範囲内にあるNo.11~14は、蛍光強度、色ムラ、熱伝導率のいずれも良好な結果となった。一方、Yが少ないNo.10は、Alの平均結晶粒径が11μmとやや粗大になり、蛍光強度がやや低くなり、色ムラが大きくなった。また、Yが多く、更にZが少ないNo.15においては、100を下回る低い蛍光強度となった。 
<実施例3>















 実施例1と同様な製造方法で、下記表1及び表2に示すように、セラミックス焼結体の試料(No.16~20の試料)を作製して、同様に評価を行った。 
ただし、調合時に分散剤量を0~1.5wt%の範囲で変化させた。 なお、各試料のうち、No.16~19が本発明の範囲内の試料であり、No.20が本発明の範囲外(比較例)の試料である。 
その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、Alの平均結晶粒径は0.3~10μm、A12:Ce(YAG:Ce)の平均結晶粒径は0.3~5μmにあることが分かった。 
また、下記表2から明らかなように、X、Y、Zが本発明の範囲内にあるNo.16~19は、蛍光強度・色ムラ・熱伝導率のいずれも良好な結果となった。一方、Yが少なく、Zが多いNo.20は、蛍光強度がやや低く、色ムラが大きくなってしまい、また熱伝導率が低くなった。 
<実施例4>















 実施例1と同様な製造方法で、下記表1及び表2に示すように、セラミックス焼結体の試料(No.21~28の本発明の範囲の試料)を作製して、同様に評価を行った。 
ただし、セラミックス焼結体中のA12:Ce量(YAG:Ce量)が1~60vol%となるように、原料配合比を変化させた。 その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、Alの平均結晶粒径は0.3~10μmの範囲内、A12:Ce(YAG:Ce)の平均結晶粒径は0.3~5μmの範囲内にあることが分かった。 
また、下記表2から明らかなように、YAG:Ce量が所定の範囲(即ち5~50vol%)にあるNo.23~27は、蛍光強度・色ムラ・熱伝導率のいずれも良好な結果となった。一方、YAG:Ce量が少ないNo.21、22は蛍光強度がやや低くなり、色ムラがやや大きくなった。また、YAG:Ce量が多いNo.28は、蛍光強度がやや低く、熱伝導率も低くなった。 
<実施例5>















 実施例1と同様な製造方法で、下記表1及び表2に示すように、セラミックス焼結体の試料(No.29~38の本発明の範囲の試料)を作製して、同様に評価を行った。 
ただし、焼結体のA12(YAG)中のYに対するCe濃度が0~15mol%となるように原料配合比を変化させた。

 その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、Alの平均結晶粒径は0.3~10μmの範囲内、A12:Ce(YAG:Ce)の平均結晶粒径は0.3~5μmの範囲内にあることが分かった。 
また、下記表2から明らかなように、Ce濃度が所定の範囲(即ち10.0mol%以下(但し0を含まず))にあるNo.30~37は、蛍光強度・色ムラ・熱伝導率のいずれも良好な結果となった。一方、Ceを含まないNo.29は蛍光強度・色ムラ共に測定することができなかった。また、Ce濃度が高いNo.38は蛍光強度がやや低くなった。 
<実施例6>















 実施例1と同様な製造方法で、下記表1及び表2に示すように、セラミックス焼結体の試料(No.39~59の本発明の範囲の試料)を作製して、同様に評価を行った。 
ただし、調合時にY粉末だけでなく、Lu(平均粒径1.3μm)またはYb(平均粒径1.5μm)、Gd(平均粒径1.5μm)、Tb(平均粒径1.6μm)、Ga(平均粒径1.3μm)の各粉末を一つ以上用い、所定のA12:Ceを合成できる様、配合比を変化させた。 
その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。また、Alの平均結晶粒径は0.3~10μmの範囲内、A12:Ce(YAG:Ce)の平均結晶粒径は0.3~5μmの範囲内にあることが分かった。 
全てのセラミックス焼結体において、蛍光強度・色ムラ・熱伝導率のいずれもが良好な結果となった。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[3.他の実施形態]















 本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。 
(1)例えば、前記実施例では、焼成方法として大気中での常圧焼成法を用いたが、その他に、真空雰囲気焼成法、還元雰囲気焼成法、ホットプレス(HP)法、熱間等方圧加圧(HIP)法またはこれらを組み合わせた焼成方法によっても、同等の性能を有したサンプルを作製することができる。 
(2)前記光波長変換部材や発光装置の用途としては、蛍光体、光波長変換機器、ヘッドランプ、照明、プロジェクター等の光学機器など、各種の用途が挙げられる。

 (3)なお、上記実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記実施形態の構成の一部を、省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
1…光波長変換部材















 3…発光装置















 7…発光素子

Claims (5)
















  1.  Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子とを主成分とする多結晶体であるセラミックス焼結体から構成された光波長変換部材であって、 前記A12中のAとBは下記元素群から選択される少なくとも1種の元素であり、















      A:Sc、Y、ランタノイド(Ceは除く)















      B:Al、Ga















     且つ、前記セラミックス焼結体の切断面の20μm角の範囲における前記A12:Ce結晶粒子N個の内、前記Al結晶粒子内に存在するものの個数をa個、他の前記A12:Ce結晶粒子に接することなくAl結晶粒界に存在するものの個数をb個、1個以上の他の前記A12:Ce結晶粒子と接しており前記Al結晶粒界に存在するものの個数をc個とし、各個数に対する全体の割合a/N、b/N、c/NをそれぞれX、Y、Zとするとき、各割合が下記の範囲を満たすことを特徴とする光波長変換部材。















       0%≦X≦25%















       9%≦Y≦45%















      48%≦Z≦90%





























  2.  前記セラミックス焼結体に占める前記A12:Ce結晶粒子の割合が、5~50vol%であることを特徴とする請求項1に記載の光波長変換部材。





























  3.  前記Ceの割合が前記A12のAに対し10.0mol%以下(但し0を含まず)であることを特徴とする請求項1又は2に記載の光波長変換部材。





























  4.  前記Al結晶粒子の平均結晶粒径が0.3~10μm、前記A12:Ce結晶粒子の平均結晶粒径が0.3~5μmであることを特徴とする請求項1~3のいずれか1項に記載の光波長変換部材。





























  5.  前記請求項1~4のいずれか1項に記載の光波長変換部材を備えたことを特徴とする発光装置。
PCT/JP2017/037679 2016-10-28 2017-10-18 光波長変換部材及び発光装置 WO2018079373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197005037A KR102196577B1 (ko) 2016-10-28 2017-10-18 광파장 변환 부재 및 발광 장치
EP17865718.5A EP3534192B1 (en) 2016-10-28 2017-10-18 Light wavelength conversion member and light emission device
US16/328,161 US10665761B2 (en) 2016-10-28 2017-10-18 Light wavelength conversion member and light emission device
CN201780057362.6A CN109716178B (zh) 2016-10-28 2017-10-18 光波长转换部件及发光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016211843 2016-10-28
JP2016-211843 2016-10-28
JP2017198555A JP6449963B2 (ja) 2016-10-28 2017-10-12 光波長変換部材及び発光装置
JP2017-198555 2017-10-12

Publications (1)

Publication Number Publication Date
WO2018079373A1 true WO2018079373A1 (ja) 2018-05-03

Family

ID=62024770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037679 WO2018079373A1 (ja) 2016-10-28 2017-10-18 光波長変換部材及び発光装置

Country Status (1)

Country Link
WO (1) WO2018079373A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740017B2 (ja) 1978-04-28 1982-08-25
WO2006001316A1 (ja) * 2004-06-24 2006-01-05 Ube Industries, Ltd. 白色発光ダイオード装置
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors
WO2011125422A1 (ja) * 2010-03-31 2011-10-13 宇部興産株式会社 光変換用セラミック複合体、その製造方法、及びそれを備えた発光装置
JP2012062459A (ja) * 2010-08-18 2012-03-29 Covalent Materials Corp セラミックス複合体
JP5153014B2 (ja) 2010-09-17 2013-02-27 コバレントマテリアル株式会社 緑色蛍光体
JP2013147643A (ja) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd イットリウムセリウムアルミニウムガーネット蛍光体の製造方法
WO2016117623A1 (ja) * 2015-01-21 2016-07-28 三菱化学株式会社 焼結蛍光体、発光装置、照明装置、車両前照灯、及び焼結蛍光体の製造方法
WO2017170609A1 (ja) * 2016-03-29 2017-10-05 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740017B2 (ja) 1978-04-28 1982-08-25
WO2006001316A1 (ja) * 2004-06-24 2006-01-05 Ube Industries, Ltd. 白色発光ダイオード装置
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors
WO2011125422A1 (ja) * 2010-03-31 2011-10-13 宇部興産株式会社 光変換用セラミック複合体、その製造方法、及びそれを備えた発光装置
JP2012062459A (ja) * 2010-08-18 2012-03-29 Covalent Materials Corp セラミックス複合体
JP5088977B2 (ja) 2010-08-18 2012-12-05 コバレントマテリアル株式会社 セラミックス複合体
JP5153014B2 (ja) 2010-09-17 2013-02-27 コバレントマテリアル株式会社 緑色蛍光体
JP2013147643A (ja) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd イットリウムセリウムアルミニウムガーネット蛍光体の製造方法
WO2016117623A1 (ja) * 2015-01-21 2016-07-28 三菱化学株式会社 焼結蛍光体、発光装置、照明装置、車両前照灯、及び焼結蛍光体の製造方法
WO2017170609A1 (ja) * 2016-03-29 2017-10-05 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534192A4 *

Similar Documents

Publication Publication Date Title
JP6449963B2 (ja) 光波長変換部材及び発光装置
WO2018154869A1 (ja) 光波長変換部材及び発光装置
US10982140B2 (en) Nitride phosphor particle dispersion-type sialon ceramic, fluorescent member, and method for producing nitride phosphor particle dispersion-type sialon ceramic
KR102229730B1 (ko) 광 파장 변환 부재 및 발광 장치
JP6591951B2 (ja) 光波長変換部材及び発光装置
JP4916469B2 (ja) 蛍光体
KR102307670B1 (ko) 광 파장 변환 부재 및 발광 장치
WO2018079373A1 (ja) 光波長変換部材及び発光装置
US11447696B2 (en) Fluorescent member, its manufacturing method, and light-emitting apparatus
JP6486315B2 (ja) 光波長変換部材及び発光装置
JP5615222B2 (ja) 緑色蛍光体
TWI771599B (zh) 光波長轉換構件及發光裝置
JP2019028306A (ja) 光波長変換部材及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005037

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865718

Country of ref document: EP

Effective date: 20190528