WO2018079059A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents
無方向性電磁鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2018079059A1 WO2018079059A1 PCT/JP2017/031117 JP2017031117W WO2018079059A1 WO 2018079059 A1 WO2018079059 A1 WO 2018079059A1 JP 2017031117 W JP2017031117 W JP 2017031117W WO 2018079059 A1 WO2018079059 A1 WO 2018079059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- electrical steel
- iron loss
- oriented electrical
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
Definitions
- the present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof.
- the core material of such an induction motor from the viewpoint of reducing copper loss, it is required to reduce the excitation effective current at the design magnetic flux density in addition to the low iron loss. In order to reduce the excitation effective current, it is effective to increase the magnetic flux density of the core material.
- Patent Document 1 discloses a non-oriented electrical steel sheet in which Co is added to 0.1% or more and 5% or less of steel to 4% or less of Si.
- Co is very expensive, there is a problem that the cost increases when applied to a general motor.
- an object of the present invention is to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss and a method for producing the same.
- the present inventors diligently studied to solve the above-mentioned problems, and found that the composition of the component causes a ⁇ ⁇ ⁇ transformation (transformation from ⁇ phase to ⁇ phase) during hot rolling, and the Vickers hardness is 140HV or more and 230HV or less. Thus, it was found that a material excellent in magnetic flux density and iron loss balance can be obtained without performing hot-rolled sheet annealing.
- the present invention has been made based on such knowledge and has the following configuration.
- % By mass C: 0.0050% or less, Si: 1.50% or more and 4.00% or less, Al: 0.500% or less, Mn: 0.10% to 5.00%, S: 0.0200% or less, P: 0.200% or less, N: 0.0050% or less, O: 0.0200% or less and Ca: 0.0010% or more and 0.0050%
- the balance is a non-oriented electrical steel sheet having a component composition of Fe and inevitable impurities, Ar 3 transformation point of 700 ° C. or more, crystal grain size of 80 ⁇ m to 200 ⁇ m, and Vickers hardness of 140 HV to 230 HV .
- the component composition further includes: % By mass Ni: The non-oriented electrical steel sheet according to 1 above, containing 0.010% or more and 3.000% or less.
- the component composition further includes: % By mass Ti: 0.0030% or less, Nb: 0.0030% or less, V: 0.0030% or less and Zr: The non-oriented electrical steel sheet according to 1 or 2, which is suppressed to 0.0020% or less.
- an electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained.
- the obtained hot-rolled sheet was pickled, cold-rolled to a sheet thickness of 0.35 mm, and then subjected to finish annealing at 950 ° C. for 10 seconds in a 20% H 2 -80% N 2 atmosphere.
- a ring sample 1 having an outer diameter of 55 mm and an inner diameter of 35 mm is produced by punching from the finished annealed plate thus obtained, and V-caulking 2 is performed on six equally divided portions of the ring sample 1 as shown in FIG. 1 was laminated and fixed. Magnetic measurements were made by winding the laminate with 100 turns of primary and 100 turns of secondary, and evaluating it by the wattmeter method. The Vickers hardness was measured in accordance with JIS Z2244 by pushing a 500 g diamond indenter into the cross section in the rolling direction of the steel sheet. The crystal grain size was measured in accordance with JIS G0551 after the cross section was polished and etched with nital.
- Table 2 shows the measurement results of the magnetic properties and Vickers hardness of steel A to steel C in Table 1 above.
- Hot rolling is performed in 7 passes, the entry temperature of the first pass (F1) of hot rolling is 900 ° C, the entry temperature of the final pass (F7) of hot rolling is 780 ° C, and at least one pass is from the ⁇ phase. Rolling was performed in the two-phase region to the ⁇ phase.
- This hot-rolled sheet was pickled, cold-rolled to a sheet thickness of 0.35 mm, and then subjected to finish annealing at 950 ° C. ⁇ 10 s in a 20% H 2 -80% N 2 atmosphere.
- a ring sample 1 having an outer diameter of 55 mm and an inner diameter of 35 mm is produced by punching from the finished annealed plate thus obtained, and V-caulking 2 is performed on six equally divided portions of the ring sample 1 as shown in FIG. 1 was laminated and fixed. Magnetic measurements were made by winding the laminate with 100 turns of primary and 100 turns of secondary, and evaluating it by the wattmeter method.
- FIG. 2 shows the effect of the Ar 3 transformation point on the magnetic flux density B 50 . It can be seen that when the Ar 3 transformation point is lower than 700 ° C., the magnetic flux density B 50 decreases. The reason for this is not clear, but when the Ar 3 transformation point is less than 700 ° C, the crystal grain size before cold rolling becomes small, which is disadvantageous for the magnetic properties in the process from subsequent cold rolling to finish annealing. (111) It is thought that the texture has developed.
- the Ar 3 transformation point is set to 700 ° C. or higher. Preferably, it is set to 730 ° C. or higher from the viewpoint of magnetic flux density.
- the Ar 3 transformation point is preferably 1000 ° C. or less. This is because hot rolling during transformation promotes the development of a texture preferable for magnetic properties.
- the Vickers hardness 140 was made to 230 HV, it is necessary to appropriately add a solid solution strengthening element such as Si, Mn, P or the like.
- the Vickers hardness was measured in accordance with JIS Z2244 by pushing a 500 g diamond indenter into the cross section in the rolling direction of the steel sheet.
- the crystal grain size was measured in accordance with JIS G0551 after the cross section was polished and etched with nital.
- % representing the content of each component element means “% by mass” unless otherwise specified.
- C 0.0050% or less C is made 0.0050% or less from the viewpoint of preventing magnetic aging. On the other hand, since C has an effect of improving the magnetic flux density, 0.0010% or more is preferable.
- Si 1.50% or more and 4.00% or less Since Si is an effective element for increasing the specific resistance of the steel sheet, it should be 1.50% or more.
- the magnetic flux density decreases as the saturation magnetic flux density decreases, so the upper limit is made 4.00%.
- it is 3.00% or less. This is because if it exceeds 3.00%, it is necessary to add a large amount of Mn in order to obtain a two-phase region, and the cost increases unnecessarily.
- Al 0.500% or less Since Al is an element of the ⁇ region closed type, it is preferable that the content of Al is 0.500% or less, preferably 0.020% or less, more preferably 0.002% or less. In addition, since it is difficult to make it less than 0.0005% in industrial scale production, the content of 0.0005% or more is allowed.
- Mn 0.10% or more and 5.00% or less Since Mn is an effective element for expanding the ⁇ region, the lower limit is set to 0.10%. On the other hand, if it exceeds 5.00%, the magnetic flux density is lowered, so the upper limit is made 5.00%. Preferably, it is 3.00% or less. This is because if it exceeds 3.00%, the cost will increase.
- P 0.200% or less P is added in excess of 0.200%, so that the steel sheet becomes hard, so 0.200% or less, more preferably 0.100% or less. More preferably, it is 0.010% or more and 0.050% or less. This is because P is segregated on the surface and suppresses nitriding.
- N 0.0050% or less N is contained in an amount of 0.005% or less in order to increase the iron loss when the content is large, thereby increasing the amount of iron loss.
- the content of 0.0005% or more is allowed.
- O 0.0200% or less O is 0.0200% or less in order to increase the iron loss when the content is large and increase iron loss. In addition, since it is difficult to produce less than 0.0010% in industrial scale production, the content of 0.0010% or more is allowed.
- Ca 0.0010% or more and 0.0050%
- Ca can fix iron sulfide as CaS and reduce iron loss. For this reason, the lower limit is set to 0.0010%. On the other hand, if it exceeds 0.0050%, a large amount of CaS precipitates and increases the iron loss, so the upper limit is made 0.0050%. In addition, in order to reduce iron loss stably, it is preferable to set it as 0.0015% or more and 0.0035% or less.
- the basic components of the present invention have been described above.
- the balance other than the above components is Fe and inevitable impurities, but in addition, the following elements can be appropriately contained as required.
- Ni 0.010% or more and 3.000% or less Since Ni is an effective element for expanding the ⁇ region, the lower limit is made 0.010%. On the other hand, if it exceeds 3.000%, the cost is unnecessarily increased, so the upper limit is made 3.000%, and a more preferable range is 0.100% or more and 1.000% or less. Ni may be 0%.
- Ti 0.0030% or less
- Nb 0.0030% or less
- V 0.0030% or less
- Zr 0.0020% or less.
- the specified upper limit shall not be exceeded.
- Ti: 0.0030% or less Ti has a content of TiN, and the amount of TiN precipitated increases, which may increase iron loss. Ti may be 0%.
- Nb 0.0030% or less Nb is made 0.0030% or less because the amount of NbC precipitated increases when the content is large, which may increase iron loss. Nb may be 0%.
- V 0.0030% or less V is 0.0030% or less because if the content is large, the amount of precipitation of VN and VC increases, which may increase iron loss. V may be 0%.
- Zr 0.0020% or less Zr is made 0.0020% or less because if the content is large, the amount of ZrN precipitated increases, which may increase iron loss. Zr may be 0%.
- the average crystal grain size is 80 ⁇ m or more and 200 ⁇ m or less. If the average crystal grain size is less than 80 ⁇ m, the Vickers hardness can be made 140 HV or higher with a low Si material. However, if the crystal grain size is small in this way, the iron loss increases. For this reason, the crystal grain size is 80 ⁇ m or more. On the other hand, when the crystal grain size exceeds 200 ⁇ m, plastic deformation due to punching or caulking increases, and iron loss increases. For this reason, the upper limit of the crystal grain size is set to 200 ⁇ m.
- the average crystal grain size is measured in accordance with JIS G0051 after polishing a cross section in the rolling direction of the steel sheet and etching it with nital.
- the finish annealing temperature In order to make the crystal grain size 80 ⁇ m or more and 200 ⁇ m or less, it is necessary to appropriately control the finish annealing temperature. That is, by setting the finish annealing temperature to 900 ° C. to 1050 ° C., the predetermined crystal grain size can be controlled.
- the average crystal grain size is preferably from 100 ⁇ m to 150 ⁇ m from the viewpoint of iron loss.
- the non-oriented electrical steel sheet of the present invention is manufactured by a normal method for manufacturing a non-oriented electrical steel sheet. Can do. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, subsequently cast into a slab, and the slab is hot-rolled.
- the finishing temperature and the coiling temperature during hot rolling need not be specified, but at least one pass during hot rolling must be performed in a two-phase region of ⁇ phase and ⁇ phase.
- the winding temperature is preferably 650 ° C. or lower in order to prevent oxidation during winding.
- Example 2 The molten steel blown in the converter was degassed, melted into various component compositions shown in Table 3, and formed into a slab by casting. Thereafter, slab heating at 1120 ° C. ⁇ 1 h was performed, and hot rolling was performed to a plate thickness of 2.0 mm. Hot finish rolling was performed in 7 passes, and the entrance side plate temperature of the first pass and the final pass was set to the temperature shown in Table 3, and the winding temperature was set to 650 ° C. Thereafter, pickling was performed, and cold rolling was performed to a plate thickness of 0.35 mm.
- the steel sheet thus obtained was subjected to finish annealing in a 20% H 2 -80% N 2 atmosphere under the conditions shown in Table 3 with an annealing time of 10 seconds, and magnetic properties (W 15/50 , B 50 ) and hardness (HV) Evaluated.
- W 15/50 , B 50 magnetic properties
- HV hardness
- the Vickers hardness was measured in accordance with JIS Z2244 by pushing a 500 g diamond indenter into the cross section in the direction perpendicular to the rolling direction of the steel sheet.
- the crystal grain size was measured in accordance with JIS G0551 after polishing the cross section and etching with nital.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
C:0.0050%以下、
Si:1.50%以上4.00%以下、
Al:0.500%以下、
Mn:0.10%以上5.00%以下、
S:0.0200%以下、
P:0.200%以下、
N:0.0050%以下、
O:0.0200%以下および
Ca: 0.0010%以上0.0050%
を含有し、残部はFeおよび不可避不純物である成分組成を有し、Ar3変態点が700℃以上、結晶粒径が80μm以上200μm以下、ビッカース硬度が140HV以上230HV以下である無方向性電磁鋼板。
質量%で、
Ni:0.010%以上3.000%以下
を含有する、上記1に記載の無方向性電磁鋼板。
質量%で、
Ti:0.0030%以下、
Nb:0.0030%以下、
V:0.0030%以下および
Zr:0.0020%以下
に抑制する、上記1または2に記載の無方向性電磁鋼板。
最初に、磁気特性に及ぼす二相域の影響について調査するため、表1の成分組成を含有する鋼Aから鋼Cを実験室にて溶製して得たスラブについて、熱間圧延を行った。熱間圧延は7パスで行い、熱延の初パス(F1)の入り側温度は1030℃、熱延の最終パス(F7)入り側温度は910℃とした。
Cは磁気時効防止の観点から0.0050%以下とする。一方、Cは磁束密度を向上させる効果があるため0.0010%以上が好ましい。
Siは鋼板の固有抵抗を上げるために有効な元素であるため1.50%以上とする。一方、4.00%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため上限は4.00%とする。好ましくは、3.00%以下とする。これは3.00%を超えると二相域とするために多量のMnを添加する必要があり、いたずらにコストアップとなるためである。
Alはγ域閉鎖型の元素であるため少ないほうが好ましく、0.500%以下、好ましくは0.020%以下、より好ましくは0.002%以下とする。なお、0.0005%未満とするのは工業的規模の製造では難しいため、0.0005%以上の含有は許容される。
Mnはγ域を拡大するために効果的な元素であるため、下限を0.10%とする。一方、5.00%超になると磁束密度を低下させるので上限を5.00%とする。好ましくは、3.00%以下とする。これは3.00%を超えるといたずらにコストアップとなるためである。
Sは0.0200%を超えるとMnSの析出により鉄損が増大するため、上限を0.0200%とする。なお、0.0001%未満とするのは工業的規模の製造では難しいため、0.0001%以上の含有は許容される。
Pは0.200%を超えて添加すると鋼板が硬くなるため0.200%以下、より好ましくは0.100%以下とする。さらに好ましくは0.010%以上0.050%以下とする。これはPが表面偏析して窒化を抑制する効果があるためである。
Nは、含有量が多い場合にはAlNの析出量が多くなり、鉄損を増大させるため0.0050%以下とする。なお、0.0005%未満とするのは工業的規模の製造では難しいため、0.0005%以上の含有は許容される。
Oは、含有量が多い場合には酸化物が多くなり、鉄損を増大させるため0.0200%以下とする。なお、0.0010%未満とするのは工業的規模の製造では難しいため、0.0010%以上の含有は許容される。
Caは硫化物をCaSとして固定し鉄損を低減できる。このため下限を0.0010%とする。一方、0.0050%を超えるとCaSが多量に析出し、鉄損を増加させるため上限を0.0050%とする。なお、鉄損を安定して低減するため、0.0015%以上0.0035%以下とすることが好ましい。
Niはγ域を拡大するために効果的な元素であるため、下限を0.010%とする。一方、3.000%超になるといたずらにコストアップを招くため、上限を3.000%とし、より好ましい範囲は0.100%以上1.000%以下である。なお、Niは0%であってもよい。
Ti:0.0030%以下
Tiは、含有量が多い場合にはTiNの析出量が多くなり、鉄損を増大させるおそれがあるため0.0030%以下とする。なお、Tiは0%であってもよい。
Nbは、含有量が多い場合にはNbCの析出量が多くなり、鉄損を増大させるおそれがあるため0.0030%以下とする。なお、Nbは0%であってもよい。
Vは、含有量が多い場合にはVN、VCの析出量が多くなり、鉄損を増大させるおそれがあるため0.0030%以下とする。なお、Vは0%であってもよい。
Zrは、含有量が多い場合にはZrNの析出量が多くなり、鉄損を増大させるおそれがあるため0.0020%以下とする。なお、Zrは0%であってもよい。
平均結晶粒径は80μm以上200μm以下とする。平均結晶粒径が80μm未満では、低Siの材料でビッカース硬度を140HV以上とすることもできるが、このように結晶粒径が小さいと鉄損が増加する。このため、結晶粒径は80μm以上とする。一方、結晶粒径が200μmを超える場合には、打ち抜きやカシメによる塑性変形が大きくなり、鉄損が増加することとなる。このため結晶粒径の上限を200μmとする。ここで、平均結晶粒径は、鋼板圧延方向の断面を研磨し、ナイタールにてエッチングしたのち、JIS G0051に準拠して測定する。結晶粒径を80μm以上200μm以下とするためには仕上焼鈍温度を適切に制御することが必要である。すなわち、仕上焼鈍温度を900℃~1050℃とすることにより所定の結晶粒径に制御することができる。また、平均結晶粒径は、鉄損の観点から、100μm以上150μm以下であることが好ましい。
転炉で吹練した溶鋼を脱ガス処理し、表3に示す種々の成分組成に溶製し、鋳造によってスラブとした。その後、1120℃×1hのスラブ加熱を行い、板厚2.0mmまで熱間圧延を行った。熱間の仕上圧延は7パスで行い、初パスおよび最終パスの入り側板温は表3に示す温度とし、巻き取り温度は650℃とした。その後、酸洗を行い、板厚0.35mmまで冷間圧延を行った。かくして得られた鋼板につき、20%H2-80%N2雰囲気で表3に示す条件において焼鈍時間10秒で仕上焼鈍を行い、磁気特性(W15/50、B50)および硬度(HV)を評価した。磁気測定は鋼板の圧延方向および圧延直角方向よりエプスタインサンプルを切り出し、エプスタイン測定を行った。ビッカース硬度はJIS Z2244に準拠し、鋼板の圧延直交方向の断面に500gのダイヤモンド圧子を押し込むことにより測定した。結晶粒径は同断面を研磨し、ナイタールにてエッチングした後、JIS G0551に準拠して測定した。
2 Vカシメ
Claims (4)
- 質量%で、
C:0.0050%以下、
Si:1.50%以上4.00%以下、
Al:0.500%以下、
Mn:0.10%以上5.00%以下、
S:0.0200%以下、
P:0.200%以下、
N:0.0050%以下、
O:0.0200%以下および
Ca: 0.0010%以上0.0050%
を含有し、残部はFeおよび不可避不純物である成分組成を有し、Ar3変態点が700℃以上、結晶粒径が80μm以上200μm以下、ビッカース硬度が140HV以上230HV以下である無方向性電磁鋼板。 - 前記成分組成は、さらに、
質量%で、
Ni:0.010%以上3.000%以下
を含有する、請求項1に記載の無方向性電磁鋼板。 - 前記成分組成は、さらに、
質量%で、
Ti:0.0030%以下、
Nb:0.0030%以下、
V:0.0030%以下および
Zr:0.0020%以下
に抑制する、請求項1または2に記載の無方向性電磁鋼板。 - 請求項1から3のいずれかに記載の無方向性電磁鋼板を製造する方法であって、γ相からα相の二相域において少なくとも1パスの熱間圧延を行う無方向性電磁鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/343,847 US11056256B2 (en) | 2016-10-27 | 2017-08-30 | Non-oriented electrical steel sheet and method of producing same |
CN201780066118.6A CN109890994A (zh) | 2016-10-27 | 2017-08-30 | 无取向性电磁钢板及其制造方法 |
KR1020197014789A KR102225229B1 (ko) | 2016-10-27 | 2017-08-30 | 무방향성 전자 강판 및 그의 제조 방법 |
RU2019115974A RU2722359C1 (ru) | 2016-10-27 | 2017-08-30 | Лист из нетекстурированной электротехнической стали и способ его изготовления |
JP2017566158A JP6451873B2 (ja) | 2016-10-27 | 2017-08-30 | 無方向性電磁鋼板およびその製造方法 |
EP17863904.3A EP3533890B1 (en) | 2016-10-27 | 2017-08-30 | Non-oriented electrical steel sheet and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-211044 | 2016-10-27 | ||
JP2016211044 | 2016-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079059A1 true WO2018079059A1 (ja) | 2018-05-03 |
Family
ID=62023301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031117 WO2018079059A1 (ja) | 2016-10-27 | 2017-08-30 | 無方向性電磁鋼板およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11056256B2 (ja) |
EP (1) | EP3533890B1 (ja) |
JP (1) | JP6451873B2 (ja) |
KR (1) | KR102225229B1 (ja) |
CN (1) | CN109890994A (ja) |
RU (1) | RU2722359C1 (ja) |
TW (1) | TWI634218B (ja) |
WO (1) | WO2018079059A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019225529A1 (ja) * | 2018-05-21 | 2019-11-28 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6319465B2 (ja) * | 2015-10-02 | 2018-05-09 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
KR102225229B1 (ko) | 2016-10-27 | 2021-03-08 | 제이에프이 스틸 가부시키가이샤 | 무방향성 전자 강판 및 그의 제조 방법 |
JP6665794B2 (ja) | 2017-01-17 | 2020-03-13 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
WO2019017426A1 (ja) * | 2017-07-19 | 2019-01-24 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
JP6878351B2 (ja) | 2018-05-14 | 2021-05-26 | Jfeスチール株式会社 | モータ |
CN112430778A (zh) * | 2019-08-26 | 2021-03-02 | 宝山钢铁股份有限公司 | 一种薄规格无取向电工钢板及其制造方法 |
EP4053302A4 (en) * | 2019-10-29 | 2022-09-07 | JFE Steel Corporation | NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF PRODUCTION THEREOF |
CN113136524B (zh) * | 2020-01-20 | 2022-10-21 | 宝山钢铁股份有限公司 | 一种磁性能优良的无取向电工钢板及其制造方法 |
BR112022020680A2 (pt) * | 2020-04-16 | 2022-11-29 | Nippon Steel Corp | Chapa de aço elétrico não orientado, e, método para fabricar a chapa de aço elétrico não orientado |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10251752A (ja) * | 1997-03-13 | 1998-09-22 | Kawasaki Steel Corp | 磁気特性に優れる熱延電磁鋼板の製造方法 |
JP2000129410A (ja) | 1998-10-30 | 2000-05-09 | Nkk Corp | 磁束密度の高い無方向性電磁鋼板 |
JP2001323352A (ja) * | 2000-05-15 | 2001-11-22 | Kawasaki Steel Corp | 加工性およびリサイクル性に優れた低鉄損かつ高磁束密度の無方向性電磁鋼板 |
JP2002504624A (ja) * | 1998-02-20 | 2002-02-12 | ティッセン クルップ シュタール アクチェンゲゼルシャフト | 無方向性電磁鋼板を製造する方法 |
JP2005525469A (ja) * | 2002-05-15 | 2005-08-25 | ティッセンクルップ シュタール アクチェンゲゼルシャフト | 無方向性電磁鋼ストリップ又は電磁鋼板及びその製造方法 |
JP2013044009A (ja) * | 2011-08-23 | 2013-03-04 | Nippon Steel & Sumitomo Metal Corp | 無方向性電磁鋼板およびその製造方法 |
JP2014195818A (ja) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | 無方向性電磁鋼板用熱延鋼板の製造方法および無方向性電磁鋼板の製造方法 |
US20150318093A1 (en) * | 2012-01-12 | 2015-11-05 | Nucor Corporation | Electrical steel processing without a post cold-rolling intermediate anneal |
JP2016129902A (ja) * | 2015-01-14 | 2016-07-21 | Jfeスチール株式会社 | 打抜き加工方法、打抜き加工装置、および積層鉄心の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000219916A (ja) | 1999-01-28 | 2000-08-08 | Nippon Steel Corp | 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法 |
CN1102670C (zh) | 1999-06-16 | 2003-03-05 | 住友金属工业株式会社 | 无方向性电磁钢片及其制造方法 |
US6436199B1 (en) | 1999-09-03 | 2002-08-20 | Kawasaki Steel Corporation | Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor |
JP4126479B2 (ja) * | 2000-04-28 | 2008-07-30 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
US20040149355A1 (en) * | 2001-06-28 | 2004-08-05 | Masaaki Kohno | Nonoriented electromagnetic steel sheet |
JP4718749B2 (ja) | 2002-08-06 | 2011-07-06 | Jfeスチール株式会社 | 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材 |
PL1679386T3 (pl) | 2003-10-06 | 2020-06-01 | Nippon Steel Corporation | Blacha cienka ze stali magnetycznej o dużej wytrzymałości oraz przetworzona część z niej i sposób ich wytwarzania |
WO2006068399A1 (en) | 2004-12-21 | 2006-06-29 | Posco Co., Ltd. | Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same |
JP4648910B2 (ja) * | 2006-10-23 | 2011-03-09 | 新日本製鐵株式会社 | 磁気特性の優れた無方向性電磁鋼板の製造方法 |
JP4510911B2 (ja) * | 2008-07-24 | 2010-07-28 | 新日本製鐵株式会社 | 高周波用無方向性電磁鋼鋳片の製造方法 |
JP5716315B2 (ja) | 2010-08-10 | 2015-05-13 | 新日鐵住金株式会社 | 無方向性電磁鋼板およびその製造方法 |
CN102453844B (zh) * | 2010-10-25 | 2013-09-04 | 宝山钢铁股份有限公司 | 一种磁性优良的高效无取向硅钢制造方法 |
PL3575431T3 (pl) * | 2011-11-11 | 2022-04-04 | Nippon Steel Corporation | Sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej |
CN103305659B (zh) | 2012-03-08 | 2016-03-30 | 宝山钢铁股份有限公司 | 磁性优良的无取向电工钢板及其钙处理方法 |
JP6127440B2 (ja) | 2012-10-16 | 2017-05-17 | Jfeスチール株式会社 | 無方向性電磁鋼板製造用の熱延鋼板およびその製造方法 |
JP5790953B2 (ja) | 2013-08-20 | 2015-10-07 | Jfeスチール株式会社 | 無方向性電磁鋼板とその熱延鋼板 |
EP3112488B1 (en) | 2014-02-27 | 2019-05-08 | JFE Steel Corporation | High-strength hot-rolled steel sheet and manufacturing method therefor |
KR101705235B1 (ko) * | 2015-12-11 | 2017-02-09 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
KR102225229B1 (ko) | 2016-10-27 | 2021-03-08 | 제이에프이 스틸 가부시키가이샤 | 무방향성 전자 강판 및 그의 제조 방법 |
-
2017
- 2017-08-30 KR KR1020197014789A patent/KR102225229B1/ko active IP Right Grant
- 2017-08-30 RU RU2019115974A patent/RU2722359C1/ru active
- 2017-08-30 US US16/343,847 patent/US11056256B2/en active Active
- 2017-08-30 CN CN201780066118.6A patent/CN109890994A/zh active Pending
- 2017-08-30 EP EP17863904.3A patent/EP3533890B1/en active Active
- 2017-08-30 JP JP2017566158A patent/JP6451873B2/ja active Active
- 2017-08-30 WO PCT/JP2017/031117 patent/WO2018079059A1/ja active Application Filing
- 2017-09-11 TW TW106130902A patent/TWI634218B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10251752A (ja) * | 1997-03-13 | 1998-09-22 | Kawasaki Steel Corp | 磁気特性に優れる熱延電磁鋼板の製造方法 |
JP2002504624A (ja) * | 1998-02-20 | 2002-02-12 | ティッセン クルップ シュタール アクチェンゲゼルシャフト | 無方向性電磁鋼板を製造する方法 |
JP2000129410A (ja) | 1998-10-30 | 2000-05-09 | Nkk Corp | 磁束密度の高い無方向性電磁鋼板 |
JP2001323352A (ja) * | 2000-05-15 | 2001-11-22 | Kawasaki Steel Corp | 加工性およびリサイクル性に優れた低鉄損かつ高磁束密度の無方向性電磁鋼板 |
JP2005525469A (ja) * | 2002-05-15 | 2005-08-25 | ティッセンクルップ シュタール アクチェンゲゼルシャフト | 無方向性電磁鋼ストリップ又は電磁鋼板及びその製造方法 |
JP2013044009A (ja) * | 2011-08-23 | 2013-03-04 | Nippon Steel & Sumitomo Metal Corp | 無方向性電磁鋼板およびその製造方法 |
US20150318093A1 (en) * | 2012-01-12 | 2015-11-05 | Nucor Corporation | Electrical steel processing without a post cold-rolling intermediate anneal |
JP2014195818A (ja) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | 無方向性電磁鋼板用熱延鋼板の製造方法および無方向性電磁鋼板の製造方法 |
JP2016129902A (ja) * | 2015-01-14 | 2016-07-21 | Jfeスチール株式会社 | 打抜き加工方法、打抜き加工装置、および積層鉄心の製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019225529A1 (ja) * | 2018-05-21 | 2019-11-28 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
JP6662501B1 (ja) * | 2018-05-21 | 2020-03-11 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
CN112154221A (zh) * | 2018-05-21 | 2020-12-29 | 杰富意钢铁株式会社 | 无方向性电磁钢板和其制造方法 |
EP3798328A4 (en) * | 2018-05-21 | 2021-03-31 | JFE Steel Corporation | NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND ITS MANUFACTURING PROCESS |
RU2755916C1 (ru) * | 2018-05-21 | 2021-09-22 | ДжФЕ СТИЛ КОРПОРЕЙШН | Неориентированный лист электротехнической стали и способ его получения |
US11649532B2 (en) | 2018-05-21 | 2023-05-16 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method of producing same |
US11946123B2 (en) | 2018-05-21 | 2024-04-02 | Jfe Steel Corporation | Method of producing a non-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
KR20190075991A (ko) | 2019-07-01 |
EP3533890B1 (en) | 2021-12-22 |
JPWO2018079059A1 (ja) | 2018-10-25 |
JP6451873B2 (ja) | 2019-01-16 |
US20190244735A1 (en) | 2019-08-08 |
EP3533890A1 (en) | 2019-09-04 |
CN109890994A (zh) | 2019-06-14 |
TWI634218B (zh) | 2018-09-01 |
EP3533890A4 (en) | 2019-09-18 |
US11056256B2 (en) | 2021-07-06 |
TW201816143A (zh) | 2018-05-01 |
RU2722359C1 (ru) | 2020-05-29 |
KR102225229B1 (ko) | 2021-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6451873B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP6665794B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP6866935B2 (ja) | 無方向性電磁鋼板の製造方法 | |
JP6319465B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2016132753A1 (ja) | 無方向性電磁鋼板とその製造方法ならびにモータコア | |
JP5076510B2 (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
JP2011084761A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
WO2015107967A1 (ja) | 磁気特性に優れる無方向性電磁鋼板 | |
JP4710458B2 (ja) | 回転子用無方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017566158 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17863904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197014789 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017863904 Country of ref document: EP Effective date: 20190527 |