WO2018076557A1 - 基于玻璃混切基板技术的温控配向装置 - Google Patents

基于玻璃混切基板技术的温控配向装置 Download PDF

Info

Publication number
WO2018076557A1
WO2018076557A1 PCT/CN2017/071739 CN2017071739W WO2018076557A1 WO 2018076557 A1 WO2018076557 A1 WO 2018076557A1 CN 2017071739 W CN2017071739 W CN 2017071739W WO 2018076557 A1 WO2018076557 A1 WO 2018076557A1
Authority
WO
WIPO (PCT)
Prior art keywords
device based
alignment device
liquid
temperature
heating module
Prior art date
Application number
PCT/CN2017/071739
Other languages
English (en)
French (fr)
Inventor
赵仁堂
谢忠憬
赵永超
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/500,175 priority Critical patent/US10488695B2/en
Publication of WO2018076557A1 publication Critical patent/WO2018076557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • G02F2202/025Materials and properties organic material polymeric curable thermocurable

Definitions

  • the invention relates to the technical field of liquid crystal panels, in particular to a temperature control alignment device based on a glass mixed cutting substrate technology.
  • PS-VA Polymer stabilized vertical alignment
  • TFT Thin Film Transistor
  • LCD Thin Film Transistor
  • the liquid crystal contains a reactive monomer, so it has a liquid crystal curing step.
  • the reactive monomer in the liquid crystal is reacted by irradiating the substrate with ultraviolet light to form a pretilt angle of the liquid crystal. This process is called ultraviolet light alignment.
  • the pretilt angle formed by the liquid crystal directly affects the subsequent optical characteristics of the panel.
  • the panel response time is too slow.
  • the pretilt angle is too large, the panel contrast is too low, so the production of the middle panel needs to form a proper pretilt angle.
  • a large substrate is generally used for production, and a large substrate can be distributed with a plurality of panels.
  • FIG. 2 generally, for the convenience of design and process, several panels on a large substrate are of the same size. Due to the fixed size of the large substrate, when the product is produced, when the products of certain sizes are arranged on the substrate, a large substrate space is left, and the substrate utilization rate is low. Therefore, the industry has developed a multi-model glass (MMG) product. As shown in FIG. 3, in this production mode, products of different sizes are arranged on the large substrate at the same time, so that the substrate space is minimized and the utilization rate is maximized.
  • MMG multi-model glass
  • the intensity of ultraviolet light and the temperature of the machine in the machine are uniform.
  • the substrates are all of the same size, so the design is the same, and the panel aperture ratio is the same. Therefore, the intensity of the ultraviolet light received by the reactive monomer in each panel on the substrate is uniform, and each panel can form the same pretilt angle.
  • the invention provides a temperature-controlled alignment device based on the glass mixed-cut substrate technology, which is used to solve the technical problem that different panel dimensions on the substrate are inconsistent in pre-tilt angle when performing ultraviolet light alignment, and the performance of each product cannot meet the standard at the same time.
  • the invention provides a temperature control alignment device based on a glass mixed-cut substrate technology, comprising a machine divided into at least two regions and a heating module corresponding to each region.
  • each heating module comprises a heat conductive sheet disposed at the bottom of the machine table and matched with the shape of the corresponding area, a liquid pipe contacting the heat conductive sheet, and an electric heater contacting the liquid in the liquid pipe, and the electric heater is used for heating Liquid, leaving a gap between each thermal pad.
  • a controller connected to the electric heater in each heating module is further included, and the controller is configured to control the temperature of the electric heater.
  • the heating module further comprises a first temperature sensor disposed in the liquid conduit, the first temperature sensor being coupled to the controller.
  • the heating module further includes a pump in communication with the inlet of the liquid conduit and a reservoir in communication with the outlet of the liquid conduit.
  • the heating module further includes a first solenoid valve disposed at the inlet of the liquid conduit, the first solenoid valve being coupled to the controller.
  • the heating module further comprises a second solenoid valve disposed at the outlet of the liquid conduit, the second solenoid valve being coupled to the controller.
  • the gap between the heat transfer sheets is filled with a heat insulating material.
  • the liquid conduits are arranged in a ring shape and are evenly arranged on the heat conducting sheet.
  • the heating module further comprises a second temperature sensor disposed at the bottom of the machine, the second temperature sensing Connect to the controller.
  • the thermally conductive sheet is a copper sheet or an aluminum sheet.
  • the temperature control alignment device based on the glass mixed-cut substrate technology provided by the invention divides the machine into at least two regions, and provides a heating module for each region. Heating the different zones by the heating module to achieve a uniform reaction rate of the reactive monomers in the panels of the different zones. Thereby forming a uniform pretilt angle, when the products of different sizes are produced on the same substrate, the performance of each product can reach the standard at the same time.
  • FIG. 1 is a schematic view of ultraviolet light alignment in the prior art
  • FIG. 2 is a schematic view showing the arrangement of a conventional glass substrate
  • 3 is a schematic view showing the arrangement of an MMG glass substrate
  • FIG. 4 is a top plan view of a machine for a temperature-controlled alignment device based on a glass-mixed substrate technology according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural diagram of a heating module of a temperature control alignment device based on a glass mixed-cut substrate technology according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic structural diagram of a heating module of a temperature control alignment device based on a glass mixed-cut substrate technology according to Embodiment 2 of the present invention.
  • each heating module 3 includes a heat conducting sheet 31 disposed at the bottom of the machine table 1 and matched with the shape of the corresponding area 2, a liquid pipe 32 contacting the heat conducting sheet 31, and electric heating in contact with the liquid in the liquid pipe 32. 33.
  • the electric heater 33 is for heating the liquid, and a gap is left between the heat transfer sheets 31.
  • the existing machine 1 is a single temperature control, that is, the same machine 1 has only one temperature, and the reaction rate of the reactive monomer is strongly correlated with the temperature of the machine 1.
  • the temperature is used to compensate the reaction rate of the reactive monomer (the higher the temperature, the faster the reaction rate), that is, the same machine 1 can have different temperature zones 2, each Each of the temperature zones 2 corresponds to a different product.
  • the reaction rate of the reactive monomers in the different size panels is made uniform by the help of temperature, thereby forming a uniform pretilt angle. Therefore, in the present embodiment, the machine 1 is divided into at least two zones 2, each zone 2 corresponding to a heating module 3 for heating the corresponding zone 2. Different products are placed on different areas 2, the same ultraviolet light intensity is used for the machine 1, and the heating module 3 is used to heat different regions 2 at different temperatures to make the reaction monomers in different regions 2 The reaction rates are consistent to form a consistent pretilt angle.
  • the machine table 1 is divided into a plurality of zones 2 for producing panels of different sizes.
  • Each of the zones 2 is provided with a heating module 3 comprising a thermally conductive sheet 31, a liquid conduit 32 and an electric heater 33.
  • the heat conducting sheet 31 is disposed at the bottom of the machine table 1 and has the same size and shape as the heated region 2, the heat conducting sheet 31 is a copper sheet or an aluminum sheet, the heat conducting sheet 31 is in contact with the bottom of the machine table 1, and the liquid pipe 32 is in contact with the heat conducting sheet 31. The contact is for transferring heat to the heat conductive sheet 31, and the heat conductive sheet 31 transfers heat to the corresponding region 2.
  • the liquid pipe 32 is provided with an electric heater 33 for heating the liquid in the liquid pipe 32.
  • the liquid in the liquid pipe 32 may be water, and a gap is left between the heat conducting sheets 31 to prevent the heat conducting sheets. There is heat transfer between 31, affecting the temperature of each zone 2. Further, the gap between the heat conducting sheets 31 is filled with a heat insulating material to further block heat transfer between the heat conducting sheets 31 so as not to affect the temperature of the adjacent regions 2.
  • the temperature control alignment device based on the glass hybrid cutting substrate technology provided by the embodiment divides the machine table 1 into the machine table 1 of at least two regions 2, and provides a heating module 3 for each region 2. Heating the different regions 2 by the heating module 3 so that the reaction rates of the reactive monomers in the panels of the different regions 2 are consistent, thereby forming a uniform pretilt angle, when products of different sizes are produced on the same substrate. The performance of each product can meet the standard at the same time.
  • This embodiment is a supplementary explanation based on the above embodiment.
  • FIG. 5 is a schematic structural diagram of a temperature control alignment device based on a glass mixed-cut substrate technology according to Embodiment 2 of the present invention.
  • the present embodiment provides a temperature control alignment device based on a glass hybrid substrate technology, and further includes a controller 34 connected to the electric heater 33 in each heating module 3.
  • the controller 34 is used to control the temperature of the electric heater 33.
  • the controller 34 is connected to each of the electric heaters 33 for respectively controlling the heating temperatures of the electric heaters 33 so that the respective heating modules 3 reach different temperatures.
  • the heating module 3 further includes a first temperature sensor 35 disposed in the liquid conduit 32, and the first temperature sensor 35 is coupled to the controller 34.
  • the first temperature sensor 35 is for measuring the temperature of the liquid in the liquid conduit 32, and feeds the liquid temperature to the controller 34.
  • the controller 34 adjusts the heating temperature of the corresponding electric heater 33 according to the feedback liquid temperature, thereby controlling the liquid.
  • the temperature of the liquid in the conduit 32 is a first temperature sensor 35 disposed in the liquid conduit 32, and the first temperature sensor 35 is coupled to the controller 34.
  • the first temperature sensor 35 is for measuring the temperature of the liquid in the liquid conduit 32, and feeds the liquid temperature to the controller 34.
  • the controller 34 adjusts the heating temperature of the corresponding electric heater 33 according to the feedback liquid temperature, thereby controlling the liquid.
  • the temperature of the liquid in the conduit 32 is disposed in the liquid conduit 32, and the first temperature sensor 35 is coupled to the controller 34.
  • the first temperature sensor 35 is for measuring the temperature of the liquid in the liquid conduit 32, and feeds the
  • the heating module 3 further includes a pump 37 in communication with the inlet of the liquid conduit 32 and a reservoir 38 in communication with the outlet of the liquid conduit 32.
  • Pump 37 is used to deliver liquid into liquid conduit 32 and to deliver liquid from liquid conduit 32 to reservoir 38.
  • the reservoir tank 38 can also be placed in communication with the inlet of the liquid conduit 32.
  • the heating module 3 is used, the liquid is pumped from the reservoir 38 to the liquid conduit 32 by the pump 37.
  • the pump 37 is used to pump the liquid from the liquid.
  • the conduit 32 is delivered to the reservoir 38 for recycling of the liquid.
  • the liquid conduit 32 can also be in communication with a dedicated liquid supply tank.
  • the heating module 3 further includes a first solenoid valve 39 disposed at the inlet of the liquid conduit 32.
  • the first solenoid valve 39 is connected to the controller 34.
  • the controller 34 opens the first electromagnetic valve 39.
  • the controller 34 closes the first electromagnetic valve 39 for blocking the liquid conduit 32. The passage between the liquid supply and the irrigation.
  • the heating module 3 further includes a second solenoid valve 310 disposed at the outlet of the liquid conduit 32, and the second solenoid valve 310 is coupled to the controller 34.
  • the controller 34 opens the second solenoid valve 310.
  • the controller 34 closes the second solenoid valve 310 for blocking the liquid conduit. The passage between 32 and the reservoir 38.
  • liquid pipes 32 are arranged in a ring shape and are evenly arranged on the heat transfer sheets 31.
  • the liquid pipe 32 is evenly arranged on the heat transfer sheet 31 one turn, so that the guide heat piece 31 uniformly transfers heat.
  • the heating module 3 further includes a second temperature sensor 36 disposed at the bottom of the machine table 1, second Temperature sensor 36 is coupled to controller 34.
  • the second temperature sensor 36 is used to measure the temperature of the machine 1 at the bottom of the machine 1 and feed back the temperature of the machine 1 to the controller 34.
  • the controller 34 adjusts the temperature of the corresponding electric heater 33 according to the feedback temperature of the machine 1. The temperature is heated to control the temperature of the liquid in the liquid conduit 32, ultimately achieving the purpose of controlling the temperature of the machine 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

基于玻璃混切基板技术的温控配向装置,包括划分成至少两个区域(2)的机台(1)和对应每个区域(2)的加热模块(3)。每个加热模块(3)包括导热片(31)、液体管道(32)和电加热器(33)。通过为每个区域(2)设置一个加热模块(3)来为不同的区域(2)加热,以使不同区域(2)的面板中的反应型单体的反应速率达到一致,从而形成一致的预倾角。

Description

基于玻璃混切基板技术的温控配向装置
相关申请的交叉引用
本申请要求享有于2016年10月28日提交的名称为“基于玻璃混切基板技术的温控配向装置”的中国专利申请CN201610956615.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及液晶面板技术领域,尤其涉及一种基于玻璃混切基板技术的温控配向装置。
背景技术
高分子安定化垂直配向(polymer stabilized vertical alignment,简称PS-VA)是薄膜场效应晶体管(Thin Film Transistor,简称TFT)液晶显示器(Liquid Crystal Display,简称LCD)的一种技术。在PS-VA的cell制程中,液晶里包含有反应型单体,所以它有一个液晶curing的环节。如图1所示,通过对基板照射紫外光的方式使液晶中反应型单体发生反应,从而使液晶形成预倾角,这一制程称为紫外光配向。
在紫外光配向过程中,液晶形成的预倾角大小会直接影响到面板后续的光学特性,预倾角过小时,面板响应时间过慢。预倾角过大时,面板对比度太低,所以生产中面板需要形成合适的预倾角。
在实际生产中,一般采用大基板生产的方式,一片大基板可以分布多片面板。如图2所示,一般为了设计和制程方便统一,在大基板上的数片面板均为同一尺寸。由于大基板尺寸固定,当生产产品时,某些尺寸产品在基板上排布完成后,会留下很大的基板空余,基板利用率低。因此现在业内有开发玻璃混切基板技术(multi-model glass简称MMG)产品。如图3所示,在该种生产方式中,大基板上同时排布不同尺寸的产品,使基板空余最少,利用率达到最大化。
在实际生产中,机台内的紫外光强度、机台温度是均一的。对于传统基板生 产方式而言,其基板上都是同一尺寸产品,因此设计一样,各面板开口率一致。所以基板上各个面板中反应型单体接收的紫外光强度一致,各面板可以形成同一预倾角。
对于MMG产品而言,由于基板上各面板尺寸不一致,其各尺寸面板的设计不一样,开口率也不一样。因此在机台内做紫外光配向时各尺寸面板内的反应型单体接收到的紫外光强度是不一样的,所以最后各尺寸产品的预倾角不一致,导致各产品性能不能同时达标。
发明内容
本发明提供一种基于玻璃混切基板技术的温控配向装置,用以解决基板上不同的面板尺寸在做紫外光配向时预倾角不一致导致各产品性能不能同时达标的技术问题。
本发明提供一种基于玻璃混切基板技术的温控配向装置,包括划分成至少两个区域的机台和对应每个区域的加热模块。其中,每个加热模块包括设置在机台底部并与对应区域形状大小匹配的导热片、与导热片相接触的液体管道和与液体管道中的液体相接触的电加热器,电加热器用于加热液体,各导热片之间留有间隙。
优选的,还包括与各加热模块中的电加热器连接的控制器,控制器用于控制电加热器的温度。
优选的,加热模块还包括设置在液体管道中的第一温度传感器,第一温度传感器与控制器连接。
优选的,加热模块还包括与液体管道入口相连通的泵和与液体管道出口相连通的储液罐。
优选的,加热模块还包括设置于液体管道入口处的第一电磁阀,第一电磁阀与控制器连接。
优选的,加热模块还包括设置于液体管道出口处的第二电磁阀,第二电磁阀与控制器连接。
优选的,各导热片之间的间隙被隔热材料填充。
优选的,液体管道呈环形设置,均匀排布在导热片上。
优选的,加热模块还包括设置在机台底部的第二温度传感器,第二温度传感 器与控制器连接。
优选的,导热片为铜片或者铝片。
本发明提供的基于玻璃混切基板技术的温控配向装置,通过将机台划分成至少两个区域,并且为每个区域设置一个加热模块。通过加热模块为不同的区域加热,以使不同区域的面板中的反应型单体的反应速率达到一致。从而形成一致的预倾角,达到在同一基板上生成不同尺寸的产品时,各产品性能能同时达标。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明的技术方案而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为现有技术中的紫外光配向示意图;
图2为传统玻璃基板排布示意图;
图3为MMG玻璃基板排布示意图;
图4为本发明实施例一提供的基于玻璃混切基板技术的温控配向装置的机台俯视图;
图5为本发明实施例一提供的基于玻璃混切基板技术的温控配向装置的加热模块的结构示意图;
图6为本发明实施例二提供的基于玻璃混切基板技术的温控配向装置的加热模块的结构示意图。
具体实施方式
本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。以下将结合附图及实施例来详细说明本发明的实施方式。
实施例一
图4为本发明实施例一提供的基于玻璃混切基板技术的温控配向装置的机台俯视图。如图4所示,本实施例提供一种基于玻璃混切基板技术的温控配向装置,包括划分成至少两个区域2的机台1和对应每个区域2的加热模块3。其中,每个加热模块3包括设置在机台1底部并与对应区域2形状大小匹配的导热片31、与导热片31相接触的液体管道32和与液体管道32中的液体相接触的电加热器33。电加热器33用于加热液体,各导热片31之间留有间隙。
由于现有的机台1均是单一控温,即同一机台1只有一个温度,而反应型单体的反应速率与机台1温度是强相关的。通过把机台1设置成多点控温,使用温度来补偿反应型单体的反应速率(温度越高,反应速率越快),即同一个机台1上可以有不同的温度区域2,每个温度区域2各自对应不同的产品。这样,通过温度的帮助,使不同尺寸面板中的反应型单体的反应速率达到一致,从而形成一致的预倾角。因此,在本实施例中,将机台1划分成至少2个区域2,每个区域2对应一个加热模块3,用于为对应区域2加热。将不同的产品放在不同的区域2上,对机台1采用相同的紫外光强度进行照射,同时使用加热模块3对不同区域2进行不同温度的加热,使不同区域2中的反应型单体的反应速率达到一致,从而形成一致的预倾角。
机台1被划分成多个区域2,用于生产不同尺寸的面板。每个区域2设置一个加热模块3,加热模块3包括导热片31、液体管道32和电加热器33。导热片31设置在机台1底部并且与所加热的区域2形状相同大小相等,导热片31为铜片或者铝片,导热片31与机台1底部相接触,液体管道32与导热片31相接触,用于将热量传递给导热片31,导热片31再将热量传递给对应区域2。液体管道32中设置有电加热器33,电加热器33用于加热液体管道32中的液体,液体管道32中的液体可为水,各导热片31之间留有间隙,以防止各导热片31之间有热传递,影响各区域2的温度。进一步的,各导热片31之间的间隙被隔热材料填充,以进一步的隔断各导热片31之间的热传递,以免对相邻区域2的温度造成影响。
本实施例提供的基于玻璃混切基板技术的温控配向装置,通过将机台1划分成至少两个区域2的机台1,并且为每个区域2设置一个加热模块3。通过加热模块3为不同的区域2加热,以使不同区域2的面板中的反应型单体的反应速率达到一致,从而形成一致的预倾角,达到在同一基板上生成不同尺寸的产品时, 各产品性能能同时达标。
实施例二
本实施例是在上述实施例的基础上进行的补充说明。
图5为本发明实施例二提供的基于玻璃混切基板技术的温控配向装置的结构示意图。如图5所示,本实施例提供一种基于玻璃混切基板技术的温控配向装置,还包括与各加热模块3中的电加热器33连接的控制器34。控制器34用于控制电加热器33的温度。控制器34与各电加热器33连接,用于分别控制各电加热器33的加热温度,以使各加热模块3达到不同的温度。
进一步的,如图6所示,加热模块3还包括设置在液体管道32中的第一温度传感器35,第一温度传感器35与控制器34连接。第一温度传感器35用于测量液体管道32中的液体温度,并将该液体温度反馈给控制器34,由控制器34根据反馈的液体温度,调节相应电加热器33的加热温度,从而控制液体管道32中的液体温度。
进一步的,加热模块3还包括与液体管道32入口相连通的泵37和与液体管道32出口相连通的储液罐38。泵37用于将液体输送到液体管道32中,并将液体从液体管道32输送到储液罐38中。储液罐38也可设置为与液体管道32入口相连通,当使用加热模块3时,用泵37将液体从储液罐38中输送至液体管道32,使用完毕,用泵37将液体从液体管道32输送至储液罐38中,以实现液体的循环利用,当然,液体管道32也可以与专门的供液罐相连通。
进一步的,加热模块3还包括设置于液体管道32入口处的第一电磁阀39。第一电磁阀39与控制器34连接。在需要使用泵37将液体从供液罐输送至液体管道32时,控制器34开启第一电磁阀39,液体输入完毕后,控制器34关闭第一电磁阀39,用于阻断液体管道32与供液灌之间的通道。
进一步的,加热模块3还包括设置于液体管道32出口处的第二电磁阀310,第二电磁阀310与控制器34连接。在需要使用泵37将液体从液体管道32输送至储液罐38时,控制器34开启第二电磁阀310,液体输入完毕后,控制器34关闭第二电磁阀310,用于阻断液体管道32与储液罐38之间的通道。
进一步的,液体管道32呈环形设置,均匀排布在导热片31上。液体管道32一圈一圈均匀排布在导热片31上,以便向导热片31均匀传递热量。
进一步的,加热模块3还包括设置在机台1底部的第二温度传感器36,第二 温度传感器36与控制器34连接。第二温度传感器36用于测量机台1底部的机台1温度,并将该机台1温度反馈给控制器34,由控制器34根据反馈的机台1温度,调节相应电加热器33的加热温度,从而控制液体管道32中的液体温度,最终达到控制机台1温度的目的。
虽然本发明所披露的实施方式如上,但所述的内容仅为便于理解本发明技术方案而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种基于玻璃混切基板技术的温控配向装置,包括:划分成至少两个区域的机台和对应每个区域的加热模块,其中,每个所述加热模块包括设置在所述机台底部并与对应所述区域形状大小匹配的导热片、与所述导热片相接触的液体管道和与所述液体管道中的液体相接触的电加热器,所述电加热器用于加热液体,各所述导热片之间留有间隙。
  2. 根据权利要求1所述的基于玻璃混切基板技术的温控配向装置,其中,还包括与各所述加热模块中的所述电加热器连接的控制器,所述控制器用于控制电加热器的温度。
  3. 根据权利要求2所述的基于玻璃混切基板技术的温控配向装置,其中,所述加热模块还包括设置在所述液体管道中的第一温度传感器,所述第一温度传感器与所述控制器连接。
  4. 根据权利要求1所述的基于玻璃混切基板技术的温控配向装置,其中,所述加热模块还包括与所述液体管道入口相连通的泵和与所述液体管道出口相连通的储液罐。
  5. 根据权利要求2所述的基于玻璃混切基板技术的温控配向装置,其中,所述加热模块还包括设置于所述液体管道入口处的第一电磁阀,所述第一电磁阀与所述控制器连接。
  6. 根据权利要求2所述的基于玻璃混切基板技术的温控配向装置,其中,所述加热模块还包括设置于所述液体管道出口处的第二电磁阀,所述第二电磁阀与所述控制器连接。
  7. 根据权利要求1所述的基于玻璃混切基板技术的温控配向装置,其中,各所述导热片之间的间隙被隔热材料填充。
  8. 根据权利要求1所述的基于玻璃混切基板技术的温控配向装置,其中,所述液体管道呈环形设置,均匀排布在所述导热片上。
  9. 根据权利要求2所述的基于玻璃混切基板技术的温控配向装置,其中,所述加热模块还包括设置在所述机台底部的第二温度传感器,所述第二温度传感器与控制器连接。
  10. 根据权利要求2所述的基于玻璃混切基板技术的温控配向装置,其中,所述导热片为铜片或者铝片。
PCT/CN2017/071739 2016-10-28 2017-01-19 基于玻璃混切基板技术的温控配向装置 WO2018076557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,175 US10488695B2 (en) 2016-10-28 2017-01-19 Temperature-controlled alignment device based on multi-model glass technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610956615.0A CN106526981B (zh) 2016-10-28 2016-10-28 基于玻璃混切基板技术的温控配向装置
CN201610956615.0 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018076557A1 true WO2018076557A1 (zh) 2018-05-03

Family

ID=58325814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071739 WO2018076557A1 (zh) 2016-10-28 2017-01-19 基于玻璃混切基板技术的温控配向装置

Country Status (3)

Country Link
US (1) US10488695B2 (zh)
CN (1) CN106526981B (zh)
WO (1) WO2018076557A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315285B (zh) * 2017-07-19 2018-07-27 深圳市华星光电半导体显示技术有限公司 一种温控配向装置
CN107577073A (zh) * 2017-10-25 2018-01-12 深圳市华星光电技术有限公司 一种应用于mmg面板的平台及对mmg面板配向的方法
CN109656046B (zh) * 2018-11-30 2024-06-18 中航华东光电有限公司 低温高效加热的液晶显示模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060077335A1 (en) * 2004-10-13 2006-04-13 Chunghwa Picture Tubes., Ltd Method of utilizing ink-jetting to form spacer of liquid crystal display panel
CN102722054A (zh) * 2012-06-21 2012-10-10 深圳市华星光电技术有限公司 一种液晶材料的光配向方法及装置
CN104635383A (zh) * 2015-02-06 2015-05-20 深圳市华星光电技术有限公司 液晶面板的配向膜制作方法
CN104849913A (zh) * 2015-05-06 2015-08-19 深圳市华星光电技术有限公司 一种光配向装置及系统
CN105093686A (zh) * 2015-02-06 2015-11-25 深圳市华星光电技术有限公司 液晶配向膜制作方法及反应机台
CN105116626A (zh) * 2015-09-29 2015-12-02 深圳市华星光电技术有限公司 一种配向膜涂布装置及其涂布方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011366B2 (ja) * 1995-10-26 2000-02-21 株式会社ノリタケカンパニーリミテド 膜形成素材を含む基板の焼成方法および装置
JP2000241821A (ja) * 1999-02-24 2000-09-08 Seiko Epson Corp 液晶パネルの製造方法
KR100480826B1 (ko) * 2002-12-11 2005-04-07 엘지.필립스 엘시디 주식회사 액정표시장치의 배향막 형성장치
JP2007279269A (ja) * 2006-04-05 2007-10-25 Sumitomo Chemical Co Ltd 偏光板、それを用いた液晶パネル及び液晶表示装置
JP2009075503A (ja) * 2007-09-25 2009-04-09 Seiko Epson Corp 電気光学装置、及びこれを備えた電子機器
WO2011052331A1 (ja) * 2009-10-30 2011-05-05 シャープ株式会社 表示装置
KR101959218B1 (ko) * 2012-04-04 2019-03-21 삼성디스플레이 주식회사 액정 분사 방법, 이를 수행하는 액정 분사 장치 및 이를 이용한 액정 패널의 제조 방법
CN203363865U (zh) * 2013-07-22 2013-12-25 昆山三景科技股份有限公司 用于液晶显示屏的高能效led背光源
CN103941463A (zh) * 2013-12-31 2014-07-23 厦门天马微电子有限公司 彩膜基板、液晶显示面板及其液晶显示装置
CN204441293U (zh) * 2015-02-15 2015-07-01 深圳Tcl新技术有限公司 半导体纳米晶体管、发光组件及液晶电视
CN104991376A (zh) 2015-07-29 2015-10-21 深圳市华星光电技术有限公司 液晶显示器及其液晶面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060077335A1 (en) * 2004-10-13 2006-04-13 Chunghwa Picture Tubes., Ltd Method of utilizing ink-jetting to form spacer of liquid crystal display panel
CN102722054A (zh) * 2012-06-21 2012-10-10 深圳市华星光电技术有限公司 一种液晶材料的光配向方法及装置
CN104635383A (zh) * 2015-02-06 2015-05-20 深圳市华星光电技术有限公司 液晶面板的配向膜制作方法
CN105093686A (zh) * 2015-02-06 2015-11-25 深圳市华星光电技术有限公司 液晶配向膜制作方法及反应机台
CN104849913A (zh) * 2015-05-06 2015-08-19 深圳市华星光电技术有限公司 一种光配向装置及系统
CN105116626A (zh) * 2015-09-29 2015-12-02 深圳市华星光电技术有限公司 一种配向膜涂布装置及其涂布方法

Also Published As

Publication number Publication date
CN106526981B (zh) 2019-08-02
CN106526981A (zh) 2017-03-22
US10488695B2 (en) 2019-11-26
US20180217436A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2018076557A1 (zh) 基于玻璃混切基板技术的温控配向装置
EP2355133A2 (en) Substrate heating apparatus, substrate heating method and substrate processing system
US20100216365A1 (en) Curing device and manufacturing method for liquid crystal display
CN104570498B (zh) 可挠曲液晶面板及其制作方法
CN104988472B (zh) 半导体镀膜设备控温系统
CN201817546U (zh) 衬底支撑基座和应用该衬底支撑基座的化学气相沉积设备
CN102722054B (zh) 一种液晶材料的光配向方法及装置
CN104911544B (zh) 控温盘
TW201206845A (en) Radiation collimator for infrared heating and/or cooling of a moving glass sheet
CN104820316B (zh) 光配向装置、光配向方法和配向膜制备系统
CN107505739B (zh) 基板支撑件及配向膜预烘烤装置
CN103309090A (zh) 用于紫外线硬化配向中支撑基板的装置及其方法
CN104849913A (zh) 一种光配向装置及系统
US8893598B2 (en) Liquid crystal substrate cutting device and cutting method for liquid crystal substrate
CN208116051U (zh) 一种液晶喷涂装置
CN204256370U (zh) 光阻预烤炉加热器区域结构
WO2015089862A1 (zh) 配向紫外线烘烤装置
CN202189204U (zh) 配向膜干燥系统
CN103087726A (zh) 液晶取向层组合物、半透反射式液晶面板及其制造方法
CN107761077A (zh) 一种镀膜方法、装置以及pecvd设备
CN107340562A (zh) 导光板及液晶显示器
US9114598B2 (en) Method for laminating polarization film
CN101924016B (zh) 一种加热方法、装置及基片处理设备
US20190025617A1 (en) Temperature control alignment device
CN104289342A (zh) 聚酰亚胺涂布方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15500175

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865504

Country of ref document: EP

Kind code of ref document: A1