WO2018076408A1 - 利用静电纺丝技术制备量子棒/聚合物纤维膜的方法 - Google Patents

利用静电纺丝技术制备量子棒/聚合物纤维膜的方法 Download PDF

Info

Publication number
WO2018076408A1
WO2018076408A1 PCT/CN2016/105831 CN2016105831W WO2018076408A1 WO 2018076408 A1 WO2018076408 A1 WO 2018076408A1 CN 2016105831 W CN2016105831 W CN 2016105831W WO 2018076408 A1 WO2018076408 A1 WO 2018076408A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
quantum rod
cdse
polymer
electrospinning
Prior art date
Application number
PCT/CN2016/105831
Other languages
English (en)
French (fr)
Inventor
王恺
周子明
秦静
温佐良
李尚�
郝俊杰
陈威
孙小卫
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to US16/344,832 priority Critical patent/US11401627B2/en
Priority to JP2019544953A priority patent/JP6849979B2/ja
Priority to KR1020197015162A priority patent/KR102183504B1/ko
Publication of WO2018076408A1 publication Critical patent/WO2018076408A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/16Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/20Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain

Definitions

  • the invention belongs to the field of optical materials, relates to a method of a quantum rod/polymer fiber membrane, and more particularly to a method for preparing a quantum rod/polymer fiber membrane by using an electrospinning technique.
  • a quantum rod material is a crystalline material having a diameter of several nanometers and a length of 10 to 100 nm.
  • the quantum rod has similar optical properties as quantum dots, such as absorption characteristics and luminescence characteristics, and can control and adjust the light wave by adjusting the size and class of the quantum rod; the wavelength of the quantum rod is adjustable, covering the whole Visible range.
  • the elongated shape of a quantum rod makes it have optical properties not possessed by quantum dots.
  • the most special optical property of a quantum rod is that it has the property of emitting polarized light, which can emit polarization parallel to its long axis and perpendicular to its short axis. Light. This luminescent property of the quantum rod allows it to obtain polarized light in the long axis direction of the quantum rods arranged along a predefined axial direction.
  • CN 104992631 A discloses a method for preparing a quantum rod film, which is: on a substrate Forming a light transmissive film; forming a plurality of strip grooves on the light transmissive film; forming a quantum rod layer on the guiding film, the quantum rod layer comprising a curing gel and a quantum rod and an electric field doped in the curing gel Inductive monomer; an electric field is applied to the quantum rod layer, so that the electric field sensing monomer drives the quantum rod along the strip groove under the action of the electric field; and the solidified glue is solidified to fix the quantum rod.
  • CN 105602227A discloses a method for preparing a quantum rod film, which comprises: forming a plurality of pixel electrodes and a plurality of common electrodes on a substrate, coating a quantum rod composition on the substrate, the quantum rod composition comprising a plurality of quantum A rod, a polymer and a solvent comprising a main chain and a plurality of dipole side chains attached to the main chain. Generating an electric field between the plurality of pixel electrodes and the plurality of common electrodes to solidify the quantum rod composition to form a quantum rod film on the substrate, wherein a long axis of the plurality of quantum rods and the plurality of The axes of the dipole side chains are arranged in a direction substantially parallel to the electric field.
  • the above quantum rod film method adopts the method of electric field induction and solidification of the solidified material to achieve the purpose of aligning the quantum rods in a fixed orientation.
  • the quantum rod film obtained by the above process has a limited degree of orientation, and the operation is complicated and the process is cumbersome. The controllability is poor, and it is difficult to efficiently and mass-produce quantum rod films.
  • Nanowires are nanostructures having nanometer unit sizes, wherein the nanostructures have a variety of diameter sizes from less than 10 nm to hundreds of nm.
  • ordered one-dimensional nanowires can be fabricated by template method, self-assembly method, electric field induction, magnetic field induction, chemical/biomolecular affinity assembly, magnetic couple selection, imprint transfer, etching, and electrospinning.
  • the electrospinning technology can make the polymer solution electrostatically charged in the electrostatic field, and the solution forms a Taylor cone under the action of its own viscous force, surface tension, internal charge repulsive force and external electric field force.
  • electrospinning technology has attracted more and more attention from researchers. Originally used primarily in the production and research of the textile sector. With the progress of research, electrospinning technology has been introduced into the preparation of functional materials. Using electrospinning technology, fibers with diameters ranging from tens to hundreds of nanometers can be obtained, which is a relatively simple, efficient and versatile method.
  • quantum dot/polymer fiber membranes are mainly prepared by electrospinning technology, and quantum rod/polymer fiber membranes are not prepared by electrospinning technology, mainly because quantum rods are abundantly present and freely distributed.
  • quantum rods are abundantly present and freely distributed.
  • the present invention provides a method for preparing a quantum rod by using an electrospinning technique.
  • the method of the invention realizes the orientation arrangement of the quantum rods in the electrospinning process by adjusting the concentration of the quantum rod solution and the parameters in the electrospinning process, thereby obtaining a quantum rod/polymer fiber membrane having high polarization performance.
  • the present invention provides a method of preparing a quantum rod/polymer fiber membrane, the method comprising the steps of:
  • the volume concentration of the quantum rod in the electrospinning precursor solution may be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% or 80%, etc., but are not limited to the numerical values listed, and other unillustrated values within the numerical range are equally applicable.
  • Quantum rod/polymer fiber membrane refers to a composite fiber membrane of a quantum rod and a polymer.
  • the invention realizes the directional arrangement of the quantum rods in the electrospinning process by adjusting the concentration of the quantum rod solution and the parameters in the electrospinning process. Therefore, the concentration of the quantum rod in the electrospinning precursor solution should be controlled within a certain range.
  • the quantum rod solution in the step (1) is prepared from a quantum material.
  • the quantum material is a mononuclear material and/or a core-shell coating material, preferably a core-shell coating material.
  • the mononuclear material is any one or a combination of at least two of CdSe, CdTe, CdS, ZnSe, CdTe, CuInS, InP, CuZnSe or ZnMnSe, and typical but non-limiting examples of the combination are: CdSe and Combination of CdTe, combination of CdS and ZnSe, combination of CdTe and CuInS, combination of InP and CuZnSe, combination of CuZnSe and ZnMnSe, combination of CdSe, CdTe and CdS, combination of ZnSe, CdTe and CuInS, InP, CuZnSe and ZnMnSe Combination, CdSe, CdTe, CdS, a combination of ZnSe and CdTe, etc., is preferably CdSe.
  • the core-shell coating material has a single core material as a core, and the shell material is CdS, ZnO, Any one or a combination of at least two of ZnS, ZnSe or ZnTe, typical but non-limiting examples of which are: a combination of CdS and ZnO, a combination of ZnS and ZnSe, a combination of ZnSe and ZnTe, CdS, ZnO and ZnS
  • the combination, CdS, ZnO, ZnS, a combination of ZnSe and ZnTe, etc., is preferably CdS.
  • the quantum rod solution is a CdSe/CdS quantum rod solution
  • the CdSe/CdS quantum rod solution is prepared by a core-shell coating material with CdSe as The core, the shell material is CdS.
  • the preparation method of the other quantum rod solution other than the CdSe/CdS quantum rod solution can be obtained by the method described in the conventional prior art, and therefore will not be described herein.
  • the preparation method of the CdSe/CdS quantum rod solution comprises the following steps:
  • step (b) mixing CdO with the first surface modifier, stirring under heating until the CdO is completely dissolved to be transparent, and sequentially adding the solvent in the step (a) and the Se solution obtained in the step (a) to carry out a reaction, and cooling, to obtain a nuclear solution of CdSe;
  • reaction time in the step (b) is adjusted according to the required emission wavelength; and the reaction in the step (d) is carried out in the presence of an acid solvent.
  • the solvent in the step (a) is any one of tri-n-octylphosphine, tri-n-butylphosphine or diphenylphosphoric acid or a combination of at least two, and the combination is typical but not Restrictive Examples include a combination of tri-n-octylphosphine and tri-n-butylphosphine, a combination of tri-n-butylphosphine and diphenylphosphoric acid, a combination of tri-n-octylphosphine, tri-n-butylphosphine and diphenylphosphoric acid, and the like.
  • the solvent functions as a surface modification while acting as a solvent.
  • the amount of the Se powder in the step (a) is such that the concentration of the Se solution is 2 to 3 mmol/mL, for example, 2 mmol/mL, 2.2 mmol/mL, 2.4 mmol/mL, 2.6 mmol/mL, and 2.8 mmol/mL. Or 3 mmol/mL or the like, but it is not limited to the numerical values listed, and other numerical values not included in the numerical range are also applicable, and is preferably 2.5 mmol/mL.
  • the S powder in the step (a) is used in an amount such that the concentration of the S solution is 0.5 to 2 mmol/mL, for example, 0.5 mmol/mL, 0.7 mmol/mL, 1 mmol/mL, 1.3 mmol/mL, and 1.5 mmol/mL. 1.7 mmol/mL or 2 mmol/mL, etc., but not limited to the numerical values listed, and other numerical values not included in the numerical range are also applicable, and preferably 1 mmol/mL.
  • the step (a) is: separately dissolving the Se powder and the S powder in a solvent, and heating and stirring until the solution is in a transparent state to prepare a Se solution and an S solution.
  • the temperature of the heating and stirring in the step (a) is 50 ° C to 200 ° C, such as 50 ° C, 70 ° C, 90 ° C, 100 ° C, 130 ° C, 150 ° C, 170 ° C or 200 ° C, etc., but not only It is limited to the numerical values recited, and other numerical values not included in the numerical range are equally applicable.
  • the first surface modifying agent in step (b) is tetradecylphosphine and/or tri-n-octylphosphine oxide, preferably a combination of tetradecylphosphoric acid and tri-n-octylphosphine oxide.
  • the first surface modifying agent also functions as a solvent.
  • the mass ratio of the CdO to the first surface modifier in the step (b) is 1: (4 to 100), for example, 1:4, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100, etc., but is not limited to the numerical values listed, and other numerical values not included in the numerical range are equally applicable.
  • the heating temperature in the step (b) is from 300 ° C to 390 ° C, such as 300 ° C, 310 ° C, 320 ° C, 330 ° C, 340 ° C, 350 ° C, 360 ° C, 370 ° C, 380 ° C or 390 ° C.
  • Etc. but not limited to the numerical values recited, and other numerical values not included in the numerical range are equally applicable.
  • the acid solution in the step (c) is any one or a combination of at least two of a tri-n-octylphosphine solution, a tri-n-butylphosphine solution or a diphenylphosphoric acid solution, the combination being typical but not limited.
  • the second surface modifier in step (d) is any one or a combination of at least two of n-hexyl phosphoric acid, tetradecylphosphoric acid or tri-n-octylphosphine oxide, the combination being typical but not limited Examples are: a combination of n-hexylphosphoric acid and tetradecylphosphoric acid, a combination of tetradecylphosphoric acid and tri-n-octylphosphine oxide, a combination of n-hexylphosphoric acid, tetradecylphosphoric acid and tri-n-octylphosphine oxide, and the like. .
  • the mass ratio of the CdO to the second surface modifier in the step (d) is 1: (1 to 80), for example, 1:1, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70 or 1:80, etc., but is not limited to the numerical values listed, and other numerical values not included in the numerical range are equally applicable.
  • the heating temperature in the step (d) is 260 ° C to 350 ° C, such as 260 ° C, 270 ° C, 280 ° C, 290 ° C, 300 ° C, 310 ° C, 320 ° C, 330 ° C, 340 ° C or 350 ° C, etc.
  • the concentration of the CdSe/CdS quantum rod solution in the present invention can be adjusted according to the needs of actual use, and is not limited to the above concentration range.
  • the reaction temperature in the step (d) is from 300 ° C to 350 ° C, such as 300 ° C, 310 ° C, 320 ° C, 330 ° C, 340 ° C or 350 ° C, etc., but is not limited to the recited values, the value Other values not listed in the scope also apply.
  • the reaction time in the step (d) is 3 to 15 minutes, for example, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 13 minutes, or 15 minutes, etc., but is not limited to the numerical values listed, and other unillustrated values in the numerical range are the same. Be applicable.
  • the polymer is any one or a combination of at least two of polyvinylpyrrolidone, polymethyl methacrylate or polyacrylonitrile, typical but non-limiting examples of which are: polyvinylpyrrolidone and polymethyl
  • the combination of methyl acrylate, a combination of polymethyl methacrylate and polyacrylonitrile, a combination of polyvinylpyrrolidone, polymethyl methacrylate and polyacrylonitrile, etc., is preferably polymethyl methacrylate.
  • the organic solvent is any one or a combination of at least two of ethyl acetate, absolute ethanol or dimethylformamide, and typical but non-limiting examples of the combination are: ethyl acetate and absolute ethanol.
  • the volume concentration of the fluorescent quantum rod in the electrospinning precursor solution in the step (2) is 5% to 50%.
  • the electrospinning precursor solution prepared in the step (2) is added to the syringe in the electrospinning device in the step (3).
  • the voltage of the regulation generator in the step (3) is 5 kV to 50 kV, for example, 5 kV, 10 kV, 15 kV, 20 kV, 25 kV, 30 kV, 35 kV, 40 kV, 45 kV or 50 kV, etc., but is not limited to the enumerated values.
  • Other numerical values not listed in the numerical range are also applicable, and are preferably 5 kV to 30 kV.
  • the invention realizes the directional arrangement of the quantum rods in the electrospinning process by adjusting the concentration of the quantum rod solution and the parameters in the electrospinning process. Therefore, the generator voltage in the electrospinning device should be controlled within a certain range.
  • the receiving distance in the step (3) is the distance between the head and the receiver of the electrospinning device.
  • the receiving distance in step (3) is adjusted to be 5 cm to 50 cm, for example, 5 cm, 7 cm, 10 cm, 13 cm, 15 cm, 17 cm, 20 cm, 23 cm, 25 cm, 27 cm, 30 cm, 33 cm, 35 cm, 37 cm, 40 cm, 43 cm. 45 cm, 47 cm or 50 cm, etc., but not limited to the numerical values listed, and other numerical values not included in the numerical range are also applicable, and are preferably 5 cm to 25 cm.
  • the invention realizes electrospinning by adjusting the concentration of the quantum rod solution and the parameters in the electrospinning process The orientation of the quantum rods in the filament process. Therefore, the receiving distance needs to be controlled within a certain range.
  • the quantum rod/polymer fiber membrane obtained in the step (3) is pressed into a transparent film by a vulcanizer.
  • the temperature during the pressing of the vulcanizer is 80 ° C to 170 ° C, such as 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C or 170 ° C, etc.
  • 80 ° C to 170 ° C such as 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C or 170 ° C, etc.
  • 80 ° C to 130 ° C such as 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C or 170 ° C, etc.
  • the present invention provides a quantum rod/polymer fiber membrane prepared by the above preparation method, wherein the quantum rod/polymer fiber membrane has a degree of polarization of 20% to 70%, for example, 20%, 30%, 40%. 50%, 60% or 70%, etc., but are not limited to the numerical values listed, and other numerical values not included in the numerical range are also applicable.
  • the diameter of the nanofibers in the quantum rod/polymer fiber membrane is 200 nm to 2000 nm, for example, 200 nm, 300 nm, 500 nm, 700 nm, 1000 nm, 1300 nm, 1500 nm, 1700 nm or 2000 nm, etc., but is not limited to the numerical values listed. Other values not listed in this numerical range are also applicable.
  • the present invention has the following beneficial effects:
  • the present invention prepares aligned quantum rod/polymer nanofilm by electrospinning technology, and adjusts the concentration of the quantum rod solution and the parameters in the electrospinning process to realize the alignment of the quantum rods during the electrospinning process.
  • the obtained quantum rod/polymer nano film has high polarization performance (degree of polarization is 20% to 70%); and the method of the invention has simple experimental device, easy operation, and the diameter of the generated nanofiber can be controlled and adjusted. 200nm to 2000nm;
  • the method of the present invention is applicable to a plurality of high molecular polymers and has wide applicability
  • the quantum rod/polymer fiber membrane prepared by the invention is pressed by a high temperature and high pressure vulcanizer to form a transparent film, which can be used as an optical film brightness enhancement film, and is an ideal application in the optical LED industry.
  • Optical material Optical material.
  • Example 1 is an SEM image of a quantum rod/polymer fiber membrane produced in Example 4 of the present invention.
  • Figure 3 is a graph showing the polarization performance of a quantum rod/polymer fiber membrane produced in Example 4 of the present invention.
  • Se powder and S powder were dissolved in tri-n-octylphosphine (TOP), respectively, and stirred at 100 ° C until the solution was transparent to prepare a Se-TOP solution having a concentration of 2.5 mmol/mL and a concentration of 1 mmol/mL S-TOP solution;
  • TOP tri-n-octylphosphine
  • step (b) Mixing 26 mg of CdO with 112 mg of tetradecylphosphoric acid (TDPA) and 1.5 g of tri-n-octylphosphine oxide (TOPO), heating and stirring at 350 ° C until CdO is completely dissolved to be transparent, and rapidly adding 0.75 mL of TOP and step (a) The obtained 0.3 mL of Se-TOP solution is reacted, and after the reaction is completed, the entire heating device is turned off to cool the solution to room temperature to obtain a nuclear solution of CdSe;
  • TDPA tetradecylphosphoric acid
  • TOPO tri-n-octylphosphine oxide
  • the S-TOP solution; the heating and stirring temperature in the step (b) is 300 ° C; the heating and stirring temperature in the step (d) is 260 ° C, and sequentially adding 0.3 mL of TOP, 0.3 mL of the S- obtained in the step (a)
  • the TOP solution and the 0.2 mL CdSe-TOP solution prepared in the step (c) were reacted at 300 ° C for 15 min, and the other materials and preparation methods were the same as in Example 1, to finally obtain a CdSe/CdS quantum rod solution.
  • This embodiment provides a method for arranging a CdSe/CdS quantum rod solution, which is stirred at 200 ° C in step (a) to prepare a Se-TOP solution having a concentration of 3 mmol/mL and a concentration of 2 mmol/mL.
  • S-TOP solution the heating and stirring temperature in step (b) is 390 ° C; the heating and stirring temperature in step (d) is 350 ° C, and 1 mL of TOP, 1 mL of the S-TOP solution prepared in the step (a) and 1 mL are rapidly added in sequence.
  • This embodiment provides a method of preparing a quantum rod/polymer fiber membrane, the method comprising the steps of:
  • the obtained quantum rod/polymer fiber membrane was characterized.
  • the scanning electron micrograph is shown in Fig. 1.
  • the transmission electron micrograph is shown in Fig. 2. From the figure, it can be seen that the diameter of the nanofiber is 460 to 560 nm on average.
  • the prepared quantum rod/polymer fiber membrane is pressed by a high temperature and high pressure vulcanizer, and the temperature during the pressing process of the vulcanizer is 80-130 ° C, and the pressure is 1-10 MPa, and a transparent film is obtained, which is not vulcanized.
  • a comparison of the pressed quantum rod/polymer fiber membrane is shown in Fig. 4, in which the left side is a quantum rod/polymer fiber membrane which is not pressed by a vulcanizer, and the right side is a quantum rod/polymer fiber membrane which is pressed by a vulcanizer. It can be seen that the quantum rod/polymer fiber membrane is pressed by a high temperature and high pressure vulcanizer to form a transparent film.
  • This embodiment provides a method of preparing a quantum rod/polymer fiber membrane, the method comprising the steps of:
  • the quantum rod/polymer nano film prepared in this embodiment has high polarization performance, and the degree of polarization is 60%; and the diameter of the generated nanofiber can be controlled and adjusted, up to 200 nm to 2000 nm.
  • This embodiment provides a method of preparing a quantum rod/polymer fiber membrane, the method comprising the steps of:
  • the quantum rod/polymer nano film prepared in this embodiment has high polarization performance, and the degree of polarization is 50%; and the diameter of the generated nanofiber can be controlled and adjusted, up to 200 nm to 2000 nm.
  • the quantum rod/polymer nano film prepared in this embodiment has high polarization performance, and the degree of polarization is 40%; and the diameter of the generated nanofiber can be controlled and adjusted, up to 200 nm to 2000 nm.
  • This embodiment provides a method of preparing a quantum rod/polymer fiber membrane in addition to quantum
  • the bar solution was a ZnMnSe/ZnS quantum rod solution, and the other materials and preparation processes were the same as in Example 2.
  • the quantum rod/polymer nano film prepared in this embodiment has high polarization performance, and the degree of polarization is 40%; and the diameter of the generated nanofiber can be controlled and adjusted, up to 200 nm to 2000 nm.
  • the present comparative example provides a quantum rod/polymer fiber membrane in which the amount of other materials is prepared in addition to the volume concentration of the quantum rod in the electrospinning precursor solution in step (2) of 1% ( ⁇ 5%).
  • the procedure was the same as in Example 2.
  • the quantum rod/polymer nanofilms prepared in this comparative example have a degree of polarization of only 5%; the resulting nanometers cannot form a stable uniform diameter fiber.
  • the quantum rod/polymer nanofilms prepared in this comparative example have a degree of polarization of only 10%; the resulting nanofibers have a diameter of less than 200 nm.
  • the present comparative example provides a quantum rod/polymer fiber membrane in which the amount of other materials and the preparation process are the same as in Example 2 except that the generator voltage in step (3) is 1 kV ( ⁇ 5 kV).
  • the present comparative example provides a quantum rod/polymer fiber membrane in which the amount of other materials and the preparation process are the same as in Example 2 except that the receiving distance in the step (3) is 40 cm (>25 cm).
  • the quantum rod/polymer nanofilm prepared in this comparative example has a degree of polarization of only 11%; and the fiber cannot reach the receiving surface, and the textile does not form a film.
  • the present invention prepares aligned quantum rod/polymer nanofilms by electrospinning technology, by adjusting the concentration of the quantum rod solution and the parameters in the electrospinning process, Realizing the orientation arrangement of the quantum rods in the electrospinning process, so that the obtained quantum rod/polymer nano film has high polarization performance (polarization degree is 20% to 70%); and the method of the invention has simple experimental device and easy operation And the diameter of the generated nanofibers can be controlled and controlled, up to 200 nm to 2000 nm.
  • the method of the present invention is applicable to a variety of high molecular polymers and has wide applicability.
  • the quantum rod/polymer fiber membrane prepared by the invention is pressed by a high temperature and high pressure vulcanizer to form a transparent film, which can be used as an optical film brightness enhancement film, and is an ideal optical material applicable to the optical LED industry. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Luminescent Compositions (AREA)

Abstract

涉及一种利用静电纺丝技术制备量子棒/聚合物纤维膜的方法,所述方法包括以下步骤:(1)配制量子棒溶液;(2)配制聚合物溶液,将步制得的量子棒溶液加入聚合物溶液中形成量子棒体积浓度为5%~80%静电纺丝前驱溶液;(3)将静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压以及接收距离后,进行静电纺丝,制得量子棒/聚合物纤维膜。所述方法通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列,进而制得具有高度偏振性能的量子棒/聚合物纤维膜。

Description

[根据细则37.2由ISA制定的发明名称] 利用静电纺丝技术制备量子棒/聚合物纤维膜的方法 技术领域
本发明属于光学材料领域,涉及一种量子棒/聚合物纤维膜的方法,尤其涉及一种利用静电纺丝技术制备量子棒/聚合物纤维膜的方法。
背景技术
量子棒材料是一种直径在几个纳米而长度方向在10~100nm的一种晶体材料。量子棒具有与量子点类似的光学特性,如:吸收特性和发光特性,并且可通过调整量子棒的尺寸和类别来实现光波的控制和调整;量子棒的发光波长是可调的,可覆盖整个可见光范围。
量子棒的长形形态使得其具有量子点不具备的光学特性,量子棒最特别的光学特性在于其具有发射偏振光的特性,其可以发射平行于其长轴、且垂直于其短轴的偏振光。量子棒的这一发光特性使得其可获得沿着一预定义的轴向排布的量子棒的长轴方向的偏振光。
目前关于量子棒偏振性能的研究很多,但是大多是对于单颗粒的量子棒的分析,很少有关于在大量量子棒存在的情况下其偏振情况的分析。这是因为量子棒的偏振效果是沿着棒状材料的轴向方向,但是在大量量子棒自由分布的情况下,每个量子棒发出的沿各自轴向的线偏振光也是自由分布的,所以并未能显现出整体的偏振性能。为了得到明显偏振性能的含量子棒材料,就需要使其定向排列。
目前使量子棒材料定向排列的方法不多,例如运用机械拉伸的方法获得的量子棒薄膜材料,但是该方法对材料损失较大且定向效果有限。
CN 104992631A公开了一种量子棒膜的制备方法,所述方法为:在基体上 形成一层透光膜;在透光膜上形成多个条状沟槽;在导向膜上形成一量子棒层,所述量子棒层包括固化胶以及掺杂于固化胶内的量子棒和电场感应单体;对量子棒层施加电场,使得电场感应单体在电场的作用下带动量子棒沿条状沟槽排列;固化固化胶,以固定量子棒。
CN 105602227A公布了一种量子棒膜的制备方法,所述方法为:在基板上形成多个像素电极和多个公共电极,在基板上涂布量子棒组合物,量子棒组合物包含多个量子棒、含有主链和所述主链上连接的多个偶极子侧链的聚合物和溶剂。在所述多个像素电极和所述多个公共电极之间产生电场,使量子棒组合物固化而在基板上形成量子棒膜,其中,所述多个量子棒的长轴和所述多个偶极子侧链的轴沿与所述电场基本上平行的方向排列。
上述量子棒膜方法均采用电场诱导以及采用固化物质固化的方法来达到量子棒沿固定取向定向排列的目的,然而上述工艺制得的量子棒膜的定向排列程度有限,并且操作复杂,流程繁琐,可控性差,很难高效以及大量的制备量子棒膜。
纳米线是具有纳米单位尺寸的纳米结构,其中纳米结构具有从不到10nm到几百nm的多种直径尺寸。目前,有序的一维纳米线可以通过模板法、自组装法、电场诱导、磁场诱导、化学/生物分子亲和组装、磁偶选择、压印转移、刻蚀法和静电纺丝等技术制得。其中,静电纺丝技术可使高分子溶液在静电场中带静电,溶液在自身的粘滞力、表面张力、内部电荷排斥力、外部电场力的作用下形成泰勒锥。当外加的静电压增大至超过某一临界值时,高分子溶液所受电场力克服表面张力、粘滞力,就形成一股喷射细流,溶剂在射流喷射过程中会蒸发,同时高分子溶质逐渐固化,最终落在收集装置上,形成连续的微/纳米纤维。 静电纺丝技术由于其制备工艺简单,成本低廉等特点越来越受到研究人员的重视。最初主要应用于纺织领域的生产和研究。随着研究的进展,静电纺丝技术又被引入到功能材料的制备中,利用静电纺丝技术,可以获得直径为几十到几百纳米的纤维,是比较简单、高效、通用的方法。
现有技术中主要是利用静电纺丝技术制备量子点/聚合物纤维膜,并未有利用静电纺丝技术制备量子棒/聚合物纤维膜,这主要是因为在量子棒大量存在且自由分布的情况下,很难在静电纺丝过程中使其按照纺出的丝的顺序排列定向排列,进而无法得到具有明显高度偏振性能的量子棒材料。
因此,如何研究一种操作和流程简单且可控性高,具有高度偏振性能的量子棒/聚合物纤维膜时亟需解决的问题。
发明内容
针对现有制备量子棒膜方法中存在的操作复杂,流程繁琐,可控性差,且制备得到的量子棒膜定向排列程度有限等问题,本发明提供了一种利用静电纺丝技术制备量子棒/聚合物纤维膜的方法。本发明所述方法通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列,进而制得具有高度偏振性能的量子棒/聚合物纤维膜。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种量子棒/聚合物纤维膜的制备方法,所述方法包括以下步骤:
(1)配制量子棒溶液;
(2)配制聚合物溶液,将步骤(1)制得的量子棒溶液加入聚合物溶液中形成量子棒体积浓度为5%~80%的静电纺丝前驱溶液;
(3)将步骤(2)配制好的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压以及接收距离后,进行静电纺丝,制得量子棒/聚合物纤维膜。
其中,静电纺丝前驱溶液中量子棒体积浓度可为5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明所述“量子棒/聚合物纤维膜”是指量子棒和聚合物的复合纤维膜。
本发明通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列。故静电纺丝前驱溶液中量子棒浓度需控制在一定范围内。
以下作为本发明优选的技术方案,但不作为本发明提供的技术方案的限制,通过以下技术方案,可以更好的达到和实现本发明的技术目的和有益效果。
作为本发明优选的技术方案,步骤(1)中所述量子棒溶液由量子材料制备得到。
优选地,所述量子材料为单核材料和/或核壳包覆性材料,优选为核壳包覆性材料。
优选地,所述单核材料为CdSe、CdTe、CdS、ZnSe、CdTe、CuInS、InP、CuZnSe或ZnMnSe中任意一种或至少两种的组合,所述组合典型但非限制性实例有:CdSe和CdTe的组合,CdS和ZnSe的组合,CdTe和CuInS的组合,InP和CuZnSe的组合,CuZnSe和ZnMnSe的组合,CdSe、CdTe和CdS的组合,ZnSe、CdTe和CuInS的组合,InP、CuZnSe和ZnMnSe的组合,CdSe、CdTe、CdS、ZnSe和CdTe的组合等,优选为CdSe。
优选地,所述核壳包覆性材料以单核材料为核,其壳层材料为CdS、ZnO、 ZnS、ZnSe或ZnTe中任意一种或至少两种的组合,所述组合典型但非限制性实例有:CdS和ZnO的组合,ZnS和ZnSe的组合,ZnSe和ZnTe的组合,CdS、ZnO和ZnS的组合,CdS、ZnO、ZnS、ZnSe和ZnTe的组合等,优选为CdS。
作为本发明优选的技术方案,所述量子棒溶液为CdSe/CdS量子棒溶液,所述CdSe/CdS量子棒溶液由核壳包覆性材料制备得到,所述核壳包覆性材料以CdSe为核,其壳层材料为CdS。
本发明中,除所述CdSe/CdS量子棒溶液外的其他量子棒溶液的制备方法为常规现有技术中所述方法即可制得,故此处不再赘述。
作为本发明优选的技术方案,所述CdSe/CdS量子棒溶液的制备方法包括以下步骤:
(a)分别将Se粉和S粉溶于溶剂中,制成Se溶液和S溶液;
(b)将CdO和第一表面修饰剂混合,加热条件下搅拌至CdO完全溶解至透明,依次加入步骤(a)中所述溶剂和步骤(a)制得的Se溶液进行反应,冷却,得到CdSe的核溶液;
(c)将CdSe的核溶液进行提纯,并分散到酸溶液中,形成CdSe酸溶液;
(d)将CdO和第二表面修饰剂混合,加热条件下搅拌至CdO完全溶解至透明,依次加入步骤(a)中所述溶剂、步骤(a)制得的S溶液和步骤(c)制得的CdSe酸溶液进行反应,冷却,得到CdSe/CdS量子棒溶液。
其中,步骤(b)中的反应时间按照所需要的发射波长进行调节;步骤(d)中所述反应在有酸溶剂存在条件下进行包壳。
作为本发明优选的技术方案,步骤(a)中所述溶剂为三正辛基膦、三正丁基膦或二苯基磷酸中任意一种或至少两种的组合,所述组合典型但非限制性实 例有:三正辛基膦和三正丁基膦的组合,三正丁基膦和二苯基磷酸的组合,三正辛基膦、三正丁基膦和二苯基磷酸的组合等。此处,所述溶剂在起溶剂作用的同时,还起到了表面修饰的作用。
优选地,步骤(a)中所述Se粉的用量为使Se溶液浓度为2~3mmol/mL,例如2mmol/mL、2.2mmol/mL、2.4mmol/mL、2.6mmol/mL、2.8mmol/mL或3mmol/mL等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为2.5mmol/mL。
优选地,步骤(a)中所述S粉的用量为使S溶液浓度为0.5~2mmol/mL,例如0.5mmol/mL、0.7mmol/mL、1mmol/mL、1.3mmol/mL、1.5mmol/mL、1.7mmol/mL或2mmol/mL等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为1mmol/mL。
优选地,所述步骤(a)为:分别将Se粉和S粉溶于溶剂中,加热搅拌至溶液呈透明状态,制成Se溶液和S溶液。
优选地,所述步骤(a)中加热搅拌的温度为50℃~200℃,例如50℃、70℃、90℃、100℃、130℃、150℃、170℃或200℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(b)中所述第一表面修饰剂为十四烷基磷酸和/或三正辛基氧膦,优选为十四烷基磷酸和三正辛基氧膦的组合。此处,所述第一表面修饰剂还起到溶剂作用。
优选地,步骤(b)中所述CdO与第一表面修饰剂的质量比为1∶(4~100),例如1∶4、1∶10、1∶20、1∶30、1∶40、1∶50、1∶60、1∶70、1∶80、1∶90或1∶100等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(b)中所述加热的温度为300℃~390℃,例如300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃或390℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(c)中将CdSe的核溶液进行提纯为:将CdSe的核溶液用氯仿和/或乙醇离心提纯2~3次。
优选地,步骤(c)中所述酸溶液为三正辛基膦溶液、三正丁基膦溶液或二苯基磷酸溶液中任意一种或至少两种的组合,所述组合典型但非限制性实例有:三正辛基膦溶液和三正丁基膦溶液的组合,三正丁基膦溶液和二苯基磷酸溶液的组合,三正辛基膦溶液、三正丁基膦溶液和二苯基磷酸溶液的组合等。
优选地,步骤(d)中所述第二表面修饰剂为正己基磷酸、十四烷基磷酸或三正辛基氧膦中任意一种或至少两种的组合,所述组合典型但非限制性实例有:正己基磷酸和十四烷基磷酸的组合,十四烷基磷酸和三正辛基氧膦的组合,正己基磷酸、十四烷基磷酸和三正辛基氧膦的组合等。
优选地,步骤(d)中所述CdO与第二表面修饰剂的质量比为1∶(1~80),例如1∶1、1∶10、1∶20、1∶30、1∶40、1∶50、1∶60、1∶70或1∶80等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(d)中所述加热温度为260℃~350℃,例如260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃或350℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(d)中所述CdSe/CdS量子棒溶液的浓度为0~30mg/mL且不包括0,例如0.5mg/mL、1mg/mL、5mg/mL、10mg/mL、15mg/mL、20mg/mL、25mg/mL或30mg/mL等,但并不仅限于所列举的数值,该数值范围内其他未列 举的数值同样适用。
本发明中所述CdSe/CdS量子棒溶液的浓度可根据实际用于的需要进行调至,并非仅限于上述浓度范围。
优选地,步骤(d)中所述反应温度为300℃~350℃,例如300℃、310℃、320℃、330℃、340℃或350℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(d)中所述反应时间为3~15min,例如3min、5min、7min、10min、13min或15min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(2)中所述配制聚合物溶液为:将聚合物溶解于有机溶剂中,配制成质量浓度为1%~35%的聚合物溶液,例如1%、5%、10%、15%、20%、25%、30%或35%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为质量浓度为10%~35%的聚合物溶液。
优选地,所述聚合物为聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯或聚丙烯腈中任意一种或至少两种的组合,所述组合典型但非限制性实例有:聚乙烯吡咯烷酮和聚甲基丙烯酸甲酯的组合,聚甲基丙烯酸甲酯和聚丙烯腈的组合,聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯和聚丙烯腈的组合等,优选为聚甲基丙烯酸甲酯。
优选地,所述有机溶剂为乙酸乙酯、无水乙醇或二甲基甲酰胺中任意一种或至少两种的组合,所述组合典型但非限制性实例有:乙酸乙酯和无水乙醇的组合,无水乙醇和二甲基甲酰胺的组合,乙酸乙酯、无水乙醇和二甲基甲酰胺的组合等,优选为二甲基甲酰胺。
优选地,步骤(2)中所述静电纺丝前驱溶液中荧光量子棒的体积浓度为 5%~50%。
作为本发明优选的技术方案,步骤(3)中将步骤(2)配制好的静电纺丝前驱溶液加入静电纺丝装置中的注射器内。
优选地,步骤(3)中所述调节发生器电压为5kV~50kV,例如5kV、10kV、15kV、20kV、25kV、30kV、35kV、40kV、45kV或50kV等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为5kV~30kV。
本发明通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列。故静电纺丝装置中发生器电压需控制在一定的范围内。
优选地,步骤(3)中所述接收距离为静电纺丝装置的喷头与接收器之间的距离。
优选地,所述接收器为铝制锥形盘、三角形旋转框架、铜线框制成的旋转鼓、笼状收丝器或碟状收丝器中任意一种或至少两种的组合,所述组合典型但非限制性实例有:铝制锥形盘和三角形旋转框架的组合,铜线框制成的旋转鼓和笼状收丝器的组合,笼状收丝器和碟状收丝器的组合,铝制锥形盘、三角形旋转框架和铜线框制成的旋转鼓的组合,三角形旋转框架、铜线框制成的旋转鼓、笼状收丝器和碟状收丝器的组合等。
优选地,步骤(3)中调节所述接收距离为5cm~50cm,例如5cm、7cm、10cm、13cm、15cm、17cm、20cm、23cm、25cm、27cm、30cm、33cm、35cm、37cm、40cm、43cm、45cm、47cm或50cm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为5cm~25cm。
本发明通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺 丝过程中量子棒的定向排列。故接收距离需控制在一定范围内。
作为本发明优选的技术方案,步骤(3)制得的量子棒/聚合物纤维膜经硫化机压制制成透明薄膜。
本发明中,所制备得到的量子棒/聚合物纤维膜为不透明的白色疏松纤维薄膜,为了使其更好的应用于光学领域,可将量子棒/聚合物纤维膜经过高温高压的硫化机压制,制成透明薄膜。
优选地,所述硫化机压制过程中的温度为80℃~170℃,例如80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃或170℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为80℃~130℃。
优选地,所述硫化机压制过程中的压力为1MPa~20MPa,例如1MPa、3MPa、5MPa、7MPa、10MPa、13MPa、15MPa、17MPa或20MPa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为1MPa~10MPa。
第二方面,本发明提供了上述制备方法制备得到的量子棒/聚合物纤维膜,所述量子棒/聚合物纤维膜的偏振度为20%~70%,例如20%、30%、40%、50%、60%或70%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述量子棒/聚合物纤维膜中纳米纤维的直径为200nm~2000nm,例如200nm、300nm、500nm、700nm、1000nm、1300nm、1500nm、1700nm或2000nm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过静电纺丝技术制备定向排列的量子棒/聚合物纳米膜,通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列,使获得的量子棒/聚合物纳米膜具有高度偏振性能(偏振度为20%~70%);并且,本发明所述方法实验装置简单,操作容易,且生成的纳米纤维直径可以控制调节,可达200nm~2000nm;
(2)本发明所述方法适用于多种高分子聚合物,具有广泛的适用性;
(3)本发明所制备得到的量子棒/聚合物纤维膜经过高温高压的硫化机压制,可制成透明薄膜,可作为光学薄膜增亮膜应用,是一种理想的可应用于光学LED行业的光学材料。
附图说明
图1是本发明实施例4中制得的量子棒/聚合物纤维膜的SEM图;
图2是本发明实施例4中制得的量子棒/聚合物纤维膜的TEM图;
图3是本发明实施例4中制得的量子棒/聚合物纤维膜的偏振性能表征图;
图4是本发明实施例4中制得的量子棒/聚合物纤维膜经硫化机压制前后对比例图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。
本发明具体实施例部分提供了一种量子棒/聚合物纤维膜的制备方法,所述方法包括以下步骤:
(1)配制量子棒溶液;
(2)配制聚合物溶液,将步骤(1)制得的量子棒溶液加入聚合物溶液中形成量子棒体积浓度为5%~80%静电纺丝前驱溶液;
(3)将步骤(2)配制好的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压以及接收距离后,进行静电纺丝,制得量子棒/聚合物纤维膜。
以下为本发明典型但非限制性实施例:
实施例1:
本实施例提供了一种配置CdSe/CdS量子棒溶液的方法,所述方法包括以下步骤:
(a)分别将Se粉和S粉溶于三正辛基膦(TOP)中,于100℃下加热搅拌至溶液呈透明状态,制成浓度为2.5mmol/mL的Se-TOP溶液和浓度为1mmol/mL的S-TOP溶液;
(b)将26mgCdO与112mg十四烷基磷酸(TDPA)和1.5g三正辛基氧膦(TOPO)混合,于350℃加热搅拌至CdO完全溶解至透明,依次快速加入0.75mLTOP和步骤(a)制得的0.3mL的Se-TOP溶液进行反应,反应完成后关闭整个加热装置使溶液冷却至室温,得到CdSe的核溶液;
(c)将CdSe的核溶液用氯仿和乙醇体系离心提纯2~3次,并分散到TOP溶液中,形成CdSe-TOP溶液;
(d)将19mgCdO与正27mg己基磷酸(HPA)、100mg十四烷基磷酸(TDPA)和1g三正辛基氧膦(TOPO)混合,于300℃下加热搅拌至CdO完全溶解至透明,依次快速加入0.5mL的TOP、0.5mL的步骤(a)制得的S-TOP溶液和0.5mL步骤(c)制得的CdSe-TOP溶液于330℃下进行反应10min,反应完成后关闭整 个加热装置使溶液冷却至室温,得到CdSe/CdS量子棒溶液。
实施例2:
本实施例提供了一种配置CdSe/CdS量子棒溶液的方法,所述除了步骤(a)中于50℃下搅拌,制成浓度为2mmol/mL的Se-TOP溶液和浓度为0.5mmol/mL的S-TOP溶液;步骤(b)中加热搅拌温度为300℃;步骤(d)中加热搅拌温度为260℃,依次快速加入0.3mL的TOP、0.3mL的步骤(a)制得的S-TOP溶液和0.2mL步骤(c)制得的CdSe-TOP溶液于300℃下进行反应15min外,其他物料用量与制备方法均与实施例1中相同,最终得到CdSe/CdS量子棒溶液。
实施例3:
本实施例提供了一种配置CdSe/CdS量子棒溶液的方法,所述除了步骤(a)中于200℃下搅拌,制成浓度为3mmol/mL的Se-TOP溶液和浓度为2mmol/mL的S-TOP溶液;步骤(b)中加热搅拌温度为390℃;步骤(d)中加热搅拌温度为350℃,依次快速加入1mL的TOP、1mL的步骤(a)制得的S-TOP溶液和1mL步骤(c)制得的CdSe-TOP溶液于350℃下进行反应3min外,其他物料用量与制备方法均与实施例1中相同,最终得到CdSe/CdS量子棒溶液。
实施例4:
本实施例提供了一种制备量子棒/聚合物纤维膜的方法,所述方法包括以下步骤:
(1)将聚合物聚乙烯吡咯烷酮溶解于有机溶剂乙酸乙酯中,配制成质量浓度为20%的聚合物溶液,将实施例1中制得的CdSe/CdS量子棒溶液加入聚合物溶液中形成量子棒体积浓度为50%静电纺丝前驱溶液;
(2)将配制好的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压 为23kV~25kV以及接收距离为17cm~20cm后,进行静电纺丝,制得量子棒/聚合物纤维膜。
对所得量子棒/聚合物纤维膜进行表征,其扫描电子显微镜照片如图1所示,其透射电子显微镜照片如图2所示,从图中可以看出纳米纤维的直径平均为460~560nm。
对所得量子棒/聚合物纤维膜的偏振性能进行表征,其截图如图3所示,从图中可以看出本实施所制得的量子棒/聚合物纤维膜具有良好的偏振性。
将所制得的量子棒/聚合物纤维膜经过高温高压的硫化机压制,硫化机压制过程中的温度为80~130℃,压力为1~10MPa,制得透明薄膜,其于未经硫化机压制的量子棒/聚合物纤维膜的对比如图4所示,其中,左边为未经硫化机压制的量子棒/聚合物纤维膜,右边为经过硫化机压制的量子棒/聚合物纤维膜,可以看出,量子棒/聚合物纤维膜经过高温高压的硫化机压制,制成透明薄膜。
实施例5:
本实施例提供了一种制备量子棒/聚合物纤维膜的方法,所述方法包括以下步骤:
(1)配制CdTe/ZnTe量子棒溶液;
(2)将聚合物聚甲基丙烯酸甲酯溶解于有机溶剂无水乙醇中,配制成质量浓度为1%的聚合物溶液,将制得的CdTe/ZnTe量子棒溶液加入聚合物溶液中形成量子棒体积浓度为5%的静电纺丝前驱溶液;
(2)将配制好的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压为5kV~7kV以及接收距离为5cm~7cm后,进行静电纺丝,制得量子棒/聚合物纤维膜。
本实施例制得的量子棒/聚合物纳米膜具有高度偏振性能,其偏振度为60%;且生成的纳米纤维直径可以控制调节,可达200nm~2000nm。
实施例6:
本实施例提供了一种制备量子棒/聚合物纤维膜的方法,所述方法包括以下步骤:
(1)配制CdS/ZnS量子棒溶液;
(2)将聚合物聚丙烯腈溶解于有机溶剂无水乙醇中,配制成质量浓度为35%的聚合物溶液,将制得的CdS/ZnS量子棒溶液加入聚合物溶液中形成量子棒体积浓度为80%的静电纺丝前驱溶液;
(2)将配制好的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压为48kV~50kV以及接收距离为23cm~25cm后,进行静电纺丝,制得量子棒/聚合物纤维膜。
本实施例制得的量子棒/聚合物纳米膜具有高度偏振性能,其偏振度为50%;且生成的纳米纤维直径可以控制调节,可达200nm~2000nm。
实施例7:
本实施例提供了一种制备量子棒/聚合物纤维膜的方法,所述方法除了量子棒溶液为CuInS/ZnS量子棒溶液外,其他物料用量与制备过程均与实施例2中相同。
本实施例制得的量子棒/聚合物纳米膜具有高度偏振性能,其偏振性度为40%;且生成的纳米纤维直径可以控制调节,可达200nm~2000nm。
实施例8:
本实施例提供了一种制备量子棒/聚合物纤维膜的方法,所述方法除了量子 棒溶液为ZnMnSe/ZnS量子棒溶液外,其他物料用量与制备过程均与实施例2中相同。
本实施例制得的量子棒/聚合物纳米膜具有高度偏振性能,其偏振度为40%;且生成的纳米纤维直径可以控制调节,可达200nm~2000nm。
对比例1:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(2)中静电纺丝前驱溶液中量子棒体积浓度为1%(<5%)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为8%;生成的纳米纤维直径为200nm~2000nm。
对比例2:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(2)中静电纺丝前驱溶液中量子棒体积浓度为90%(>80%)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为5%;生成的纳米且无法形成稳定均一直径的纤维。
对比例3:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(3)中发生器电压为70kV(>50kV)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为10%;生成的纳米纤维直径为小于200nm。
对比例4:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(3)中发生器电压为1kV(<5kV)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为12%;生成的纳米纤维直径大于2000nm。
对比例5:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(3)中接收距离为1cm(<5cm)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为7%;生成的纳米纤维直径大于2000nm。
对比例6:
本对比例提供了一种量子棒/聚合物纤维膜,所述方法中除了步骤(3)中接收距离为40cm(>25cm)外,其他物料用量与制备过程均与实施例2中相同。
本对比例制得的量子棒/聚合物纳米膜的偏振性度仅为11%;且纤维不能够到达接受面,纺织不成膜。
综合实施例1-6和对比例1-6可以看出,本发明通过静电纺丝技术制备定向排列的量子棒/聚合物纳米膜,通过调节量子棒溶液浓度以及静电纺丝过程中的参数,实现静电纺丝过程中量子棒的定向排列,使获得的量子棒/聚合物纳米膜具有高度偏振性能(偏振度为20%~70%);并且,本发明所述方法实验装置简单,操作容易,且生成的纳米纤维直径可以控制调节,可达200nm~2000nm。同时,本发明所述方法适用于多种高分子聚合物,具有广泛的适用性。本发明所制备得到的量子棒/聚合物纤维膜经过高温高压的硫化机压制,可制成透明薄膜,可作为光学薄膜增亮膜应用,是一种理想的可应用于光学LED行业的光学材料。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (12)

  1. 一种量子棒/聚合物纤维膜的制备方法,其特征在于,所述方法包括以下步骤:
    (1)配制量子棒溶液;
    (2)配制聚合物溶液,将步骤(1)制得的量子棒溶液加入聚合物溶液中形成量子棒体积浓度为5%~80%的静电纺丝前驱溶液;
    (3)将步骤(2)制得的静电纺丝前驱溶液加入静电纺丝装置中,调节发生器电压以及接收距离后,进行静电纺丝,制得量子棒/聚合物纤维膜。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述量子棒溶液由量子材料制备得到。
  3. 根据权利要求2所述的制备方法,其特征在于,所述量子材料为单核材料和/或核壳包覆性材料。
  4. 根据权利要求2所述的制备方法,其特征在于,所述量子材料为核壳包覆性材料;
    优选地,所述单核材料为CdSe、CdTe、CdS、ZnSe、CdTe、CuInS、InP、CuZnSe或ZnMnSe中任意一种或至少两种的组合,优选为CdSe;
    优选地,所述核壳包覆性材料以单核材料为核,其壳层材料为CdS、ZnO、ZnS、ZnSe或ZnTe中任意一种或至少两种的组合,优选为CdS。
  5. 根据权利要求2所述的制备方法,其特征在于,所述量子棒溶液为CdSe/CdS量子棒溶液,所述CdSe/CdS量子棒溶液由核壳包覆性材料制备得到,所述核壳包覆性材料以CdSe为核,其壳层材料为CdS。
  6. 根据权利要求5所述的制备方法,其特征在于,所述CdSe/CdS量子棒溶液的制备方法包括以下步骤:
    (a)分别将Se粉和S粉溶于溶剂中,制成Se溶液和S溶液;
    (b)将CdO和第一表面修饰剂混合,加热条件下搅拌至CdO完全溶解至透明,依次加入步骤(a)中所述溶剂和步骤(a)制得的Se溶液进行反应,冷却,得到CdSe的核溶液;
    (c)将CdSe的核溶液进行提纯,并分散到酸溶液中,形成CdSe酸溶液;
    (d)将CdO和第二表面修饰剂混合,加热条件下搅拌至CdO完全溶解至透明,依次加入步骤(a)中所述溶剂、步骤(a)制得的S溶液和步骤(c)制得的CdSe酸溶液进行反应,冷却,得到CdSe/CdS量子棒溶液。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤(a)中所述溶剂为三正辛基膦、三正丁基膦或二苯基磷酸中任意一种或至少两种的组合;
    优选地,步骤(a)中所述Se粉的用量为使Se溶液浓度为2~3mmol/mL,优选为2.5mmol/mL;
    优选地,步骤(a)中所述S粉的用量为使S溶液浓度为0.5~2mmol/mL,优选为1mmol/mL;
    优选地,所述步骤(a)为分别将Se粉和S粉溶于溶剂中,加热搅拌至溶液呈透明状态,制成Se溶液和S溶液;
    优选地,所述步骤(a)中加热搅拌的温度为50℃~200℃;
    优选地,步骤(b)中所述第一表面修饰剂为十四烷基磷酸和/或三正辛基氧膦,优选为十四烷基磷酸和三正辛基氧膦的组合;
    优选地,步骤(b)中所述CdO与第一表面修饰剂的质量比为1∶(4~100);
    优选地,步骤(b)中所述加热的温度为300℃~390℃。
  8. 根据权利要求6或7所述的制备方法,其特征在于,步骤(c)中将CdSe 的核溶液进行提纯为:将CdSe的核溶液用氯仿和/或乙醇离心提纯2~3次;
    优选地,步骤(c)中所述酸溶液为三正辛基膦溶液、三正丁基膦溶液或二苯基磷酸溶液中任意一种或至少两种的组合;
    优选地,步骤(d)中所述第二表面修饰剂为正己基磷酸、十四烷基磷酸或三正辛基氧膦中任意一种或至少两种的组合,优选为正己基磷酸、十四烷基磷酸和三正辛基氧膦的组合;
    优选地,步骤(d)中所述CdO与第二表面修饰剂的质量比为1∶(1~80);
    优选地,步骤(d)中所述加热温度为260℃~350℃;
    优选地,步骤(d)中所述CdSe/CdS量子棒溶液的浓度为0~30mg/mL且不包括0;
    优选地,步骤(d)中所述反应温度为300℃~350℃;
    优选地,步骤(d)中所述反应时间为3~15min。
  9. 根据权利要求1-8任一项所述的制备方法,其特征在于,步骤(2)中所述配制聚合物溶液为:将聚合物溶解于有机溶剂中,配制成质量浓度为1%~35%的聚合物溶液,优选为质量浓度为10%~35%的聚合物溶液;
    优选地,所述聚合物为聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯或聚丙烯腈中任意一种或至少两种的组合,优选为聚甲基丙烯酸甲酯;
    优选地,所述有机溶剂为乙酸乙酯、无水乙醇或二甲基甲酰胺中任意一种或至少两种的组合,优选为二甲基甲酰胺;
    优选地,步骤(2)中所述静电纺丝前驱溶液中荧光量子棒的体积浓度为5%~50%。
  10. 根据权利要求1-9任一项所述的制备方法,其特征在于,步骤(3)中 将步骤(2)配制好的静电纺丝前驱溶液加入静电纺丝装置中的注射器内;
    优选地,步骤(3)中所述调节发生器电压为5kV~50kV,优选为5kV~30kV;
    优选地,步骤(3)中所述接收距离为静电纺丝装置的喷头与接收器之间的距离;
    优选地,所述接收器为铝制锥形盘、三角形旋转框架、铜线框制成的旋转鼓、笼状收丝器或碟状收丝器中任意一种或至少两种的组合;
    优选地,步骤(3)中调节所述接收距离为5cm~50cm,优选为5cm~25cm。
  11. 根据权利要求1-10任一项所述的制备方法,其特征在于,步骤(3)制得的量子棒/聚合物纤维膜经硫化机压制制成透明薄膜;
    优选地,所述硫化机压制过程中的温度为80℃~170℃,优选为80℃~130℃;
    优选地,所述硫化机压制过程中的压力为1MPa~20MPa,优选为1MPa~10MPa。
  12. 根据权利要求1-11任一项所述的制备方法制备得到的量子棒/聚合物纤维膜,其特征在于,所述量子棒/聚合物纤维膜的偏振度为20%~70%;
    优选地,所述量子棒/聚合物纤维膜中纳米纤维的直径为200nm~2000nm。
PCT/CN2016/105831 2016-10-26 2016-11-15 利用静电纺丝技术制备量子棒/聚合物纤维膜的方法 WO2018076408A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/344,832 US11401627B2 (en) 2016-10-26 2016-11-15 Method for preparing quantum rod/polymer fiber membrane by using electrospinning technique
JP2019544953A JP6849979B2 (ja) 2016-10-26 2016-11-15 電界紡糸技術で量子ロッド/ポリマー繊維膜を製造する方法
KR1020197015162A KR102183504B1 (ko) 2016-10-26 2016-11-15 정전방사 기술을 이용하여 양자막대/폴리머 섬유막을 제조하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610946860.3 2016-10-26
CN201610946860.3A CN106283398B (zh) 2016-10-26 2016-10-26 一种利用静电纺丝技术制备量子棒/聚合物纤维膜的方法

Publications (1)

Publication Number Publication Date
WO2018076408A1 true WO2018076408A1 (zh) 2018-05-03

Family

ID=57720329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105831 WO2018076408A1 (zh) 2016-10-26 2016-11-15 利用静电纺丝技术制备量子棒/聚合物纤维膜的方法

Country Status (5)

Country Link
US (1) US11401627B2 (zh)
JP (1) JP6849979B2 (zh)
KR (1) KR102183504B1 (zh)
CN (1) CN106283398B (zh)
WO (1) WO2018076408A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116397379A (zh) * 2023-03-15 2023-07-07 天津工业大学 光动力型共静电纺螺旋纤维抗菌膜及其制备方法和应用
CN117264253A (zh) * 2023-09-27 2023-12-22 中国矿业大学 一种高储能密度聚丙烯复合电介质材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513304B (zh) * 2017-08-23 2021-06-08 南方科技大学 一种基于量子棒定向排列的荧光偏振薄膜的制备方法
CN111148801B (zh) * 2017-09-29 2021-12-28 汉阳大学校产学协力团 用于静电喷雾沉积的浆料和使用该浆料形成涂膜的方法
CN111257989A (zh) * 2020-03-04 2020-06-09 Tcl华星光电技术有限公司 偏光膜及其制备方法与显示面板
CN111580209A (zh) * 2020-05-20 2020-08-25 Tcl华星光电技术有限公司 偏光片、光学薄膜及其制备方法
CN113046919B (zh) * 2021-02-06 2022-11-25 宁波工程学院 一种包覆CsPbBr3纳米棒定向聚合物纤维膜及其制备方法
CN113130807B (zh) * 2021-04-16 2024-04-30 河北工业大学 一种发光器件及其制备方法和应用
CN114059233B (zh) * 2021-11-17 2022-09-16 东华大学 一种透明纳米纤维膜及其制备和在透明口罩上的应用
CN115467090B (zh) * 2022-08-17 2023-07-04 苏州大学 一种基于有机电荷转移共晶的纳米纤维膜、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944538A (zh) * 2012-08-06 2013-02-27 中国科学院新疆理化技术研究所 荧光碳量子点/聚丙烯腈纳米纤维膜的制备方法及用途
CN104451912A (zh) * 2014-11-24 2015-03-25 浙江大学 成形微纳米纤维的制备装置及制备方法
CN104992631A (zh) * 2015-07-29 2015-10-21 深圳市华星光电技术有限公司 量子棒膜的制造方法及量子棒发光显示装置
CN105602227A (zh) * 2014-11-13 2016-05-25 乐金显示有限公司 量子棒组合物、量子棒膜和包含该量子棒膜的显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204539A1 (en) * 2005-03-11 2006-09-14 Anthony Atala Electrospun cell matrices
WO2011046842A1 (en) * 2009-10-12 2011-04-21 The Regents Of The University Of California Targeted nanoclusters and methods of their use
KR20130069611A (ko) 2010-04-06 2013-06-26 엔디에스유 리서치 파운데이션 액체 실란계 조성물 및 실리콘계 물질의 제조 방법
CN102127825B (zh) * 2010-12-23 2012-06-27 黑龙江大学 一种聚合物荧光多彩纤维的制备方法
CN102505173A (zh) * 2011-10-21 2012-06-20 黑龙江大学 一种CdTe量子点/聚甲基丙烯酸甲酯复合纤维无纺布荧光显示材料的制备方法
US9362481B2 (en) * 2012-03-05 2016-06-07 The Johns Hopkins University Continuous piezoelectric film including polar polymer fibers
WO2014160174A1 (en) * 2013-03-14 2014-10-02 Cornell University Carbon and carbon precursors in nanofibers
CN105209678A (zh) * 2013-03-15 2015-12-30 纳米纤维解决方案股份有限公司 用于植入的生物相容的纤维织物
TWI506501B (zh) 2013-08-30 2015-11-01 Ye Xin Technology Consulting Co Ltd 電子裝置
US9853324B2 (en) * 2013-09-11 2017-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Nanowire-based solid electrolytes and lithium-ion batteries including the same
CN103674922B (zh) * 2013-12-23 2015-10-21 北京科技大学 一种量子点功能化的纳米纤维检测癌细胞的传感器及制备方法
CN106661444A (zh) * 2014-06-13 2017-05-10 默克专利股份有限公司 混合物、纳米纤维和偏振光发射膜
KR102203063B1 (ko) 2014-06-30 2021-01-14 엘지디스플레이 주식회사 양자 막대 표시장치 및 양자 막대의 제조방법
US20160200974A1 (en) * 2015-01-12 2016-07-14 The Board Of Trustees Of The University Of Illinois Brightness equalized quantum dots
CN104835439B (zh) 2015-04-17 2018-02-06 业成光电(深圳)有限公司 显示装置及驱动方法
US9899575B2 (en) * 2015-04-30 2018-02-20 Nano And Advanced Materials Institute Limited Method of continuous flow synthesis and method of correcting emission spectrum of light emitting device
US10571740B2 (en) * 2015-07-13 2020-02-25 Amogreentech Co., Ltd. Quantum dot sheet of fibrous-web structure, manufacturing method thereof, and backlight unit
CN105046243B (zh) 2015-08-25 2019-12-20 业成光电(深圳)有限公司 显示装置
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板
US20170323991A1 (en) * 2016-05-04 2017-11-09 Los Alamos National Security, Llc Composition and method comprising overcoated quantum dots
CN106951130B (zh) 2017-03-28 2019-09-03 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示设备及阵列基板制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944538A (zh) * 2012-08-06 2013-02-27 中国科学院新疆理化技术研究所 荧光碳量子点/聚丙烯腈纳米纤维膜的制备方法及用途
CN105602227A (zh) * 2014-11-13 2016-05-25 乐金显示有限公司 量子棒组合物、量子棒膜和包含该量子棒膜的显示装置
CN104451912A (zh) * 2014-11-24 2015-03-25 浙江大学 成形微纳米纤维的制备装置及制备方法
CN104992631A (zh) * 2015-07-29 2015-10-21 深圳市华星光电技术有限公司 量子棒膜的制造方法及量子棒发光显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116397379A (zh) * 2023-03-15 2023-07-07 天津工业大学 光动力型共静电纺螺旋纤维抗菌膜及其制备方法和应用
CN116397379B (zh) * 2023-03-15 2023-09-19 天津工业大学 光动力型共静电纺螺旋纤维抗菌膜及其制备方法和应用
CN117264253A (zh) * 2023-09-27 2023-12-22 中国矿业大学 一种高储能密度聚丙烯复合电介质材料及其制备方法
CN117264253B (zh) * 2023-09-27 2024-05-24 中国矿业大学 一种高储能密度聚丙烯复合电介质材料及其制备方法

Also Published As

Publication number Publication date
KR20190069561A (ko) 2019-06-19
KR102183504B1 (ko) 2020-11-26
CN106283398B (zh) 2019-09-24
JP2019535926A (ja) 2019-12-12
US11401627B2 (en) 2022-08-02
US20190249337A1 (en) 2019-08-15
JP6849979B2 (ja) 2021-03-31
CN106283398A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018076408A1 (zh) 利用静电纺丝技术制备量子棒/聚合物纤维膜的方法
JP6507288B2 (ja) ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用
CN103172044B (zh) 碳纳米管纸的制备方法
CN101805938A (zh) 一种生物相容的纳米导电纤维及制备方法
JP2017524970A (ja) 混合物、ナノファイバーおよび偏光放射性フィルム
KR20050062407A (ko) 탄소나노튜브를 포함하는 복합체 및 탄소나노튜브집합체의 제조방법
CN113235227B (zh) 一种复合薄膜的制备方法及应用
Choudhary et al. 1D nanomaterials and their optoelectronic applications
US20040155517A1 (en) Self-assembled hybrid compositions and methods of making, using and ordering the same
CN111849477A (zh) 一种超疏水荧光纤维的制备方法及应用
TWI416545B (zh) 導電板的製作方法及其製備系統
CN110565193A (zh) 一种CdSe/CdS纳米片杂化纤维及其制备方法
CN115322291A (zh) 一种有机超长室温磷光纳米纤维材料及其制备方法
CN113089150B (zh) 一种光驱致动的人工肌肉材料及其制备方法和应用
CN109930243B (zh) 纳米纤维及其制备方法
Sheng et al. Electrospinning of fluorescent-magnetic-conductive tri-functional nanofibrous yarns
Jayathilaka et al. Electrospinning of luminescence nanofibers: Current and future trends in wearable light-emitting devices
Kim et al. Preparation of luminescing nanocrystal and its application to electrospinning
Jayathilaka et al. Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
Diouri et al. Research Article Effect of Wrapped Carbon Nanotubes on Optical Properties, Morphology, and Thermal Stability of Electrospun Poly (vinyl alcohol) Composite Nanofibers
Wen et al. Large-scale alignment quantum rods film for high efficiency wide color gamut LED display
Hung et al. Efficient field emission from bundle array of carbon-nanotube-on-silicon-nanowire heterojunctions
Lee et al. Efficient field emission from bundle array of carbon-nanotube-on-silicon-nanowire heteroj unctions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015162

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16919911

Country of ref document: EP

Kind code of ref document: A1