WO2018074273A1 - 複合プラスチック成形物 - Google Patents

複合プラスチック成形物 Download PDF

Info

Publication number
WO2018074273A1
WO2018074273A1 PCT/JP2017/036532 JP2017036532W WO2018074273A1 WO 2018074273 A1 WO2018074273 A1 WO 2018074273A1 JP 2017036532 W JP2017036532 W JP 2017036532W WO 2018074273 A1 WO2018074273 A1 WO 2018074273A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
rosin
ester
weight
composite plastic
Prior art date
Application number
PCT/JP2017/036532
Other languages
English (en)
French (fr)
Inventor
義昌 佐藤
健介 引地
徹也 柏原
泰裕 松下
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Priority to EP17861718.9A priority Critical patent/EP3527627B1/en
Priority to CN201780063810.3A priority patent/CN109844034B/zh
Priority to US16/338,056 priority patent/US20190249008A1/en
Publication of WO2018074273A1 publication Critical patent/WO2018074273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins
    • C09F1/04Chemical modification, e.g. esterification

Definitions

  • the present invention relates to a composite plastic molding.
  • Composite plastic moldings have excellent mechanical strength, so they are processed into injection molded products, films, sheets, fibers, etc., and are used in a wide range of applications such as mobile phones, personal computers, and LED devices.
  • the base material of the composite plastic molding includes general-purpose plastics such as polyvinyl chloride and polyethylene; engineering plastics such as polyamide, polycarbonate and polyester; super engineering plastics such as polyamideimide, polyphenylsulfone and polyethersulfone.
  • engineering plastics are highly reliable base materials with excellent heat resistance, and are used in liquid crystal television parts, electronic parts such as optical fibers, clothing fibers, automobile parts, and the like.
  • a phthalic acid plasticizer or the like is added in order to easily process and impart flexibility.
  • phthalate-based plasticizers may not be fully compatible with plastic substrates, and plasticizers may ooze out from the substrate (referred to as “bleed out”) and may have a detrimental effect on human health and the environment. It can affect.
  • thermoplastic resin composition using a specific amount of organosiloxane with respect to a resin composition containing a styrene resin and a thermoplastic resin is known (Patent Document 1).
  • a thermoplastic resin composition containing a thermoplastic resin that is a polyamide resin, an aliphatic polyester resin, or a semi-aromatic polyester resin, a filler, and rosin is also known (Patent Document 2).
  • Patent Document 1 cannot sufficiently suppress bleed-out when a styrene resin is used, and is inferior in moldability. Further, the invention described in Patent Document 2 is colored at the time of molding.
  • the composite plastic molding of one embodiment of the present invention is a reaction product of (A) engineering plastic and (B) rosins and a monohydric alcohol having 1 to 9 carbon atoms, and does not have an aromatic ring.
  • An abietic acid type resin acid having a conjugated double bond and an ester thereof are less than 1% by weight, and include a rosin ester having a glass transition temperature of ⁇ 15 ° C. or lower.
  • a composite plastic molded product (hereinafter also referred to as a molded product) according to an embodiment of the present invention includes an engineering plastic (A) (hereinafter referred to as component (A)) and a specific rosin ester (B) (hereinafter referred to as (B). Component).
  • the component (A) has a structure containing not only carbon but also oxygen and nitrogen in the molecular chain. Therefore, the component (A) has excellent heat resistance.
  • the component (A) is not particularly limited.
  • the component (A) preferably has thermoplasticity. Examples of the component (A) having thermoplasticity include polyamide, polyester, polycarbonate, polyacetal and the like. A plurality of these may be used.
  • Polyamide is not particularly limited. Various known polyamides can be used. Examples of the polyamide include 6-nylon, 6,6-nylon, 6,10-nylon, 12-nylon, 9-nylon, polyamide 4, polyamide 12 and the like. Examples of the polyamide include aromatic nylon such as polyamide 6T, polyamide 9T, and polyamide 10T.
  • the weight average molecular weight of the polyamide is not particularly limited.
  • the weight average molecular weight is preferably about 10,000 to 60,000, more preferably about 20,000 to 50,000 from the viewpoint of compatibility with the component (B).
  • Polyester is not particularly limited. Various known polyesters can be used. Examples of the polyester include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene isophthalate, polybutylene isophthalate, poly-p-phenylene adipate, poly-p-phenylene terephthalate; polyethylene adipate, polybutylene adipate, poly- Examples thereof include aliphatic polyesters such as ⁇ -caprolactone, polylactic acid, polyhydroxybutyrate, and polybutylene succinate.
  • aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene isophthalate, polybutylene isophthalate, poly-p-phenylene adipate, poly-p-phenylene terephthalate; polyethylene adipate, polybutylene adipate, poly- Examples thereof include aliphatic polyesters such as ⁇ -caprolactone, polylactic acid, polyhydroxybutyrate, and poly
  • the weight average molecular weight of the polyester is not particularly limited.
  • the weight average molecular weight is preferably about 10,000 to 200,000, more preferably about 15,000 to 150,000, from the viewpoint of compatibility with the component (B).
  • Polycarbonate is not particularly limited. Various known polycarbonates can be used. Polycarbonate is obtained, for example, by a method of copolymerizing an aromatic dihydroxy compound and an aliphatic dihydroxy compound by a transesterification reaction using a carbonic acid diester as a carbonate source in the presence of a transesterification catalyst; an aromatic dihydroxy compound and phosgene. What is obtained by making it react is mentioned. Further, the polycarbonate may have a branched structure.
  • a carbonic acid diester may be used as a carbonate source.
  • the carbonic acid diester include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. A plurality of these may be used.
  • aromatic dihydroxy compounds include bisphenol-A, tetrabromobisphenol-A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxy).
  • Phenyl) butane 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) )
  • Propane 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro) -4-hydroxyphenyl) propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propane, 2,2-bis ( Bis (hydroxyaryl) alkanes such as cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis
  • a known catalyst is appropriately used.
  • the catalyst include basic compounds and transesterification catalysts.
  • the catalyst is preferably a metal compound such as an alkali metal compound, an alkaline earth metal compound, a nitrogen-containing metal compound, or a tin compound.
  • the weight average molecular weight of the polycarbonate is not particularly limited.
  • the weight average molecular weight is preferably about 10,000 to 100,000, more preferably about 15,000 to 80,000, from the viewpoint of compatibility with the component (B).
  • the polyacetal is not particularly limited. Various known polyacetals can be used. Examples of the polyacetal include polyoxymethylene, polyoxyethylene, polyoxyphenylene, poly-1,3-dioxolane and the like.
  • the weight average molecular weight of polyacetal is not particularly limited.
  • the polyacetal is preferably about 30,000 to 16000, more preferably about 50,000 to 130,000, from the viewpoint of compatibility with the component (B).
  • the component (A) preferably contains at least one selected from the group consisting of polycarbonate, polyamide and polyester, more preferably polycarbonate, from the viewpoint of high transparency.
  • antioxidants include a sulfur-containing acidic compound or a derivative formed from the acidic compound, a phenol-based stabilizer, a phosphorus-based antioxidant, a thioether-based stabilizer, a hindered amine-based stabilizer, an epoxy-based stabilizer, and the like.
  • UV absorber include benzotriazole UV absorbers and triazine UV absorbers.
  • Component (B) is a rosin ester, which is a reaction product of rosin and a monohydric alcohol having 1 to 9 carbon atoms.
  • rosins that are constituents of the component (B)
  • various known rosins can be used without particular limitation.
  • examples of rosins include natural rosin such as Nesia rosin, gum rosin, tall oil rosin, and wood rosin, purified rosin obtained by purifying natural rosin, hydrogenated rosin obtained by hydrogenating natural rosin, and natural rosin. And disproportionated rosin obtained by the reaction.
  • a plurality of rosins may be used. Among these, rosins are preferably disproportionated rosin and hydrogenated rosin from the viewpoint of suppressing coloring of the molded product.
  • the purified rosin can be obtained using various known means such as a distillation method, an extraction method, and a recrystallization method.
  • the distillation method include a method of distilling the natural rosin usually at a temperature of about 200 to 300 ° C. and a reduced pressure of about 0.01 to 3 kPa.
  • the extraction method include a method of neutralizing the aqueous layer after extracting the natural rosin as an alkaline aqueous solution and extracting an insoluble unsaponified product with various organic solvents.
  • the recrystallization method include a method in which the natural rosin is dissolved in an organic solvent as a good solvent, the solvent is then distilled off to obtain a concentrated solution, and an organic solvent as a poor solvent is added.
  • the disproportionated rosin can be obtained using various known means.
  • Examples of the disproportionated rosin include a method in which a raw natural rosin or a purified purified rosin is subjected to a heat reaction in the presence of a disproportionation catalyst.
  • the disproportionation catalyst various known catalysts such as supported catalysts such as palladium-carbon, rhodium-carbon, platinum-carbon; metal powders such as nickel and platinum; iodides such as iodine and iron iodide can be used.
  • the amount of the catalyst used is usually about 0.01 to 5 parts by weight, preferably about 0.01 to 1 part by weight, based on 100 parts by weight of rosin.
  • the reaction temperature is about 100 to 300 ° C, preferably about 150 to 290 ° C.
  • the disproportionated rosin is preferably purified by the above distillation method from the viewpoint of increasing the color tone of the obtained rosin ester.
  • the hydrogenated rosin can be obtained by hydrogenating rosins using known hydrogenation conditions.
  • a method for obtaining a hydrogenated rosin includes a method in which rosins are heated to about 100 to 300 ° C. at a hydrogen pressure of about 2 to 20 MPa in the presence of a hydrogenation catalyst.
  • the hydrogen pressure is preferably about 5 to 20 MPa
  • the reaction temperature is preferably about 150 to 300 ° C.
  • the hydrogenation catalyst various known catalysts such as a supported catalyst, metal powder, iodine, and iodide can be used.
  • the supported catalyst include palladium-carbon, rhodium-carbon, ruthenium-carbon, platinum-carbon and the like.
  • the metal powder include nickel and platinum.
  • Examples of the iodide include iron iodide.
  • palladium, rhodium, ruthenium, and platinum-based catalysts are preferable because the hydrogenation rate of the obtained rosins is high and the hydrogenation time is short.
  • the amount of the hydrogenation catalyst used is usually preferably about 0.01 to 5 parts by weight and more preferably about 0.01 to 2 parts by weight with respect to 100 parts by weight of rosins.
  • Alcohol that is a component of component (B) is a monohydric alcohol having 1 to 9 carbon atoms.
  • the monohydric alcohol having 9 or more carbon atoms is used, the obtained component (B) is difficult to be compatible with the component (A), and the liquid component (B) separated from the molded product is likely to exude.
  • the monohydric alcohol having 1 to 8 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol and the like. It is done. A plurality of these may be used. From the same point, a monohydric alcohol having 1 to 4 carbon atoms is more preferable, and methanol or ethanol is particularly preferable.
  • the component (B) has a Gardner color number of 1 or less, preferably a Hazen color number of 200 H or less.
  • a Gardner color number of 1 or less When the Gardner color number of the rosin ester is 1 or less, the molded product is difficult to be colored.
  • the Gardner color number and the Hazen color number are measured in Gardner units and Hazen units, respectively, according to JIS K0071.
  • Component (B) has a glass transition temperature (Tg) of ⁇ 15 ° C. or lower.
  • Tg glass transition temperature
  • Tg is preferably ⁇ 40 to ⁇ 15 ° C. from the viewpoint that the molded product is excellent in bleed-out resistance.
  • the glass transition temperature is measured by the method specified in JIS K7121.
  • the component (B) is not particularly limited.
  • Component (B) usually has a degree of esterification of 94% by weight or more, preferably 96% by weight or more.
  • the degree of esterification is obtained by calculating the formula (1) from the total peak area at the time of gel permeation chromatography (GPC) measurement of the component (B) and the peak area corresponding to the monoester body in the component (B). It is calculated using.
  • GPC gel permeation chromatography
  • Esterification degree (%) [A / total total peak area] ⁇ 100 (1)
  • A shows the peak area (peak area corresponding to the monoester body in rosin ester) of the weight average molecular weight (polystyrene conversion value) 240.
  • the content of the abietic acid type resin acid having a conjugated double bond having no aromatic ring and its ester is less than 1% by weight. By doing so, the molded product is difficult to be colored. Further, from the same viewpoint, the content is preferably less than 0.5% by weight, more preferably substantially 0% by weight (a level that cannot be detected).
  • the content is determined by gas chromatographic analysis (GC) by preparing a solution of rosin ester subjected to the following pretreatment.
  • sample pretreatment method 10 mg of rosin ester is thoroughly examined, and 2 mL of MeOH / toluene (50/50) mixture is added and dissolved. Next, a 10% hexane solution of trimethylsilyldiazomethane is dropped, and the sample is methylesterified and analyzed.
  • the abietic acid type resin acid having a conjugated double bond having no aromatic ring includes abietic acid and isomers thereof.
  • isomers of abietic acid include neoabietic acid, levopimaric acid, and parastolic acid.
  • the isomer of abietic acid does not include dehydroabietic acid having an aromatic ring.
  • the isomers of abietic acid do not include pimaric acid type resin acids such as pimaric acid, isopimaric acid, and sandaracopimalic acid.
  • (B) It does not specifically limit as a manufacturing method of a component.
  • a known esterification method can be adopted as the production method.
  • the amount of each of the rosins and alcohol charged is not particularly limited. The amount charged is usually determined so that the OH group of alcohol / COOH group (equivalent ratio) of rosins is about 0.8 to 8, preferably about 3 to 7.
  • the reaction temperature of the esterification reaction is usually about 150 to 320 ° C., preferably about 150 to 300 ° C.
  • the reaction time is usually about 2 to 24 hours, preferably about 2 to 7 hours. Furthermore, for the purpose of shortening the reaction time, the esterification reaction can proceed in the presence of a catalyst.
  • the catalyst examples include acid catalysts such as p-toluenesulfonic acid; metal hydroxides such as calcium hydroxide and magnesium hydroxide; metal oxides such as calcium oxide and magnesium oxide. Since water is produced as a result of the esterification reaction, the reaction can proceed while removing the produced water out of the system. In consideration of the color tone of the rosin ester obtained, it is desirable to carry out the reaction under an inert gas stream. The reaction can be performed under pressure if necessary. Moreover, you may make it react in the organic solvent non-reactive with rosins and alcohol. Examples of the organic solvent include hexane, cyclohexane, toluene, xylene and the like. When an organic solvent is used, the organic solvent or unreacted raw material can be distilled off under reduced pressure as necessary.
  • purification, disproportionation or hydrogenation of natural rosin is carried out after esterification of natural rosin and alcohols, or natural rosin.
  • the rosin can be purified, disproportionated or hydrogenated and the resulting rosins and alcohols can be esterified.
  • the acid value of the component (B) is preferably 2 mgKOH / g or less, more preferably 1 mgKOH / g or less. Thereby, a softness
  • the acid value is measured according to JIS K 0070.
  • the component (B) contains a dihydroabietic acid ester content of 15% by weight or more or a tetrahydroabietic acid ester content of 10% by weight or more (provided that the resin acid and its ester in the component (B)
  • the total content is preferably 100% by weight).
  • the component (B) preferably includes the dehydroabietic acid ester content of 40% by weight or more (however, the total content of the resin acid and the ester in the component (B) is 100% by weight). . Thereby, when shape
  • component (B) other additives may be included as necessary within the range not impairing the effects of the present embodiment.
  • other additives include an antioxidant, a polymerization inhibitor, and a sensitizer.
  • the other additive is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of component (B).
  • the composite plastic molded product of the present embodiment is not particularly limited.
  • the composite plastic molding can be produced by various known methods.
  • the composite plastic molded product can be obtained by, for example, a method in which the components (A) and (B) are kneaded at a temperature of about 220 to 280 ° C. for 0.5 to 6 hours, or (B) ) Component may be added and then molded after kneading.
  • the content ratio (solid content weight) of the component (A) and the component (B) is not particularly limited.
  • the molding conditions cannot be uniquely defined, but the temperature and pressure may be appropriately adjusted in consideration of the deformation of the target molded product.
  • Examples of the molding method include injection molding, extrusion molding, transfer molding, blow molding, heat press molding, calendar molding, coating molding, cast molding, dipping molding, vacuum molding, transfer molding, and the like.
  • the embodiment of the present invention has been described above.
  • the present invention is not particularly limited to the above embodiment.
  • the above-described embodiments mainly describe the invention having the following configuration.
  • (A) engineering plastics, and (B) abietic acid resin acid and ester thereof, which are a reaction product of rosins and monohydric alcohols having 1 to 9 carbon atoms and have a conjugated double bond having no aromatic ring Is a composite plastic molding comprising a rosin ester having a glass transition temperature of -15 ° C. or lower.
  • Item (A) The composite plastic molded article according to Item 1, wherein the component is at least one selected from the group consisting of polycarbonate, polyamide and polyester.
  • Item 3 The composite plastic molded article according to Item 1 or 2, wherein the degree of esterification of the component is 94% by weight or more.
  • Item 4 The composite plastic molded article according to any one of Items 1 to 3, wherein the acid value of the component (B) is 2 mgKOH / g or less.
  • Item 5 The composite plastic molded article according to any one of Items 1 to 4, wherein the rosins include at least one of disproportionated rosin and hydrogenated rosin.
  • the rosin ester contains dihydroabietic acid ester in an amount of 15% by weight or more, or tetrahydroabietic acid ester in an amount of 10% by weight or more (however, the total content of the resin acid and its ester in component (B)) Item 8) is a composite plastic molded article according to any one of Items 1 to 5.
  • Production Example 1 (Production of rosin ester 1) 100 g of Chinese disproportionated rosin (manufactured by Guangxi Zhengzhou Arakawa Chemical Co., Ltd.) and 300 g of methanol were charged into a 1 L autoclave to remove oxygen in the system, and the temperature was raised to 290 ° C. The internal pressure of the autoclave reached up to 14 MPa. The esterification reaction was carried out for 2 hours while depressurizing every 20 minutes and removing water vapor.
  • Production Example 2 (Production of rosin ester 2) 64 g of rosin ester 2 was obtained in the same manner as in Production Example 1, except that the Chinese disproportionated rosin was changed to a highly hydrogenated rosin (Forest Chemical Co., Ltd.).
  • Production Example 3 (Production of rosin ester 3) 64 g of rosin ester 3 was obtained in the same manner as in Production Example 1 except that it was changed to low hydrogenated rosin (Forest Chemical Co., Ltd.).
  • Production Example 4 (Production of rosin ester 4) 64 g of rosin ester 4 was obtained in the same manner as in Production Example 1 except that it was changed to distilled disproportionated rosin (Arakawa Chemical Industries, Ltd.).
  • Production Example 5 (Production of rosin ester 5) 100 g of rosin ester 4 obtained in Production Example 4 and 100 g of 2-propanol were added to a 300 ml flask equipped with a stirrer, a cooling tube and a nitrogen introducing tube, heated to 40 ° C. and dissolved, and then the container was placed in a constant temperature circulator. Soaked. The temperature was lowered from 40 ° C., and seed crystals were added on the way. After the flocculent white crystals increased rapidly, the temperature of the apparatus was lowered to 5 ° C. and held for 1.5 hours.
  • Production Example 6 (Production of rosin ester 6) 65 g of rosin ester 6 was obtained in the same manner as in Production Example 1 except that Chinese disproportionated rosin was changed to distilled disproportionated rosin (manufactured by Arakawa Chemical Industries, Ltd.) and methanol was changed to ethanol.
  • Comparative Production Example 1 (Production of rosin ester 7) 65 g of rosin ester 6 was obtained in the same manner as in Production Example 1 except that the Chinese disproportionated rosin was changed to a Chinese hydrogenated rosin (manufactured by Guangxi Zhengzhou Nislin Forest Products Chemical Co., Ltd.).
  • Comparative Production Example 2 (Production of rosin ester 8) 65 g of rosin ester 7 was obtained in the same manner as in Production Example 1, except that the Chinese disproportionated rosin was changed to a Chinese gum rosin (manufactured by Guangxi Zhengzhou Arakawa Chemical Co., Ltd.).
  • rosin ester 10 Hercolin D (hydrogenated rosin methyl ester, manufactured by Eastman Chemical Co.) (Reference Comparative Example 4) and DOP (Reference Comparative Example 4) as other compounds were used.
  • Tg glass transition temperature
  • Model Product name “HLC-8220”, manufactured by Tosoh Corp. Column: product name “TSKgel G2500HXL”, manufactured by Tosoh Corp., 1 product and product name “TSKgel G2000HXL”, manufactured by Tosoh Corp., 2 products Name “TSKgel G1000HXL”, manufactured by Tosoh Corporation, one connected developing solvent flow rate: tetrahydrofuran, 1 mL / min measuring temperature: 40 ° C. Detector: RI
  • A represents a peak area having a weight average molecular weight (polystyrene equivalent value) 240 (peak area corresponding to a monoester in rosin esters 1 to 8).
  • ⁇ Analysis of rosin ester composition ratio> The composition ratio of the rosin component (resin acid component) in the rosin ester was analyzed by gas chromatographic analysis (GC). The rosin ester was subjected to the following pretreatment, a solution was prepared, and GC measurement was performed under the following conditions. The results are shown in Table 2.
  • sample pretreatment method 10 mg of rosin ester was carefully examined, and 2 mL of a methanol / toluene (50/50) mixed solution was added and dissolved. A 10% hexane solution of trimethylsilyldiazomethane was added dropwise, and the sample was methylesterified and analyzed.
  • composition ratio of the rosin ester was calculated by dividing every retention time (hereinafter also referred to as RT).
  • Neutral component Peak detected at RT 0 to 4.1 minutes
  • Tetrahydroabietic acid ester Among peaks detected at RT 4.1 minutes to 10 minutes, 4.6 minutes, 5.1 minutes, 5.3 minutes Peak dihydroabietic acid ester detected at 5.6 minutes, 5.8 minutes, 6.0 minutes, 6.1 minutes, 6.4 minutes, 7.0 minutes: detected at RT 4.1 minutes to 10 minutes Among those peaks, those other than tetrahydroabietic acid ester Abietic acid ester: peak detected at RT 11.2 minutes
  • Dehydroabietic acid ester peak detected at RT 11.7 minutes
  • A-Component (A-1) Polycarbonate, trade name "PC (made by Stella)", made by Nippon Test Panel Co., Ltd.-DOP: Dioctyl phthalate-Tuftec: Hydrogenated styrene thermoplastic resin, Tradename “Tuftech H1062” , Made by Asahi Kasei Co., Ltd., Methbrene: Rubber-based resin, trade name “Metbrene L-1000”, made by Mitsubishi Chemical
  • Example 8 and Comparative Examples 9 to 10 A reaction vessel equipped with a thermometer and a cooling tube was charged with 45 g of polyamide (trade name “Unitika Nylon 6 A1030FR”, manufactured by Unitika Ltd.) and 55 g of rosin ester 35, respectively, and the temperature was raised to 240 ° C. The mixture was stirred for 1 hour and cooled to room temperature, and then press-molded using a heating press (temperature: 230 ° C., preheating time: 2 minutes, pressure: 10 MPa ⁇ 1 minute) to obtain a composite plastic molded product.
  • composite plastic moldings were also prepared with the compositions shown in Table 4. Bleed-out resistance, flexibility and moldability were evaluated under the same conditions as above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)エンジニアリングプラスチック、および、(B)ロジン類と炭素数1~9の1価アルコールとの反応物であり、芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸およびそのエステルが1重量%未満であり、ガラス転移温度が-15℃以下であるロジンエステルを含む、複合プラスチック成形物。

Description

複合プラスチック成形物
 本発明は、複合プラスチック成形物に関する。
 複合プラスチック成形物は、優れた機械的強度を有するため、射出成形品、フィルム、シート、繊維などに加工され、携帯電話やパソコンの電子機器、LEDデバイス等の幅広い用途で利用されている。
 複合プラスチック成形物の基材は、ポリ塩化ビニル、ポリエチレン等の汎用プラスチック;ポリアミド、ポリカーボネート、ポリエステル等のエンジニアリングプラスチック;ポリアミドイミド、ポリフェニルスルホン、ポリエーテルスルホン等のスーパーエンジニアリングプラスチック等がある。特にエンジニアリングプラスチックは、耐熱性の優れた信頼性の高い基材であり、液晶テレビ部品、光ファイバーなどの電子部品、衣料用繊維や自動車部品などに使用されている。また、エンジニアプラスチックを成形する際、加工しやすく、かつ柔軟性を付与するために、フタル酸系可塑剤などが添加される。しかしながら、フタル酸系可塑剤は、プラスチック基材によって、充分に相溶せずに基材から可塑剤がしみ出したり(“ブリードアウト”という)、また人体への健康や環境に有害な影響を及ぼしうる。
 上記課題を解決する技術として、例えば、スチレン系樹脂と熱可塑性樹脂を含む樹脂組成物に対してオルガノシロキサンを特定量用いる熱可塑性樹脂組成物が公知である(特許文献1)。また、ポリアミド樹脂、脂肪族ポリエステル樹脂または半芳香族ポリエステル樹脂である熱可塑性樹脂、充填材およびロジンを含有する熱可塑性樹脂組成物も公知である(特許文献2)。
特開2012-072203号公報 国際公開第2013/069365号
 しかしながら、特許文献1に記載の発明は、スチレン系樹脂を用いるとブリードアウトを充分には抑制できず、また成形加工性にも劣るものであった。また、特許文献2に記載の発明は、成形時に着色するものであった。
 本発明は、エンジニアリングプラスチックと良好に相溶する添加剤を含有し、成形時に着色することなく、柔軟性、耐ブリードアウト性および成形加工性に優れた複合プラスチック成形物を提供することを目的とする。
 本発明者らは、上記の複合プラスチック成形物を開発すべく、鋭意検討した結果、特定のロジンエステルを含有するものが上記課題を解決することを見出した。すなわち、本発明の一形態の複合プラスチック成形物は、(A)エンジニアリングプラスチック、および、(B)ロジン類と炭素数1~9の1価アルコールとの反応物であり、芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸およびそのエステルが1重量%未満であり、ガラス転移温度が-15℃以下であるロジンエステルを含む。
 本発明の一実施形態の複合プラスチック成形物(以下、成形物ともいう。)は、エンジニアリングプラスチック(A)(以下、(A)成分という)および特定のロジンエステル(B)(以下、(B)成分という)を含有する。
<(A)成分について>
 (A)成分は、分子鎖に炭素のみならず、酸素や窒素などを含む構造を有する。そのため、(A)成分は、耐熱性が優れている。(A)成分は、特に限定されない。(A)成分は、熱可塑性を有するものであることが好ましい。熱可塑性を有する(A)成分は、例えば、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール等が挙げられる。これらは複数が用いられてもよい。
 ポリアミドとしては、特に限定されない。ポリアミドは、各種公知のものを使用できる。ポリアミドは、例えば、6-ナイロン、6,6-ナイロン、6、10-ナイロン、12-ナイロン、9-ナイロン、ポリアミド4,ポリアミド12などが挙げられる。また、ポリアミドは、ポリアミド6T、ポリアミド9T、ポリアミド10Tなどの芳香族ナイロン等が挙げられる。
 ポリアミドの重量平均分子量は、特に限定されない。重量平均分子量は、(B)成分との相溶性の点から、好ましくは10000~60000程度であり、より好ましくは20000~50000程度である。
 ポリエステルとしては、特に限定されない。ポリエステルは、各種公知のものを使用できる。ポリエステルは、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンイソフタレート、ポリ-p-フェニレンアジペート、ポリ-p-フェニレンテレフタレート等の芳香族系ポリエステル;ポリエチレンアジペート、ポリブチレンアジペート、ポリ-ε-カプロラクトン、ポリ乳酸、ポリヒドロキシブチレート、ポリブチレンサクシネート等の脂肪族系ポリエステル等が挙げられる。
 ポリエステルの重量平均分子量は、特に限定されない。重量平均分子量は、(B)成分との相溶性の点から、好ましくは10000~200000程度であり、より好ましくは15000~150000程度である。
 ポリカーボネートとしては、特に限定されない。ポリカーボネートは、各種公知のものを使用できる。ポリカーボネートは、例えば、エステル交換触媒の存在下、炭酸ジエステルをカーボネート源として芳香族ジヒドロキシ化合物と脂肪族ジヒドロキシ化合物とをエステル交換反応により共重合する方法により得られるもの;芳香族ジヒドロキシ化合物とホスゲンとを反応させることにより得られるもの等が挙げられる。また、ポリカーボネートは、分岐構造を有していても良い。
 上記エステル交換法においては、カーボネート源として炭酸ジエステルが用いられてもよい。炭酸ジエステルの例としては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらは複数が用いられてもよい。
 芳香族ジヒドロキシ化合物としては、例えば、ビスフェノール-A、テトラブロモビスフェノール-A、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン,2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン,1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン等のビス(ヒドロキシアリール)アルカン類;ビスフェノール-Z、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1,-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等が挙げられる。これらの内、好ましいものとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等が挙げられる。これらは複数が用いられてもよい。
 エステル交換法の触媒としては、公知の触媒が適宜使用される。触媒は、例えば、塩基性化合物、エステル交換触媒等が挙げられる。触媒は、中でもアルカリ金属化合物、アルカリ土類金属化合物、含窒素金属化合物、スズ化合物等の金属化合物等が好ましい。
 ポリカーボネートの重量平均分子量は、特に限定されない。重量平均分子量は、(B)成分との相溶性の点から、10000~100000程度が好ましく、15000~80000程度がより好ましい。
 ポリアセタールとしては、特に限定されない。ポリアセタールは、各種公知のものを使用できる。ポリアセタールは、例えば、ポリオキシメチレン、ポリオキシエチレン、ポリオキシフェニレン、ポリ-1,3-ジオキソラン等が挙げられる。
 ポリアセタールの重量平均分子量は、特に限定されない。ポリアセタールは、(B)成分との相溶性の点から、好ましくは30000~160000程度であり、より好ましくは50000~130000程度である。
 これらの中でも、(A)成分は、透明性が高い点から、ポリカーボネート、ポリアミドおよびポリエステルからなる群より選ばれる少なくとも1種を含むことが好ましく、ポリカーボネートであることがより好ましい。
 (A)成分には、必要に応じて、酸化防止剤、紫外線吸収剤、顔料、染料、強化剤、充填剤、滑剤、離型剤、結晶核剤、可塑剤、流動性改良剤、帯電防止剤などの公知の各種添加剤を含有させても良い。酸化防止剤としては、例えば、硫黄含有酸性化合物あるいは該酸性化合物から形成される誘導体、フェノール系安定剤、リン系酸化防止剤、チオエーテル系安定剤、ヒンダードアミン系安定剤、エポキシ系安定剤等を挙げることができる。また、紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤などが挙げられる。
 (B)成分は、ロジンエステルであり、ロジン類と炭素数1~9の1価アルコールとの反応物である。
 (B)成分の構成成分であるロジン類としては、公知の各種ロジンを特に限定なく使用することができる。ロジン類として、例えば、ネシアロジン、ガムロジン、トール油ロジン、ウッドロジンなどの天然ロジン、天然ロジンを精製して得られる精製ロジン、天然ロジンを水素化反応させて得られる水素化ロジン、天然ロジンを不均化反応させて得られる不均化ロジン等が挙げられる。ロジン類は、複数用いられてもよい。これらの中でも、ロジン類は、成形物の着色を抑制する点から不均化ロジンおよび水素化ロジンが好ましい。
 上記精製ロジンは、蒸留法、抽出法、再結晶法等の各種公知の手段を用いて得ることができる。蒸留法としては、例えば、上記天然ロジンを通常200~300℃程度の温度、0.01~3kPa程度の減圧下で蒸留する方法等が挙げられる。抽出法では、例えば、上記天然ロジンをアルカリ水溶液とし、不溶性の不ケン化物を各種の有機溶媒により抽出した後に水層を中和する方法等が挙げられる。再結晶法では、例えば上記天然ロジンを良溶媒としての有機溶媒に溶解し、ついで溶媒を留去して濃厚な溶液とし、更に貧溶媒としての有機溶媒を添加する方法等が挙げられる。
 上記不均化ロジンは、各種公知の手段を用いて得ることができる。例えば、不均化ロジンは、原料の天然ロジンまたは精製処理された精製ロジンを不均化触媒の存在下に加熱反応させる方法等が挙げられる。不均化触媒としては、パラジウム-カーボン、ロジウム-カーボン、白金-カーボン等の担持触媒;ニッケル、白金等の金属粉末;ヨウ素、ヨウ化鉄等のヨウ化物等の各種公知のものを使用できる。触媒の使用量は、ロジン100重量部に対して通常0.01~5重量部程度であり、好ましくは0.01~1重量部程度である。反応温度は100~300℃程度であり、好ましくは150~290℃程度である。なお、不均化ロジンは、得られるロジンエステルの色調を高める点から、上記蒸留法で精製した方が好ましい。
 上記水素化ロジンは、公知の水素化条件を用いてロジン類を水素化することにより得ることができる。例えば、水素化ロジンを得る方法は、水素化触媒の存在下、水素圧で2~20MPa程度で、100~300℃程度にロジン類を加熱する方法等が挙げられる。また、水素圧は5~20MPa程度、反応温度は150~300℃程度とすることが好ましい。水素化触媒としては、担持触媒、金属粉末、ヨウ素、ヨウ化物等各種公知のものを使用することができる。担持触媒としては、パラジウム-カーボン、ロジウム-カーボン、ルテニウム-カーボン、白金-カーボン等が挙げられる。金属粉末としては、ニッケル、白金等が挙げられる。ヨウ化物としては、ヨウ化鉄等が挙げられる。これらの中でもパラジウム、ロジウム、ルテニウム、および白金系触媒は、得られるロジン類の水素化率が高くなり、水素化時間が短くなるため好ましい。なお、水素化触媒の使用量は、ロジン類100重量部に対して、通常0.01~5重量部程度であることが好ましく、0.01~2重量部程度であることがより好ましい。
 (B)成分の構成成分であるアルコールは、炭素数1~9の1価アルコールを必須で用いる。炭素数が9を超える1価アルコールを用いると、得られた(B)成分が(A)成分と相溶しにくくなり、成形物から分離した液状の(B)成分がしみ出しやすくなる。また、得られた(B)成分が(A)成分とより良好に相溶し、成形物も優れた耐ブリードアウト性を発揮するため、炭素数1~8の1価アルコールを用いることが好ましい。炭素数1~8の1価アルコールの具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、tert-ブチルアルコール、n-オクチルアルコール、2-エチルヘキシルアルコール等が挙げられる。これらは複数が用いられてもよい。また、同様の点から、炭素数が1~4の1価アルコールがより好ましく、メタノールまたはエタノールが特に好ましい。
 (B)成分は、ガードナー色数が1以下であり、好ましくはハーゼン色数で200H以下である。ロジンエステルのガードナー色数が1以下であることにより、成形物が着色しにくくなる。ガードナー色数、ハーゼン色数は、JIS K 0071に準じて、それぞれガードナー単位、ハーゼン単位で測定される。
 (B)成分は、ガラス転移温度(Tg)が-15℃以下である。Tgが-15℃以下であることにより、柔軟性の優れた成形物が得られる。また、成形物が耐ブリードアウト性に優れる点から、Tgは-40~-15℃が好ましい。ガラス転移温度は、JIS K 7121に規定された方法により測定する。
 (B)成分は、特に限定されない。(B)成分は、通常、エステル化度が94重量%以上であり、好ましくは96重量%以上である。ここで、エステル化度は、(B)成分のゲルパーミエーションクロマトグラフィー(GPC)測定時の全ピーク面積総和と、(B)成分中のモノエステル体に対応するピーク面積から式(1)を用いて求められる。エステル化度が大きいほど、(B)成分は、初期色調が高く、成形した際の着色も抑制されやすくなる。
  エステル化度(%)=[A/全ピーク面積総和]×100 (1)
 式(1)中、Aは重量平均分子量(ポリスチレン換算値)240のピーク面積(ロジンエステル中のモノエステル体に対応するピーク面積)を示す。
 (B)成分は、芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸およびそのエステルの含有量が1重量%未満である。こうすることで成形物が着色しにくくなる。また、同様の観点から、含有量は、好ましくは0.5重量%未満であり、より好ましくは実質的に0重量%(検出できない程度)である。なお、含有量は、以下の前処理を施したロジンエステルの溶液を調製し、ガスクロマトグラフ分析(GC)により求められる。
(サンプル前処理法)
 ロジンエステル10mgを精評し、MeOH/トルエン(50/50)混合液を2mL加え溶解する。次いで、トリメチルシリルジアゾメタン10%ヘキサン溶液を滴下し、試料をメチルエステル化し、分析を行う。
(GC測定条件)
機種:Agilent 6890 Series
カラム:BDS(Supelco製) 0.3mmΦ×25m、膜厚0.25μm
検出器:水素炎イオン化検出器(FID)
カラム温度:190℃一定 30分間
注入口温度:250℃
検出器温度:280℃
キャリアガス:N2 100kPa、2.2mL/min
スプリット比:50/1
注入量:1.0μL
 芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸には、アビエチン酸およびその異性体が含まれる。アビエチン酸の異性体としては、ネオアビエチン酸、レボピマル酸、パラストリン酸等が挙げられる。アビエチン酸の異性体としては、芳香環を有するデヒドロアビエチン酸は含まない。また、アビエチン酸の異性体としては、ピマル酸、イソピマル酸、サンダラコピマル酸等のピマル酸型の樹脂酸は含まない。
 (B)成分の製造方法としては、特に限定されない。製造方法は、公知のエステル化方法を採用することができる。上記ロジン類およびアルコールの各仕込み量については、特に限定されない。仕込み量は、通常は、アルコールのOH基/ロジン類のCOOH基(当量比)が0.8~8程度、好ましくは3~7程度の範囲となるよう決定される。エステル化反応の反応温度は、通常150~320℃程度であり、好ましくは150~300℃程度である。反応時間は通常2~24時間程度であり、好ましくは2~7時間程度である。更に、反応時間を短縮する目的で、触媒の存在下でエステル化反応を進行させることができる。触媒として、例えば、パラトルエンスルホン酸などの酸触媒;水酸化カルシウム、水酸化マグネシウムなどの金属の水酸化物;酸化カルシウム、酸化マグネシウムなどの金属酸化物などが挙げられる。エステル化反応の結果、水が生成するので、該反応は生成した水を系外に除きながら進行させることができる。得られるロジンエステルの色調をより考慮すれば、不活性ガス気流下で反応を行うことが望ましい。該反応は、必要があれば加圧下で行うことができる。また、ロジン類およびアルコールに対して非反応性の有機溶媒中で反応させても良い。該有機溶剤としては、例えばヘキサン、シクロヘキサン、トルエン、キシレンなどが挙げられる。なお、有機溶媒を使用した場合には、必要に応じて、有機溶媒または未反応の原料を減圧留去することができる。
 ロジン類として精製ロジン、不均化ロジンまたは水素化ロジンを使用する場合、天然ロジンの精製、不均化または水素化は、天然ロジンとアルコール類とをエステル化した後に実施するか、あるいは、天然ロジンを精製、不均化または水素化し、得られたロジン類とアルコールをエステル化することができる。
 (B)成分の酸価は、2mgKOH/g以下であるものが好ましく、1mgKOH/g以下であるものがより好ましい。これにより、(A)成分を分解することなく、成形物に柔軟性が付与され得る。酸価はJIS K 0070に準じて測定する。
 (B)成分は、ジヒドロアビエチン酸エステルの含有量が15重量%以上またはテトラヒドロアビエチン酸エステルの含有量が10重量%以上となるよう含む(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)ことが好ましい。これにより、(A)成分と(B)成分とを成形する際に、着色が生じにくくなる。
 (B)成分は、デヒドロアビエチン酸エステルの含有量が40重量%以上となるよう含む(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)ことが好ましい。これにより、(A)成分と(B)成分とを成形する際に、着色が生じにくくなる。
 (B)成分には、本実施形態の効果を損なわない範囲で、必要に応じて、他の添加剤を含んでいてもよい。他の添加剤としては、例えば、酸化防止剤、重合禁止剤および増感剤等が挙げられる。他の添加剤は、(B)成分を100重量部に対して、0.5~10重量部であることが好ましい。
 本実施形態の複合プラスチック成形物は、特に限定されない。複合プラスチック成形物は、各種公知の方法で製造できる。複合プラスチック成形物は、例えば、(A)成分および(B)成分を温度220~280℃程度で、0.5~6時間混練後に成形する方法や、予め加熱した(A)成分に、(B)成分を添加して混練後に成形する方法などにより製造できる。
 (A)成分と(B)成分との含有比率(固形分重量)は、特に限定されない。含有比率は、成形物が柔軟性および成形加工性に優れる点から、(A)/(B)=40/60~90/10が好ましい。
 成形条件としては、一義的に定義できないが、目的とする成形物の変形等を考慮して温度、圧力を適宜調整すれば良い。成形方法としては、例えば、射出成形、押出し成形、トランスファー成形、ブロー成形、熱プレス成形、カレンダ成形、コーテイング成形、キャスト成形、ディッピング成形、真空成形、トランスファー成形などが挙げられる。
 以上、本発明の一実施形態について説明した。本発明は、上記実施形態に格別限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
1.(A)エンジニアリングプラスチック、および、(B)ロジン類と炭素数1~9の1価アルコールとの反応物であり、芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸およびそのエステルが1重量%未満であり、ガラス転移温度が-15℃以下であるロジンエステルを含む、複合プラスチック成形物。
2.(A)成分は、ポリカーボネート、ポリアミドおよびポリエステルからなる群より選ばれる少なくとも1種である、項1に記載の複合プラスチック成形物。
3.(B)成分のエステル化度は、94重量%以上である、項1または項2に記載の複合プラスチック成形物。
4.(B)成分の酸価は、2mgKOH/g以下である、項1~3のいずれかに記載の複合プラスチック成形物。
5.前記ロジン類は、不均化ロジンおよび水素化ロジンのうち、少なくともいずれか一方を含む、項1~4のいずれかに記載の複合プラスチック成形物。
6.前記ロジンエステル中に、ジヒドロアビエチン酸エステルが15重量%以上、または、テトラヒドロアビエチン酸エステルが10重量%以上となるよう含まれる(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)、項1~5のいずれかに記載の複合プラスチック成形物。
7.前記(B)成分中のデヒドロアビエチン酸エステルが40重量%以上含む(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)、項1~6のいずれかに記載の複合プラスチック成形物。
8.前記(A)成分と(B)成分との含有比率(固形分重量)は、(A)/(B)=40/60~90/10である、項1~7のいずれかに記載の複合プラスチック成形物。
 以下、実施例および比較例を挙げて本発明を更に詳しく説明する。本発明は、これらに限定されない。なお、実施例中、「%」は「重量%」を示し、「部」は「重量部」を示す。
製造例1(ロジンエステル1の製造)
 中国不均化ロジン(広西梧州荒川化学工業有限公司製)100g、メタノール300gを1Lオートクレーブに仕込み、系内の酸素を除去した後、290℃まで昇温した。オートクレーブの内圧は最大で14MPaまで到達した。20分毎に脱圧して水蒸気を抜きながら2時間エステル化反応させた。得られた反応液をロータリーエバポレーターにて濃縮後、水酸化カルシウムを5g加え、液温150~270℃、圧力0.4kPa条件下での単蒸留により、主留分としてロジンエステル1を68g得た。
製造例2(ロジンエステル2の製造)
 製造例1において、中国不均化ロジンを高水添ロジン(Forestar Chemical Co.,Ltd.製)に変えた以外は同様にしてロジンエステル2を64g得た。
製造例3(ロジンエステル3の製造)
 製造例1において、低水添ロジン(Forestar Chemical Co.,Ltd.製)に変えた以外は同様にしてロジンエステル3を64g得た。
製造例4(ロジンエステル4の製造)
 製造例1において、蒸留不均化ロジン(荒川化学工業(株)製)に変えた以外は同様にしてロジンエステル4を64g得た。
製造例5(ロジンエステル5の製造)
 製造例4で得られたロジンエステル4 100gと2-プロパノール100gを撹拌装置、冷却管および窒素導入管を備えた300mlフラスコに加えて40℃に昇温して溶解後、容器を恒温循環装置に浸した。40℃から降温し、途中種結晶を投入した。綿状の白色結晶が急増してから5℃まで装置を降温させ、1.5時間保持した。その後、吸引ろ過において、原料仕込み量の1/3~1/2倍の2-プロパノールで結晶を洗浄し、続いて50℃,10Torrで2時間減圧乾燥する。得られた結晶についてさらに上記の再結晶操作を2回繰り返すことで28gのロジンエステル5を得た。
製造例6(ロジンエステル6の製造)
 製造例1において、中国不均化ロジンを蒸留不均化ロジン(荒川化学工業(株)製)へ、更にメタノールをエタノールに変えた以外は同様にしてロジンエステル6を65g得た。
比較製造例1(ロジンエステル7の製造)
 製造例1において、中国不均化ロジンを中国水添ロジン(広西梧州日成林産化工有限公司製)に変えた以外は同様にしてロジンエステル6を65g得た。
比較製造例2(ロジンエステル8の製造)
 製造例1において、中国不均化ロジンを中国ガムロジン(広西梧州荒川化学工業有限公司製)に変えた以外は同様にしてロジンエステル7を65g得た。
比較製造例3(ロジンエステル9の製造)
 製造例1において、メタノールを1-デカノールに変えた以外は同様にしてロジンエステル10を65g得た。
 また、ロジンエステル10として、ハーコリンD(水添ロジンメチルエステル、Eastman Chemical社製)(参考比較例4)、その他の化合物として、DOP(参考比較例4)を用いた。
 ロジンエステル1~10およびDOPの諸物性は、以下のようにして測定した。結果を表1に示す。
<融点およびガラス転移温度(Tg)>
 JIS K 7121に規定した示差走査熱量測定(熱流束DSC)により測定した。
(DSC測定機器:理学電気(株)製 DSC8230B)
<色調>
 JIS K 0071に準じて、ガードナー単位、ハーゼン単位で測定した。
<酸価>
 JIS K0070に準じて測定した。
<エステル化度の算出>
 ロジンエステル1~10をテトラヒドロフランに溶解させて0.5%の溶液を調製した。この溶液について下記の条件でGPC測定を行い、下記の式(1)よりエステル化度を算出した。
(GPC測定条件)
機種:製品名「HLC-8220」、東ソー(株)製
カラム:製品名「TSKgel G2500HXL」、東ソー(株)製、1本と
    製品名「TSKgel G2000HXL」、東ソー(株)製、2本と
    製品名「TSKgel G1000HXL」、東ソー(株)製、1本の連結
展開溶媒流量:テトラヒドロフラン、1mL/分
測定温度:40℃
検出器:RI
ロジンエステル1~10のエステル化度(%)=[A/全ピーク面積総和]×100 ・・・(1)
式(1)中、Aは重量平均分子量(ポリスチレン換算値)240のピーク面積(ロジンエステル1~8中のモノエステル体に対応するピーク面積)を示す。
Figure JPOXMLDOC01-appb-T000001
<ロジンエステル組成比の分析>
 ロジンエステル中のロジン成分(樹脂酸成分)の組成比の分析についてはガスクロマトグラフ分析(GC)によって分析した。ロジンエステルは以下の前処理を行い、溶液を調整して下記の条件でGC測定を行った。結果を表2に示す。
(サンプル前処理法)
 ロジンエステル10mgを精評し、メタノール/トルエン(50/50)混合液を2mL加え溶解した。トリメチルシリルジアゾメタン10%ヘキサン溶液を滴下し、試料をメチルエステル化し、分析した。
(GC測定条件)
機種:Agilent 6890 Series
カラム:BDS(Supelco社製) 0.3mmΦ×25m、膜厚0.25μm
検出器:水素炎イオン化検出器(FID)
カラム温度:190℃一定 30分間
注入口温度:250℃
検出器温度:280℃
キャリアガス:N2 100kPa、2.2mL/min
スプリット比:50/1
注入量:1.0μL
 ロジンエステルの組成比は、以下のリテンションタイム(以下、RTともいう)毎に区切って算出した。
中性成分:RT 0~4.1分に検出されるピーク
テトラヒドロアビエチン酸エステル:RT4.1分~10分に検出されるピークの内、4.6分、5.1分、5.3分、5.6分、5.8分、6.0分、6.1分、6.4分、7.0分に検出されるピーク
ジヒドロアビエチン酸エステル:RT4.1分~10分に検出されるピークの内、テトラヒドロアビエチン酸エステル以外のもの
アビエチン酸エステル:RT11.2分に検出されるピーク
デヒドロアビエチン酸エステル:RT11.7分に検出されるピーク
Figure JPOXMLDOC01-appb-T000002
<複合プラスチック成形物の調製(ポリカーボネート)>
実施例1~7、比較例1~8
 温度計、冷却管を備えた反応容器に、ポリカーボネート(商品名『PC(ステラ製)』、日本テストパネル(株)製、重量平均分子量:44000)25gおよびロジンエステル1 25gをそれぞれ仕込み、240℃まで昇温させた。1時間撹拌させて室温まで冷却した後、加熱プレス(温度:230℃、予熱時間:2分、加圧:10MPa×1分)を用いてプレス成形し複合プラスチック成形物を得た。また、表3に示す組成でもそれぞれ複合プラスチック成形物を調製し、以下の項目を評価した。
<着色有無>
 プラスチック成形物の着色有無を目視で確認した。
○:着色なし
×:着色あり
<耐ブリードアウト性>
 プラスチック成形物からの添加剤のしみ出しを目視で確認し、以下の基準で評価した。
(評価基準)
◎:添加剤のしみ出しがなく、透明であった。
○:不透明感があったが、添加剤のしみ出しがなかった。
△:不透明感があり、添加剤のしみ出しが若干あった。
×:不透明感があり、添加剤のしみ出しがあった。
<柔軟性>
 プラスチック成形物を両手で持ち、下方向に力を掛けて、柔軟性を以下の基準で評価した。
(評価基準)
◎:経時でも成形物が割れなかった。
○:経時では割れやすくなったが、成形直後は割れなかった。
×:成形直後に成形物が割れた。
<成形加工性(メルトフローレート(MFR))>
 プラスチック成形物をメルトインデクサ((株)東洋精機製作所製、型式:P-01)を用いて、温度230℃、荷重2.16kgの条件で測定した。数値が高いほど、成形加工性に優れることを示す。
Figure JPOXMLDOC01-appb-T000003
・(A-1)成分:ポリカーボネート、商品名「PC(ステラ製)」、日本テストパネル(株)製
・DOP:フタル酸ジオクチル
・タフテック:水添スチレン系熱可塑性樹脂、商品名『タフテックH1062』、旭化成(株)製
・メタブレン:ゴム系樹脂、商品名『メタブレンL-1000』、三菱ケミカル(株)製
<複合プラスチック成形物の調製(ポリアミド)>
実施例8、比較例9~10
 温度計、冷却管を備えた反応容器に、ポリアミド(商品名『ユニチカナイロン6 A1030FR』、ユニチカ(株)製)45gおよびロジンエステル3 5gをそれぞれ仕込み、240℃まで昇温させた。1時間撹拌させて室温まで冷却した後、加熱プレス(温度:230℃、予熱時間:2分、加圧:10MPa×1分)を用いてプレス成形し複合プラスチック成形物を得た。また、表4に示す組成でもそれぞれ複合プラスチック成形物を調製した。上記と同様の条件で耐ブリードアウト性、柔軟性および成形加工性を評価した。
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1. (A)エンジニアリングプラスチック、および、
    (B)ロジン類と炭素数1~9の1価アルコールとの反応物であり、芳香環を有さない共役二重結合を有するアビエチン酸型樹脂酸およびそのエステルが1重量%未満であり、ガラス転移温度が-15℃以下であるロジンエステルを含む、複合プラスチック成形物。
  2. (A)成分は、ポリカーボネート、ポリアミドおよびポリエステルからなる群より選ばれる少なくとも1種である、請求項1に記載の複合プラスチック成形物。
  3. (B)成分のエステル化度は、94重量%以上である、請求項1または2記載の複合プラスチック成形物。
  4. (B)成分の酸価は、2mgKOH/g以下である、請求項1~3のいずれか1項に記載の複合プラスチック成形物。
  5. 前記ロジン類は、不均化ロジンおよび水素化ロジンのうち、少なくともいずれか一方を含む、請求項1~4のいずれか1項に記載の複合プラスチック成形物。
  6. 前記ロジンエステル中に、ジヒドロアビエチン酸エステルが15重量%以上、または、テトラヒドロアビエチン酸エステルが10重量%以上となるよう含まれる(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)、請求項1~5のいずれか1項に記載の複合プラスチック成形物。
  7. 前記(B)成分中に、デヒドロアビエチン酸エステルが40重量%以上となるよう含まれる(ただし、(B)成分中の樹脂酸およびそのエステルの合計含有量が100重量%である)、請求項1~6のいずれか1項に記載の複合プラスチック成形物。
  8. 前記(A)成分と(B)成分との含有比率(固形分重量)は、(A)/(B)=40/60~90/10である、請求項1~7のいずれか1項に記載の複合プラスチック成形物。
PCT/JP2017/036532 2016-10-17 2017-10-06 複合プラスチック成形物 WO2018074273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17861718.9A EP3527627B1 (en) 2016-10-17 2017-10-06 Composite plastic molded product
CN201780063810.3A CN109844034B (zh) 2016-10-17 2017-10-06 复合塑料成形物
US16/338,056 US20190249008A1 (en) 2016-10-17 2017-10-06 Composite plastic molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203297 2016-10-17
JP2016-203297 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074273A1 true WO2018074273A1 (ja) 2018-04-26

Family

ID=62019397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036532 WO2018074273A1 (ja) 2016-10-17 2017-10-06 複合プラスチック成形物

Country Status (6)

Country Link
US (1) US20190249008A1 (ja)
EP (1) EP3527627B1 (ja)
JP (1) JP6926919B2 (ja)
CN (1) CN109844034B (ja)
TW (1) TW201829201A (ja)
WO (1) WO2018074273A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171112A (ja) * 1991-12-21 1993-07-09 Arakawa Chem Ind Co Ltd ロジンエステルの製造法
WO1998024848A1 (fr) * 1996-11-22 1998-06-11 Mitsui Chemicals, Inc. Composition de resine thermoplastique et film constitue de cette composition
JP2001234066A (ja) * 2000-02-24 2001-08-28 Ube Ind Ltd ポリアミド樹脂組成物
JP2009161573A (ja) * 2007-12-28 2009-07-23 Arakawa Chem Ind Co Ltd 粘着付与剤、粘・接着剤組成物および粘・接着フィルムラベル
WO2010104144A1 (ja) * 2009-03-13 2010-09-16 荒川化学工業株式会社 樹脂用改質剤、接着剤組成物および熱可塑性樹脂組成物
JP2012072203A (ja) 2010-09-27 2012-04-12 Nippon A&L Inc 熱可塑性樹脂組成物及び成形体
WO2013069365A1 (ja) 2011-11-10 2013-05-16 ユニチカ株式会社 熱可塑性樹脂組成物およびそれからなる成形体
WO2015048421A2 (en) * 2013-09-27 2015-04-02 Arizona Chemical Company, Llc Rosin esters and compositions thereof
JP2017052945A (ja) * 2015-09-11 2017-03-16 荒川化学工業株式会社 可塑剤及び光学用粘接着剤組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163174A (en) * 1980-05-22 1981-12-15 Arakawa Chem Ind Co Ltd Hot melt-type pressure sensitive adhesive
US5157067A (en) * 1990-06-27 1992-10-20 Ferro Corporation Liquid colorant/additive concentrate for incorporation into plastics
JPH09227773A (ja) * 1996-02-21 1997-09-02 Arakawa Chem Ind Co Ltd ポリカーボネート用滑剤およびこれを含有するポリカーボネート組成物
JPH09241515A (ja) * 1996-03-11 1997-09-16 Arakawa Chem Ind Co Ltd ポリエステル用滑剤およびこれを含有するポリエステル組成物
JPH09249807A (ja) * 1996-03-19 1997-09-22 Arakawa Chem Ind Co Ltd ポリアミド用滑剤およびこれを含有するポリアミド組成物
JPH1053699A (ja) * 1996-06-07 1998-02-24 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物及び成形品
AU728596B2 (en) * 1996-12-19 2001-01-11 S.C. Johnson Commercial Markets, Inc. Dispersions of blended polycarboxypolyamide resins and alkali dispersible resins, their preparation and their use
JP2009209178A (ja) * 2008-02-29 2009-09-17 Arakawa Chem Ind Co Ltd 粘着付与剤、医療用貼付剤用粘着付与剤、粘着剤または接着剤組成物、医療用貼付剤用粘着剤、粘着または接着テープおよび医療用貼付剤
CN102311544B (zh) * 2010-07-09 2012-12-12 中国科学院宁波材料技术与工程研究所 一种松香基增塑剂及其制备方法
US9932476B2 (en) * 2012-10-29 2018-04-03 3M Innovative Properties Company Pavement marking compositions
WO2015048415A2 (en) * 2013-09-27 2015-04-02 Arizona Chemical Company, Llc Rosin esters and compositions thereof
JP6428759B2 (ja) * 2014-03-12 2018-11-28 荒川化学工業株式会社 粘接着剤組成物及びアクリル系粘接着剤組成物
CN104725787B (zh) * 2015-03-24 2016-09-14 南京立汉化学有限公司 一种松香改性石墨填充热塑性聚酯弹性体及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171112A (ja) * 1991-12-21 1993-07-09 Arakawa Chem Ind Co Ltd ロジンエステルの製造法
WO1998024848A1 (fr) * 1996-11-22 1998-06-11 Mitsui Chemicals, Inc. Composition de resine thermoplastique et film constitue de cette composition
JP2001234066A (ja) * 2000-02-24 2001-08-28 Ube Ind Ltd ポリアミド樹脂組成物
JP2009161573A (ja) * 2007-12-28 2009-07-23 Arakawa Chem Ind Co Ltd 粘着付与剤、粘・接着剤組成物および粘・接着フィルムラベル
WO2010104144A1 (ja) * 2009-03-13 2010-09-16 荒川化学工業株式会社 樹脂用改質剤、接着剤組成物および熱可塑性樹脂組成物
JP2012072203A (ja) 2010-09-27 2012-04-12 Nippon A&L Inc 熱可塑性樹脂組成物及び成形体
WO2013069365A1 (ja) 2011-11-10 2013-05-16 ユニチカ株式会社 熱可塑性樹脂組成物およびそれからなる成形体
WO2015048421A2 (en) * 2013-09-27 2015-04-02 Arizona Chemical Company, Llc Rosin esters and compositions thereof
JP2017052945A (ja) * 2015-09-11 2017-03-16 荒川化学工業株式会社 可塑剤及び光学用粘接着剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527627A4

Also Published As

Publication number Publication date
CN109844034A (zh) 2019-06-04
TW201829201A (zh) 2018-08-16
EP3527627B1 (en) 2021-03-17
CN109844034B (zh) 2021-07-27
US20190249008A1 (en) 2019-08-15
JP2018065989A (ja) 2018-04-26
EP3527627A1 (en) 2019-08-21
EP3527627A4 (en) 2020-05-27
JP6926919B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
JP5323688B2 (ja) ポリカーボネート樹脂組成物
TWI492986B (zh) 聚碳酸酯樹脂組成物及將其成形所得之成形體、薄膜、板及射出成形品
JP5503375B2 (ja) セルロース誘導体の可塑剤
JP2019008301A (ja) ウェハレベルレンズ用硬化性組成物、ウェハレベルレンズの製造方法及びウェハレベルレンズ、並びに光学装置
WO2008133343A1 (ja) ポリカーボネート樹脂組成物
WO2018074273A1 (ja) 複合プラスチック成形物
TW201229089A (en) Polycarbonate resin and molded article
JP6874693B2 (ja) 三次元造形用材料、三次元造形用材料の製造方法、及び樹脂成形体
US20160257852A1 (en) Method for manufacturing light-colored refined tall oil rosin and tall oil rosin ester, and light-colored refined tall oil rosin and tall oil rosin ester obtained via said method
KR20200115133A (ko) 수지 조성물, 및 성형품
JP2011132293A (ja) 基板収納容器ガスケット用熱可塑性エラストマー樹脂組成物および基板収納容器用ガスケット成形体
KR101973671B1 (ko) 폴리술폰 공중합체 제조방법 및 그에 의하여 제조된 3d 프린팅용 폴리술폰 공중합체
JP5343999B2 (ja) 光学フィルムの製造方法および光学フィルム、位相差フィルム並びに偏光板
TWI363769B (ja)
JP2006111839A (ja) 抗菌性ポリ乳酸系樹脂組成物
JP2008274009A (ja) ポリカーボネート樹脂組成物
JP2018184557A (ja) ポリカーボネート樹脂用着色防止剤
JP7115466B2 (ja) 成形材料、樹脂成形体、化粧料容器、半導体容器、及び半導体容器の製造方法
JP5600248B2 (ja) ポリカーボネート系樹脂組成物及び成形体
JP2017132976A (ja) ポリ塩化ビニル系樹脂組成物
TW201723111A (zh) 塑化劑及光學用黏著劑組成物
KR102007693B1 (ko) 열가소성 엘라스토머 수지 조성물 및 이의 제조 방법
JP2008208237A (ja) 環状オレフィン付加重合体組成物成形体
JP2021059696A (ja) ポリエステル樹脂組成物
US8729169B2 (en) Synthetic rubber with anti-oxidants for rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017861718

Country of ref document: EP