WO2018074044A1 - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
WO2018074044A1
WO2018074044A1 PCT/JP2017/029535 JP2017029535W WO2018074044A1 WO 2018074044 A1 WO2018074044 A1 WO 2018074044A1 JP 2017029535 W JP2017029535 W JP 2017029535W WO 2018074044 A1 WO2018074044 A1 WO 2018074044A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal wiring
organic
derivatives
support substrate
Prior art date
Application number
PCT/JP2017/029535
Other languages
English (en)
French (fr)
Inventor
昭雄 海保
合田 匡志
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018074044A1 publication Critical patent/WO2018074044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic EL element.
  • the organic EL element described in Patent Document 1 includes a support substrate, a metal wiring (fine wire structure portion) disposed on the support substrate, and a conductive layer disposed to cover the metal wiring. It has.
  • the metal wiring has a predetermined pattern including a plurality of openings.
  • the conductive layer is disposed on the metal wiring and on the support substrate exposed from the opening along the unevenness of the metal wiring.
  • the organic EL element is configured by arranging the organic functional layer and the counter electrode along the uneven shape of the conductive layer on the transparent electrode having such a configuration. In this configuration, the thickness dimension of the conductive layer and the organic functional layer tends to be small at the convex portion of the metal wiring. In this case, in the organic EL element, in a portion where the thickness dimension of the conductive layer and the organic functional layer is small, a short circuit may occur between the counter electrode due to electric field concentration, and current leakage may occur. In the organic EL element, when current leakage occurs, current efficiency decreases.
  • An object of one aspect of the present invention is to provide an organic EL element that can suppress a decrease in current efficiency.
  • An organic EL device is provided on a support substrate, a metal wiring having a predetermined pattern including a plurality of openings, and a support substrate exposed on the metal wiring and the openings.
  • the thickness dimension of the thickest part is T
  • the thickness dimension of the thinnest part of the first electrode layer disposed at a position in contact with the metal wiring is S
  • the thickness dimension T of the thickest part is 250 nm or less.
  • the ratio of S to T is 0.4 or more and 1 or less.
  • the thickness dimension T of the thickest portion of the first electrode layer and the thickness dimension S of the thinnest portion of the first electrode layer disposed at a position in contact with the metal wiring are as follows. The above ratio is satisfied. Thereby, in this organic EL element, it can suppress that a short circuit arises between a 1st electrode layer and a 2nd electrode layer. As a result, in the present organic EL element, it is possible to suppress the occurrence of current leakage, and thus it is possible to suppress a decrease in current efficiency.
  • the cross section along the width direction of the metal wiring has a trapezoidal shape, and the angle formed between the side surface of the metal wiring and the support substrate may be an acute angle.
  • the structure of the organic EL element satisfying the above relationship is particularly effective for suppressing a decrease in current efficiency in the organic EL element.
  • the ratio of C to K (C / K ratio) is 0. It may be 4 or more and 3 or less. With this configuration, it is possible to more effectively suppress a decrease in current efficiency in an organic EL element including a metal wiring that satisfies the above ratio.
  • a decrease in current efficiency can be suppressed.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of an organic EL element according to an embodiment.
  • FIG. 2 is a diagram showing metal wiring.
  • FIG. 3 is a partially enlarged view showing a cross-sectional configuration of the organic EL element.
  • FIG. 4 is a diagram illustrating an embodiment.
  • the organic EL element 1 includes a support substrate 3, a metal wiring 5, an anode layer (first electrode layer) 7, and a hole injection layer (first An electrode layer) 9, a hole transport layer (organic functional layer) 11, a light emitting layer (organic functional layer) 13, an electron transport layer (organic functional layer) 15, an electron injection layer (organic functional layer) 17, A cathode layer (second electrode layer) 19.
  • the support substrate 3 is made of a member that is transparent to visible light (light having a wavelength of 400 nm to 800 nm).
  • Examples of the support substrate 3 include glass.
  • the thickness of the support substrate 3 is, for example, 0.05 mm to 1.1 mm.
  • the support substrate 3 may be made of a resin, and may be, for example, a film-like substrate (a flexible substrate or a flexible substrate). In this case, the thickness of the support substrate 3 is, for example, 30 ⁇ m or more and 500 ⁇ m or less. When the support substrate 3 is a resin, the thickness of the support substrate 3 is preferably 45 ⁇ m or more from the viewpoint of twisting, wrinkling, and elongation of the substrate during continuous roll-to-roll processing. The thickness of the support substrate 3 is preferably 125 ⁇ m or less from the viewpoint of flexibility.
  • the material of the support substrate 3 is a resin
  • examples of the material include a plastic film.
  • the material of the support substrate 3 is, for example, polyethersulfone (PES); polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), or cyclic polyolefin; Polyamide resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin;
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin resin such as polyethylene (PE), polypropylene (PP), or cyclic polyolefin
  • Polyamide resin Polycarbonate resin
  • Polystyrene resin Polyvinyl alcohol resin
  • the material of the support substrate 3 is preferably a polyester resin or a polyolefin resin because of its high heat resistance, a low coefficient of linear expansion, and a low production cost.
  • Polyethylene terephthalate or polyethylene naphthalate is more preferable. preferable.
  • These resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a gas barrier layer or a moisture barrier layer may be disposed on one main surface 3 a of the support substrate 3.
  • the other main surface 3b of the support substrate 3 is a light emitting surface.
  • the metal wiring 5 is disposed on one main surface 3 a of the support substrate 3.
  • the metal wiring 5 is a conductor and constitutes a network structure.
  • the material of the metal wiring 5 is, for example, silver, aluminum, copper, palladium, gold, nickel, iron, molybdenum, chromium, or an alloy containing one or more of these metals (for example, MAM (molybdenum / aluminum / molybdenum). )) And the like.
  • the metal wiring 5 has a predetermined pattern having a plurality of openings 6.
  • the predetermined pattern is, for example, a lattice pattern as shown in FIG.
  • the plurality of openings 6 correspond to a mesh.
  • the mesh shape includes, for example, a rectangle such as a rectangle or a square, a triangle, and a hexagon.
  • the form of the predetermined pattern is not limited as long as the metal wiring 5 has a network structure.
  • the thickness of the metal wiring 5, that is, the height of the metal wiring 5 from the one main surface 3a of the support substrate 3 is 10 nm to 500 nm, preferably 50 nm to 300 nm.
  • the line width of the metal wiring 5 is preferably 500 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 500 ⁇ m or less.
  • the interval between the metal wirings 5 is preferably 50 ⁇ m or more, and more preferably 50 ⁇ m or more and 1 cm or less.
  • the metal wiring 5 can be formed by using, for example, a photolithography method.
  • a metal layer to be the metal wiring 5 is formed by a physical vapor deposition (PVD) method, a sputtering method, or the like. Thereafter, the metal wiring 5 is obtained by patterning the metal layer into a predetermined pattern using a photolithography method.
  • PVD physical vapor deposition
  • the metal wiring 5 may be formed using a lift-off method. In this case, first, a mask having an opening in a region where the metal wiring 5 having a predetermined pattern is to be formed is formed. Thereafter, metal is deposited on the opening of the mask by physical vapor deposition, sputtering, or the like to form a metal wiring. Subsequently, the metal wiring 5 having a predetermined pattern is obtained by removing the mask.
  • the metal wiring 5 may be formed using various printing methods such as an ink jet printing method, a gravure printing method, or a screen printing method.
  • the ink in which the nanostructures are dispersed is printed with a predetermined pattern of the metal wiring 5 by, for example, an ink jet printing method. Then, the metal wiring 5 is obtained by baking.
  • the anode layer 7 is disposed on the metal wiring 5 and on the support substrate 3 exposed from the opening 6 of the metal wiring 5.
  • an electrode layer showing optical transparency is used.
  • a thin film of metal oxide, metal sulfide, metal or the like having high electrical conductivity can be used, and a thin film having high light transmittance is preferably used.
  • a thin film having high light transmittance indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum,
  • a thin film made of silver, copper, or the like is used.
  • a thin film made of ITO, IZO, or tin oxide is preferably used.
  • an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
  • the thickness of the anode layer 7 can be determined in consideration of light transmittance, electrical conductivity and the like.
  • the thickness of the anode layer 7 is not less than 10 nm and not more than 1 ⁇ m, preferably not less than 10 nm and not more than 500 nm, more preferably not less than 10 nm and not more than 300 nm in the portion located in the center of the opening 6 of the metal wiring 5.
  • Examples of the method for forming the anode layer 7 include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a coating method.
  • a coating method spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, An offset printing method, an inkjet printing method, etc. can be mentioned.
  • the hole injection layer 9 is disposed on the main surface of the anode layer 7 (the side opposite to the surface in contact with the support substrate 3).
  • Examples of the material constituting the hole injection layer 9 include vanadium oxide, molybdenum oxide, ruthenium oxide, and oxides such as aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline, And polythiophene derivatives such as polyethylenedioxythiophene (PEDOT).
  • a conventionally known organic material having a charge transporting property can be used as a material for the hole injection layer 9 by combining this with an electron accepting material.
  • an electron accepting material a heteropolyacid compound or an arylsulfonic acid can be suitably used.
  • the heteropoly acid compound has a structure in which a hetero atom is located at the center of a molecule, which is represented by a chemical structure of Keggin type or Dawson type, and is an oxygen acid such as vanadium (V), molybdenum (Mo), tungsten (W), etc.
  • This is a polyacid obtained by condensing an isopolyacid and an oxygen acid of a different element.
  • the oxygen acid of a different element mainly include silicon (Si), phosphorus (P), and arsenic (As) oxygen acids.
  • Specific examples of the heteropolyacid compound include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, phosphotungstomolybdic acid, and silicotungstic acid.
  • Aryl sulfonic acids include benzene sulfonic acid, tosylic acid, p-styrene sulfonic acid, 2-naphthalene sulfonic acid, 4-hydroxybenzene sulfonic acid, 5-sulfosalicylic acid, p-dodecyl benzene sulfonic acid, dihexyl benzene sulfonic acid, 2 , 5-dihexylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, 6,7-dibutyl-2-naphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, 3-dodecyl-2-naphthalenesulfonic acid, hexylnaphthalenesulfonic acid, 4-hexyl-1 -Naphthalenesulfonic acid, octylnaphthalenesulfonic
  • the thickness of the hole injection layer 9 is 5 nm or more and 500 nm or less, preferably 5 nm or more and 300 nm or less.
  • the hole injection layer 9 is formed by, for example, a coating method using a coating liquid containing the above material.
  • the hole injection layer 9 can be formed by applying a coating solution on the anode layer 7 using one of these coating methods.
  • the hole transport layer 11 is disposed on the main surface of the hole injection layer 9 (surface opposite to the surface in contact with the anode layer 7).
  • a known hole transport material can be used as the material of the hole transport layer 11.
  • the material of the hole transport layer 11 include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane or derivatives thereof having an aromatic amine in the side chain or main chain, pyrazoline or derivatives thereof, arylamine or derivatives thereof, Stilbene or derivatives thereof, triphenyldiamine or derivatives thereof, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamine or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2, 5-thienylene vinylene) or a derivative thereof.
  • the thickness of the hole transport layer 11 varies depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency become appropriate values.
  • the thickness of the hole transport layer 11 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • Examples of the method for forming the hole transport layer 11 include a coating method using a coating solution containing the above materials.
  • Examples of the coating method include the method exemplified for the hole injection layer 9.
  • the solvent for the coating solution is not particularly limited as long as it dissolves the above-mentioned materials.
  • a chlorine-based solvent such as chloroform, methylene chloride, and dichloroethane
  • an ether-based solvent such as tetrahydrofuran
  • an aromatic hydrocarbon-based solvent such as toluene and xylene.
  • ketone solvents such as acetone and methyl ethyl ketone
  • ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • the light emitting layer 13 is disposed on the main surface of the hole transport layer 11 (the surface opposite to the surface in contact with the hole injection layer 9).
  • the light emitting layer 13 usually includes an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant material for the light emitting layer that assists the organic substance.
  • the dopant material for the light emitting layer is added, for example, for improving the light emission efficiency or changing the light emission wavelength.
  • the organic substance may be a low molecular compound or a high molecular compound.
  • Examples of the light-emitting material constituting the light-emitting layer 13 include organic substances that emit mainly fluorescence and / or phosphorescence, such as the following dye materials, metal complex materials, and polymer materials, and dopant materials for the light-emitting layer. .
  • dye material examples include cyclopentamine and derivatives thereof, tetraphenylbutadiene and derivatives thereof, triphenylamine and derivatives thereof, oxadiazole and derivatives thereof, pyrazoloquinoline and derivatives thereof, distyrylbenzene and derivatives thereof, Styrylarylene and its derivatives, pyrrole and its derivatives, thiophene compounds, pyridine compounds, perinone and its derivatives, perylene and its derivatives, oligothiophene and its derivatives, oxadiazole dimer, pyrazoline dimer, quinacridone and its derivatives, coumarin and its derivatives Derivatives and the like can be mentioned.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Pt, Ir, and the like as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline.
  • the metal complex which has a structure etc. in a ligand can be mentioned.
  • metal complexes include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes. , Porphyrin zinc complex, phenanthroline europium complex, and the like.
  • polymer material examples include polyparaphenylene vinylene and derivatives thereof, polythiophene and derivatives thereof, polyparaphenylene and derivatives thereof, polysilane and derivatives thereof, polyacetylene and derivatives thereof, polyfluorene and derivatives thereof, polyvinylcarbazole and derivatives thereof, Examples thereof include a material obtained by polymerizing the above dye material or metal complex material.
  • Dopant material for light emitting layer examples include perylene and derivatives thereof, coumarin and derivatives thereof, rubrene and derivatives thereof, quinacridone and derivatives thereof, squalium and derivatives thereof, porphyrin and derivatives thereof, styryl dyes, tetracene and derivatives thereof, pyrazolone and Derivatives thereof, decacyclene and derivatives thereof, phenoxazone and derivatives thereof, and the like can be given.
  • the thickness of the light emitting layer 13 is usually about 2 nm to 200 nm.
  • the light emitting layer 13 is formed by, for example, a coating method using a coating liquid (for example, ink) containing the above light emitting material.
  • the solvent of the coating solution containing the light emitting material is not limited as long as it dissolves the light emitting material.
  • the electron transport layer 15 is disposed on the main surface of the light emitting layer 13 (the surface opposite to the surface in contact with the hole transport layer 11).
  • a known electron transport material can be used.
  • the material for the electron transport layer 15 include compounds having a condensed aryl ring such as naphthalene and anthracene and derivatives thereof, styryl aromatic ring derivatives represented by 4,4-bis (diphenylethenyl) biphenyl, perylene derivatives, Perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinones, naphthoquinones, diphenoquinones, anthraquinodimethanes, quinone derivatives such as tetracyanoanthraquinodimethane, phosphate derivatives, carbazole derivatives, and indole derivatives, tris (8-quinolinolate) Quinolinol complexes such as aluminum (III), hydroxyazole complex
  • the thickness of the electron transport layer 15 is, for example, 1 to 100 nm.
  • Examples of the method for forming the electron transport layer 15 include a vacuum deposition method and a coating method using a coating liquid when a low molecular electron transport material is used. Examples of the method for forming the electron transport layer 15 include a coating method using a coating liquid when a polymer electron transport material is used. When the coating method using the coating liquid is performed, a polymer binder may be used in combination. Examples of the coating method include the method exemplified for the hole injection layer 9.
  • the electron injection layer 17 is disposed on the main surface of the electron transport layer 15 (the surface opposite to the surface in contact with the light emitting layer 13).
  • a known electron injection material can be used.
  • the material of the electron injection layer 17 include alkali metals, alkaline earth metals, alloys containing at least one of alkali metals and alkaline earth metals, oxides of alkali metals or alkaline earth metals, halides, Examples thereof include carbonates and mixtures of these substances.
  • alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like.
  • alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection material a material obtained by mixing a conventionally known electron transporting organic material and an alkali metal organometallic complex can also be used.
  • the thickness of the electron injection layer 17 is, for example, 1 to 50 nm.
  • the cathode layer 19 is disposed on the main surface of the electron injection layer 17 (opposite the surface in contact with the electron transport layer 15).
  • a material of the cathode layer 19 for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • Specific examples of the material for the cathode layer 19 include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, and samarium.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like. it can.
  • the cathode layer 19 for example, a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance, or the like can be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • the conductive organic substance include polyaniline and derivatives thereof, polythiophene and derivatives thereof, and the like. it can.
  • the cathode layer 19 may be formed of a laminate in which two or more layers are laminated. In some cases, the electron injection layer is used as the cathode layer 19.
  • the thickness of the cathode layer 19 is set in consideration of electric conductivity and / or durability.
  • the thickness of the cathode layer 19 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for forming the cathode layer 19 include a vacuum deposition method and a coating method.
  • the metal wiring 5 has a trapezoidal cross section along the width direction.
  • the metal wiring 5 has an upper surface 5a, a side surface 5b, and a side surface 5c.
  • the upper surface 5a is a flat surface, and is parallel to the support substrate 3, for example.
  • the side surface 5b and the side surface 5c are inclined with respect to the support substrate 3 at a predetermined angle ⁇ .
  • the angle ⁇ formed between each of the side surface 5b and the side surface 5c and the support substrate 3 is an acute angle ( ⁇ ⁇ 90 °).
  • the total thickness of the anode layer 7 and the hole injection layer 9 (first electrode layer) (hereinafter referred to as “edge portion”) is T, and the metal wiring 5 is in contact with the thickness dimension.
  • the thickness dimension of the total thinnest part (hereinafter referred to as “shoulder part”) of the anode layer 7 and the hole injection layer 9 disposed at the position is S
  • the thickness dimension T of the edge part is 250 nm or less.
  • the ratio of S to T (S / T ratio) is 0.4 or more and 1 or less.
  • the anode layer 7 and the hole injection layer 9 disposed in contact with the metal wiring 5 are the anode layer 7 located on the metal wiring 5 and the hole injection layer 9 located on the anode layer 7. That is, the anode layer 7 disposed at a position in contact with the metal wiring 5 is the anode layer 7 disposed on the upper surface 5a, the side surface 5b, or the side surface 5c of the metal wiring 5.
  • T is preferably 5 nm or more and 500 nm or less, and more preferably 10 nm or more and 170 nm or less.
  • the thickness dimension T of the edge portion is in the direction orthogonal to the support substrate 3 at the lower end (end on the support substrate 3 side) of the side surface 5 b (5 c) of the metal wiring 5.
  • the thickness dimension S of the shoulder portion is the thickness in the direction orthogonal to the support substrate 3 at the position of one end (the end on the side surface 5b (side surface 5c) side) of the upper surface 5a of the metal wiring 5.
  • the measurement position of the thickness dimension T of the edge portion and the thickness dimension S of the shoulder portion may include a range of ⁇ 0.5 ⁇ m.
  • the thickness T of the edge portion and the thickness S of the shoulder portion are such that the thickness T of the edge portion is 250 nm or less.
  • the ratio (S / T ratio) is 0.4 or more and 1 or less.
  • the metal wiring 5 has a trapezoidal cross section along the width direction.
  • the angle ⁇ formed between the side surfaces 5 b and 5 c of the metal wiring 5 and the support substrate 3 is an acute angle.
  • a structure satisfying the above relationship is particularly effective for suppressing a decrease in current efficiency in the organic EL element 1.
  • the thickness dimension of the metal wiring 5 is K
  • the center thickness dimension of the anode layer 7 and the hole injection layer 9 in the center of the opening 6 of the metal wiring 5 is C.
  • the ratio of C to K is preferably 0.4 or more and 3 or less, and more preferably 0.5 or more and 2.5 or less.
  • C is preferably 210 nm or less, and more preferably 10 nm or more and 160 nm or less.
  • Example 1 As the supporting substrate 3, a glass substrate having a thickness of 0.7 mm was used. A metal wiring 5 having a thickness K of 100 nm was arranged on one main surface 3a of the support substrate 3 as shown in FIGS. The metal wiring 5 was formed so that the cross section along the width direction of the metal wiring 5 was trapezoidal.
  • an anode layer forming ink to be the anode layer 7 was applied so as to cover the metal wiring 5 by spin coating.
  • the anode layer forming ink was dried by heating at 80 ° C. for 2 minutes in the air atmosphere, and then heated at 130 ° C. for 15 minutes to form the anode layer 7.
  • a hole injection layer forming ink to be the hole injection layer 9 was applied onto the anode layer 7 by spin coating.
  • the hole injection layer forming ink was dried by heating at 80 ° C. for 4 minutes in the air atmosphere, and then heated at 230 ° C. for 15 minutes to form the hole injection layer 9.
  • the central film thickness dimension that is the total film thickness of the anode layer 7 and the hole injection layer 9 at the center of the opening 6 of the metal wiring 5 is 74 nm. Formed as follows.
  • Element 1 was produced.
  • the values of C, T, and S of the produced organic EL element 1, the ratio of S to T (S / T ratio), and the ratio of C to K (C / K ratio) are shown in FIG.
  • Examples 2 to 6, Comparative Examples 1 to 3 The current efficiency was measured in the same manner as in Example 1 except that K and C were changed as shown in FIG. C was adjusted by changing the thickness of the anode layer 7.
  • FIG. 4 shows measurement results of C, T, and S values, S / T ratio, C / K ratio, and current efficiency of the obtained organic EL element. Note that “ ⁇ ” in FIG. 4 indicates that a luminance of 1000 cd / m 2 or more was not obtained.
  • an organic EL element having a T of 250 nm or less and an S / T ratio of 0.4 to 1.0 is an organic EL element having a T of greater than 250 nm or an S / T ratio of 0.4. It was confirmed that a decrease in current efficiency was suppressed as compared with organic EL elements not up to 1.0.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the organic EL element in which the anode layer 7, the hole injection layer 9, the hole transport layer 11, the light emitting layer 13, the electron transport layer 15, the electron injection layer 17, and the cathode layer 19 are arranged in this order. 1 was illustrated.
  • the configuration of the organic EL element 1 is not limited to this.
  • the organic EL element 1 may have the following configuration.
  • Anode layer / light emitting layer / cathode layer (b) Anode layer / hole injection layer / light emitting layer / cathode layer (c) Anode layer / hole injection layer / light emitting layer / electron injection layer / cathode layer (d) Anode layer / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode layer (e) Anode layer / hole injection layer / hole transport layer / light emitting layer / cathode layer (f) anode layer / hole Injection layer / hole transport layer / light emitting layer / electron injection layer / cathode layer (g) anode layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode layer (h) anode Layer / light emitting layer / electron injecting layer / cathode layer (i) anode layer / light emitting layer
  • the first electrode layer is an anode layer, or an anode layer and a hole injection layer.
  • S, T, and C indicate the thickness dimension of the anode layer.
  • the organic EL element 1 may have one organic functional layer, or may have a multilayer (two or more layers) organic functional layer.
  • the organic function of two layers As a structure of the organic EL element which has a layer, the layer structure shown to the following (j) can be mentioned, for example.
  • the two (structural unit A) layer configurations may be the same or different.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer include a thin film made of vanadium oxide, ITO, molybdenum oxide, or the like.
  • Examples of the configuration of the organic EL element having three or more light-emitting layers 13 include the layer configuration shown in (k) below. Can do. (K) Anode layer / (structural unit B) x / (structural unit A) / cathode layer
  • (Structural unit B) x represents a stacked body in which (Structural unit B) is stacked in x stages.
  • a plurality of (structural unit B) layer structures may be the same or different.
  • the organic EL element may be configured by directly laminating a plurality of organic functional layers without providing the charge generation layer.
  • the metal wiring 5 is described as an example in which the cross section along the width direction is trapezoidal.
  • the shape of the cross section along the width direction of the metal wiring is not limited to this.
  • the cross-sectional shape along the width direction of the metal wiring may be a rectangular shape or the like.
  • SYMBOLS 1 Organic EL element, 3 ... Support substrate, 5 ... Metal wiring, 5b, 5c ... Side surface, 6 ... Opening part, 7 ... Anode layer (1st electrode layer), 9 ... Hole injection layer (1st electrode layer) , 11 ... hole transport layer (organic functional layer), 13 ... light emitting layer (organic functional layer), 19 ... cathode layer (second electrode layer).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機EL素子1は、有機EL素子1は、支持基板3と、支持基板3上に配置され、複数の開口部6を含む所定パターンを有する金属配線5と、金属配線5上及び開口部6から露出する支持基板3上に配置される一層又は複層の第1電極層7,9と、第1電極層7上に配置される有機機能層13と、有機機能層13上に配置される第2電極層19と、を備え、第1電極層7の最厚部の厚さ寸法をT、金属配線5に接触する位置に配置された第1電極層7の最薄部の厚さ寸法をSとした場合、最厚部の厚さ寸法Tが250nm以下であり、Tに対するSの比(S/T比)が0.4以上1以下である。

Description

有機EL素子
 本発明は、有機EL素子に関する。
 従来の有機EL素子として、例えば、特許文献1に記載されたものが知られている。特許文献1に記載の有機EL素子は、支持基材と、支持基材上に配置された金属配線(細線構造部)と、金属配線を覆うように配置された導電層と、を有する透明電極を備えている。
特開2015-38837号公報
 上記透明電極では、金属配線は、複数の開口部を含む所定パターンを有している。導電層は、金属配線上及び開口部から露出した支持基板上に、金属配線による凹凸に沿って配置される。有機EL素子は、このような構成を有する透明電極上に、有機機能層及び対向電極が導電層の凹凸形状に沿って配置されることにより構成される。この構成では、金属配線の凸部において導電層及び有機機能層の厚さ寸法が小さくなりやすい。この場合、有機EL素子では、導電層及び有機機能層の厚さ寸法が小さい部分において、電界集中により対向電極との間で短絡が生じ、電流リークが発生するおそれがある。有機EL素子は、電流リークが発生すると、電流効率が低下する。
 本発明の一側面は、電流効率の低下を抑制できる有機EL素子を提供することを目的とする。
 本発明の一側面に係る有機EL素子は、支持基板と、支持基板上に配置され、複数の開口部を含む所定パターンを有する金属配線と、金属配線上及び開口部から露出する支持基板上に配置された一層又は複層の第1電極層と、第1電極層上に配置された有機機能層と、有機機能層上に配置された第2電極層と、を備え、第1電極層の最厚部の厚さ寸法をT、金属配線に接触する位置に配置された第1電極層の最薄部の厚さ寸法をSとした場合、最厚部の厚さ寸法Tが250nm以下であり、Tに対するSの比(S/T比)が0.4以上1以下である。
 本発明の一側面に係る有機EL素子では、第1電極層の最厚部の厚さ寸法T、金属配線に接触する位置に配置された第1電極層の最薄部の厚さ寸法Sが上記比を満たしている。これにより、本有機EL素子では、第1電極層と第2電極層との間で短絡が生じることを抑制できる。その結果、本有機EL素子では、電流リークの発生を抑制できるため、電流効率の低下を抑制できる。
 一実施形態においては、金属配線は、幅方向に沿った断面が台形形状を呈しており、金属配線の側面と支持基板とが成す角度が鋭角であってもよい。このような構成を有する金属配線において、上記関係を満たす本有機EL素子の構造は、有機EL素子における電流効率の低下の抑制に特に有効である。
 一実施形態においては、金属配線の厚さ寸法をK、開口部の中央部における第1電極層の中央厚さ寸法をCとした場合、Kに対するCの比(C/K比)が0.4以上3以下であってもよい。この構成では、上記比を満たす金属配線を備える有機EL素子において、電流効率の低下をより効果的に抑制できる。
 本発明の一側面によれば、電流効率の低下を抑制できる。
図1は、一実施形態に係る有機EL素子の断面構成を示す図である。 図2は、金属配線を示す図である。 図3は、有機EL素子の断面構成を一部拡大して示す図である。 図4は、実施例を示す図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 本発明の一実施形態において、図1に示されるように、有機EL素子1は、支持基板3と、金属配線5と、陽極層(第1電極層)7と、正孔注入層(第1電極層)9と、正孔輸送層(有機機能層)11と、発光層(有機機能層)13と、電子輸送層(有機機能層)15と、電子注入層(有機機能層)17と、陰極層(第2電極層)19と、を備えている。
[支持基板]
 支持基板3は、可視光(波長400nm~800nmの光)に対して透光性を有する部材から構成されている。支持基板3としては、例えば、ガラス等が挙げられる。支持基板3がガラスである場合、支持基板3の厚さは、例えば、0.05mm~1.1mmである。
 支持基板3は、樹脂から構成されていてもよく、例えば、フィルム状の基板(フレキシブル基板、可撓性を有する基板)であってもよい。この場合、支持基板3の厚さは、例えば、30μm以上500μm以下である。支持基板3が樹脂の場合は、支持基板3の厚さは、ロールツーロール方式の連続時の基板のヨレ、シワ、及び伸びの観点からは45μm以上が好ましい。支持基板3の厚さは、可撓性の観点からは125μm以下が好ましい。
 支持基板3が樹脂である場合、その材料としては、例えば、プラスチックフィルム等が挙げられる。支持基板3の材料は、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂等が挙げられる。
 支持基板3の材料は、上記樹脂の中でも、耐熱性が高く、線膨張率が低く、かつ、製造コストが低いことから、ポリエステル樹脂、又はポリオレフィン樹脂が好ましく、ポリエチレンテレフタレート、又はポリエチレンナフタレートがさらに好ましい。これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 支持基板3の一方の主面3a上には、ガスバリア層、或いは、水分バリア層(バリア層)が配置されていてもよい。支持基板3の他方の主面3bは、発光面である。
[金属配線]
 図1及び図2に示されるように、金属配線5は、支持基板3の一方の主面3a上に配置されている。金属配線5は、導電体であり、ネットワーク構造を構成している。金属配線5の材料は、例えば、銀、アルミニウム、銅、パラジウム、金、ニッケル、鉄、モリブデン、クロム、又は、これらの金属のうち1種以上を含む合金(例えば、MAM(モリブデン・アルミニウム・モリブデン))等が挙げられる。
 金属配線5は、複数の開口部6を有する所定のパターンを有している。所定パターンは、例えば、図2に示されるように、格子状のパターンである。格子状のパターンの場合、複数の開口部6は、網目に対応する。網目の形状は、例えば、長方形又は正方形のような四角形、三角形、及び、六角形を含む。所定パターンは、金属配線5がネットワーク構造を有すればその形態は限定されない。
 金属配線5の厚さ、すなわち金属配線5の支持基板3の一方の主面3aからの高さは、10nm以上500nm以下であり、好ましくは50nm以上300nm以下である。金属配線5の線幅は、500μm以下であることが好ましく、0.5μm以上500μm以下であることがより好ましい。金属配線5同士の間隔は、50μm以上であることが好ましく、50μm以上1cm以下がより好ましい。
 金属配線5は、例えば、フォトリソグラフィー法を利用して形成され得る。この場合、最初に、物理蒸着(PVD)法及びスパッタリング法等により、金属配線5となるべき金属層を形成する。その後、金属層を、フォトリソグラフィー法を用いて所定のパターンにパターニングすることで、金属配線5が得られる。
 金属配線5は、リフトオフ法を用いて形成されてもよい。この場合、最初に、所定パターンの金属配線5が形成されるべき領域が開口されているマスクを形成する。その後、物理蒸着及びスパッタリング法等によりマスクの開口部に金属を堆積させて金属配線を形成する。続いて、マスクを除去することで、所定パターンの金属配線5が得られる。
 金属配線5は、インクジェット印刷法、グラビア印刷法又はスクリーン印刷法等の種々の印刷方法を用いて形成されてもよい。この場合、例えば、インクジェット印刷法等によって、ナノ構造体が分散されたインクを、金属配線5の所定のパターンで印刷する。その後、焼成することにより金属配線5が得られる。
[陽極層]
 陽極層7は、金属配線5上、及び、金属配線5の開口部6から露出する支持基板3上に配置されている。陽極層7には、光透過性を示す電極層が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。例えば、光透過率の高い薄膜としては、酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、及び銅等からなる薄膜が用いられ、これらの中でもITO、IZO、又は酸化スズからなる薄膜が好適に用いられる。陽極層7としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物の透明導電膜を用いてもよい。
 陽極層7の厚さは、光の透過性、電気伝導度等を考慮して決定することができる。陽極層7の厚さは、金属配線5の開口部6の中央に位置する部分において、10nm以上1μm以下であり、好ましくは10nm以上500nm以下であり、更に好ましくは10nm以上300nm以下である。
 陽極層7の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及び塗布法等を挙げることができる。塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及び、インクジェットプリント法等を挙げることができる。
[正孔注入層]
 正孔注入層9は、陽極層7の主面(支持基板3に接する面とは反対側)上に配置されている。正孔注入層9を構成する材料の例としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、及び、酸化アルミニウム等の酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、及び、ポリエチレンジオキシチオフェン(PEDOT)のようなポリチオフェン誘導体等を挙げることができる。
 電荷輸送性を有する従来知られた有機材料は、これと電子受容性材料とを組み合わせることにより、正孔注入層9の材料として用いることができる。電子受容性材料としては、ヘテロポリ酸化合物やアリールスルホン酸を好適に用いることができる。
 ヘテロポリ酸化合物とは、Keggin型あるいはDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。ヘテロポリ酸化合物の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸、及び、ケイタングステン酸等が挙げられる。
 アリールスルホン酸としては、ベンゼンスルホン酸、トシル酸、p-スチレンスルホン酸、2-ナフタレンスルホン酸、4-ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、p-ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5-ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7-ジブチル-2-ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3-ドデシル-2-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4-ヘキシル-1-ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2-オクチル-1-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7-へキシル-1-ナフタレンスルホン酸、6-ヘキシル-2-ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7-ジノニル-4-ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、及び、2,7-ジノニル-4,5-ナフタレンジスルホン酸、等が挙げられる。ヘテロポリ酸化合物と、アリールスルホン酸を混合して用いてもよい。
 正孔注入層9の厚さは、5nm以上500nm以下であり、好ましくは5nm以上300nm以下である。
 正孔注入層9は、例えば、上記材料を含む塗布液を用いた塗布法によって形成される。
 塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及び、インクジェットプリント法等を挙げることができる。正孔注入層9は、これら塗布法のうちの1つを用いて、陽極層7上に塗布液を塗布することによって形成することができる。
[正孔輸送層]
 正孔輸送層11は、正孔注入層9の主面(陽極層7に接する面とは反対側の面)上に配置されている。正孔輸送層11の材料には、公知の正孔輸送材料が用いられ得る。正孔輸送層11の材料の例は、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン若しくはその誘導体、ピラゾリン若しくはその誘導体、アリールアミン若しくはその誘導体、スチルベン若しくはその誘導体、トリフェニルジアミン若しくはその誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 正孔輸送層11の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。正孔輸送層11の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。
 正孔輸送層11の形成方法としては、例えば、上記材料を含む塗布液を用いた塗布法等が挙げられる。塗布法としては、正孔注入層9で例示した方法が挙げられる。塗布液の溶媒としては、上記材料を溶解するものであればよく、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、及び、エチルセルソルブアセテート等のエステル系溶媒を挙げることができる。
[発光層]
 発光層13は、正孔輸送層11の主面(正孔注入層9に接する面とは反対側の面)上に配置されている。発光層13は、通常、主として蛍光及び/又はりん光を発光する有機物、或いは該有機物とこれを補助する発光層用ドーパント材料を含む。発光層用ドーパント材料は、例えば、発光効率を向上させたり、発光波長を変化させたりするために加えられる。有機物は、低分子化合物であってもよいし、高分子化合物であってもよい。発光層13を構成する発光材料としては、例えば、下記の色素材料、金属錯体材料、高分子材料等の主として蛍光及び/又はりん光を発光する有機物、発光層用ドーパント材料等を挙げることができる。
(色素材料)
 色素材料としては、例えば、シクロペンダミン及びその誘導体、テトラフェニルブタジエン及びその誘導体、トリフェニルアミン及びその誘導体、オキサジアゾール及びその誘導体、ピラゾロキノリン及びその誘導体、ジスチリルベンゼン及びその誘導体、ジスチリルアリーレン及びその誘導体、ピロール及びその誘導体、チオフェン化合物、ピリジン化合物、ペリノン及びその誘導体、ペリレン及びその誘導体、オリゴチオフェン及びその誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン及びその誘導体、クマリン及びその誘導体等を挙げることができる。
(金属錯体材料)
 金属錯体材料としては、例えば、Tb、Eu、Dy等の希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体を挙げることができる。金属錯体としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等を挙げることができる。
(高分子材料)
 高分子材料としては、例えば、ポリパラフェニレンビニレン及びその誘導体、ポリチオフェン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリシラン及びその誘導体、ポリアセチレン及びその誘導体、ポリフルオレン及びその誘導体、ポリビニルカルバゾール及びその誘導体、上記色素材料、又は金属錯体材料を高分子化した材料等を挙げることができる。
(発光層用ドーパント材料)
 発光層用ドーパント材料としては、例えば、ペリレン及びその誘導体、クマリン及びその誘導体、ルブレン及びその誘導体、キナクリドン及びその誘導体、スクアリウム及びその誘導体、ポルフィリン及びその誘導体、スチリル色素、テトラセン及びその誘導体、ピラゾロン及びその誘導体、デカシクレン及びその誘導体、フェノキサゾン及びその誘導体等を挙げることができる。
 発光層13の厚さは、通常約2nm~200nmである。発光層13は、例えば、上記のような発光材料を含む塗布液(例えばインク)を用いる塗布法により形成される。発光材料を含む塗布液の溶媒としては、発光材料を溶解するものであれば、限定されない。
 電子輸送層15は、発光層13の主面(正孔輸送層11に接する面とは反対側の面)上に配置されている。電子輸送層15の材料には、公知の電子輸送材料が用いれ得る。電子輸送層15の材料には、例えば、ナフタレン、アントラセンなどの縮合アリール環を有する化合物やその誘導体、4,4-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン、ナフトキノン、ジフェノキノン、アントラキノジメタン、テトラシアノアントラキノジメタンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体、及び、インドール誘導体、トリス(8-キノリノラート)、アルミニウム(III)などのキノリノール錯体、及び、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体及びフラボノール金属錯体、電子受容性窒素を有するヘテロアリール環を有する化合物などが挙げられる。
 電子輸送層15の厚さは、例えば、1~100nmである。
 電子輸送層15の形成方法としては、低分子の電子輸送材料を用いる場合、真空蒸着法、塗布液を用いた塗布法等を挙げることができる。電子輸送層15の形成方法としては、高分子の電子輸送材料を用いる場合、塗布液を用いた塗布法等を挙げることができる。塗布液を用いた塗布法を実施する場合には、高分子バインダーを併用してもよい。塗布法としては、正孔注入層9で例示した方法が挙げられる。
[電子注入層]
 電子注入層17は、電子輸送層15の主面(発光層13と接する面とは反対側の面)上に配置されている。電子注入層17の材料には、公知の電子注入材料が用いられ得る。電子注入層17の材料には、例えば、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。
 電子注入材料としては、従来知られた電子輸送性の有機材料と、アルカリ金属の有機金属錯体を混合した材料も利用することができる。
 電子注入層17の厚さは、例えば、1~50nmである。
 電子注入層17の形成方法としては、真空蒸着法等が挙げられる。
[陰極層]
 陰極層19は、電子注入層17の主面(電子輸送層15に接する面の反対側)上に配置されている。陰極層19の材料としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属及び周期表第13族金属等を用いることができる。陰極層19の材料としては、具体的には、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、又はグラファイト若しくはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等を挙げることができる。
 また、陰極層19としては、例えば、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いることができる。導電性金属酸化物としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、ITO、及びIZOを挙げることができ、導電性有機物としてポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等を挙げることができる。なお、陰極層19は、2層以上を積層した積層体で構成されていてもよい。なお、電子注入層が陰極層19として用いられる場合もある。
 陰極層19の厚さは、電気伝導度及び/又は耐久性を考慮して設定される。陰極層19の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは50nm~500nmである。陰極層19の形成方法としては、例えば、真空蒸着法、塗布法等を挙げることができる。
 図3に示されるように、本実施形態に係る有機EL素子1では、金属配線5は、幅方向に沿った断面が台形状を呈している。金属配線5は、上面5aと、側面5bと、側面5cと、を有している。上面5aは、平坦面であり、例えば、支持基板3と平行を成している。側面5b及び側面5cは、支持基板3に対して所定の角度θを成して傾斜している。側面5b及び側面5cのそれぞれと支持基板3とが成す角度θは、鋭角である(θ<90°)。
 有機EL素子1では、陽極層7及び正孔注入層9(第1電極層)の合計の最厚部(以下、「エッジ部」と称する)の厚さ寸法をT、金属配線5に接触する位置に配置された陽極層7及び正孔注入層9の合計の最薄部(以下、「ショルダー部」と称する)の厚さ寸法をSとした場合、エッジ部の厚さ寸法Tが250nm以下であり、Tに対するSの比(S/T比)が0.4以上1以下である。金属配線5に接触する位置に配置された陽極層7及び正孔注入層9とは、金属配線5上に位置する陽極層7及び当該陽極層7上に位置する正孔注入層9である。すなわち、金属配線5に接触する位置に配置された陽極層7は、金属配線5の上面5a、側面5b又は側面5c上に配置された陽極層7である。
 Tは、5nm以上500nm以下であることが好ましく、10nm以上170nm以下であることがより好ましい。
 図3に示されるように、エッジ部の厚さ寸法Tは、金属配線5の側面5b(5c)の下端(支持基板3側の端)の位置において、支持基板3に対して直交する方向における厚さである。ショルダー部の厚さ寸法Sは、金属配線5の上面5aの一端(側面5b(側面5c)側の端)の位置において、支持基板3に対して直交する方向における厚さである。エッジ部の厚さ寸法T及びショルダー部の厚さ寸法Sの測定位置は、±0.5μmの範囲を含み得る。
 以上説明したように、本実施形態に係る有機EL素子1では、エッジ部の厚さ寸法T、ショルダー部の厚さ寸法Sは、エッジ部の厚さ寸法Tが250nm以下であり、Tに対するSの比(S/T比)が0.4以上1以下である。これにより、有機EL素子1では、陽極層7と陰極層19との間で短絡が生じることを抑制できる。その結果、有機EL素子1では、電流リークの発生を抑制できるため、電流効率の低下を抑制できる。
 本実施形態に係る有機EL素子1では、金属配線5は、幅方向に沿った断面が台形形状を呈している。有機EL素子1では、金属配線5の側面5b,5cと支持基板3とが成す角度θが鋭角である。このような構成を有する金属配線5において、上記関係を満たす構造は、有機EL素子1における電流効率の低下の抑制に特に有効である。
 本実施形態に係る有機EL素子では、金属配線5の厚さ寸法をK、金属配線5の開口部6の中央部における陽極層7及び正孔注入層9の中央厚さ寸法をCとした場合、Kに対するCの比(C/K比)は0.4以上3以下であることが好ましく、0.5以上2.5以下であることがより好ましい。Cは、210nm以下であることが好ましく、10nm以上160nm以下であることがより好ましい。この構成では、上記比を満たす金属配線5を備える有機EL素子1において、電流効率の低下を効果的に抑制できる。
 続いて、有機EL素子1の一実施例について、図4を参照して説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
 支持基板3として、厚さ0.7mmのガラス基板を用いた。厚さKが100nmの金属配線5を、支持基板3の一方の主面3a上に、図1及び図2に示すように配置した。金属配線5は、当該金属配線5の幅方向に沿った断面が台形状になるように形成した。
 続いて、陽極層7となる陽極層形成用インクを、スピンコート法によって金属配線5を覆うように塗布した。陽極層形成用インクを大気雰囲気中において80℃で2分間加熱して乾燥させた後、130℃で15分間加熱して、陽極層7を形成した。次に、正孔注入層9となる正孔注入層形成用インクを、スピンコート法によって陽極層7上に塗布した。正孔注入層形成用インクを大気雰囲気中において80℃で4分間加熱して乾燥させた後、230℃で15分間加熱して、正孔注入層9を形成した。陽極層7及び正孔注入層9を形成する際、金属配線5の開口部6の中央部における陽極層7及び正孔注入層9の合計の膜厚である中央膜厚寸法が、74nmとなるように形成した。
 次に、正孔注入層9上に、正孔輸送層11、発光層13、電子輸送層15、電子注入層17、及び陰極層19を順に形成し、封止基板を貼合して有機EL素子1を作製した。作製した有機EL素子1のC、T、及びSの値、Tに対するSの比(S/T比)、及びKに対するCの比(C/K比)を、図4に示す。
 作製した有機EL素子1の輝度1000cd/mにおける電流効率を測定した。測定結果を図4に示す。
(実施例2~6、比較例1~3)
 KとCを図4に示されるように変更した以外は、実施例1と同様にして、電流効率を測定した。Cは、陽極層7の厚みを変化させることで調整した。得られた有機EL素子のC、T、及びSの値、S/T比、C/K比、及び電流効率の測定結果を図4に示す。なお、図4における「-」は、1000cd/m以上の輝度が得られなかったことを示す。
 図4に示すとおり、Tが250nm以下であり、S/T比が0.4~1.0である有機EL素子は、Tが250nmより大きい有機EL素子、またはS/T比が0.4~1.0でない有機EL素子に比べて、電流効率の低下が抑制されていることが確認された。
 本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、上記実施形態では、陽極層7、正孔注入層9、正孔輸送層11、発光層13、電子輸送層15、電子注入層17及び陰極層19がこの順番で配置された有機EL素子1を例示した。しかし、有機EL素子1の構成はこれに限定されない。有機EL素子1は、以下の構成を有していてもよい。
(a)陽極層/発光層/陰極層
(b)陽極層/正孔注入層/発光層/陰極層
(c)陽極層/正孔注入層/発光層/電子注入層/陰極層
(d)陽極層/正孔注入層/発光層/電子輸送層/電子注入層/陰極層
(e)陽極層/正孔注入層/正孔輸送層/発光層/陰極層
(f)陽極層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極層
(g)陽極層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極層
(h)陽極層/発光層/電子注入層/陰極層
(i)陽極層/発光層/電子輸送層/電子注入層/陰極層
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。上記(g)は、上記実施形態の構成を示している。上記(a)~(i)において、第1電極層は、陽極層、又は、陽極層及び正孔注入層である。有機EL素子1が、第1電極層として陽極層のみを有している場合、S、T、及びCは、陽極層の厚さ寸法を指す。
 有機EL素子1は、一層の有機機能層を有していてもよいし、複層(2層以上)の有機機能層を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極層7と陰極層19との間に配置された積層構造を「構造単位A」とすると、2層の有機機能層を有する有機EL素子の構成として、例えば、下記(j)に示す層構成を挙げることができる。2個ある(構造単位A)の層構成は、互いに同じであっても、異なっていてもよい。電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデン等からなる薄膜を挙げることができる。
(j)陽極層/(構造単位A)/電荷発生層/(構造単位A)/陰極層
 「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層13を有する有機EL素子の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極層/(構造単位B)x/(構造単位A)/陰極層
 記号「x」は、2以上の整数を表し、「(構造単位B)x」は、(構造単位B)がx段積層された積層体を表す。複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 電荷発生層を設けずに、複数の有機機能層を直接的に積層させて有機EL素子を構成してもよい。
 上記実施形態では、金属配線5が、幅方向に沿った断面が台形状である形態を一例に説明した。しかし、金属配線の幅方向に沿った断面の形状は、これに限定されない。例えば、金属配線の幅方向に沿った断面の形状は、矩形状等であってもよい。
 1…有機EL素子、3…支持基板、5…金属配線、5b,5c…側面、6…開口部、7…陽極層(第1電極層)、9…正孔注入層(第1電極層)、11…正孔輸送層(有機機能層)、13…発光層(有機機能層)、19…陰極層(第2電極層)。

Claims (3)

  1.  支持基板と、
     前記支持基板上に配置され、複数の開口部を含む所定パターンを有する金属配線と、
     前記金属配線上及び前記開口部から露出する前記支持基板上に配置された一層又は複層の第1電極層と、
     前記第1電極層上に配置された有機機能層と、
     前記有機機能層上に配置された第2電極層と、を備え、
     前記第1電極層の最厚部の厚さ寸法をT、前記金属配線に接触する位置に配置された前記第1電極層の最薄部の厚さ寸法をSとした場合、前記最厚部の厚さ寸法Tが250nm以下であり、
     Tに対するSの比(S/T比)が0.4以上1以下である、有機EL素子。
  2.  前記金属配線は、幅方向に沿った断面が台形形状を呈しており、
     前記金属配線の側面と前記支持基板とが成す角度が鋭角である、請求項1に記載の有機EL素子。
  3.  前記金属配線の厚さ寸法をK、前記開口部の中央部における前記第1電極層の中央厚さ寸法をCとした場合、
     Kに対するCの比(C/K比)が0.4以上3以下である、請求項1又は2に記載の有機EL素子。
PCT/JP2017/029535 2016-10-17 2017-08-17 有機el素子 WO2018074044A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203651A JP6383772B2 (ja) 2016-10-17 2016-10-17 有機el素子
JP2016-203651 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074044A1 true WO2018074044A1 (ja) 2018-04-26

Family

ID=62019165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029535 WO2018074044A1 (ja) 2016-10-17 2017-08-17 有機el素子

Country Status (2)

Country Link
JP (1) JP6383772B2 (ja)
WO (1) WO2018074044A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219025A (ja) * 2012-03-16 2013-10-24 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置の作製方法
WO2014039687A1 (en) * 2012-09-06 2014-03-13 Plextronics, Inc. Electroluminescent devices comprising insulator-free metal grids
JP2014508373A (ja) * 2010-12-30 2014-04-03 エルジー・ケム・リミテッド 電極およびこれを含む電子素子
WO2014122938A1 (ja) * 2013-02-07 2014-08-14 パナソニック株式会社 有機エレクトロルミネッセンス素子及び照明装置
US20160172618A1 (en) * 2014-12-11 2016-06-16 Industrial Technology Research Institute Light emitting device, electrode structure and manufacturing method thereof
JP2016139620A (ja) * 2016-03-31 2016-08-04 パイオニア株式会社 有機エレクトロルミネッセンスパネル及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508373A (ja) * 2010-12-30 2014-04-03 エルジー・ケム・リミテッド 電極およびこれを含む電子素子
JP2013219025A (ja) * 2012-03-16 2013-10-24 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置の作製方法
WO2014039687A1 (en) * 2012-09-06 2014-03-13 Plextronics, Inc. Electroluminescent devices comprising insulator-free metal grids
WO2014122938A1 (ja) * 2013-02-07 2014-08-14 パナソニック株式会社 有機エレクトロルミネッセンス素子及び照明装置
US20160172618A1 (en) * 2014-12-11 2016-06-16 Industrial Technology Research Institute Light emitting device, electrode structure and manufacturing method thereof
JP2016139620A (ja) * 2016-03-31 2016-08-04 パイオニア株式会社 有機エレクトロルミネッセンスパネル及びその製造方法

Also Published As

Publication number Publication date
JP6383772B2 (ja) 2018-08-29
JP2018067390A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP2010067543A (ja) 印刷用のインキ
TWI692892B (zh) 有機el元件
US20110315971A1 (en) Method for manufacturing organic electroluminescent device
CN105917736B (zh) 发光装置及发光装置的制造方法
US9923164B2 (en) Method for manufacturing transparent electrode, transparent electrode, and organic electroluminescence device provided with the same
JP6383772B2 (ja) 有機el素子
JP2017130408A (ja) 発光装置
JP5672789B2 (ja) 発光装置の製造方法
JP6945983B2 (ja) 有機elデバイス、表示素子及び有機elデバイスの製造方法
JP6781606B2 (ja) 有機el素子の製造方法
JP6387602B2 (ja) 透明電極、透明電極の製造方法、透明電極を備えた有機エレクトロルミネッセンス素子
JP6440803B1 (ja) 色温度の調整方法及び有機el素子の製造方法
JP6440802B1 (ja) 有機デバイスの製造方法
JP6875842B2 (ja) 有機電子デバイスの製造方法、電極付き基板及び有機電子デバイス
JP2020116526A (ja) 薄膜の製造方法及び電子デバイスの製造方法
WO2016139934A1 (ja) 透明電極、及び有機エレクトロルミネッセンス素子
JP2017174598A (ja) 有機el素子
JP2017204403A (ja) 透明電極及び有機エレクトロルミネッセンス素子
WO2018235594A1 (ja) 透明電極の製造方法及び電子デバイスの製造方法
JP2015064958A (ja) 透明電極、及びそれを備えた有機エレクトロルミネッセンス素子
JP2017098185A (ja) 透明電極、透明電極を備えた有機エレクトロルミネッセンス素子、透明電極の製造方法及び有機エレクトロルミネッセンス素子の製造方法
JP2018045816A (ja) 透明電極及び有機エレクトロルミネッセンス素子
JP2015038867A (ja) 有機elデバイス、照明装置、及び有機elデバイスの製造方法
TW201320428A (zh) 顯示裝置的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862216

Country of ref document: EP

Kind code of ref document: A1